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Abstract

Many empirical studies estimate impulse response functions that depend on the state of the
economy. Most of these studies rely on a variant of the local projection (LP) approach to estimate
the state-dependent impulse response functions. Despite its widespread application, the asymptotic
validity of the LP approach to estimating state-dependent impulse responses has not been estab-
lished to date. We formally derive this result for a structural state-dependent vector autoregressive
process. The model only requires the structural shock of interest to be identified. A suffi cient
condition for the consistency of the state-dependent LP estimator of the response function is that
the first- and second-order conditional moments of the structural shocks are independent of current
and future states, given the information available at the time the shock is realized. This rules
out models in which the state of the economy is a function of current or future realizations of the
outcome variable of interest, as is often the case in applied work. Even when the state is a function
of past values of this variable only, consistency may hold only at short horizons.
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1 Introduction

The recent empirical macroeconomics literature has emphasized the importance of allowing for nonlin-

earities when estimating the effects of exogenous shocks on macroeconomic variables of interest. A key

question in empirical work is how impulse response functions depend on the state of the economy. For

example, many studies estimating the government spending multiplier allow for the possibility that

this multiplier may be different during recessions and expansions (e.g., Auerbach and Gorodnichenko

(2012, 2013a,b), Bachmann and Sims (2012), Owyang, Ramey and Zubairy (2013), Caggiano, Castel-

nuovo, Colombo and Nodari (2015), Ramey and Zubairy (2018), Alloza (2022), and Ghassibe and

Zanetti (2020)). There is also a related literature on the dependence of tax multipliers on the business

cycle (e.g., Candelon and Lieb (2013), Alesina, Azzalini, Favero, Giavazzi and Miano (2018), Sims and

Wolff (2018), Eskandari (2019), and Demirel (2021)). Similar questions arise in many other contexts

including the analysis of monetary policy shocks. For example, Santoro, Petrella, Pfajfar and Gaffeo

(2014), Tenreyro and Thwaites (2016), Angrist, Jordà and Kuersteiner (2018), Barnichon and Matthes

(2018) and Klepacz (2020) allow the responses to monetary policy shocks to vary as a function of the

state of the economy. Other studies allow these responses to vary depending on whether the zero lower

bound is binding (e.g., Ramey and Zubairy 2018, Mavroeidis 2021). Yet another example of the esti-

mation of state-dependent responses is the work of Caggiano, Castelnuovo and Groshenny (2014) who

examine the dependence of the effects of uncertainty shocks on whether the economy is in recession

or expansion.

Most of these studies rely on a variant of the local projection (LP) approach of Jordà (2005, 2009)

(see also Dufour and Renault (1998) and Chan and Sakata (2007)) to estimate the state-dependent

impulse response functions. One argument for using state-dependent local projections rather than

structural nonlinear vector autoregressive (VAR) models is their computational simplicity. Estimating

impulse responses in state-dependent VAR models by numerical methods tends to be computationally

more challenging than the estimation of state-dependent local projections by the method of least

squares.1 Yet, despite its widespread application, the validity of the LP approach to estimating state-

dependent impulse responses has not been established to date.2

In this paper, we clarify the conditions under which the state-dependent LP estimator can be

1For example, Ramey (2016, p. 87) stresses that “if one is interested in estimating state dependent models, the ...
local projection method is a simple way to estimate such a model and calculate impulse response functions.”

2LPs have become an increasingly popular alternative to VAR based estimators of impulse responses. The original
LP estimator, as proposed by Jordà (2005, 2009) did not allow for the impulse response function to change depending
on the state of the economy. For a review of the rationale underlying standard linear LPs the reader is referred to
Plagborg-Møller and Wolf (2021). In this paper we are not concerned with linear approximations to nonlinear processes
as in Plagborg-Møller and Wolf (2021), but with approximations that are explicitly state dependent and hence nonlinear.
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expected to recover the population impulse responses in multivariate models. Our analysis only re-

quires the structural shock of interest to be identified, allowing the user to remain agnostic about

the identification of the remainder of the structural model. As it turns out, the crucial condition for

the validity of the LP estimator in this context relates to the information set used to compute the

state indicators. If this set only includes exogenous variables determined outside of the model, the

state-dependent LP estimator is asymptotically valid and recovers the conditional IRF at any finite

horizon. If instead the state indicator is a function of endogenous model variables, the asymptotic

