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1. Introduction

In 1950, Isaac Asimov published I, Robot, a collection of short stories about the
dilemmas of a world where robots powered by artificial intelligence (AI) interact
with humans. Recent advances in AI have brought these dilemmas from the realm
of science fiction to the pages of newspapers and the halls of parliaments. In this
paper, we discuss the efficacy of different approaches to AI regulation.

Over the past decade, the declining costs of computing power and the
availability of vast data sets allowed neural networks and other forms of AI to
accomplish remarkable feats. Reinforcement learning algorithms beat humans at
games of perfect information, like chess and go (Silver et al., 2017, Silver et al.,
2018). AI algorithms outperformed humans in games of imperfect information, such
as poker (Brown and Sandholm, 2019). Convolutional neural networks achieved
remarkable accuracy in image recognition tasks (Langlotz et al., 2019). Natural
language processing models like Generative Pre-trained Transformers have made
significant strides in language understanding, translation, and content generation
(Eloundou, Manning, Mishkin, and Rock, 2023). AI algorithms, in general, have
improved prediction accuracy in many domains relevant to business applications
(Agrawal, Gans, and Goldfarb, 2022).

These and other breakthroughs hold the promise of delivering significant
benefits to society. However, they also carry the risk of imposing considerable
societal costs. These costs include negative externalities, such as fueling political
polarization, facilitating fraud, disseminating false information, jeopardizing
financial stability, and weakening democracies (Beraja, Kao, Yang, and Yuchtman,
2023). Other costs take the form of “internalities," a term coined by Herrnstein,
Loewenstein, Prelec, and Vaughan Jr (1993) that refers to situations in which
individuals are manipulated to act against their self-interest through misinformation
or exploitation of self-control and time inconsistency problems.

In May 2023, a consortium of prominent figures in the field of AI signed a
statement declaring that “Addressing the existential risks posed by AI should be a
global priority, on par with other worldwide challenges like pandemics and nuclear
warfare." The leaders of the G7 nations initiated the Hiroshima AI Process to
harmonize AI regulation.

Europe and the United States have started to design regulatory frameworks to
address the challenges posed by AI (see European Commission, 2020, Benifei and
Tudorache, 2023, and Biden, 2023). Ideas proposed so far include mandatory testing
of AI algorithms and holding AI developers accountable for the adverse outcomes
resulting from the use of their technology. Policymakers are also considering
classifying AI technologies into risk tiers (unacceptable, high, limited, and minimal
risk), forbidding the development of algorithms that create unacceptable risks
(European Commission, 2022).

We assess these ideas using a model designed to capture the key aspect of
ongoing developments in AI: there is substantial uncertainty about the resulting
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societal costs and benefits. Our analysis is normative; we evaluate the impact on
social welfare of different regulatory frameworks.

The impact of negative externalities and internalities is broadly similar. One
interesting difference is that developers refrain from releasing algorithms with large
externalities but do not refrain from releasing algorithms with large internalities.
In the main text, we focus our discussion on the potential negative externalities
generated by AI algorithms. In the Appendix, we revisit our results for scenarios
where AI algorithms can cause internalities.

We explore two settings. In both settings, an AI developer makes decisions
regarding the novelty of their AI algorithm relative to the state of the art. There
is ex-ante uncertainty about the negative externalities that this algorithm might
cause. This uncertainty grows with the distance between the new algorithm’s
approach and the status quo.

In the first setting, uncertainty is not resolved until an AI algorithm is
fully implemented, and this implementation is irreversible. Potential negative
externalities drive a wedge between the social optimum and the unregulated
equilibrium. The planner wants to be more cautious than private markets–the
optimal level of AI novelty for society is lower than what naturally emerges in
an unregulated setting.

In the second setting, uncertainty regarding potential negative externalities
can be resolved through experimentation, which we call beta testing. This testing
involves making the algorithm available to a small group of households and using
the test results to decide whether to make the algorithm available to the population
as a whole. Developers regularly engage in beta testing to assess how effective their
algorithm is from a user’s perspective. The beta testing we emphasize in this paper
serves a distinct purpose: to measure an algorithm’s external effects.

In the unregulated equilibrium, the developer has weaker incentives for beta
testing than the planner. Once again, the planner exhibits greater caution than
private markets.

We show three results. First, subjecting algorithm release to regulatory approval
is insufficient to implement the social optimum–developers still have an incentive to
create algorithms that are too risky. Second, simply holding developers accountable
for any adverse external impacts of their algorithms implements the social optimum
if developers are not protected by limited liability. However, this policy is also
insufficient to implement the social optimum if developers are protected by limited
liability. Third, we can achieve a solution close to the social optimum when
regulators mandate beta testing to assess externalities and hold developers liable
for the adverse external effects of their algorithms, even if there is limited liability.
One advantage of this solution is that developers do not need to seek regulatory
approval before implementing their algorithms.

Our paper is related to four important strands of literature. The first studies
the value of experimentation (e.g., Callander, 2011 and Ilut and Valchev, 2023).
The second analyses settings relevant to the design and execution of clinical trials.
These situations feature multiple options and unknown rewards, commonly known
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as the multi-armed bandit problem (e.g., Thompson, 1933 and Gittins, 1974). The
third considers the importance of data as an input into AI algorithms (e.g., Jones
and Tonetti, 2020 and Farboodi and Veldkamp, 2021). The fourth researches the
impact of AI on the economy (e.g., Burstein, Morales, and Vogel, 2019, Acemoglu
and Restrepo, 2022, and Jones, 2023).

In Section 2, we study the model without beta-testing. We introduce beta-
testing in Section 3. In Section 4, we evaluate different regulatory proposals. We
study scenarios in which AI algorithms create internalities in Section D. Section 5
concludes.

2. Model without beta testing

This section considers a model in which an AI algorithm cannot be tested before it is
released and in which the release is irreversible. We discuss the household problem,
the problem of the AI developer, and the unregulated equilibrium. Then, we
characterize the social optimum and compare it with the unregulated equilibrium.

2.1. Unregulated equilibrium

Household problem. The economy has a continuum of households indexed by
i ∈ [0,N ], where N denotes the number of households in the population. Each
household has a constant exogenous income level denoted by y. Households decide
whether to purchase a license to use an AI algorithm with novelty ℓ at a price p.
Their utility, Ui, has a quasi-linear form:

Ui ≡ y + [u (ℓ)µ− p]× Ii − E[e2]. (1)

The indicator function Ii takes the value one if household i buys the AI license
and zero otherwise. The utility derived from using the AI algorithm is u (ℓ)µ. To
capture positive network externalities, we assume that this utility is proportional to
the number of users µ =

∫
Iidi.

The function u is increasing, u′ > 0, and concave u′′ < 0 and that the Inada
condition limℓ↓0 u

′(ℓ) = ∞ holds. We also normalize u(0) = 0.
AI usage can cause a negative externality e that reduces utility by e2. We

assume that the externality is proportional to the measure of users, µ, and takes
the form:

e = φ (ℓ)× µ.

For each value of ℓ, φ(ℓ) is a random variable. Both positive and negative values
of φ(ℓ) represent undesirable, negative externalities.

We assume that the distribution φ(ℓ) satisfies two properties. First, the
expected externality is zero:

E[φ(ℓ)] = 0.



5 Regulating Artificial Intelligence

Second, the uncertainty about potential AI externalities is an increasing function of
the novelty level ℓ. Let σ2(ℓ) denote the uncertainty about potential AI externalities
for an algorithm with novelty level ℓ:

σ2 (ℓ) ≡ E
[
φ(ℓ)2

]
.

We assume that σ2(ℓ) is increasing and convex in ℓ, and σ (0) = 0, i.e., there is
no uncertainty in the status quo.

Replacing e in equation (1), we obtain,

Ui ≡ y + [u(ℓ)µ− p]× Ii − σ2(ℓ)µ2.

Households purchase a license to use the AI algorithm whenever private benefits
exceed the price,

u (ℓ)µ ≥ p.

The AI developer’s problem. We consider a single AI developer who chooses ℓ,
the algorithm’s novelty, the license price, p, and the number of available licenses,
µ.

The cost of developing an algorithm with novelty ℓ is f(ℓ). This cost is
increasing and convex in ℓ and f(0) = 0.

The developer experiences disutility from the externality in the same way that
households do. However, the developer does not take into account the external
effects endured by the households. The utility of the developer is:

V ≡

{
µp− σ2 (ℓ)µ2 − f (ℓ) if p ≤ u (ℓ)µ,

0− f (ℓ) if p > u (ℓ)µ.

If the developer markets the AI algorithm, the optimal license price is p =
u (ℓ)µ. The developer uses its monopoly position to capture the entire consumer
surplus. This pricing strategy does not generate deadweight losses; it simply
redistributes resources from the households to the monopolists.

