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Abstract 

Climate change could impose systemic risks upon the financial sector, either via disruptions in 

economic activities resulting from the physical impacts of climate change or changes in policies 

as the economy transitions to a less carbon-intensive environment. We develop a stress testing 

procedure to test the resilience of financial institutions to climate-related risks. Specifically, we 

introduce a measure called CRISK, systemic climate risk, which is the expected capital shortfall 

of a financial institution in a climate stress scenario. We use the measure to study the climate-

related risk exposure of large global banks in the collapse of fossil-fuel prices in 2020. 
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1 Introduction

Climate change is one of the most pressing challenges for the global economy. Understanding

the impact of climate change on financial systems is an important question for researchers,

institutional investors, central banks, and financial regulators across the world. Krueger et

al. (2020) find that institutional investors believe climate risks have financial implications for

their portfolio firms and that these risks have already begun to materialize. Many central

banks have started including climate stress scenarios in their own stress testing frameworks.1

The Network of Central Banks and Supervisors for Greening the Financial System (NGFS),

which consists of 108 member countries as of February 2022, analyzes the impact of climate

change on macroeconomic and financial stability.2

How does climate change impose systemic risks on the financial sector? There are two

main channels. First, climate change can cause disruptions in economic activities directly

through its physical impacts. Second, climate change can also lead to changes in policies

as economies transition to a less carbon-intensive environment. The former is referred to

as the physical risk channel and the latter is referred to as the transition risk channel.3

Physical risks can affect financial institutions through their exposures to firms and households

that experience extreme weather shocks. On the other hand, transition risks can affect

financial institutions through their exposures to firms with business models not aligned

with a low-carbon economy. Fossil fuel firms are a prominent example: banks that provide

financing to fossil fuel firms are expected to suffer when the default risk of their loan portfolios

increases, as economies transition into a lower-carbon environment. If banks systemically

1For example, the central banks and the regulators of Australia, Canada, England, France, and the
Netherlands have either already begun performing climate stress tests, announced their intention to conduct
such tests.

2See https://www.ngfs.net/en for further details on NGFS.
3NGFS defines physical risks as financial risks that can be categorized as either acute—if they arise from

climate and weather-related events and acute destruction of the environment—or chronic—if they arise from
progressive shifts in climate and weather patterns or from the gradual loss of ecosystem services. NGFS
defines transition risks as financial risks which can result from the process of adjustment towards a lower-
carbon and more circular economy, prompted, for example, by changes in climate and environmental policy,
technology, or market sentiment (NGFS (2020)).
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suffer substantial losses following an abrupt rise in the physical risks or transition risks,

climate change poses a considerable risk to the financial system as a whole.

How much systemic risk does climate change impose on the financial system? This

question is at the heart of understanding the impact of climate change on financial systems.

Yet, there are several challenges to testing the resilience of financial institutions to climate-

related risks. First, analyses based on past climate events may not effectively capture the

changes in the perception of risk. For instance, the market expectations may change without

a direct experience of climate change events, and asset prices today can reflect changes in

future climate risk even though the damages are decades away. Second, both the climate

risk itself and how firms, banks, and markets respond to the perceived risk change over time.

Third, substantial data gaps have commonly been pointed out as one of the major challenges

to systematically assessing climate-related risks.4

To address these challenges, we take a novel approach to stress testing for climate change.

We develop a market-based climate stress testing methodology that focuses on measuring

the effect of climate risk on financial stability, through its effect on asset prices. Such bank

stress tests can show financial institutions’ exposure to climate change from damages that

may not occur for more than twenty years, but which could bankrupt a bank over a short

period of time since prices of their assets, such as bank loans, can fall today in response to

bad news about the distant future. Our methodology addresses the challenge of the time-

varying nature of climate risk by estimating the model dynamically. This allows us to avoid

making strong assumptions such as banks’ leverage or portfolio holdings being constant over

time. Our methodology only requires publicly available data and allows for daily estimation,

both addressing the data gap challenge and providing a timely warning signal.

Specifically, we propose a measure called CRISK, systemic climate risk, which is the

expected capital shortfall of a financial institution in a climate stress scenario. The stress

testing procedure involves three steps. The first step is to measure the climate risk factor.

4Brainard (2021), NGFS (2021), BIS (2021), and others.
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While there can be multiple ways to measure the climate risk factor, we use a market-based

measure, as previous studies suggest that climate risks are priced in the equity market.

(Bolton and Kacperczyk (2020), Engle et al. (2020), Ilhan et al. (2020), Barnett (2019),

and others) We use stranded asset portfolio return as a market-based proxy measure for

transition risk. As economies transition into a less carbon-intensive environment, we expect

a large proportion of existing fossil fuel reserves to remain unused and fossil fuels to become

“stranded assets”.5 Therefore, the stranded asset portfolio return can be a useful proxy

reflecting market expectations on future transition risk. The second step is to regress financial

institutions stock returns on the climate risk factor. We estimate the time-varying climate

betas of financial institutions using the Dynamic Conditional Beta (DCB) model of Engle

(2016). In this step, we control for confounding factors, such as overall market collapse

from the COVID shock and aggregate demand shock, by including the market factor. The

third step is to compute CRISK, which is a function of a given financial firm’s size, leverage,

and expected equity loss conditional on climate stress. This step is based on the same

methodology as SRISK of Acharya et al. (2011), Acharya et al. (2012), and Brownlees and

Engle (2017), with the climate factor added as the second factor.

We apply the methodology to measure the climate risk of 27 large global banks, whose

aggregate market share in the oil and gas syndicated loan origination market exceeds 80%.

The stress scenario that we consider is a 50% drop in the return on the stranded asset portfolio

over six months. This scenario can be considered extreme, as the 50% decline corresponds

to the first percentile of the historical six-month return on the stranded asset portfolio. We

find that, first, the climate beta varies over time, highlighting the importance of dynamic

estimation. Second, the climate beta and CRISK substantially increased during 2020. In

2020, the aggregate CRISK of the top four U.S. banks increased by 425 billion US Dollars

(USD), which corresponds to approximately 47% relative to their market capitalization. The

5McGlade and Ekins (2015) find that globally, a third of oil reserves, half of the gas reserves, and over
80 percent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of
limiting global warming to 2 degrees Celsius.
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sharp increases in the climate beta and CRISK in 2020 were common across banks in other

countries. In a decomposition analysis, we find that the increase in CRISK during 2020 was

40% due to increases in climate betas and 40% due to decreases in the equity values of banks,

for the U.S. banks. Since this might imply that the banks had been already under stress

during 2020 without any climate stress, we isolate the effect of climate stress from the effect

of market stress by measuring the marginal CRISK. Our third finding is that the aggregate

marginal CRISK, the difference between CRISK and non-stressed CRISK, of the top four

US banks reached 260 billion USD at the end of 2020 and remain elevated until 2021. This

result suggests that the effect of climate stress could be substantial.

To corroborate the economic validity of our estimates, we use granular data on large

US banks’ loan portfolios, FR Y-14Q. We find that both brown loan exposure and the

average probability of default of brown borrowers relative to non-brown borrowers explain

the variation in the climate beta. We show that banks with higher brown loan exposure and

higher risk of brown loans tend to have higher sensitivities to climate transition stress (after

controlling for bank characteristics, bank fixed effect, and time fixed effect), corroborating

the economic validity of our estimates.

We perform several robustness tests throughout the analyses to confirm the validity of the

results. We find that our results are robust to including additional bank stock return factors,

using close alternative climate factors, and taking alternative estimation procedures. Addi-

tionally, we show how the framework can incorporate different stylized versions of transition

scenarios by using different market-based climate transition factors, including an emission-

based factor, a brown minus green factor, and a climate efficient factor mimicking portfolio

return.

Related Literature

This paper adds to the fast-growing body of literature on climate finance. Giglio et al.

(2020) and Hong et al. (2020) provide reviews of this burgeoning literature. Several papers
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have studied the effect of climate change risk on banks and loans. On the physical risk

side, Blickle et al. (2022) find that weather disasters had insignificant or small effects on

U.S. banks’ performance as disasters increase loan demand, which boosts banks’ profits.

Brown et al. (2021) and Correa et al. (2022) document evidence suggesting that banks are

pricing in the physical climate risk. Ivanov et al. (2022) show that natural disasters lead

to an increase in corporate credit demand in affected regions, and at the same time, a

reduction in credit extended to distant regions that are unaffected by disasters. On the

transition risk side, Kacperczyk and Peydro (2021) show that, based on syndicated loan

origination data, firms with higher emission levels previously borrowing from banks making

commitments subsequently receive less total bank credit. Chava (2014) finds that banks

charge significantly higher interest rates on the loans provided to firms with environmental

issues. Despite the evidence from prior studies that banks do price climate risks, our CRISK

measures suggest that climate change could still lead to a substantial increase in systemic

risks when transition risks rise sharply.