validity of the LP estimator depends on whether the state of the economy is a function of current,

lagged or future realizations of the endogenous model variables. For example, if the state depends on

current values of these variables, the LP estimator asymptotically recovers the impact response, but

not necessarily the responses at horizons greater than zero. Basing the state only on lagged values

instead allows the LP estimator to consistently estimate impulse responses at longer horizons. The

longer the horizon of interest, the more restrictive the lag structure needs to be. In particular, to

identify impulse responses up to order hmax, the minimum lag order should be hmax. Put differently,

to be able to identify impulse responses at horizon h = 0, 1, . . . , hmax, the state indicator Ht has to be

a function of yt−hmax , yt−hmax−1, ....

While these results do not formally establish the inconsistency of the LP estimator when our

suffi cient conditions are violated, we show by simulation that the LP estimator of the response function

tends to be asymptotically biased except for the impact response, when the state of the economy is

endogenous. These asymptotic biases may become substantial when cumulating the level responses of

the model variables, as required for computing fiscal or monetary multipliers, for example.

State-dependent local projections are extremely popular in macroeconomics because they are easily

implemented and because they are believed to be more robust to dynamic model misspecification than

numerical estimates of impulse response functions obtained from state-dependent structural VAR

models. Our results suggest that researchers need to think carefully about the model specification

underlying these local projections. Assessing the validity of the state-dependent LP estimator requires

the user to state the underlying structural data generating process.

Our results have important implications for applied work. Of particular concern is that in many

macroeconomic applications one would expect exogenous shocks to affect not only the future real-

izations of the model variables, but also the future state of the economy, rendering the state of the

economy endogenous with respect to the model variables. The implicit assumption in many empir-

ical studies is that the state of the economy is exogenous with respect to the model variables. This

assumption often is empirically implausible. For example, in models that include log real GDP and
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express the state of the economy as a function of the unemployment rate, as in Ramey and Zubairy

(2018), the unemployment rate changes systematically with the current log-level of real GDP. This

renders the state of the economy endogenous with respect to the model variables.

The exogeneity assumption is also implausible when including log real GDP among the endogenous

model variables, while measuring expansions and recessions of the economy based on the deviations

of log real GDP from a two-sided HP filter trend, which makes the state of the economy depen-

dent on past, current and future realizations of the endogenous model variables (e.g., Auerbach and

Gorodnichenko 2013a). Similarly, exogenously imposing NBER business cycle dates, as in Ramey and

Zubairy (2018), is inconsistent with the state of the business cycle depending on the response of the

model variables to an exogenous shock, since these model variables are correlated with the data under-

lying the NBER business cycle definition. Defining the state of the business cycle based on one-sided

moving average filters, say, by defining a recession as two successive quarters of negative real GDP

growth or by defining the business cycle based on the deviation from a one-sided HP filter trend, as

in Alloza (2022), does not materially change this result.

The remainder of the paper is organized as follows. In Section 2, we describe the state-dependent

structural model of interest in this paper and define the conditional impulse response function. As

is customary in applied work, this response function conditions on the state of the economy in the

most recent period, but not on the state of the economy in the current period or in future periods. In

Section 3, we define the state-dependent LP estimator of this response function and provide suffi cient

conditions for its consistency. Section 4 explains why this estimator is not expected to be asymptoti-

cally valid in general, when the state of the economy is endogenous with respect to the model variables.

We show by simulation that in this case, the state-dependent LP estimator tends to be asymptotically

valid in the impact period, but not at longer horizons. We also quantify the asymptotic bias of the

LP estimator of the response function for several DGPs. The concluding remarks are in section 5.

2 Framework

2.1 The model

Let zt ≡ (xt, y
′
t)
′ denote an n × 1 vector of strictly stationary time series, where yt is k × 1 with

k = n− 1. We consider a structural state-dependent VAR process of the form

Ct−1zt = µt−1 +Bt−1 (L) zt−1 + εt, (1)

where εt = (ε1t, ε
′
2t)
′ defines the vector of mutually independent structural shocks. Let

Bt−1 (L) = B1,t−1 +B2,t−1L+ . . .+Bp,t−1L
p−1,
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where p denotes the polynomial lag order. For later convenience, we partition Bt−1 (L) conformably

with zt as

Bt−1 (L) =

(
B11,t−1 (L) B12,t−1 (L)
B21,t−1 (L) B22,t−1 (L)

)
where Aij denotes the (i, j) block of any partitioned matrix A.