The optimal levels of ℓ and µ solve the following problem:

max
µ,ℓ≥0,µ≤N

u (ℓ)µ2 − f (ℓ)− σ2 (ℓ)µ2.

We characterize the solution to this problem in two steps. First, taking ℓ as given,
we ask what is the optimal release strategy: how many licenses, µ, should be
made available at a price p. Second, we consider the optimal choice of ℓ from the
developer’s standpoint.

Given ℓ, the optimal the optimal release strategy depends on the sign of
u (ℓ) − σ2 (ℓ). If this expression is positive, it is optimal to make the algorithm
available to the whole population (µ=N). Otherwise, the algorithm is not released
(µ = 0).

The utility of the AI developer is:

V (ℓ) =

{{
u (ℓ)− σ2 (ℓ)

}
N2 − f (ℓ) if u (ℓ)− σ2 (ℓ) ≥ 0,

−f (ℓ) if u (ℓ)− σ2 (ℓ) < 0.
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If [u (ℓ)− σ2 (ℓ)]N2 < f(ℓ) for all ℓ, the developer produces no algorithm.
When the solution for ℓ is interior, it satisfies the first-order condition:{

u′ (ℓ)− ∂σ2 (ℓ)

∂ℓ

}
N2 − f ′ (ℓ) = 0.

Unregulated equilibrium. We now describe the characteristics of an equilibrium
without regulation in which ℓ has an interior value. The superscript e denotes the
values of various variables in this equilibrium. These variables satisfy the following
conditions:

µe = N,{
u′ (ℓe)− ∂σ2 (ℓe)

∂ℓ

}
N2 − f ′ (ℓe) = 0,

and ℓe is such that the utility of the developer is positive,

V (ℓe) =
{
u (ℓe)− σ2 (ℓe)

}
N2 − f (ℓe) ≥ 0.

2.2. The planner’s problem

The total household welfare in an economy in which µ households use the AI
algorithm is ∫ N

0

Uidi = Ny + {u(ℓ)µ− p}µ−Nσ2(ℓ)µ2.

Social welfare is the sum of the households’ and developer’s utilities:

W =

∫ N

0

Uidi+ V = Ny +
{
u (ℓ)− (N + 1)σ2 (ℓ)

}
µ2 − f (ℓ) .

With quasi-linear utility, we can think of this social welfare function as maximizing
the total surplus in the economy.

The following proposition compares the social optimum with the unregulated
equilibrium.

Proposition 1 (Conservatism in ℓ) The socially desirable novelty level, ℓ∗, is
lower than the level that emerges in the unregulated equilibrium, ℓe.

In the appendix, we prove this proposition using monotone comparative statics.
Below, we sketch a proof for the case in which the solution is interior. The socially
optimal solution satisfies the first-order condition:[

u′ (ℓ∗)− (N + 1)
∂σ2 (ℓ∗)

∂ℓ

]
N2 − f ′ (ℓ∗) = 0.

The optimal condition for the developer evaluated at the socially optimal ℓ∗ is[
u′ (ℓ∗)− ∂σ2 (ℓ∗)

∂ℓ

]
N2 − f ′ (ℓ∗) > 0,
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and therefore
ℓe > ℓ∗.

The key driver of this result is that when selecting ℓ, the developer disregards
the external effects on the rest of society.

Regulating AI. One regulatory approach to align the decisions of AI developers
with societal interests is to impose an upper bound on the degree of novelty, ℓ,
that developers can implement. This method resembles the European Commission’s
proposal of classifying AI algorithms into risk tiers (unacceptable, high, limited, and
minimal) and forbidding the development of algorithms with unacceptable risks
(European Commission, 2022).

In the model we have been considering, where there is no beta testing, setting
the upper bound for ℓ equal to the socially optimal novelty level is sufficient to
implement the first best. As we show in the next section, this result no longer holds
in the model with beta testing because incentives to test and implement algorithms
are not aligned by simply placing an upper bound on ℓ.

Another regulatory approach is to hold AI developers liable for the external costs
of the AI algorithm. As discussed in Section 4, without liability limits, this regulation
is sufficient to implement the social optimum in settings with and without beta
testing. However, with limited liability, the policy is no longer sufficient to align
incentives because AI developers do not fully internalize the external consequences
of the AI algorithm when φ(ℓ) is very large. In Section 4, we discuss a combination
of beta testing controlled by the regulator and limited liability that approximately
implements the social optimum.

3. Model with beta testing

This section considers a two-period version of the previous model. Time is discrete
and indexed by t = 1, 2. To evaluate the externalities, the developer can test the
algorithm in the first period in a sample of µ1 users. Based on the outcomes of this
test, they can then decide whether to release the algorithm in the second period.
For simplicity, we consider the case in which the external effects, φ(ℓ), are perfectly
revealed after the AI algorithm is tested in the first period.

People assign weights 1− β and β to the utility of the first and second period,
respectively. The model without beta testing is a particular case of this more general
model where β = 0.

As β converges to one, the weight of the first period’s utility falls, and the cost
of testing in the first period, which is the opportunity cost of not deploying the
algorithm in this period, becomes negligible.

As in the previous section, we begin by describing the unregulated equilibrium.
We then compute the social optimum and compare it to the unregulated
equilibrium.
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3.1. Unregulated equilibrium

Household’s problem. The household lives for two periods. Their utility is

Ui = (1− β)
{
y + [u(ℓ)µ1 − p1]I1,i − E(e21)

}
+ βE

{
y + [u(ℓ)µ2 − p2]I2,i − e22

}
.

The household purchases an AI license in period t if the private benefits exceed
the price

u(ℓ)µt ≥ pt.

AI developer’s problem. In period one, the AI developer makes three decisions:
which novelty level to develop (ℓ), how many AI licenses to offer for sale (µ1), and
what price to charge for each license (p1).

If µ1 equals zero, the developer obtains no information about the external effects
of the AI algorithm in period two and the decision-making process resembles that
of the model without beta testing.

If µ1 is greater than zero, the developer obtains information about the external
effects of the AI algorithm in period two. Using this information, the developer
chooses µ2, the number of AI licenses to offer for sale in period two, and p2, the
price per license.

The utility of the developer in period two is,

V2 =


µ2p2 − φ(ℓ)2µ22, if p2 ≤ u(ℓ)µ2 and µ1 > 0,

µ2p2 − σ2(ℓ)µ22, if p2 ≤ u(ℓ)µ2 and µ1 = 0,

0, if p2 > u(ℓ)µ2.

As before, the price that maximizes the developer’s utility is p2 = u(ℓ)µ2.
If µ1 > 0, then µ2 = N if u(ℓ)− φ(ℓ)2 ≥ 0 and µ2 = 0 otherwise. If µ1 = 0,

then µ2 = N if u(ℓ)− σ2(ℓ) ≥ 0 and µ2 = 0 otherwise.
To make the problem interesting, we assume that φ(ℓ) is such that there is

a strictly positive probability that both u(ℓ) − φ(ℓ)2 > 0 and u(ℓ) − φ(ℓ)2 < 0.
This assumption means that the probability that the AI algorithm is implemented
in period two, given the information obtained in period one, is strictly positive but
less than one.

The optimized developer utility in period two, V∗
2 (ℓ, µ1) is,

V∗
2 (ℓ, µ1) = max

{
u(ℓ)− φ(ℓ)2I(µ1 > 0)− σ2(ℓ)(1− I(µ1 > 0)), 0

}
N2,

where I(µ1 > 0) = 1 if µ1 > 0 and zero otherwise. The * indicates that the value
function has been maximized with respect to the choice of price and implementation
in period two.

Lemma 1 (Private benefits of beta testing in period one) The developer’s expected
utility in the second period is higher when there is beta testing in the first period,

E[V∗
2 (ℓ, µ1)] > V∗

2 (ℓ, 0), if µ1 > 0.
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Proof. Let µ02 denote the optimal choice of µ2 when µ1 = 0. Note that µ02 is
necessarily non-state contingent, so µ02 = N or µ02 = 0 depending on the degree of
uncertainty regarding the externality. Then, if µ1 > 0:

E[V∗
2 (ℓ, µ1)] = E

[
max

{(
u(ℓ)− φ(ℓ)2

)
N2, 0

}]
> E

[(
u(ℓ)− φ(ℓ)2

)
(µ02)

2
]
=
(
u(ℓ)− σ2(ℓ)

)
(µ02)

2 = V∗
2 (ℓ, 0).

□
The problem in period one is to choose ℓ, µ1 and p1 to maximize

V = (1− β)

({
µ1p1 − σ2(ℓ)µ21, if p1 ≤ u(ℓ)µ1

0, if p1 > u(ℓ)µ1

)
+ βE[V∗

2 (ℓ, µ1)]− f(ℓ).