This paper also contributes to the literature on stress testing and systemic risk measure-

ment. In the context of climate-related stress testing, Reinders et al. (2020) use Merton’s

contingent claims model to assess the impact of a carbon tax shock on the value of corporate

debt and residential mortgages in the Dutch banking sector. Compared to other stress test-

ing methodologies, the CRISK methodology inherits the benefits of the SRISK methodology

of Acharya et al. (2011), Acharya et al. (2012), and Brownlees and Engle (2017). First,

CRISK does not require any proprietary information and can be readily computed using

only publicly available data on the balance sheet and market information of each financial

institution, and the return on the stranded asset portfolio. Moreover, it can be estimated on

a high-frequency basis. Therefore, it is very easy to estimate and promptly reflects current

market conditions. It is thus a useful monitor that enables regulators to respond in a timely

manner in case intervention is necessary. Second, CRISK measures the expected capital

shortfall conditional on aggregate stress. That is, we are not measuring how much capital a
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bank would need when the bank is under stress merely in isolation. Third, firm-level CRISK

can be aggregated to country-level CRISK, which provides early warning signals of macroe-

conomic distress due to climate change. Fourth, by applying a consistent methodology to

different firms in different countries, the CRISK measure allows comparison across firms and

across countries. Lastly, implementing the CRISK measure offers value incremental to other

stress testing methodologies that are already in place. Previous studies including Acharya et

al. (2014) and Brownlees and Engle (2017) show that regulatory capital shortfalls measured

relative to total assets give similar rankings to SRISK. However, rankings are different when

the regulatory capital shortfalls are measured relative to risk-weighted assets, and they are

also different from those observed in the European stress tests.

Outline of the Paper

The remainder of the paper proceeds as follows: Section 2 describes the data. Section 3

develops our empirical methodology and reports the stress testing results. Section 4 analyzes

the CRISKs of large global banks during 2020. Section 5 tests the economic validity of our

estimates by studying the relationship between the climate beta and the loan portfolio.

Section 6 presents robustness results and section 7 shows extended applications. section 8

concludes.

2 Data

We estimate climate betas and CRISKs of large global banks in the U.S., the U.K., Canada,

Japan, and France for the sample period from 2000 to 2021. We focus on large global banks

as they hold more than 80% of syndicated loans made to the oil and gas industry.6 We use

the return on an S&P 500 ETF as the market return. The stock return and accounting data

of banks are from Datastream. The summary statistics on the return data are reported in

6This is based on the syndicated loan data from LPC DealScan and Bloomberg League Table.
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Appendix A.

For the U.S. banks, we use FR Y-14Q and FR Y-9C to study the relationship between

climate beta estimates and bank loan composition as well as bank characteristics. FR Y-

14Q7 provides data on banks’ loan holdings, and FR Y-9C8 provides consolidated financial

statement data of bank holding companies. Both data are maintained by the Federal Reserve.

FR Y-14Q is the closest data to the credit registry in the U.S. Unlike commercially available

databases that cover only a subset of the loan market, FR Y-14Q covers more than 75% of

all corporate lending in the U.S. We use its sub-database “Schedule H.1”, which provides

granular information on all commercial and industrial loans over 1 million USD in size for

all stress-tested banks in the U.S. at a quarterly frequency. In the sample period between

2012:Q2 and 2021:Q4, we observe over 5 million loans for 21 listed banks. We make use of

information on borrowers’ industries and their probability of default to explain the time-series

and cross-sectional variations in climate betas. For some tables, we make use of Dealscan

data to report banks’ loan exposure the to oil and gas industry.

3 Methodology and Empirical Results

The climate stress testing procedure involves three steps. The first step is to measure the

climate risk factor by using the stranded asset portfolio return as a proxy measure for

transition risk. The second step is to estimate the time-varying climate betas of financial

institutions using the DCB model. The third step is to compute CRISK, which is a function

of a given firm’s size, leverage, and expected equity loss conditional on climate stress. This

step extends the SRISK methodology of Acharya et al. (2011), Acharya et al. (2012), and

Brownlees and Engle (2017) by adding the climate factor as the second factor.

7https://www.federalreserve.gov/apps/reportforms/reportdetail.aspx?sOoYJ+

5BzDZGWnsSjRJKDwRxOb5Kb1hL
8https://www.federalreserve.gov/apps/reportforms/reportdetail.aspx?sOoYJ+

5BzDal8cbqnRxZRg==
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3.1 Climate Transition Risk Factor Measurement

There are several ways to measure the climate risk factor, including the climate news index

constructed by Engle et al. (2020). We use a market-based measure, “stranded asset” port-

folio return as a measure of transition risks. McGlade and Ekins (2015) find that globally,

a third of oil reserves, half of the gas reserves, and over 80 percent of current coal reserves

should remain unused from 2010 to 2050 to meet the target of limiting global warming to

2 degrees Celsius. This implies that fossil fuels would likely become “stranded assets”, and

therefore, the return on stranded asset portfolio is a useful proxy measure reflecting market

expectations on future transition risk. This measure can be easily computed on a daily basis,

and it overcomes the challenge that unsigned news-based measures face.9 In section 7, we

consider a few more market-based measures, an emission-based factor, brown minus green

factor, and climate efficient factor mimicking portfolio return to account for climate risk

besides stranded assets. Each factor is associated with a different stylized version of transi-

tion scenarios. For these proposed factors, we find suggestive evidence that they respond to

transition-related climate change events.10

The stranded asset portfolio was developed by Robert Litterman, and the World Wildlife

Fund where he chairs the investment committee takes a short position in the stranded asset

portfolio to get a climate hedge. It consists of a long position in the stranded asset index

comprised of 30% in Energy Select Sector SPDR ETF (XLE) and 70% in VanEck Vectors

Coal ETF (KOL), and a short position in SPDR S&P 500 ETF Trust (SPY ). The short

position in the stranded asset portfolio pays off when stranded assets underperform and

therefore it protects the fund against the risk of coal and oil becoming less valuable and

the valuations of companies holding those assets falling when incentives to reduce carbon

emissions are instituted globally.11

9News-based measures often cannot differentiate attention on a tightening transition policy from that
on a loosening transition policy.

10Please see Appendix I for an event study analysis.
11The stranded asset portfolio return acts as a proxy for the World Wildlife Fund stranded assets

total return swap. See http://www.intentionalendowments.org/selling_stranded_assets_profit_
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We directly use the return on stranded asset portfolio as the climate risk factor12:

CF Str = 0.3XLE + 0.7KOL− SPY

The portfolio is expected to underperform as economies transition to a lower-carbon economy,

and hence a lower value of CF Str indicates a higher transition risk. During the time period

in which VanEck Vectors Coal ETF is not available, we use the average return on the top

4 coal companies instead.13 Figure 1 shows that the return on the stranded asset portfolio

has been mainly falling from 2011 to 2021.14

Assets become stranded when the revenue from extraction falls below the cost. This

would typically be a time of reduced demand and rising cost. A prominent example would

be an imposition of a high carbon tax. However, with an inelastic demand curve, a supply

reduction would lead to increased energy prices and thus increased revenue. This would push

fossil fuel assets further away from being stranded, as profits in the sector and hence equity

prices rise. This is the picture we see in 2022, as not only energy prices but also fossil fuel

stock prices rise. The stranded asset portfolio becomes profitable as fossil fuel stocks rise

relative to the market.

3.2 Climate Beta Estimation

Following the standard factor model approach, we model bank i’s stock return as:

rit = βMkt
it MKTt + βClimate

it CFt + εit (1)

protection_and_prosperity for further details.
12We use log returns. For instance, XLE denotes log return on Energy Select Sector SPDR ETF.
13VanEck Vectors Coal ETF started in 2008 and was liquidated in 2020.
14In case fossil fuel firms themselves transition to “greener” firms by adopting green technologies (and if

the market correctly prices that in), the stranded asset portfolio may not fall. Our framework still works in
this case. If market prices in a smooth transition, the stranded asset portfolio return may not decline, and
banks’ brown loans will not likely deteriorate.
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where rit is the stock return of bank i, MKT is the market return, and CF is the climate

risk factor, measured as the return on the stranded asset portfolio. The market beta and

climate beta, in this regression, measure the sensitivity of bank i’s return to market risk

and to transition-related climate risk, respectively. One would expect that banks with large

amounts of loans in the fossil fuel industry will be more sensitive to climate risk on average

and will have a positive climate beta.

We include the market factor in our model to control for confounding factors, such as

the COVID shock and aggregate demand shock, that influence both the bank stock returns

and the stranded asset portfolio return. We considered including additional factors such as

interest rate factors to account for inflation and monetary policy, and we find that our results

are robust.

We use the DCB model to estimate the time-varying climate betas on a daily basis. The

GARCH-DCC model of Engle (2002), Engle (2009), and Engle (2016) allows volatility and

correlation to vary over time. The details of estimation steps and the parameter estimates

are reported in Appendix E.