All model coeffi cients evolve over time depending on the state of the economy. In the simplest

case, there are only two states (such as a recession and an expansion). Let

µt−1 = µEHt−1 + µR (1−Ht−1) ,

Ct−1 = CEHt−1 + CR (1−Ht−1) , and

Bj,t−1 = BjEHt−1 +BjR (1−Ht−1) for j = 1, . . . , p,

where Ht−1 is a binary stationary time series that takes the value 1 if the economy is in expansion

and 0 otherwise. Unlike in Markov switching models, Ht−1 is observed.3

We are interested in the response of {yt+h : h = 0, 1, . . . , hmax} to a one-time shock in ε1t, condi-

tionally on observing Ht−1 = 1 or Ht−1 = 0. Here, hmax denotes the largest horizon of the impulse

response function of interest. To identify this conditional impulse response, we need to impose further

restrictions on the model coeffi cients. In particular, we postulate that

Ct−1 =

(
1 0

−C21,t−1 C22,t−1

)
, (2)

where C21,t−1 is k × 1 and C22,t−1 is a k × k non-singular matrix whose diagonal elements are 1 by a

standard normalization condition. Under these assumptions, xt is predetermined with respect to yt.

Note that we do not restrict C22,t−1 to be lower triangular, which allows Ct−1 to be block recursive.

Hence, the model is only partially identified in that only the responses to ε1t are identified.

Model (1) covers several empirically relevant strategies for identifying the structural shock ε1t

(and the corresponding conditional IRF of yt+h with respect to ε1t). One is the narrative approach to

identification which uses information extraneous to the model to measure ε1t, in which case xt = ε1t.

For instance, it is popular to use the narrative approach when identifying monetary policy shocks

(e.g., Romer and Romer (1989), Tenreyro and Thwaites (2016)) and fiscal policy shocks (e.g., Ramey

and Shapiro (1998), Ramey (2011), Ramey (2016)). Alternatively, the structural shock ε1t may be

identified via an exclusion restriction that precludes xt from responding contemporaneously to the

structural shocks in the remaining variables of the system. In this case, the structural shock ε1t is

identified within the nonlinear SVAR model. One example is Blanchard and Perotti (2002), whose

3Following the applied literature (e.g., Auerbach and Gorodnichenko (2012, 2013a,b), Alloza (2022)), we index the
parameters for the system at time t with t− 1. This reflects the fact that these parameters depend on Ht−1.
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exogenous shocks to government spending (ε1t) are identified by assuming that government spending

(xt) does not react within the period to shocks to output and tax revenues (yt). Finally, note that

our general model also accommodates the special case of xt being an exogenous serially correlated

observable variable, as in Alloza, Gonzalo and Sanz (2021).

The structural model for zt can be rewritten as
xt = µ1,t−1 +B11,t−1 (L)xt−1 +B12,t−1 (L) yt−1 + ε1t

C22,t−1yt = µ2,t−1 + C21,t−1xt +B21,t−1 (L)xt−1 +B22,t−1 (L) yt−1 + ε2t.
(3)

Without further restrictions (such as postulating that C22,t−1 is lower triangular), the parameters in

the equations for yt are not identified. However, the fact that ε1t is identified suffi ces to identify the

conditional response function of yt to a one-time shock in ε1t.

We impose the following standard martingale difference sequence (m.d.s.) assumption on the

structural errors εt.

Assumption 1 Let F t−1 = σ (zt−1, Ht−1, zt−2, Ht−2, . . .). Then εt|F t−1 ∼ (0,Σ), where Σ is a diag-

onal matrix with diagonal elements given by σ2i for i = 1, . . . , n.

Assumption 1 stipulates that the structural errors εt are a m.d.s. with respect to F t−1, the

information set generated by the past realizations of zt and Ht. This assumption is standard and

implies that εt is serially uncorrelated. Assumption 1 rules out conditional heteroskedasticity in εt

by assuming that Σ is constant. This assumption turns out to be important for establishing the

consistency of state-dependent local projections, as we will explain later. Finally, the assumption

that Σ is diagonal implies that the structural errors are mutually uncorrelated, as is standard in the

structural VAR literature.