The optimal price for the developer is p = u(ℓ)µ1.
From the standpoint of period one, it is still optimal to set µ1 = N if

u(ℓ) − σ2(ℓ) ≥ 0 and µ1 = 0 if u(ℓ) − σ2(ℓ) < 0. However, experimenting in
the first period, µ1 > 0, creates value by generating information that the developer
can use in the second period.

Given the discontinuity in information generation from µ1 = 0 to µ1 > 0,
the problem may have a supremum but not a maximum. For a given ℓ, if
u(ℓ) − σ2(ℓ) < 0 then the static optimal decision would be µ1 = 0. However,
choosing an infinitesimal, positive value of µ1 yields strictly larger utility than
setting µ1 to zero (see Lemma 1). Therefore, the optimal number of households
trying the technology in period one should be strictly positive but kept as low as
possible (µ1 ↓ 0). We refer to this setting as the experimentation solution: the
developer sells AI licenses to an infinitesimal fraction of households to test the
algorithm and then decides whether to sell the algorithm given the information
revealed in period two.1

Proposition 2 (Uncertainty, beta testing, and algorithm release) In an unreg-
ulated equilibrium, the number of user licenses (µe1) offered by the developer in the
first period depends on the level of uncertainty as follows:

1. The developer does beta testing (µe1 ↓ 0) when the degree of uncertainty is
high

σ2(ℓ) > u(ℓ).

2. The developer foregoes beta testing and releases the AI algorithm to the entire
population in the first period (µe1 = N) when uncertainty is low

σ2(ℓ) ≤ u(ℓ).

1. We could extend the model to the case in which the information revealed is an increasing
function of the number of households involved in beta testing. In this extension, µ1 would still be
positive, but the model is more complex.
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In both scenarios, the developer learns the external effects of the AI algorithm in
the second period and then:

1. Withdraws the algorithm from the market (µe2 = 0) if the personal cost to the
developer arising from externalities is substantial,

φ(ℓ)2 > u(ℓ).

2. Makes the algorithm available to the whole population (µe2 =N) if the personal
cost to the developer arising from externalities is relatively minor

φ(ℓ)2 ≤ u(ℓ).

Since µ1 is always positive, then

V∗
2 (ℓ, µ

e
1) = max

[
u(ℓ)− φ(ℓ)2, 0

]
N2,

and so

V = (1− β)max
[
u(ℓ)− σ2(ℓ), 0

]
N2 + βE [V∗

2 (ℓ, µ
e
1)]− f(ℓ).

3.2. The planner’s problem

We consider a central planner who can decide, in the first period, both the novelty
of the AI algorithm developed and the number of households that can access it. If
the AI algorithm is implemented in the first period, the planner learns its external
effects. In the second period, the planner decides whether to make the AI algorithm
available and how many licenses to offer.

As in the model without beta testing, we compute the allocations that maximize
the social surplus

∫ 1

0 Uidi+V. With quasi-linear utility, this problem is equivalent to
maximizing efficiency. Any distribution of utilities can be achieved using lump-sum
transfers.

We begin by describing the solution to the second-period problem, contingent
upon the choices made in the first period about ℓ and µ1.

Social problem, second period. Development costs are incurred in the first
period. If µ1 > 0, then the planner learns the external effects of the AI algorithm,
φ(ℓ). If µ1 = 0, then the planner faces the same uncertainty about the AI
algorithm’s potential externalities, E[φ(ℓ)2] = σ2(ℓ) as in the model without beta
testing.

The expected social welfare in the second period, considering the available
information, is given by:

W2 =

{
Ny +

[
u (ℓ)− (N + 1)φ (ℓ)2

]
µ22 if µ1 > 0,

Ny +
[
u (ℓ)− (N + 1)σ2 (ℓ)

]
µ22 if µ1 = 0.

We now determine the optimal µ2. If µ1 > 0, it is optimal to make the algorithm
available to the entire population, µ2 = N , if u(ℓ) − (N + 1)φ(ℓ)2 ≥ 0 and to



11 Regulating Artificial Intelligence

not release the AI algorithm otherwise (µ2 = 0). If µ1 = 0, then µ2 = N if
u(ℓ)− (N + 1)σ2(ℓ) ≥ 0 and µ2 = 0 otherwise.

The planner only releases AI algorithms that are socially beneficial, taking into
account the external effects on the entire population, (N + 1)φ(ℓ)2. In contrast,
the developer considers only its own loss of utility due to external effects, φ(ℓ)2.
This difference implies that the developer is willing to commercialize AI algorithms
that are detrimental to society.

Proposition 3 (Optimal restrictions on algorithm release) The central plan-
ner does not release AI algorithms that would be commercialized in an unregulated
equilibrium under two circumstances:

1. If µ1 > 0, the external effects on the population are larger than the social
benefits of implementing the AI algorithm, but the private benefits to the
developer of implementing the algorithm are positive:

u(ℓ)

N + 1
< φ(ℓ)2 ≤ u(ℓ).

2. If µ1 = 0, the social expected benefits of implementing the AI algorithm are
negative, while the private expected benefits to the developer of implementing
the algorithm are positive:

u(ℓ)

N + 1
< σ2(ℓ) ≤ u(ℓ).

The resulting social welfare in period two is given by:

W∗
2 (ℓ, µ1)≡Ny+max

{
u(ℓ)− (N + 1)

[
φ(ℓ)2I(µ1 > 0) + σ2(ℓ)(1− I(µ1 > 0))

]
, 0
}
N2,

where the * indicates that the value function has been maximized with respect
to the choice of price and implementation in period two. As before, we assume
that φ(ℓ) is such that there is a strictly positive probability that both u(ℓ) −
(N + 1)φ(ℓ)2 > 0 and u(ℓ)− (N + 1)φ(ℓ)2 < 0. This assumption means that the
probability that the AI algorithm is implemented in the second period, given the
information obtained in the first period, is strictly positive but less than one.

Lemma 2 (Social benefits of beta testing in the first period) It is not opti-
mal to choose µ1 = 0. Expected social welfare is higher in the second period when
there is beta testing in the first period:

E[W∗
2 (ℓ, µ1)] >W∗

2 (ℓ, 0), if µ1 > 0.

Proof. Let µ02 denote the optimal choice of µ2 when µ1 = 0. Note that µ02 is
not state-contingent, it’s either µ02 = N or µ02 = 0, depending on the uncertainty
regarding external effects. Then, if µ1 > 0:

E[W∗
2 (ℓ, µ1)] = Ny + E

[
max

{(
u(ℓ)− (N + 1)φ(ℓ)2

)
N2, 0

}]
> Ny + E

[(
u(ℓ)− (N + 1)φ(ℓ)2

)
(µ02)

2
]
= Ny +

[
u(ℓ)− (N + 1)σ2(ℓ)

]
(µ02)

2

= W∗
2 (ℓ, 0).

□
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Social problem, first period. The overall expected social welfare is given by

W ≡ (1− β)
[
Ny +

{
u(ℓ)− (N + 1)σ2(ℓ)

}
µ21
]
+ βE[W∗

2 (ℓ, µ1)]− f(ℓ).

Setting µ1 = 0 is never optimal. It is always better to set µ1 to an infinitesimal
value to generate information that can be used in period two.

From the standpoint of the first period, it is optimal to set µ1 = N if
u(ℓ)− (N + 1)σ2(ℓ) ≥ 0 and µ1 = 0 if u(ℓ)− (N + 1)σ2(ℓ) < 0. However, beta
testing in the first period generates information that is valuable in the second period
(see Lemma 2), i.e., if µ1 > 0

E[W∗
2 (ℓ, µ1)] >W∗

2 (ℓ, 0).

Just like in the unregulated equilibrium, the discontinuity in information
generation from µ1 = 0 to µ1 > 0, implies that the problem may have a supremum
but not a maximum. As before, we consider an experimentation solution: the
planner makes AI licenses available to an infinitesimal fraction of households to
test the algorithm and then decides whether to release the algorithm given the
information revealed in period two.

Proposition 4 (Optimal implementation of an AI algorithm in periods one and two)
Given ℓ, the social optimum number of users in the first period (µ∗1) involves:

1. Beta testing (µ∗1 ↓ 0) if uncertainty is sufficiently large

σ2(ℓ) >
u(ℓ)

N + 1
.

2. Immediate implementation (µ∗1 = N) if uncertainty is sufficiently small

σ2(ℓ) ≤ u(ℓ)

N + 1
.

In both cases, upon learning the externality consequences of the AI, the planner:

1. Does not implement the AI algorithm (µ∗2 = 0) if the externalities are
sufficiently large

φ(ℓ)2 >
u(ℓ)

N + 1
.