For stock markets with a closing time different from that of the New York market, we take

asynchronous trading into consideration by including the lags of the independent variables:

rit = βMkt
1it MKTt + βMkt

2it MKTt−1 + βClimate
1it CFt + βClimate

2it CFt−1 + εit

Assuming that returns are serially independent, we estimate the following two specifications

separately and sum the coefficients.

rit = βMkt
1it MKTt + βClimate

1it CFt + εit

rit = βMkt
2it MKTt−1 + βClimate

2it CFt−1 + εit

The sum, βMkt
1it + βMkt

2it , is the estimate of market beta and the sum, βClimate
1it + βClimate

2it , is

the estimate of climate beta.
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We present the estimated climate betas of large global banks in the U.S., U.K., Canada,

Japan, and France in Figures 2–6. For illustration, we plot the six-month moving averages

of the estimates.15 Based on the estimation results, we summarize the main findings as

follows. First, climate betas vary over time, and it is therefore important to estimate the

betas dynamically. Second, we observe a common spike in the year 2020 as banks’ exposures

to the transition risk rose substantially due to a collapse in energy prices.16 It is likely that

COVID played an important role in driving energy prices down in 2020, and that demand

for fossil fuel energy falls as transition risk rises. Third, the average level of climate beta is

different across countries, and this could be due to differences in country-specific climate-

related regulations, or differences in climate-conscious investing patterns across countries. In

the U.S., the climate beta estimates range from −0.4 to 0.8, and were often not significantly

different from zero before 2015. In terms of magnitude, a climate beta of 0.5 means that

a 1% fall in the stranded asset portfolio return is associated with a 0.5% fall in the bank’s

stock return. The proximity of climate betas to zero could be related to the non-linearity in

climate beta as a function of the return on the stranded asset portfolio. That is, we expect

that the values of bank stocks are relatively insensitive to fluctuations in the stock prices of

oil and gas firms as long as those firms are sufficiently far from default. On the other hand,

the estimates for UK banks were higher on average.

3.3 CRISK Estimation

Following SRISK methodology in Acharya et al. (2011), Acharya et al. (2012), Brownlees and

Engle (2017), we define CRISK as the expected capital shortfall conditional on a systemic

climate change event

CRISKit = Et[CSi,t+h|RCF
t+1,t+h < C]

15We report the non-smoothed climate beta estimates and market beta estimates in Appendix IA.A.
16Based on the full sample regressions, we find that the climate betas are statistically significant for large

banks in the post-global financial crisis period, starting from 2010 (Appendix C). We also confirm that
climate betas became significant in recent times based on rolling-window regressions (Appendix D).
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where CSit is the capital shortfall of bank i on day t. We define the capital shortfall as the

capital reserves the bank needs to hold minus the firm’s equity:

CSit = k(Dit +Wit)−Wit

where Wit is the market value of equity and Dit is the book value of debt, and k is the

prudential ratio of equity to assets. The sum of Dit and Wit can be considered as the value

of quasi assets. {RCF
t+1,t+h < C} is associated with a climate stress scenario. In order to

produce a meaningful stressed capital shortfall, we consider a sufficiently extreme scenario,

where the stranded asset portfolio return falls by 50% over 6 months. This corresponds to

the first percentile of six-month simple return on the stranded assets, and the decline was

realized during the global financial crisis.17 Assuming that banks’ liabilities are immune

to the stress, E[Di,t+h|RCF
t+1,t+h < C] = Dit, CRISK for each financial institution can be

expressed as the following.18

CRISKit = k ·Dit − (1− k) ·Wit · (1− LRMESit) (2)

where LRMES is Long Run Marginal Expected Shortfall, the expected firm equity multi-

period arithmetic return conditional on systemic climate change event:

LRMESit = −Et[R
i
t,t+h|RCF

t+1,t+h < C] (3)

Based on equations (1)– (3), CRISK can be written as19:

CRISKit = k ·Dit − (1− k) ·Wit · exp
(
βClimate
it log(1− θ)

)
(4)

17The 6-month return summary statistics are reported in Appendix A
18This is not a strong assumption given that liabilities of banks are largely deposits, which are relatively

immune to the stress.
19Please see Appendix B for derivation.
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CRISK is higher for banks that are larger, more leveraged, and with higher climate beta.

We set the prudential capital fraction k to 8% (5.5% for European banks to account for

accounting differences) and the climate stress level θ to 50%. Figures 7–11 present the

estimated CRISKs of large global banks in the U.S., U.K., Canada, Japan, and France.

As CRISK is the expected capital shortfall, a negative CRISK indicates that the bank

holds a capital surplus. The reason why the estimated CRISKs are often negative until 2019

is likely related to the non-linear relationship between climate beta and the performance of

fossil-fuel firms. A bank will not have a capital shortfall if its climate beta is small and will

therefore have a negative CRISK. In contrast, the CRISKs increased substantially across

countries in 2020.

Since CRISK is a function of climate beta, as well as a function of the size and leverage

of a bank, the ranking of CRISKs can differ from that of climate beta estimates. For

instance, while climate beta estimates of the U.S. banks were relatively low, their CRISKs

were substantial, as high as 99 billion USD for Citibank in December 2020. To put this

into context, Citibank’s SRISK, the expected capital shortfall in a potential future financial

crisis, was 112 billion USD in December 2020.20 In contrast, CRISKs of Canadian banks

in 2020 range from -7 billion to 35 billion USD, despite their climate betas ranging from

0.2 to 0.8. We see high CRISKs during the global financial crisis and European financial

crisis because when banks were undercapitalized, they are vulnerable to both market risk

and climate risk. To isolate the effect of climate stress from the effect of market stress, we

analyze marginal CRISK in the next section.

4 Discussion

Given that CRISKs increased substantially in 2020, we focus on the first half of 2020 and

analyze CRISKs in relation to banks’ loan exposure to the oil and gas industry. In this

section, we first provide suggestive evidence that our CRISK measure during 2020 roughly

20NYU’s V-lab (https://vlab.stern.nyu.edu/) provides systemic risk analysis.
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aligns with the size of active loans made to U.S. firms in the oil and gas industry. Then,

we decompose the CRISK estimates into the components due to debt, equity, and risk,

respectively. We find that the decline in the equity component contributed the most to the

overall increase in CRISKs.

Figure 12 presents the CRISK measures of the top 10 U.S. banks during 2020, and Table 1

ranks their exposure to the oil and gas industry, measured by the sum of all active syndicated

loans from the bank to U.S. firms in the oil and gas industry as of April 2020. Figure 12

shows that CRISKs jumped up around the first quarter-end, and their rankings are roughly

aligned with the banks’ gas and oil loan exposure.

To better understand what drives the substantial increase in CRISK, we decompose

CRISK into three components based on Equation 2:

dCRISK = k ·∆D︸ ︷︷ ︸
dDEBT

−(1− k)(1− LRMES) ·∆W︸ ︷︷ ︸
dEQUITY

+ (1− k) ·W ·∆LRMES︸ ︷︷ ︸
dRISK

(5)

The first component, dDEBT = k ·∆D is the contribution of the firm’s debt to CRISK.

CRISK increases as the firm takes on more debt. The second component, dEQUITY =

−(1− k)(1−LRMES) ·∆W is the effect of the firm’s equity position on CRISK.21 CRISK

increases as the firm’s market capitalization deteriorates. The third component, dRISK =

(1−k) ·W ·∆LRMES is the contribution of increase in volatility or correlation to CRISK.22

Table 3 decomposes the change in CRISK during the year 2020 into the three compo-

nents. For the top 4 banks, the equity deterioration component and the risk component each

contributed about 40% to the increase in CRISK during 2020. Does this imply that banks

were already under stress in 2020 without any climate stress? To answer this question, we

disentangle the effect of climate stress and the effect of market stress by analyzing marginal

CRISK. The marginal CRISK is defined as the difference between CRISK and non-stressed

21Here, LRMES represents the average value of LRMESt and LRMESt+1. In the LRMES calculation,
we use monthly average climate beta to reduce the volatility of climate beta.

22Here, W represents the average value of Wt and Wt+1.
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CRISK, where the non-stressed CRISK is simply the capital shortfall of bank without any

climate stress (θ = 0). From Equation 2,

Marginal CRISK = (1− k) ·W · LRMES (6)

Figure 13 plots the marginal CRISKs of the top 10 U.S. banks. It shows that the marginal

CRISKs opened up before 2020, and reached 45–90 billion USD for the top four U.S. banks

at the end of 2020. The top four banks’ aggregate marginal CRISK is approximately 260

billion USD. These correspond to roughly 28% of their equity. This suggests that the effect

of climate stress in 2020 was economically substantial, which was not the case for the global

financial crisis or the European financial crisis. Moreover, they remain high even after the

energy prices rebound to the pre-2020 level in late 2021.

We document similar findings for U.K. banks. Figure 14 and Table 2 present the results

for U.K. banks. Similar to U.S. bank results, the ranking of CRISK and gas and oil loan

exposure are consistent. Table 4 shows that the equity deterioration contributes most (40%)

and the increase in risk contributes 30% to the increase in CRISK during 2020. However,

Figure 15 shows that the marginal CRISKs are lower in the U.K. compared to the U.S. For

completeness, we report the results for Canadian banks, Japanese banks, and French banks

in Appendix F and Appendix G. The marginal CRISKs of some of those banks increased

during 2020, although they are much lower than the U.S. banks.