2. Implements the AI algorithm (µ∗2 =N) if the externalities are sufficiently small

φ(ℓ)2 ≤ u(ℓ)

N + 1
.

The planner either implements beta testing or releases the algorithm to the
population in the first period. However, the planner always adopts a more cautious
stance than the developer when deciding whether to beta test rather than make
the algorithm available to the whole population. There are AI novelty levels for
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which the developer prefers an immediate release to the general public, while the
planner opts for beta testing.

Upon learning in period two the external effects of the AI algorithm, there
are algorithms that the developer would find privately beneficial to continue
commercializing in the second period that the planner withdraws from the market.
Both of these observations stem from the fact that the planner considers the
externalities affecting the entire population, while the developer is only concerned
with the impact of the external effect on its own utility.

In summary, because the planner considers the impact of externalities on
the entire population, it is more cautious than the developer in the sense that
it implements beta testing for externalities more often than the developer. The
planner is also more conservative in releasing the algorithm in the second period.

Proposition 5 (Caution in testing and implementation) Fix ℓ. In period one:

1. If uncertainty is substantial, σ2(ℓ) ≥ u(ℓ), both the planner and the developer
agree to beta test.

2. If uncertainty is moderate, u(ℓ)
N+1 < σ2(ℓ)< u(ℓ), the planner and the developer

disagree. It is optimal for the planner to do beta testing but the developer finds
full-scale implementation without testing privately optimal.

3. If uncertainty is low, σ2(ℓ) ≤ u(ℓ)
N+1 , both the planner and the developer agree

to release the algorithm to the entire population without beta testing.

In period two:

1. If externalities are substantial, φ(ℓ)2 ≥ u(ℓ), both the planner and the developer
agree to withdraw the algorithm from the market.

2. If externalities are moderate, u(ℓ)
N+1 < φ(ℓ)2 < u(ℓ), the planner wants to

withdraw the algorithm from the market, but the developer does not.
3. If externalities are low, φ(ℓ)2 ≤ u(ℓ)

N+1 , both the planner and the developer agree
to release the algorithm to the entire population.

Surprisingly, in contrast with the model without beta testing, the first best can
feature a higher novelty level, ℓ, than the unregulated equilibrium. In the model
with beta testing, the planner can be cautious in two ways. The first is choosing
a lower, less risky novelty level ℓ. The second is beta testing and withdrawing the
algorithm when the net social benefits are negative. The planner withdraws the
algorithm from the market more often than the developer. Because it exercises
caution in testing and implementing, the planner might prefer a higher novelty
level. We show an example of this possibility in the Appendix B.

Table 1 compares the decision to test the algorithm in the first period or release
it to the entire population. When the algorithm is similar to the status quo (ℓ is
low), there is low uncertainty about its external impacts, and the developer and
the planner concur that it is optimal to release it immediately. When ℓ significantly
deviates from the status quo so that uncertainty about external effects is high,
there is a unanimous decision that the algorithm should undergo testing to assess its
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Uncertainty Low Medium High

σ2(ℓ) σ2(ℓ) ≤ u(ℓ)
N+1

u(ℓ)
N+1 ≤ σ2(ℓ) ≤ u(ℓ) σ2(ℓ) ≥ u(ℓ)

Developer release release test

Planner release test test

Table 1. Testing or releasing in the first period, model with externalities

suitability for release. There is disagreement in situations with moderate uncertainty
levels: the developer releases the algorithm without prior testing, whereas it is
socially optimal to test the algorithm to evaluate whether it should be released.

Externality Low Medium High

φ(ℓ)2 φ(ℓ)2 ≤ u(ℓ)
N+1

u(ℓ)
N+1 ≤ φ(ℓ)2 ≤ u(ℓ) φ(ℓ)2 ≥ u(ℓ)

Developer release release not release

Planner release not release not release

Table 2. Release decisions in the second period, model with externalities

Table 2 compares the developer’s and planner’s decision to release the algorithm
in the second period. Since the algorithm was either tested or released to the entire
population in the first period, its external effects are known in the second period.
The developer and planner align their release decisions when external effects are low
or high. However, there is disagreement when external effects are in an intermediate
range: the developer opts to release the algorithm, whereas the planner chooses
not to. This disparity occurs because the developer disregards the external effects
of the algorithm on the population.

Tables 1 and 2 show that simply banning the development of algorithms that
pose a high risk of adverse external effects is insufficient to implement the social
optimum.

4. Regulating AI

In this section, we use the model with beta testing to study the implications of two
forms of regulation.2 The first regulation is to control beta testing in period one

2. Recall that the model without beta testing is a particular case of the general model with β = 0.



15 Regulating Artificial Intelligence

and make the release of the algorithm conditional on the test results. The second
is making developers liable for the external effects of their algorithms.

4.1. Beta testing with conditional approval

Suppose the regulator mandates either beta testing or immediate release in period
one and approves the implementation of the technology in period two only if

φ2 ≤ u(ℓ)

N + 1
.

For a given ℓ, conditional approval in period two generates lower ex-ante
uncertainty about the effects of the externality

ς2(ℓ) ≡
∫ √

u(ℓ)
N+1

−
√

u(ℓ)
N+1

φ2dGℓ(φ) ≤ σ2(ℓ),

where Gℓ denotes the CDF of φ(ℓ). The ex-ante uncertainty about the externality
at time two is given by the variance of the externality conditional on approval
multiplied by the probability of approval in the second period.

The following proposition shows that this popular policy proposal does not
implement the social optimum.

Proposition 6 (Regulatory approval of algorithm release) Suppose the regu-
lator controls whether an algorithm is implemented in both periods. Suppose,
furthermore, that ex-ante uncertainty ς2(ℓ) is increasing in ℓ. Then, the developer
chooses a novelty level higher than the social optimum.

To streamline the exposition, we relegate the proof to the appendix. The
intuition for this proposition is that, for a given ℓ that is worthwhile for the developer
to implement, the developer’s utility is higher than social welfare, and this difference
increases in ℓ. This difference in objectives occurs because the developer cares
relatively less about the externality than the regulator.

4.2. Developers are liable for externalities

Suppose that the regulator allows the developer to freely choose the novelty level
and whether to implement the AI algorithm but makes the developer liable for any
negative externalities. This policy means that the developer is forced to pay:

τt(φ(ℓ), µt) = Nφ(ℓ)2µ2t ,

where µt denotes the number of households to whom the developer sells licenses.
In this case, the utility of the developer is given by

V = (1−β)

({
µ1p1 − σ2(ℓ)µ21 − E[τt(φ(ℓ), µ1)], if p1 ≤ u(ℓ)µ1

0, if p1 > u(ℓ)µ1

)
+βE[V2]− f(ℓ),
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where

V2 ≡


µ2p2 − φ(ℓ)2µ22 − τt(φ(ℓ), µ2), if p2 ≤ u(ℓ)µ2 and µ1 > 0,

µ2p2 − σ2(ℓ)µ22 − E[τt(φ(ℓ), µ2)], if p2 ≤ u(ℓ)µ2 and µ1 = 0.

0, if p2 > u(ℓ)µ2.

It is still optimal for the AI developer to set pt = u(ℓ)µt. Replacing this price
and the liability payments, we see that the utility of the developer coincides with
the objective function of the social planner (up to a constant term) when choosing
the novelty level and making implementation decisions:

V = (1− β)[u(ℓ)− (N + 1)σ2(ℓ)]µ21 + βE[V2]− f(ℓ),

where

V2 ≡

{
[u(ℓ)− (N + 1)φ(ℓ)2]µ22, if µ1 > 0,

[u(ℓ)− (N + 1)σ2(ℓ)]µ22, if µ1 = 0.

Private and social incentives become aligned when AI developers are liable for
external effects. It follows that the privately optimal decisions coincide with the
social optimum. We summarize these results in the following proposition.

Proposition 7 (Full liability) If the developer is liable for the algorithm’s external
effects, then private and social incentives are aligned. This alignment implies that
the testing, implementation, and novelty level ℓ chosen by the developer are the
same as in the first best.

4.2.1. Limited Liability. The previous policy may require the developer to pay
large sums. Suppose there is limited liability, in the sense that the liability payment
cannot exceed the developer’s revenue

τt(φ(ℓ), µt) ≤ ptµt.

In this case, the taxes imposed by the regulator on the AI developer are:

τt(φ(ℓ), µt) = min{Nφ(ℓ)2µ2t , ptµt}.

In this regulatory environment, it is still optimal for the developer to charge the
maximum price pt = u(ℓ)µt.