Our methodology heavily relies on market pricing. Studies including Bolton and Kacper-

czyk (2020), Engle et al. (2020), Ilhan et al. (2020), and Barnett (2019) suggest that climate

risks are priced in the equity market. A strength of market-based methodology is that we

can fully incorporate the changes in market expectation on the future climate risk; however,

it is possible that the market participants are currently underpricing the risk. For instance,

Stroebel and Wurgler (2021) find that their survey respondents are at least 20 times more

likely to believe that climate risk is being underestimated by asset markets. Hong et al.
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(2019) find evidence consistent with food stock prices underreacting to climate change risks.

In this context, the current CRISK estimates can be considered lower bounds rather than

upper bounds.

5 Climate Beta and Loan Portfolio of Banks

What explains the time-series and cross-sectional variations in climate betas? We link climate

beta estimates to bank characteristics and banks’ loan exposures to brown industries to

answer this question. The bank characteristics data come from FR Y-9C and the granular

information on loan holdings comes from FR Y-14Q. The summary statistics are reported

in Appendix A. We focus on the U.S. banks in this section due to data availability.

First, we hypothesize that banks with higher brown loan exposure have higher climate

betas. Based on 21 listed banks in FR Y-14Q for the sample period from 2012:Q2 to

2021:Q4, we confirm a positive relationship between banks’ climate betas and their brown

loan exposure (Figure 16). We define brown loans as loans made to a firm in the top 30

industries by sum of scope 1 and scope 2 emissions.23

We formally test the hypothesis with the following OLS specification:

βClimate
it = a+ b ·Brown Loan Shareit +Bank Controlsit + δi + γt + εit (7)

The dependent variable, βClimate
it is bank i’s time-averaged daily climate beta during the

quarter-end month. Brown Loan Shareit is bank i’s share of loans made to firms in the top

30 industries with the highest emissions in quarter t. Bank control variables include: log

assets, leverage, return on assets (ROA), loans/assets, deposits/assets, book/market, loan

loss reserves/loans, non-interest income/net income, and market beta. The standard errors

are clustered at the bank level. We expect coefficient b to be positive, because a bank’s stock

23We use the industry rankings by emissions from Ilhan et al. (2020), which are based on the years 2009
to 2016. We confirm that our results are robust to the rankings based on years 2009 to 2020.
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return is likely to be more sensitive to the transition risk factor if the bank makes more loans

to firms with high emissions.

Table 5 shows the results. Columns (2)–(4) include bank control variables, Columns (3)

and (4) add bank fixed effects to control for unobservable time-invariant bank characteristics.

Column (4) adds year fixed effects to control for any potential trends. Consistent with the

hypothesis, we find that b is positive and significant across specifications.

Second, we further hypothesize that climate betas are higher during the time period when

the risk of brown loans is high. Figure 17 shows that during the first two quarters of 2020,

the size-weighted average probability of default increased for firms in brown industries as

well as non-brown industries; however, that for the firms in brown industries increased much

more sharply.

To this end, we test whether the spread between the average probability of default for

the firms in brown industries and that for the firms in non-brown industries explains the

time-series variation in climate betas. We use the following OLS specification:

βClimate
it = a+ bBrownLoanShare ·Brown Loan Shareit

+ bBrownLoanPD ·Brown PD Spreadt +Bank Controlsit + δi + γt + εit (8)

The quarterly climate beta, the brown loan share, and the bank characteristics are identical to

those in Equation 7. Brown PD Spreadt is defined as the spread between the size-weighted

average probability of default of firms in the 30 brown industries and that of firms in all

other industries, and it captures the time-series variation in the risk of brown loans relative

to non-brown loans.24 The sample period for this analysis is from 2014:Q4 to 2021:Q4, as the

data on the obligor probability of default are mostly available from 2014:Q4. The probability

of default measures are based on each bank’s internal assessment and reported as part of the

Dodd-Frank Act stress testing requirements.

24The probability of default is weighted by the log asset of the obligor. The results are robust when they
are equally weighted.
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Table 6 presents the results. Consistent with the hypothesis, the coefficient on the

Brown PD Spreadt is positive and significant across specifications.25 Interestingly, the

coefficients on Brown Loan Shareit are still positive and significant even after including

Brown PD Spreadt. These results suggest that both exposure and risk of brown loans

explain variations in climate beta. In addition, we find that ROA is also important variables

explaining the climate beta. A natural explanation for the positive relationship between

ROA and climate beta is that higher ROA reflects a risk premium on bank’s brown loan

holdings. Comparing columns (2) and (3), leverage and deposits/assets across banks explain

cross-sectional variations in the climate beta; comparing columns (3) and (4), loans/assets,

book/market, and loan loss reserves ratio are important variables explaining time-series

variations in the climate beta.

In untabulated results, we find that the results are robust to using the emission intensity

rankings, where emission intensity is emission divided by the market capitalization of the

firm.

6 Robustness Tests

We conduct several tests to ensure that our results are robust to including additional bank

stock return factors, using close alternative climate factors, and taking alternative estimation

procedures.

One may be concerned about missing important factors that explain the bank stock

returns. As banks manage a portfolio of interest-rate-related products, we test whether our

results are robust to including interest-rate factors. Following Gandhi and Lustig (2015), we

consider long-term government bond factor (LTG) and credit factor (CRD). We use excess

return on the long-term U.S. government bond index for long-term interest rate factor and

excess return on investment-grade corporate bond index for the credit factor. To test how

these factors affect the climate beta estimates, we first regress each bank stock return rit on

25We omit the coefficient on Brown PD Spreadt in specification (4) as we include year fixed effects.
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LTGt and CRDt, and then regress the residual on MKTt and CFt. In Figure 18, we plot

the coefficient on CFt, and it shows that the climate beta estimates based on the baseline

specification (1) are robust to including the interest-rate factors. We find that the results

are also robust to including the housing factor measured by the return on a bond fund

specializing in government mortgage-backed securities. (Figure 19 and Figure 20).

We do not include the HML factor of Fama and French (1993), because it is not clear

that the HML is exogenous in the context of our model. Pastor et al. (2022) find that value

stocks tend to be brown and growth stocks green and their two-factor model with market

factor and green factor explains much of the recent underperformance of value stocks. In

addition, we find that the HML factor is significant only in the post-GFC period, and this

is likely due to changes in the regulatory framework following the GFC. This also suggests

that the correlation between the bank stock returns and the HML factor is potentially an

endogenous outcome of the GFC. Instead, we include banks’ book-to-market ratio as an

independent variable to explain variation in climate beta. Table 5 and Table 6, we find that

the book-to-market ratio is very significant in explaining climate beta.

We test for robustness to using close alternative climate risk factors. One could be worried

that normalizing the stranded asset portfolio by market return could confound our results.

However, we find that using a non-hedged stranded asset portfolio, 0.3XLE + 0.7KOL,

instead of 0.3XLE + 0.7KOL − SPY lead to consistent results. Moreover, using MSCI

All Country World Index (ACWI)26 instead of SPY gives similar results, as they are highly

correlated. It is worth noting however that using a different factor means testing for a

different scenario, and therefore the climate beta and CRISK estimates will not remain

identical if a different factor is used.

We corroborate that the results are not driven by a certain detail of our estimation

procedure. First, we find that the procedure to adjust for the time zone difference makes

a small difference. When the asynchronous trading is not corrected, the betas are slightly

26Using a common market factor across countries, for instance, ACWI, facilitates cross-country compari-
son; however, a country-specific market factor may not be fully incorporated.
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smaller in absolute value. Second, we tested whether our results are sensitive to a choice

of sample window. When betas are dynamically estimated based on an annual sample (by

calendar year) instead of the full sample, the results remain consistent. Based on the annual

sample, some extreme returns are picked up by time variation in the intercept; for instance,

betas are slightly less negative during the early global financial crisis. Third, one might be

worried that the dynamic parameters that govern the speed of adjustment of the correlations

through the DCC estimation may be too noisy and introduce errors for some banks. To test

this, we took a two-step approach, where each bank’s DCB parameter is estimated in the

first step and the median DCB parameter is used to estimate the betas in the second step.

We find that this makes almost no difference.