As before, releasing or beta testing the AI algorithm is always optimal. So,
we only need to consider the case with full information in period two. This result
implies that

V∗
2 (ℓ) = [u(ℓ)− φ(ℓ)2]µ22 −min{Nφ(ℓ)2µ22, u(ℓ)µ22}.

Suppose that Nφ(ℓ)2 < u(ℓ), then the developer decides to withdraw the AI
algorithm from the market if φ(ℓ)2 > u(ℓ)/(N + 1) and to sell AI licenses to the
whole population if φ(ℓ)2 ≤ u(ℓ)/(N + 1). Instead, if Nφ(ℓ)2 ≥ u(ℓ), then the
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developer makes no profits from selling AI licenses but still suffers the external
consequences of the AI algorithm.

Suppose that Nφ(ℓ)2 ≥ u(ℓ), then the developer withdraws the AI algorithm
from the market. Importantly, note that if Nφ(ℓ)2 ≥ u(ℓ), then φ(ℓ)2 > u(ℓ)/(N +
1). It follows that the social planner agrees to withdraw the AI algorithm from the
market.

In sum, even in the presence of limited liability, making AI developers liable for
the external costs of their algorithms is sufficient to align incentives in the second
period. We summarize these results in the following proposition.

Proposition 8 (Limited liability) Suppose that the regulator makes AI develop-
ers liable for the external consequences of the AI algorithm subject to limited
liability. Then, the developer and the regulator agree on the implementation
strategy in period two, i.e.,

1. If externalities are substantial, φ(ℓ)2 > u(ℓ)/(N + 1), both the regulator and
the AI developer agree to withdraw the algorithm from the market.

2. If externalities are low, φ(ℓ)2 ≤ u(ℓ)/(N + 1), both the regulator and the AI
developer agree to release the algorithm to the entire population.

It follows from Proposition 8 that, with limited liability, V∗
2 (ℓ, µ1) =

W∗(ℓ, µ1) − y. However, note that because E[τ1(φ(ℓ),N)] < Nσ2(ℓ), then
incentives in the first period are not aligned.

In the presence of limited liability, the AI developer chooses a higher level of ℓ
than the planner. The AI developer sells licenses to the whole population if

u(ℓ) > σ2(ℓ) + E[min{Nφ(ℓ)2, u(ℓ)}]

and beta tests the AI algorithm if

u(ℓ) ≤ σ2(ℓ) + E[min{Nφ(ℓ)2, u(ℓ)}].

The utility of the AI developer is given by

V = (1−β)max{u(ℓ)−σ2(ℓ)−E[min{Nφ(ℓ)2, u(ℓ)}]}N2+β[W∗(ℓ)−Ny]− f(ℓ).

So, in general, making AI developers liable for external effects is insufficient to
implement the social optimum in the presence of limited liability.

4.2.2. Limited liability with beta testing. Consider now an environment with
limited liability in which the regulator always mandates beta testing for externalities
and makes the developer liable for the external effects of the AI in period 2. This
policy implements the first best in cases where immediate release is not socially
optimal.

Proposition 9 (Limited liability and mandatory beta testing) Suppose that
there is limited liability and the regulator always mandates beta testing. This
regulatory environment does not implement the social optimum when beta testing
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Testing Decision No Liability Limited Liability Unlimited Liability

Chosen by
ℓ suboptimal suboptimal optimal

developer t = 1 Testing/release suboptimal suboptimal optimal

t = 2 Release suboptimal optimal optimal

Mandatory

ℓ suboptimal optimal† optimal†

t = 1 Testing/release optimal† optimal† optimal†

t = 2 Release suboptimal optimal optimal

† when testing is socially optimal.

Table 3. Optimality of different types of regulation, model with externalities

is not optimal. When beta testing is socially optimal, private and social incentives
are aligned: it is optimal for the AI developer to set the novelty level of their
algorithms equal to the socially optimal novelty level. The AI developer beta tests
the algorithm in the first period and releases the algorithm to the entire population
if and only if externalities are low φ2 ≤ u(ℓ)/(N +1). Furthermore, the developer’s
novelty choice is equal to the social optimum.

The cost of beta testing is missing the opportunity to release the algorithm to
the entire population in the first period. As beta converges to one, this opportunity
cost converges to zero. The social optimum can be implemented in this limit by
making the developers responsible for any external effects with limited liability and
requiring mandatory beta testing.

Given that the beta testing phase typically represents only a small fraction of
the AI algorithm’s usage period, enforcing mandatory beta testing is nearly optimal
in real-world applications.

Table 3 summarizes the optimality properties of various forms of regulation,
including those discussed in propositions 7, 8, and 9. The developer controls the
choice of ℓ and the decision to release the algorithm in the second period in all
scenarios. The first column indicates who controls the testing/release decision in
the first period: either the developer freely decides whether to test or release (first
row), or the regulator makes testing mandatory (second row). Imposing mandatory
testing is a simple regulatory policy, but it creates some inefficiency when volatility is
low. In such scenarios, it’s optimal to deploy the algorithm to the entire population
in the first period instead of conducting beta testing.

Unlimited liability (fifth column) ensures optimality when the developer makes
all the decisions. The outcome is consistently suboptimal under no liability (third
column). With limited liability, optimality is achieved when the testing is mandatory,
provided that immediate release is not optimal.
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A natural policy not included in Table 3 is for the regulator to impose the beta
testing policy used in the social optimum. However, this policy does not achieve
the first best in a setting with limited liability. The objectives of the developer
and the social planner differ. As a result, when it is socially optimal to release the
algorithm without testing in the first period, the developer chooses a value of ℓ
that is not socially optimal.

4.3. Internalities versus externalities

We end this section by briefly comparing models with externalities and internalities,
which are deviations from rationality that lead households to make choices that
are not in their self-interest. Appendix D contains our analysis of the model with
internalities.

In the model with externalities, the developer overlooks the external impacts
on the broader population but still personally experiences these effects, just like
any household. These external effects increase with the number of algorithm users.
Consequently, when externalities are high, the developer is dissuaded from releasing
the algorithm. This restraining factor is absent in the model with internalities. This
absence results from the following natural assumption: the developer is not affected
by internalities in its own choices, either because it does not use the AI algorithm
or because it is more sophisticated than the households.

5. Conclusion

In this paper, we study an environment with substantial uncertainty about the
social costs and benefits of new AI technologies. We use this environment to assess
different regulatory proposals put forth by policymakers in Europe and the United
States.

We discuss optimal AI regulation in a setting with a single country. International
coordination might be necessary to achieve a global optimum in a world with
multiple nations.

Suppose external effects are local, that is, using an AI algorithm in one country
does not impose externalities on other countries. National regulators can achieve a
global optimum without limited liability by holding developers accountable for local
external effects. With limited liability, local regulators must enforce optimal testing
beta policies and make developers liable for external effects. These implementations
do not require global coordination.

International cooperation is generally required when there is tax competition
or global externalities, that is when using an AI algorithm on one country imposes
externalities on other countries. This cooperation is more challenging when some
governments pursue objectives that are different from social welfare (see Beraja,
Kao, Yang, and Yuchtman, 2023 for empirical evidence along these lines).
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Cooperation aside, the basic regulatory principle that emerges from our
normative analysis is that, in an environment with limited liability, private and
public incentives are approximately aligned when regulators mandate beta testing
to identify externalities or internalities and hold developers liable for the adverse
impacts caused by their algorithms.

Working out how to measure externalities and internalities to implement this
basic regulatory principle is an arduous task that requires substantial investment in
expertise and computational resources by regulatory bodies. But as Isaac Asimov
writes in his Foundation trilogy, "It has been my philosophy of life that difficulties
vanish when faced boldly."
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Appendix A: Proof of Proposition 1

Define
O(ℓ, d) ≡

{
{u(ℓ)− σ2(ℓ)}N2 − f(ℓ) if d = 1,

{u(ℓ)− (N + 1)σ2(ℓ)}N2 − f(ℓ) if d = 0.

If d = 1, then O(ℓ, 1) is the objective function of the AI developer, whereas if
d = 0, then O(ℓ, 0) is the objective function of the social planner.

Define the maximum admissible level of novelty considered by the developer and
the social planner ℓ(d) for d= 0 and d= 1 respectively. Note that O(ℓ, 1)>O(ℓ, 0).
Given our assumptions on u, σ, and f , this condition implies that

ℓ(1) > ℓ(0).

This result shows that the social planner implements lower levels of novelty than
the developer. In particular, because the social planner has a higher weight on the
externality, it does not allow the implementation of any novelty level ℓ ∈ (ℓ(0), ℓ(1)].

Finally, let
ℓ∗(d) ≡ argmax

ℓ
O(ℓ, d)

be the optimal novelty level for the developer if d = 1 and the social planner if
d = 0. If ℓ∗(1) ̸∈ [0, ℓ(0)], then it immediately follows that ℓ∗(0) < ℓ∗(1) since
ℓ∗(0) ∈ [0, ℓ(0)].

Then, suppose that ℓ∗(1) ∈ [0, ℓ(0)]. We first show that the function O(ℓ, d)
satisfies strict single crossing in (ℓ, d). Then, using the monotone comparative
statics results in Milgrom and Shannon (1994), we find that ℓ∗(1) > ℓ∗(0).

Take ℓ′ > ℓ, we show that

O(ℓ′, 0) ≥ O(ℓ, 0) ⇒ O(ℓ′, 1) > O(ℓ, 1).

Note that

O(ℓ′, 0) ≥ O(ℓ, 0)

⇔{u(ℓ′)− (N + 1)σ2(ℓ′)}N2 − f(ℓ′) ≥ {u(ℓ)− (N + 1)σ2(ℓ)}N2 +−f(ℓ)

⇔{u(ℓ′)− σ2(ℓ′)}N2 − f(ℓ′)−N(σ2(ℓ′)− σ2(ℓ))N2 ≥ {u(ℓ)− σ2(ℓ)}N2 − f(ℓ)

⇔O(ℓ′, 1)−N(σ2(ℓ′)− σ2(ℓ))N2 ≥ O(ℓ′, 0).

Since σ2(ℓ′) > σ2(ℓ) and ς2(ℓ′) > ς2(ℓ), then the previous expression implies
that

O(ℓ′, 1) > O(ℓ′, 0).

Since O(ℓ, d) satisfies the single-crossing property, the results in Milgrom and
Shannon (1994) imply that ℓ∗(d) is increasing in d. In other words,

ℓ∗(1) ≥ ℓ∗(0),

i.e., the developer chooses a higher novelty level than the social planner. We prove
this result by contradiction. Suppose that ℓ∗(1) < ℓ∗(0). Since ℓ∗(0) is optimal at
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d = 0, it must be that
O(ℓ∗(0), 0) ≥ O(ℓ∗(1), 0).

Since O satisfies the single-crossing property, then it follows that

O(ℓ∗(0), 1) > O(ℓ∗(1), 1),

which is contradicts the fact that ℓ∗(1) is optimal at d = 1.

Appendix B: Example where social optimum has higher novelty than
unregulated equilibrium

In this appendix, we provide an example in which, by being more cautious in beta
testing and implementation, the social planner opts for a higher level of novelty
than the AI developer.

The numerical example is as follows. Suppose that u(ℓ) = 2
√
ℓ and that

f(ℓ) = χℓ2/2 with χ = 10. In addition, assume that β = 0.7 and that φ(ℓ) is
such that

φ(ℓ) =


φℓ2, with prob. 1−α

2

0, with prob. α
−φℓ2, with prob. 1−α

2 .

We set φ = 1.0079. In this case:

σ2(ℓ) = (1− α)φψ2φ4.
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Figure B.1: Example where social optimum has higher novelty than developer’s optimum
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In this case, the developer chooses a novelty level of 0.6 and immediately
releases the algorithm to the whole population in period one. If the social planner
was forced to release the algorithm to the whole population, it would choose a
lower novelty level ℓ = 0.16. However, by beta testing the algorithm in period one,
the planner prefers a much higher novelty level: 10.7.

Suppose the developer was forced to beta test the algorithm in the first period;
we see that they would choose the same novelty level as the planner. This result
follows from the fact that, in this example, both the developer and planner agree to
commercialize the AI at time 2 only if φ(ℓ) = 0. However, beta testing is privately
suboptimal since it would cost the developer the profits earned in the first period.

Appendix C: Proof of Proposition 6

Define

O(ℓ, d)≡


(1− β){u(ℓ)− σ2(ℓ)}(µ∗

1)
2 + β

∫√
u(ℓ)
N+1

−
√

u(ℓ)
N+1

[u(ℓ)− hi2]dGℓ(φ)− f(ℓ) if d = 1,

(1− β){u(ℓ)− (N + 1)σ2(ℓ)}(µ∗
1)

2 + β
∫√

u(ℓ)
N+1

−
√

u(ℓ)
N+1

[u(ℓ)− (N + 1)φ2]dGℓ(φ)− f(ℓ) if d = 0.

If d = 1, then O(ℓ, 1) is the objective function of the AI developer, whereas if
d = 0 then O(ℓ, 0) is the objective function of the social planner. Let

ℓ∗(d) ≡ argmax
ℓ

O(ℓ, d),

be the optimal novelty level for the developer if d = 1 and the social planner if
d = 0.

We first show that the function O(ℓ, d) satisfies strict single crossing in (ℓ, d).
Then, using the monotone comparative statics results in Milgrom and Shannon
(1994), we find that ℓ∗(1) > ℓ∗(0).

Take ℓ′ > ℓ, we show that

O(ℓ′, 0) ≥ O(ℓ, 0) ⇒ O(ℓ′, 1) > O(ℓ, 1).

Let α(ℓ) = P
[
φ(ℓ)2 ≤ u(ℓ)

N+1

]
be the ex-ante probability that the AI algorithm

is implemented in period 2. Note that

O(ℓ′, 0) ≥ O(ℓ, 0)

⇔(1− β){u(ℓ′)− (N + 1)σ2(ℓ′)}(µ∗
1)

2 + β{u(ℓ′)α(ℓ′)− (N + 1)ς2(ℓ′)} − f(ℓ′)

≥ (1− β){u(ℓ)− (N + 1)σ2(ℓ)}(µ∗
1)

2 + β{u(ℓ)α(ℓ)− (N + 1)ς2(ℓ)} − f(ℓ)

⇔(1− β){u(ℓ′)− σ2(ℓ′)}(µ∗
1)

2 + β{u(ℓ′)α(ℓ′)− ς2(ℓ′)} − f(ℓ′)

− (1− β)N(σ2(ℓ′)− σ2(ℓ))(µ∗
1)

2 − βN(ς2(ℓ′)− ς2(ℓ))

≥ (1− β){u(ℓ)− σ2(ℓ)}(µ∗
1)

2 + β{u(ℓ)α(ℓ)− ς2(ℓ)} − f(ℓ)

⇔O(ℓ′, 1)− (1− β)N(σ2(ℓ′)− σ2(ℓ))(µ∗
1)

2 − βN(ς2(ℓ′)− ς2(ℓ)) ≥ O(ℓ′, 0).
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Since σ2(ℓ′) > σ2(ℓ) and ς2(ℓ′) > ς2(ℓ), it follows from the previous formula
that

O(ℓ′, 1) > O(ℓ′, 0).

Because O(ℓ, d) satisfies the single-crossing property, then the results in
Milgrom and Shannon (1994) imply that ℓ∗(d) is increasing in d. In other words,

ℓ∗(1) ≥ ℓ∗(0),

i.e. the developer opts for a higher novelty level than what the social planner.
We prove this result by contradiction. Suppose that ℓ∗(1) < ℓ∗(0). Since ℓ∗(0) is
optimal at d = 0, it must be that

O(ℓ∗(0), 0) ≥ O(ℓ∗(1), 0).

Since O satisfies the single-crossing property, then it follows that

O(ℓ∗(0), 1) > O(ℓ∗(1), 1),

which is contradicts the fact that ℓ∗(1) is optimal at d = 1.

Appendix D: A model with internalities

In this Appendix, we study a model where the adverse effects of AI algorithms take
the form of internalities instead of externalities. We consider only a model with
beta testing since the analogous model without beta testing is a particular case
when β = 0.

D.1. Unregulated equilibrium

Household’s problem. The household utility is given by,

Ui ≡ (1− β)
{
y + [u (ℓ)− p1]× I1,i − E[φ (ℓ)2]× I1,i

}
+ βE

[
y + [u (ℓ)− p2]× I2,i − φ (ℓ)2 × I2,i

]
,

where It,i is an indicator function that takes the value one if the household uses the
AI algorithm and zero otherwise. In this model, households potentially experience
adverse effects, φ (ℓ), whenever they use an AI algorithm with novelty ℓ. Households
might be manipulated by the algorithm to act against their best interest because,
in deciding to use the algorithm, they overlook its negative consequences. We
formalize this idea by assuming that Ui is the household’s “experienced utility,” but
that households base their choices on a different, misspecified, objective function
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that we refer to as the “decision utility”:3

Us
i ≡ (1− β) {y + [u (ℓ)− p1]× Ii}+ βE [y + [u (ℓ)− p2]× I2,i] .

To simplify the problem, we abstract from positive network externalities in AI usage.
Introducing these network externalities would not alter our conclusions.

The household decides whether to purchase the AI algorithm to maximize Us
i .