7 Extensions

Our framework can incorporate different stylized versions of transition scenarios by using

different market-based climate transition factors.27 First, using an emission-based climate

factor can be associated with a carbon tax scenario. To test this scenario, we construct

an emission-based climate factor by weighting industries by emissions and by weighting

stock returns by market value within each industry. Based on this factor, we find that

the marginal CRISKs are slightly higher than using the baseline stranded asset portfolio

return. The aggregate marginal CRISK of the top four US banks was about 270 billion

USD at the end of 2020. This is likely because the emission-based factor incorporates non-

coal firms with high emissions. Second, using a brown minus green return factor can be

associated with mixtures of tax and subsidy policies. We use the emission-based factor as

the brown factor and the iShares Global Clean Energy ETF return as the green factor. In

this scenario, the marginal CRISKs are lower; the top four U.S. banks’ marginal CRISKs

range between 10 and 30 billion USD in 2020. Third, using a short position in the climate

27For all proposed factors, we find suggestive evidence that they respond to transition-related climate
change events. (Appendix I)
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efficient factor mimicking portfolio (CEP)28 can be associated with testing for climate stress

besides stranded assets. CEP is a long-only portfolio of sustainable publicly available funds

selected based on two criteria, (1) minimum variance, and (2) maximum correlation with

climate news after controlling for standard financial risks, the price of oil, and the stranded

assets portfolio. The marginal CRISKs based on the CEP factor are lower 30 billion USD,

which suggests that the effect of climate stress besides stranded assets is relatively low. The

climate beta and marginal CRISK plots for the three scenarios are reported in Appendix H.

Moreover, our framework can incorporate compound risk. So far, the CRISK results

are based on a scenario where only the climate factor is stressed; however, it is natural to

consider a scenario where the market factor and climate factor are stressed at the same time.

Equation 4 can be extended to compute compound S&CRISK:

S&CRISKit = k ·Dit − (1− k) ·Wit · exp
(
βClimate
it log(1− θClimate) + βMkt

it log(1− θMkt)
)

Figure 21 and Figure 22 show the S&CRISK and the marginal S&CRISK of the top ten

US banks when the market stress level (θMkt) is calibrated to 40% and the climate stress

level (θClimate) is calibrated to 50%. Each level corresponds to the 1% quantile of 6-month

return on market factor and climate factor, respectively. This is the scenario that actually

was realized during the global financial crisis, and therefore can be considered a reasonably

extreme for stress testing. The aggregate marginal S&CRISK of the top four US banks

reached approximately 590 billion USD at the end of 2021.

8 Conclusion

Climate change could impose systemic risk to the financial sector through either disruptions

of economic activity resulting from the physical impacts of climate change or changes in

28This factor is from Hedging Climate Change Risk: An Efficient Factor Mimicking Portfolio Approach
(Engle, Kelly, and De Nard).
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policies as the economy transitions to a less carbon-intensive environment. We develop a

stress testing procedure to test the resilience of financial institutions to climate-related risks.

The procedure involves three steps. The first step is to measure the climate risk factor.

We propose using stranded asset portfolio returns as a proxy measure of transition risks.

The second step is to estimate the time-varying climate betas of financial institutions. We

estimate dynamically by using the DCB model to incorporate time-varying volatility and

correlation. The third step is to compute the CRISKs, the capital shortfall of financial

institutions in a climate stress scenario. We use this procedure to study the climate risks of

large global banks in the U.S., U.K., Canada, Japan, and France in the collapse in fossil fuel

prices in 2020. We document a substantial rise in climate betas and CRISKs across banks

during 2020 when energy prices collapsed. Further, we find that both exposure and risk

of brown loans explain the time-series and cross-sectional variation in climate beta, adding

validity to our CRISK measure.

There are multiple directions for future research. In our analysis, we incorporate climate

risk beyond stranded assets by using the climate efficient factor mimicking portfolio return.

Constructing a common physical risk factor directly tied to the damages following extreme

weather events would be an interesting question beyond the scope of this paper, as it would

involve identifying market expectations on a systemic component of physical risk. Another

interesting question that arises from our analysis is analyzing climate beta and CRISK of

financial firms in other countries and other sectors. CRISKs aggregated at the country level

could be used as a warning signal of macroeconomic distress due to climate risks.
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Figure 16: Climate Beta and Brown Loan Share Binned scatterplot of climate beta and
brown loan share based on 21 listed US banks in FR Y-14Q for the sample period from 2012:Q2
to 2021:Q4.

Figure 17: Average Probability of Default: Brown Firms vs. Non-brown Firms The
log-asset-weighted average probability of default of firms in brown industry and that of firms in
non-brown industries, based on FR Y-14Q from 2014:Q4 to 2021:Q4.
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Figure 18: Climate Beta after Controlling for LTG and CRD First, we regress bank stock
return on LTG and CRD. Second, we regress the residual from the first step on MKT and CF
and plot the coefficient on CF using 252-day rolling window regression. LTG is log daily return
on long-term U.S. government bond index. CRD is log daily return on investment-grade corporate
bond index and can be downloaded from Bloomberg. Sample period is from June 2001 to December
2021.

Figure 19: Climate Beta after Controlling for HOUSE First, we regress bank stock return
on HOUSE. Second, we regress the residual from the first step on MKT and CF and plot the
coefficient on CF using 252-day rolling window regression. HOUSE is the log daily return on a
bond fund specializing in government mortgage-backed securities (VFIJX). Sample period is from
February 2002 to December 2021.
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Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK
BARC:LN 56.52 80.38 23.86 13.39 3.48 7
HSBA:LN 17.72 93.4 75.68 21.75 33.8 20.12
LLOY:LN 17.74 42.28 24.54 1.88 11.54 11.12
NWG:LN 26.28 39.77 13.5 3.59 5.83 4.07
STAN:LN 16.84 27.76 10.92 3.64 5.78 1.5

Table 4: CRISK Decomposition (UK Banks) CRISK(t) is the bank’s CRISK at the end of
2020, and CRISK(t − 1) is CRISK at the end of year 2019. dCRISK= CRISK(t)-CRISK(t − 1)
is the change in CRISK during 2020. dDEBT is the contribution of the firm’s debt to CRISK.
dEQUITY is the contribution of the firm’s equity position on CRISK. dRISK is the contribution
of increase in volatility or correlation to CRISK. All amounts are in billions USD.
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(1) (2) (3) (4)
Climate Beta Climate Beta Climate Beta Climate Beta

Brown Loan Share (Emiss) 2.448∗∗∗ 1.862∗∗∗ 2.299∗∗ 0.869∗∗

(3.16) (2.89) (2.45) (2.58)

Log Assets 0.0140 0.478∗∗∗ 0.0501
(0.89) (5.44) (0.67)

Leverage 3.612∗∗∗ -1.314 -2.274∗

(4.26) (-0.83) (-2.00)

ROA 6.623∗∗∗ 3.039∗ 1.631
(3.12) (1.87) (1.52)

Loans/Assets -0.0646 -0.948∗∗ -0.577∗∗

(-0.76) (-2.29) (-2.49)

Deposits/Assets 0.527∗∗∗ 0.956∗∗ -0.182
(3.83) (2.39) (-0.75)

Book/Market 0.235∗∗∗ 0.237∗∗∗ 0.00956
(4.42) (5.95) (0.27)

Loan Loss Reserves/Loans 4.001∗ 7.216∗∗∗ 3.151∗

(1.93) (4.96) (1.82)

Non-interest Income/Net Income 0.00134∗∗∗ 0.00123∗∗∗ 0.00109∗∗∗

(3.93) (5.90) (5.68)

Market Beta 0.177∗∗∗ 0.0840∗∗∗ 0.00808
(4.90) (3.22) (0.42)

N 715 715 715 715
Bank Controls N Y Y Y
Bank FE N N Y Y
Year FE N N N Y
Adj R2 0.0557 0.292 0.518 0.677

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Climate Beta and Brown Loan Share The dependent variable, βClimate
it is bank i’s

time-averaged daily climate beta during quarter-end month. Brown Loan Shareit is bank i’s loan
exposure to the top 30 industries with highest emissions in quarter t. Bank control variables include
log assets, leverage, ROA, loans/assets, deposits/assets, book/market, loan loss reserves/loans, non-
interest income/net income, market beta. Standard errors are clustered at bank level. The sample
period is from 2012:Q2 to 2021:Q4.
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(1) (2) (3) (4)
Climate Beta Climate Beta Climate Beta Climate Beta

Brown Loan Share (Emiss) 1.824∗∗∗ 1.218∗∗ 1.428∗∗ 0.741∗∗

(2.94) (2.84) (2.28) (2.46)

PD Brown - PD Non-brown 8.423∗∗∗ 6.594∗∗∗ 4.058∗∗∗

(10.75) (8.29) (5.52)

Log Assets -0.0167 0.441∗∗∗ 0.0371
(-1.38) (3.40) (0.47)

Leverage 3.909∗∗∗ -0.869 -2.584∗

(6.89) (-0.56) (-1.99)

ROA 10.14∗∗∗ 6.383∗∗∗ 6.041∗∗∗

(4.77) (3.50) (4.02)

Loans/Assets -0.192∗∗∗ -1.583∗∗∗ -0.510
(-2.92) (-4.96) (-1.48)

Deposits/Assets 0.441∗∗∗ 0.467 -0.188
(4.53) (1.21) (-0.80)

Book/Market 0.294∗∗∗ 0.255∗∗∗ 0.00915
(6.81) (7.99) (0.21)

Loan Loss Reserves/Loans 7.307∗∗∗ 8.336∗∗∗ 2.750
(3.84) (3.21) (1.68)

Non-interest Income/Net Income 0.00262 0.00330∗ 0.00346∗

(1.30) (1.74) (1.80)