The resulting decision rule is to buy the algorithm whenever pt ≤ u(ℓ).
We maintain the assumptions about the φ(ℓ) distribution previously discussed

in Section 2.
The AI developer’s problem. In the first period, the AI developer chooses ℓ,

how many AI licenses to offer for sale (µ1), and the pricing of these licenses (p1).
We proceed under the assumption that the developer does not use the

algorithm. As a result, the developer is not personally impacted by the internalities
generated by the AI algorithm. Expanding our analysis to consider scenarios
where the algorithm’s internalities also influence the developer is straightforward.
However, such an extension would not significantly alter our findings.

The utility of the developer in the second period is:

V2 =

{
µ2p2 if p ≤ u (ℓ) ,

0 if p > u (ℓ) .

As before, the price that maximizes the developer’s utility is p2 = u(ℓ). Unlike in
the model with externalities, here it is always optimal for the developer to release
the AI algorithm to the entire population, µ2 =N . The developer benefits from the
resulting sales revenue and does not experience any adverse effects. This setting
contrasts with the externality model, where the developer bore its share of the
adverse external effects.

The developer’s maximized utility in the second period is

V∗
2 (ℓ) = u(ℓ)N.

Given that the developer always chooses to make the AI algorithm available to
the entire population, the developer’s utility in the second period is independent
of the information about internalities gathered in the first period.

The developer’s problem in period one is to choose ℓ, µ1 and p1 to maximize

V = (1− β)

({
µ1p1, if p1 ≤ u(ℓ)

0, if p1 > u(ℓ)

)
+ βE[V∗

2 (ℓ)]− f(ℓ).

The optimal price for the developer in the first period is p1 = u(ℓ). As in the
second period, it is optimal for the developer to release the AI algorithm to the
whole population in the first period, µ1 = N .

3. This terminology is common in the behavioral price theory literature, see, e.g., Farhi and Gabaix
(2020).
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Proposition 10 (Beta testing and algorithm release) In an unregulated equi-
librium, the developer always foregoes beta testing and releases the AI algorithm
to the entire population in the first period (µe1 =N). Regardless of the information
generated in the first period about internalities, the developer makes the algorithm
available to the entire population in the second period (µe2 = N).

Because the developer releases the algorithm to the whole population at a
price pt = u(ℓ) in both periods, the optimal value of ℓ is the one that maximizes
u(ℓ)N − f(ℓ.) The first-order for the problem of maximizing the developer’s utility
is

u′(ℓe)N = f ′(ℓe).

D.2. The planner’s problem

The central planner maximizes the social surplus,
∫ 1

0 Uidi+ V. In the first period,
the planner decides the novelty level of the AI algorithm and the number of
households that will have access to it.

If the AI algorithm is released in the first period, the planner learns its
internalities. In the second period, the planner determines whether to release the
AI algorithm and decides the number of licenses to distribute.

We examine the solution to the second-period problem, contingent on the
decisions about ℓ and µ1 made in the first period.

Social problem, second period. If the algorithm is released in period one
(µ1 > 0), then the planner learns the internal effects of the AI algorithm.

The expected social welfare in the second period, considering the available
information, is given by:

W2 =

{
Ny +

[
u (ℓ)− φ (ℓ)2

]
µ2 if µ1 > 0,

Ny +
[
u (ℓ)− σ2 (ℓ)

]
µ2 if µ1 = 0.

The optimal value of µ2 is as follows. If µ1 > 0 and u(ℓ)≥ φ(ℓ)2 or if µ1 = 0 and
u (ℓ) ≥ σ2 (ℓ), then it is optimal to release the algorithm to the whole population
in the second period, µ2 = N . In all other scenarios, it is not optimal to release
the algorithm (µ2 = 0).

The planner chooses to release only those AI algorithms that provide a net
benefit to the household, taking into account the internalities. In contrast, the
developer maximizes its profits and disregards the internalities that affect the
households. As a result, the developer may choose to release AI algorithms that
reduce social welfare.

Proposition 11 (Optimal restrictions on algorithm release) The central plan-
ner refrains from releasing AI algorithms that would be deployed in an unregulated
equilibrium under two circumstances:
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1. When µ1 > 0 and the internal effects outweigh the benefits of using the AI
algorithm,

u(ℓ) < φ(ℓ)2.

.
2. When µ1 = 0 and the expected social benefits of implementing the AI algorithm

are negative:
u(ℓ) < σ2(ℓ).

The resulting social welfare in the second period is:

W∗
2 (ℓ, µ1)≡Ny+max

{
u(ℓ)−

[
φ(ℓ)2I(µ1 > 0) + σ2(ℓ)(1− I(µ1 > 0))

]
, 0
}
N,

where the * indicates that the value function has been maximized with respect to
the choice of price and implementation in period two.

Lemma 3 (Social benefits of beta testing in period one) Expected social wel-
fare is higher in the second period when there is beta testing in the first period:

E[W∗
2 (ℓ, µ1)] >W∗

2 (ℓ, 0), if µ1 > 0.

Proof. Let µ02 denote the optimal choice of µ2 when µ1 = 0. Note that µ02 is
not state-contingent, it’s either µ02 = N or µ02 = 0, depending on the uncertainty
regarding internalities. Then, if µ1 > 0:

E[W∗
2 (ℓ, µ1)] = Ny + E [max {(u(ℓ)− φ(ℓ))N, 0}]

> Ny + E
[(
u(ℓ)− φ(ℓ)2

)
µ02
]
= Ny +

[
u(ℓ)− σ2(ℓ)

]
µ02

= W∗
2 (ℓ, 0).

□
Social problem, first period. The overall expected social welfare is given by

W ≡ (1− β)
[
Ny +

{
u(ℓ)− σ2(ℓ)

}
µ1
]
+ βE[W∗

2 (ℓ, µ1)]− f(ℓ).

Setting µ1 = 0 is never optimal. It is always better to set µ1 to an infinitesimal
value to gather information for use in the second period.

From the standpoint of period one, alone, it is optimal to set µ1 = N if
u(ℓ)− σ2(ℓ) ≥ 0 and µ1 = 0 if u(ℓ)− σ2(ℓ) < 0. However, conducting beta testing
in the first period generates valuable information that can be used in the second
period (see Lemma 3), i.e., if µ1 > 0

E[W∗
2 (ℓ, µ1)] >W∗

2 (ℓ, 0).

As in the model with externalities, the discontinuity in information generation
from µ1 = 0 to µ1 > 0, implies that the problem may have a supremum but not a
maximum. As before, we consider an experimentation solution: the planner makes
AI licenses available to an infinitesimal subset of households to test the algorithm
and then make informed decisions about its release in the second period.
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Proposition 12 (Optimal implementation of an AI algorithm in periods one and two)
Given ℓ, the social optimum number of users in period one (µ∗1) involves:

1. Beta testing (µ∗1 ↓ 0) if uncertainty is sufficiently large

σ2(ℓ) > u(ℓ).

2. Immediate implementation (µ∗1 = N) if uncertainty is sufficiently small

σ2(ℓ) ≤ u(ℓ).

In both cases, upon learning the internalities of the AI algorithm, the planner:

1. Does not implement the AI algorithm (µ∗2 = 0) if the internalities are sufficiently
large

φ(ℓ)2 > u(ℓ).

2. Implements the AI algorithm (µ∗2 = N) if the internalities are sufficiently small

φ(ℓ)2 ≤ u(ℓ).

As in the model with externalities, the planner is more cautious than the
developer. This caution is evident in the planner’s more frequent implementation
of beta testing to assess internalities. Additionally, the planner demonstrates a
more conservative approach when deciding whether to release the algorithm in the
second period.

Proposition 13 (Caution in testing and implementation) Fix ℓ. In period one:

1. If uncertainty is substantial, σ2(ℓ) > u(ℓ), the planner and the developer
disagree. It is optimal for the planner to do beta testing but the developer
finds full-scale release without testing privately optimal.

2. If uncertainty is low, σ2(ℓ) ≤ u(ℓ), both the planner and the developer agree
to release the algorithm to the entire population without beta testing.

In period two:

1. If internalities are large, u(ℓ) < φ(ℓ)2, the planner wants to withdraw the
algorithm from the market, but the developer does not.

2. If internalities are low, φ(ℓ)2 ≤ u(ℓ), both the planner and the developer agree
to release the algorithm to the entire population.

Uncertainty Low High

σ2(ℓ) σ2(ℓ) ≤ u(ℓ) σ2(ℓ) > u(ℓ)

Developer release release

Planner release test

Table D.1. Testing or releasing in the first period, model with internalities
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Table D.1 compares the testing or release decisions made by the planner and
the developer in the first period. When the algorithm is similar to the status quo
(ℓ is low), there is low uncertainty about its internalities. Under these conditions,
both the developer and the planner agree that it is optimal to immediately release
the algorithm to the whole population. When ℓ significantly deviates from the
status quo so that there is substantial uncertainty about internality effects, there is
disagreement: the developer releases the algorithm without prior testing, whereas
it is socially optimal to test the algorithm to evaluate whether it should be released
to the entire population.