Market Beta -0.0311 -0.0269 -0.0545∗∗

(-0.92) (-1.13) (-2.54)
N 551 551 551 551
Bank Controls N Y Y Y
Bank FE N N Y Y
Year FE N N N Y
Adj R2 0.206 0.428 0.556 0.699

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Climate Beta, Brown Loan Share, and Brown-Nonbrown PD Spread The
dependent variable, βClimate

it is bank i’s time-averaged daily climate beta during quarter-end month.
Brown Loan Shareit is bank i’s loan exposure to the top 30 industries with highest emissions in
quarter t. PD Brown−PD Nonbrownt is the spread between the size-weighted average probability
of default of firms in the 30 brown industries Bank control variables include log assets, leverage,
ROA, loans/assets, deposits/assets, book/market, loan loss reserves/loans, non-interest income/net
income, market beta. Standard errors are clustered at bank level. The sample period is from
2014:Q4 to 2021:Q4, as the probability of default data are mostly available from 2014:Q4.
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Appendix

A Summary Statistics

A.1 Return Data

count mean sd min max
SPY 5206 0.0002 0.0123 -0.1159 0.1356
ACWI 5206 0.0002 0.0123 -0.1190 0.1170
0.7KOL+0.3XLE 5206 -0.0002 0.0197 -0.1819 0.1233
0.7KOL+0.3XLE-SPY 5206 -0.0004 0.0139 -0.1259 0.0901

Table A.1: Market Returns and Climate Factors Summary Statistics Daily log returns
for June 2000 – Dec 2021.

SPY ACWI 0.7KOL+0.3XLE 0.7KOL+0.3XLE-SPY
SPY 1
ACWI 0.945 1
0.7KOL+0.3XLE 0.715 0.766 1
0.7KOL+0.3XLE-SPY 0.128 0.249 0.785 1

Table A.2: Market Returns and Climate Factors Correlation Daily log returns for June
2000 – Dec 2021.

count mean sd min p1 max
SPY 5080 0.0303 0.1123 -0.4634 -0.3425 0.4882
ACWI 5080 0.0361 0.1254 -0.5141 -0.3750 0.6137
0.7KOL+0.3XLE 5080 -0.0005 0.2336 -0.7838 -0.7001 0.9496
0.7KOL+0.3XLE-SPY 5080 -0.0357 0.1813 -0.6274 -0.5358 0.5185

Table A.3: Stranded Asset Portfolio Return 6-month simple returns Dec 2000 – Dec 2021.
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count mean sd min p1 max
XLE 3252 -0.0001 0.0204 -0.2249 -0.0571 0.1825
KOL 3252 -0.0003 0.0243 -0.1979 -0.0880 0.1617
SPY 3252 0.0004 0.0132 -0.1159 -0.0430 0.1356
.3XLE+.7KOL-SPY 3252 -0.0007 0.0140 -0.1160 -0.0475 0.0964
.3XLE+.7KOL 3252 -0.0003 0.0220 -0.1720 -0.0798 0.1351
XLE-SPY 3252 -0.0005 0.0124 -0.1436 -0.0352 0.1210

Table A.4: Return Summary Statistics Daily log return summary statistics during 2008 –
2020

Daily return correlations during 2008 – 2020:

XLE KOL SPY .3XLE+.7KOL-SPY .3XLE+.7KOL XLE-SPY
XLE 1
KOL 0.764 1
SPY 0.807 0.745 1
.3XLE+.7KOL-SPY 0.604 0.847 0.314 1
.3XLE+.7KOL 0.867 0.984 0.799 0.822 1
XLE-SPY 0.778 0.457 0.257 0.654 0.569 1

Table A.5: Return Correlations

A.2 Bank Characteristics Data

(1)

Mean St.Dev. 25th percentile 75th percentile Count
Log Assets 19.66 1.18 18.69 20.62 768
Leverage 0.89 0.02 0.88 0.91 768
ROA 0.01 0.00 0.00 0.01 768
Loans/Assets 0.48 0.23 0.30 0.67 768
Deposits/Assets 0.65 0.19 0.58 0.78 768
Book/Market 1.02 0.35 0.76 1.22 768
Loan Loss Reserves/Loans 0.01 0.01 0.01 0.02 768
Non-interest Income/Net Income 2.91 14.13 1.43 3.39 768
Brown Loan Share (Emiss) 0.03 0.02 0.01 0.04 768
Brown Loan Share (Intens) 0.03 0.03 0.02 0.05 768
Market Beta 1.06 0.24 0.89 1.19 759
Climate Beta 0.12 0.24 -0.03 0.26 768
Observations 768
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(1)

Log Assets Leverage ROA Loans/Assets Deposits/Assets Book/Market Loan Loss Reserves/Loans Non-interest Income/Net Income Brown Loan Share (Emiss) Brown Loan Share (Intens) Market Beta Climate Beta
Log Assets 1.00
Leverage 0.25 1.00
ROA -0.03 -0.17 1.00
Loans/Assets -0.52 -0.62 0.15 1.00
Deposits/Assets -0.58 -0.34 0.13 0.56 1.00
Book/Market 0.17 -0.18 -0.37 0.05 -0.27 1.00
Loan Loss Reserves/Loans 0.12 -0.39 0.03 0.45 0.21 0.36 1.00
Non-interest Income/Net Income 0.05 0.10 -0.09 -0.12 -0.14 0.10 -0.07 1.00
Brown Loan Share (Emiss) 0.02 0.05 0.04 0.04 0.12 -0.00 0.15 -0.05 1.00
Brown Loan Share (Intens) -0.09 -0.09 0.07 0.21 0.26 -0.02 0.20 -0.07 0.96 1.00
Market Beta 0.21 0.21 -0.22 -0.32 -0.38 0.40 0.03 0.10 0.00 -0.07 1.00
Climate Beta 0.07 0.15 -0.07 -0.04 0.04 0.29 0.21 0.08 0.22 0.19 0.28 1.00

B CRISK Derivation

1− LRMESit = Et

[
1 +Ri

t+1,t+h

∣∣∣∣PCF
t+h

PCF
t+1

− 1 = −θ,
PMkt
t+h

PMkt
t+1

− 1 = 0

]
= Et

[
exp

(
h∑

j=1

rit+j

)∣∣∣∣∣PCF
t+h

PCF
t+1

− 1 = −θ,
PMkt
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PMkt
t+1

− 1 = 0

]

= Et

[
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(
h∑
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Mkt
t+j + βClimate

i,t+j rCF
t+j + εi,t+j

)∣∣∣∣∣PCF
t+h

PCF
t+1

− 1 = −θ,
PMkt
t+h

PMkt
t+1

− 1 = 0

]

= Et

[
exp

(
βMkt
it log

(
PMkt
t+1,t+j

PMkt
t+1

)
+ βCF

it log

(
PCF
t+1,t+j

PCF
t+1

))∣∣∣∣∣PCF
t+h

PCF
t+1

− 1 = −θ,
PMkt
t+h

PMkt
t+1

− 1 = 0

]
= exp

(
βClimate
it log(1− θ)

)
Therefore,

CRISKit = kDit − (1− k)Wit {1 + Et[R
i
t+1,t+h|RCF

t+1,t+h < C]}︸ ︷︷ ︸
1−LRMESit

= kDit − (1− k)Wit exp
(
βClimate
it log(1− θ)

)
C Fixed Beta Estimation

For each firm i:
rit = α + βiMKTt + γiCFt + εit

The beta and gamma in this regression reflect the sensitivity of bank i to broad market
declines and to climate deterioration. One would expect that banks with many loans to
the fossil fuel industry will be more sensitive to CF than average and will have positive
γ. MKT denotes return on market and SPY is used. For CF , the return on the stranded
asset portfolio CF Str is used. Full sample period is 01/01/2000–01/31/2021 and post-crisis
sample period is 01/01/2010–01/31/2021. Standard errors are Newey-West adjusted with
optimally selected number of lags.

U.S. Banks

Focus on top 10 banks by average total assets in year 2019.
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Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
BankofAmericaCorp BAC 0.09 1.98 1.54 13.8 −0.0001 −0.34 0.46 5,444
CitigroupInc C 0.07 1.63 1.67 16.98 −0.0005 −1.9 0.47 5,444
WellsFargoCo WFC 0.05 1.19 1.29 12.42 0 0.06 0.45 5,444
BankofNewYorkMellonCorpThe BK 0.04 1.16 1.35 19.22 −0.0001 −0.78 0.51 5,444
PNCFinancialServicesGroupIncThe PNC 0.01 0.22 1.25 12.81 0.0001 0.74 0.43 5,444
CapitalOneFinancialCorp COF 0 −0.08 1.59 18.33 0 −0.16 0.43 5,444
USBancorp USB −0.02 −0.53 1.15 15.25 0.0001 0.57 0.43 5,444
GoldmanSachsGroupIncThe GS −0.03 −0.93 1.37 29.19 0 0.16 0.53 5,444
MorganStanley MS −0.05 −1.19 1.82 16.61 −0.0002 −0.9 0.55 5,444
JPMorganChaseCo JPM −0.05 −1.25 1.47 20 0 0.25 0.56 5,444

Table C.1: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
CitigroupInc C 0.3 5.1 1.53 26.6 −0.0003 −1.16 0.61 2,832
BankofAmericaCorp BAC 0.24 4.7 1.47 25.09 −0.0003 −0.86 0.55 2,832
MorganStanley MS 0.23 4.89 1.53 26.79 −0.0002 −0.89 0.6 2,832
JPMorganChaseCo JPM 0.18 4.01 1.27 35.75 0 0.02 0.62 2,832
CapitalOneFinancialCorp COF 0.16 2.7 1.38 18 −0.0002 −0.64 0.52 2,832
GoldmanSachsGroupIncThe GS 0.15 3.86 1.25 31.64 −0.0003 −1.23 0.57 2,832
BankofNewYorkMellonCorpThe BK 0.14 3.5 1.15 31.74 −0.0003 −1.41 0.55 2,832
WellsFargoCo WFC 0.13 2.13 1.27 24 −0.0004 −1.63 0.57 2,832
PNCFinancialServicesGroupIncThe PNC 0.11 2.35 1.22 21.27 −0.0001 −0.33 0.58 2,832
USBancorp USB 0.09 1.77 1.15 21.62 −0.0002 −1.03 0.58 2,832

Table C.2: Large Banks, SPY, Post-crisis

U.K. Banks

Focus on top 5 banks by average total assets in year 2019.

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
NatwestPLC NWG 0.29 4.74 0.87 11.37 −0.0006 −1.56 0.12 5,145
StandardCharteredPLC STAN 0.27 5.34 0.78 15.78 −0.0001 −0.43 0.19 5,145
BarclaysPLC BARC 0.25 4.43 0.96 11.72 −0.0003 −0.78 0.18 5,145
LloydsBankingGroupPLC LLOY 0.24 4.27 0.83 8.11 −0.0005 −1.47 0.14 5,145
HSBCHoldingsPLC HSBA 0.19 5.19 0.65 13.57 −0.0001 −0.35 0.24 5,145

Table C.3: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
StandardCharteredPLC STAN 0.47 7.48 0.81 15.4 −0.0004 −1.36 0.25 2,768
BarclaysPLC BARC 0.46 7.15 1.13 13.62 −0.0004 −1.03 0.28 2,768
NatwestPLC NWG 0.41 6.55 0.95 10.34 −0.0004 −0.94 0.2 2,768
LloydsBankingGroupPLC LLOY 0.36 6.27 0.98 12.86 −0.0004 −0.92 0.23 2,768
HSBCHoldingsPLC HSBA 0.31 6.76 0.66 14.11 −0.0002 −1.06 0.29 2,768

Table C.4: Large Banks, SPY, Post-crisis
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To account for non-synchronous trading, we include a lagged value of each explanatory
variable:

rit = α + β1iMKTt + β2iMKTt−1 + γ1iCFt + γ2iCFt−1 + εit

We report the bias-adjusted coefficients β1i +β2i (labeled as MKT), γ1i +γ2i (labeled as CF)
and their t-statistics below.

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
StandardCharteredPLC STAN 0.26 4.95 1.31 14.46 −0.0002 −1 0.23 5,325
BarclaysPLC BARC 0.24 3.68 1.59 15.39 −0.0003 −1.04 0.23 5,325
NatwestPLC NWG 0.24 3.27 1.46 13.39 −0.0007 −1.85 0.16 5,325
LloydsBankingGroupPLC LLOY 0.18 2.87 1.34 12.73 −0.0005 −1.7 0.17 5,325
HSBCHoldingsPLC HSBA 0.14 4.11 0.96 17.65 −0.0001 −0.75 0.26 5,325

Table C.5: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
StandardCharteredPLC STAN 0.49 6.97 1.2 17.91 −0.0006 −1.87 0.28 2,766
BarclaysPLC BARC 0.47 7.32 1.68 13.39 −0.0007 −1.65 0.32 2,766
NatwestPLC NWG 0.38 5.4 1.5 13.46 −0.0007 −1.61 0.24 2,767
LloydsBankingGroupPLC LLOY 0.31 4.66 1.48 12.23 −0.0007 −1.55 0.26 2,766
HSBCHoldingsPLC HSBA 0.3 5.94 0.88 15.84 −0.0004 −1.5 0.31 2,766

Table C.6: Large Banks, SPY, Post-crisis

Canadian Banks

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
BankofNovaScotiaThe BNS 0.2 5.93 0.94 18.65 0.0002 1.5 0.38 5,120
RoyalBankofCanada RY 0.18 6.1 0.92 20.3 0.0003 1.9 0.41 5,120
NationalBankofCanada NA 0.16 4.59 0.94 12.58 0.0003 1.92 0.34 5,119
BankofMontreal BMO 0.15 3.96 0.93 14.62 0.0002 1.22 0.38 5,120
Toronto-DominionBankThe TD 0.15 5.53 0.96 22.08 0.0002 1.4 0.42 5,120
CanadianImperialBankofCommerceCanada CM 0.14 3.85 1.02 16.64 0.0002 0.93 0.4 5,120

Table C.7: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
BankofNovaScotiaThe BNS 0.36 7.6 0.95 12.66 0 −0.24 0.51 2,753
NationalBankofCanada NA 0.32 7.32 1.01 7.56 0.0001 0.41 0.46 2,752
BankofMontreal BMO 0.31 8.63 0.99 8.57 0 −0.03 0.51 2,753
CanadianImperialBankofCommerceCanada CM 0.31 8.08 0.95 8.16 0 −0.06 0.48 2,753
Toronto-DominionBankThe TD 0.29 8.64 0.93 13.54 0.0001 0.42 0.53 2,753
RoyalBankofCanada RY 0.27 7.93 0.92 19.27 0 0.06 0.51 2,753

Table C.8: Large Banks, SPY, Post-crisis
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Japanese Banks

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
Sumitomo 8316 0.19 2.79 0.78 12.15 −0.0003 −0.85 0.11 4,345
Mizuho 8411 0.17 2.4 0.71 9.4 −0.0001 −0.29 0.09 4,283
MUFG 8306 0.13 2.55 0.73 10.96 −0.0003 −0.97 0.1 4,741

Table C.9: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
MUFG 8306 0.23 4.32 0.77 12.79 −0.0003 −0.88 0.14 2,657
Sumitomo 8316 0.23 4.56 0.73 12.2 −0.0002 −0.65 0.14 2,657
Mizuho 8411 0.15 2.94 0.65 11.47 −0.0003 −1.02 0.11 2,657

Table C.10: Large Banks, SPY, Post-crisis

French Banks

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
CreditAgricoleSA ACA 0.26 3.02 1.47 16.68 −0.0003 −1.02 0.26 4,810
BNPParibasSA BNP 0.21 4.05 1.4 14 −0.0001 −0.55 0.27 5,189
SocieteGeneraleSA GLE 0.2 3.29 1.61 17.63 −0.0004 −1.36 0.28 5,189

Table C.11: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
CreditAgricoleSA ACA 0.49 6.19 1.6 13.98 −0.0005 −1.25 0.31 2,795
SocieteGeneraleSA GLE 0.47 5.26 1.83 13.51 −0.001 −2.02 0.34 2,795
BNPParibasSA BNP 0.4 5.31 1.56 13.84 −0.0006 −1.64 0.33 2,795

Table C.12: Large Banks, SPY, Post-crisis

D Rolling Window Beta Estimation

252-day rolling window regressions.
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U.S. Banks

Figure D.1: Climate Beta of U.S. Banks based on 252-day rolling window regression from
June 2000 to December 2021.
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Figure D.2: Market Beta of U.S. Banks based on 252-day rolling window regression from
June 2000 to December 2021.
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U.K. Banks

Figure D.3: Climate Beta of U.K. Banks based on 252-day rolling window regression from
June 2000 to December 2021.

Figure D.4: Market Beta of U.K. Banks based on 252-day rolling window regression from
June 2000 to December 2021.
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Canadian Banks

Figure D.5: Climate Beta of Canada Banks based on 252-day rolling window regression from
June 2000 to December 2021.
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Figure D.6: Market Beta of Canada Banks based on 252-day rolling window regression from
June 2000 to December 2021.

Japanese Banks

Figure D.7: Climate Beta of Japanese Banks based on 252-day rolling window regression
from June 2000 to December 2021.
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Figure D.8: Market Beta of Japanese Banks based on 252-day rolling window regression
from June 2000 to December 2021.

French Banks

Figure D.9: Climate Beta of French Banks based on 252-day rolling window regression from
June 2000 to December 2021.