Uncertainty Low High

φ(ℓ)2 φ(ℓ)2 ≤ u(ℓ) φ(ℓ)2 > u(ℓ)

Developer release release

Planner release test

Table D.2. Release decisions in the second period, model with internalities

Table D.2 compares the release decisions made by the developer and the planner
in the second period. Given that the algorithm was either beta-tested or made
available to everyone in the first period, its internal effects are known by the
second period. The developer and planner agree to release the algorithm when
internal effects are low. However, their decisions diverge when these effects are
substantial: the developer favors fully releasing the algorithm, while the planner
opts against it.

In the model with externalities, the developer overlooks the external impacts
on the broader population but still personally experiences these effects, just like
any household. These external effects increase with the number of algorithm users.
Consequently, when externalities are high, the developer is dissuaded from releasing
the algorithm, a restraining factor absent in this model. In the version of the model
with internalities, the developer is not a user of the algorithm, so it is not affected
by the internality.

D.3. Regulating AI

This section studies the regulatory approaches considered in the model with
externalities.

D.3.1. Beta testing with conditional approval. Consider a situation where the
regulator decides to either beta test or release in the first period and only authorizes
the algorithm’s release in the second period if

φ2 ≤ u(ℓ).
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For a specific ℓ, conditional approval in the second period reduces the initial
uncertainty about the internalities’ impact

ς2(ℓ) ≡
∫ √

u(ℓ)

−
√

u(ℓ)

φ2dGℓ(φ) ≤ σ2(ℓ),

where Gℓ is the CDF of φ(ℓ).
The following proposition states that this policy proposal does not achieve the

social optimum.

Proposition 14 (Regulatory approval of algorithm release) Suppose that the
regulator controls the release of the algorithm in both periods. Suppose,
furthermore, that ex-ante uncertainty ς2(ℓ) is increasing in ℓ. In this scenario,
the developer chooses a higher level of novelty than is socially optimal.

The detailed proof is provided in the appendix. The intuition for this proposition
is that for any ℓ, the developer’s utility is higher than social welfare, with
this discrepancy increasing with ℓ. This divergence in objectives stems from the
developer’s disregard for the internality.

D.3.2. Developers are liable for negative consequences. Suppose the regulator
allows the developer to choose the novelty level and whether to release the AI
algorithm but holds the developer liable for any adverse internalities. Under this
policy, the developer is obligated to pay:

τt(φ(ℓ), µt) = φ(ℓ)2µt,

where µt represents the number of households to whom the developer sells licenses.
In this case, the utility of the developer is given by

V = (1− β)

({
µ1p1 − E[τt(φ(ℓ), µ1)], if p1 ≤ u(ℓ)

0, if p1 > u(ℓ)

)
+ βE[V2]− f(ℓ),

where

V2 ≡


µ2p2 − τt(φ(ℓ), µ2), if p2 ≤ u(ℓ) and µ1 > 0,

µ2p2 − E[τt(φ(ℓ), µ2)], if p2 ≤ u(ℓ) and µ1 = 0.

0, if p2 > u(ℓ).

When the AI developer is fully accountable for internalities, the optimal pricing
strategy remains pt = u(ℓ)µt. Replacing this price and the liability payments, we
see that the utility of the developer coincides (up to a constant) with the social
planner’s objective function, so both choose the same novelty level and release
decisions:

V = (1− β)[u(ℓ)− σ2(ℓ)]µ1 + βE[V2]− f(ℓ),
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where

V2 ≡

{
[u(ℓ)− φ(ℓ)2]µ2, if µ1 > 0,

[u(ℓ)− σ2(ℓ)]µ2, if µ1 = 0.

Private and social incentives become aligned when AI developers are fully liable for
internalities. As a result, the decisions that are optimal from a private standpoint are
also socially optimal. These findings are summarized in the following proposition:

Proposition 15 (Optimality of regulated equilibrium with full liability) If the
developer is held accountable for the internal effects of the algorithm, then the
private and social incentives become aligned. This alignment means that the
developer’s decisions regarding testing, release, and the selection of the novelty
level coincide with the first best.

Limited Liability. Suppose there is limited liability, in the sense that the liability
payment cannot exceed the developer’s revenue

τt(φ(ℓ), µt) ≤ ptµt.

In this case, the taxes imposed by the regulator on the AI developer are:

τt(φ(ℓ), µt) = min{φ(ℓ)2µt, ptµt}.

In this regulatory environment, it is still optimal for the developer to charge a price
pt = u(ℓ).

As before, it is never optimal to set µ1 = 0, it is always optimal to either beta-
test the AI algorithm or release it to the entire population. So, we only need to
consider the case where there is full information in the second period. This result
implies that

V∗
2 (ℓ) = [u(ℓ)−min{φ(ℓ)2, u(ℓ)}]µ2.

Suppose that φ(ℓ)2 ≤ u(ℓ), then the developer and the planner agree to release
AI licenses to the whole population. On the other hand, if φ(ℓ)2 > u(ℓ), then the
planner does not release the algorithm. Since the developer makes no profits from
selling AI licenses, it is indifferent between releasing the algorithm or not.

In conclusion, even in the presence of limited liability, making AI developers
liable for the internalities of their algorithms is sufficient to align incentives in the
second period. We summarize these results in the following proposition.

Proposition 16 (No restrictions on algorithm release with limited liability)
Suppose that the regulator makes AI developers liable for the internalities of the AI
algorithm subject to limited liability. Then, the developer and the regulator agree
on the release strategy in period two, i.e.,

1. If internalities are significant, φ(ℓ)2 > u(ℓ), both the regulator and the AI
developer agree to withdraw the algorithm from the market.

2. If internalities are low, φ(ℓ)2 ≤ u(ℓ), both the regulator and the AI developer
agree to make the algorithm available to the entire population.
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It follows from Proposition 16 that, with limited liability, V∗
2 (ℓ, µ1) =

W∗(ℓ, µ1) − Ny. However, because E[τ1(φ(ℓ),N)] < σ2(ℓ)N , incentives in the
first period are not aligned.

In the presence of limited liability, the AI developer chooses a different level of
ℓ than the planner. The AI developer sells licenses to the whole population if

u(ℓ) > E[min{φ(ℓ)2, u(ℓ)}]

and beta tests the AI algorithm if

u(ℓ) ≤ E[min{φ(ℓ)2, u(ℓ)}].

The utility of the AI developer is given by

V = (1− β)max{u(ℓ)− E[min{φ(ℓ)2, u(ℓ), 0}]}N + β[W∗(ℓ, µ1)−Ny]− f(ℓ).

So, with limited liability, making AI developers liable for internalities is insufficient
to implement the social optimum

Limited liability with beta testing. Consider now an environment with limited
liability in which the regulator always mandates beta testing for internalities, and
the developer is liable for the internalities of the AI in the second period. This
policy implements the first best in cases where releasing the algorithm in the first
period is not socially optimal.

Proposition 17 (Limited liability and beta testing) Suppose that there is
limited liability and the regulator always mandates beta testing. This regulatory
setting does not implement the social optimum when beta testing is not optimal.
When beta testing is socially optimal, private and social incentives are aligned. The
AI developer beta tests the algorithm in the first period and releases the algorithm
to the entire population if and only if internalities are low φ2 ≤ u(ℓ). Furthermore,
the developer’s novelty choice is equal to the social optimum.

Table D.3 summarizes the effectiveness of various regulatory approaches. In all
scenarios, the developer makes the decision regarding the novelty level (ℓ) and the
release of the algorithm. The first column indicates who makes the testing decision.
Testing is either decided by the developer (first row) or mandated by the regulator
(second row).

Unlimited liability (fifth column) ensures optimality regardless of who makes
the testing decision. The outcome is consistently suboptimal under no liability
(third column), even when the regulator controls testing. With limited liability,
optimality is achieved when the regulator mandates unconditional testing, provided
that immediate release is not optimal.
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Testing choice Decision No Liability Limited Liability Unlimited Liability

Developer

ℓ suboptimal suboptimal optimal

t = 1 Testing suboptimal suboptimal optimal

t = 2 Release suboptimal optimal optimal

Regulator

ℓ ℓeq > ℓ∗ optimal† optimal

t = 1 Testing suboptimal optimal optimal

t = 2 Release suboptimal optimal optimal

† when testing is socially optimal.

Table D.3. Optimality of different types of regulation, model with internalities
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