Figure D.10: Market Beta of French Banks based on 252-day rolling window regression from
June 2000 to December 2021.
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E DCB Model Estimation

rit = log(1 +Rit), rmt = log(1 +Rmt), rct = log(1 +Rct)

Conditional on the information set Ft−1, the return triple has a distribution D with zero
mean and time-varying covariance: ritrmt

rct

 ∣∣∣∣∣ Ft−1 ∼ D

0, Ht =

 σ2
it ρimtσitσmt ρictσitσct

ρimtσitσmt σ2
mt ρmctσmtσct

ρictσitσct ρmctσmtσct σ2
ct


We use GJR-GARCH volatility model and DCC correlation model. The GJR-GARCH model
for volatility dynamics are:

σ2
it = ωV i + αV ir

2
it−1 + γV ir

2
it−1I

−
i,t−1 + βV iσ

2
it−1, (9)

σ2
mt = ωV m + αV mr

2
mt−1 + γV mr

2
mt−1I

−
m,t−1 + βV mσ

2
mt−1, (10)

σ2
ct = ωV c + αV cr

2
ct−1 + γV cr

2
ct−1I

−
c,t−1 + βV cσ

2
ct−1 (11)

where I−it = 1 if rit < 0, I−mt = 1 if rmt < 0, and I−ct = 1 if rct < 0.

The correlation of the volatility adjusted returns eit = rit/σit, emt = rmt/σmt, and ect =
rct/σct is:

Cor

 εit
εmt

εct

 = Rt =

 1 ρimt ρict
ρimt 1 ρmct

ρict ρmct 1

 = diag(Qimct)
−1/2 Qimct diag(Qimct)

−1/2

The DCC model specifies the dynamics of the pseudo-correlation matrix Qimct as:

Qimct = (1− αCi − βCi)Si + αCi

 eitemt

ect

 eitemt

ect

′ + βCiQimct−1 (12)

where Sit is the unconditional correlation matrix of adjusted returns.
The market beta βMkt

it and the climate beta βClimate
it and are:[

βMkt
it

βClimate
it

]
=

[
σ2
mt ρmctσmtσct

ρmctσmtσct σ2
ct

]−1 [
ρimtσitσmt

ρictσitσct

]
(13)

Estimation procedure is as follows.

1. For each bank i = 1 · · ·N , estimate GARCH parameters and DCC parameters.

2. Take the median DCC parameters, αC̄ = median(αCi) and βC̄ = median(βCi).

3. Compute βMkt
it and βClimate

it based on the median DCC parameters, αC̄ and βC̄ , and
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the volatility parameters.29

Here are estimated parameters for the top 10 US banks.

Bank alpha alphaSE gamma gammaSE beta betaSE
BAC:US 0.0452 0.0128 0.0904 0.0206 0.9061 0.0198
BK:US 0.0327 0.0344 0.1337 0.0312 0.885 0.0359
C:US 0.0514 0.012 0.099 0.0186 0.8952 0.016

COF:US 0.0483 0.0194 0.0881 0.0302 0.897 0.0247
GS:US 0.0447 0.0202 0.0633 0.0261 0.9129 0.0271

JPM:US 0.037 0.013 0.1511 0.0258 0.8776 0.0222
MS:US 0.0427 0.0125 0.1011 0.0198 0.8991 0.0164

PNC:US 0.0582 0.0202 0.1807 0.0545 0.8379 0.0471
USB:US 0.0348 0.0178 0.1188 0.0209 0.9007 0.0249
WFC:US 0.0452 0.0178 0.1183 0.0322 0.8909 0.0306

Table E.1: Volatility Parameters

Bank alpha alphaSE beta betaSE
BAC:US 0.0361 0.0043 0.9509 0.0073
BK:US 0.0421 0.0061 0.9419 0.0105
C:US 0.038 0.0051 0.9499 0.0081

COF:US 0.0402 0.008 0.9445 0.0124
GS:US 0.0361 0.0044 0.9527 0.0072

JPM:US 0.0411 0.0051 0.9451 0.0081
MS:US 0.0376 0.0055 0.9482 0.0091

PNC:US 0.042 0.0055 0.9436 0.0091
USB:US 0.0393 0.0046 0.9484 0.0075
WFC:US 0.0406 0.0051 0.9476 0.008

Median 0.0397 0.9479

Table E.2: DCC Parameters

29The results are robust to using individual bank’s DCC parameters instead of the median DCC param-
eters.
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I Climate Factor Responses around Climate Change

Events

We find suggestive evidence that the proposed climate factors respond to transition-related
climate change events. We measure the cumulative abnormal return (CAR) of climate factors
around two events, the Paris agreement on November 30, 2015, and the Trump election on
November 8, 2016. Previous studies identify these as important transition-related climate
change events that matter for asset prices.30

We use a market model with SPY to compute abnormal returns. We find that the
stranded asset portfolio return fell substantially and significantly after the Paris agreement.
The CAR during the 20-day window following the event was -12%. While not statistically
significant, the emission factor and the brown minus green factor fell by 2% and 11%, re-
spectively. For the Trump election, we find sizable and significant positive responses for the
brown minus green factor and the CEP factor; the CAR in the 20-day window following the
event was 15% and 9%, respectively.

For each factor, we plot the CAR for a 40-day window around the two events below.

Figure I.7: Paris Agreement Figure I.8: Trump Election

Figure I.9: Paris Agreement Figure I.10: Trump Election

30Ilhan et al. (2020) and Setlzer et al. (2022)
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Figure I.11: Paris Agreement Figure I.12: Trump Election

Figure I.13: Paris Agreement Figure I.14: Trump Election
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IA.A Beta Estimates

Figure IA.A.1: Climate Beta of U.S. Banks
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Figure IA.A.2: Market Beta of U.S. Banks
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U.K. Banks

Figure IA.A.3: Climate Beta (γ1it + γ2it), U.K. Banks
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Figure IA.A.4: Market Beta (β1it + β2it), U.K. Banks
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Canadian Banks

Figure IA.A.5: Climate Beta (γ1it + γ2it), Canadian Banks, SPY
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Figure IA.A.6: Market Beta (β1it + β2it), Canadian Banks, SPY

Japanese Banks

Figure IA.A.7: Climate Beta (γ1it + γ2it), Japanese Banks, SPY

IA.6



Figure IA.A.8: Market Beta (β1it + β2it), Japanese Large Banks, SPY

French Banks

Figure IA.A.9: Climate Beta (γ1it + γ2it), French Banks, SPY
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Figure IA.A.10: Market Beta (β1it + β2it), Japanese Large Banks, SPY
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IA.B Oil and Gas Loan Exposure of Global Banks

bank Country ShrRecent CumShr

1 JP Morgan US 0.08 0.08
2 Wells Fargo US 0.08 0.15
3 BNP Paribas France 0.07 0.22
4 BofA Securities US 0.06 0.28
5 Citi US 0.06 0.34
6 RBC Capital Markets Canada 0.05 0.39
7 TD Securities Canada 0.05 0.43
8 Mitsubishi UFJ Financial Group Inc Japan 0.04 0.47
9 Mizuho Financial Japan 0.04 0.51
10 Sumitomo Mitsui Financial Japan 0.04 0.55
11 Scotiabank Canada 0.04 0.59
12 BMO Capital Markets Canada 0.04 0.62
13 HSBC UK 0.03 0.66
14 CIBC Canada 0.03 0.68
15 Societe Generale France 0.03 0.71
16 Credit Agricole CIB France 0.02 0.73
17 Barclays UK 0.02 0.75
18 National Bank Financial Inc Canada 0.02 0.77
19 ING Groep Netherlands 0.01 0.78
20 First Abu Dhabi Bank PJSC UAE 0.01 0.8
21 Bank of China China 0.01 0.81
22 Natixis France 0.01 0.82
23 Banco Santander Spain 0.01 0.83
24 State Bank of India India 0.01 0.85
25 Goldman Sachs US 0.01 0.86
26 Standard Chartered Bank UK 0.01 0.87
27 UniCredit Italy 0.01 0.87
28 Credit Suisse Switzerland 0.01 0.88
29 United Overseas Bank Singapore 0.01 0.89
30 Deutsche Bank Germany 0.01 0.9
31 ANZ Banking Group Australia 0.01 0.91
32 PNC Financial Services Group Inc US 0.01 0.91
33 DBS Group Singapore 0.01 0.92
34 Oversea Chinese Banking Corp Singapore 0.01 0.92
35 Westpac Banking Australia 0.01 0.93
36 DNB ASA Norway 0 0.93
37 Jefferies US 0 0.94
38 Rabobank Netherlands 0 0.94
39 Banco Bilbao Vizcaya Argentaria Spain 0 0.94
40 Commerzbank Germany 0 0.95
41 African Export Import Bank Egypt 0 0.95
42 US Bancorp US 0 0.95
43 Industrial Comm Bank of China China 0 0.96
44 Nordea Finland 0 0.96
45 Citizens Financial Group Inc US 0 0.96
46 Lloyds Bank UK 0 0.97
47 Commonwealth Bank Australia Australia 0 0.97
48 Capital One Financial US 0 0.97
49 UBS Switzerland 0 0.97
50 National Australia Bank Australia 0 0.97

Table IA.B.1: Top 50 Global Banks by Exposure to Oil and Gas Loans ShrRecent is oil
and gas syndicated loan origination market share during Jan 2019 - June 2020. Source: Bloomberg
Loan League Table History
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