2.2 Conditional impulse response function

Consistent with the empirical literature, our goal is to define the causal effect on yt+h of a one-time

shock in ε1t, conditionally on Ht−1, the state of the economy at time t− 1. The fact that our model

is state dependent is reflected in our definition of the conditional IRF. A common approach in the

literature on nonlinear impulse response functions (e.g., Gallant, Rossi and Tauchen (1993), Koop,

Pesaran and Potter (1996), Potter (2000), Gourieroux and Jasiak (2005, 2022), Kilian and Vigfusson

(2011), Gonçalves et al. (2021)) is to compare, all else equal, two sample paths for the outcome

variables of interest, one where ε1t is subject to a one-time shock at time t and another one where

no such shock is present. In a state-dependent model such as ours, this would require fixing ε2t and

Ht across the two sample paths. This thought experiment is not realistic when εt is correlated with
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current and future values of Ht because it ignores the possibility that a shock in ε1t may change the

states of the economy on impact and in the future.

Hence, we define the conditional IRF more generally as follows. We denote by {yt+h} the baseline

path that corresponds to the observed data. This is implied by the sequence of structural disturbances

and state indicators

E ∪ H = {. . . , ε1t−1, ε1t, ε1t+1, . . . , ε2t−1, ε2t, ε2t+1, . . .} ∪ {. . . , Ht−1, Ht, Ht+1, . . .} .

The other sample path is
{
y∗t+h

}
, which is the path implied by an alternative sequence of shocks and

state indicators given by

E∗∪H∗ = {. . . , ε1t−1, ε∗1t, ε1t+1, . . . , ε2t−1, ε2t, ε2t+1, . . .} ∪
{
. . . , Ht−1, H

∗
t , H

∗
t+1, . . .

}
.

With this choice of structural shocks and state indicators, the two sample paths are identical prior to

shock in ε1t. At time t, the shock hits ε1t, yielding ε∗1t = ε1t + δ, where δ is the size of the shock. All

other shocks are kept the same. This choice of perturbation is consistent with the assumption that

structural shocks are mutually uncorrelated. However, to accommodate the possibility that a shock

to ε1t may change current and future states, we allow for H∗s 6= Hs for s ≥ t when defining H∗. If the

states are exogenous (in a sense made precise in the next section), we can set H∗s = Hs for all s, in

which case H∗ = H.

Remark 1 One alternative approach to defining the baseline and counterfactual sample paths is to

introduce a formal model for Ht as a function of variables in zt. For instance, we could define Ht =

1 (yt > 0), as in Section 4. In this case, H∗s 6= Hs for s ≥ t by the model assumption on Ht, and the

counterfactual sample paths can be defined as a function of the structural shocks only. Because the

state-dependent LP estimator does not require an explicit model for Ht, our general definition of the

CIRF accounts for this possibility by assuming that H∗ may differ from H.

Our definition of conditional IRF is given next.

Definition 1 The conditional impulse response function of yt+h to a one-time shock of size δ in ε1t

is given by CIRFh (Ht−1) = E[y∗t+h − yt+h|Ht−1], for h = 0, 1, 2, . . . , hmax.

Note that Definition 1 conditions only on Ht−1, the state of the economy in the period prior to

the shock.4 This shows that the conditional IRF depends on the state of the economy at time t − 1,

but not on the current or future states of the economy. Nor do we condition on the history of states
4The conditional expectation is defined with respect to the distribution of {εs}∪{Hs : s 6= t− 1}∪{H∗s : s ≥ t}, given

Ht−1. This expectation is time invariant by the stationarity of (zt, Ht), which we assume throughout.
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prior to t−1. Rather, we average them out, conditioning only on the previous state. This corresponds

to the standard approach in estimating state-dependent responses in applied macroeconomics, where

interest centers on the question of how the IRF differs, depending on whether the economy was in

expansion or recession prior to the shock.

Remark 2 Although we focus on Definition 1 in this paper, it is worth noting that other definitions

of impulse response functions may be considered in nonlinear settings such as ours. One possibility is

the unconditional IRF, as in Gonçalves et al. (2021), defined as IRFh ≡ E
(
y∗t+h − yt+h

)
. Another

possibility is an IRF that conditions on the information set Gt−1 available at time t−1. One example is

to let Gt−1 = F t−1, the history at time t−1, including the value of Ht−1. This includes Definition 1 as

a special case with Gt−1 = {Ht−1}. Conditioning only on Ht−1 is common in applied macroeconomics.

This convention allows researchers to report only two types of IRFs, depending on whether the economy

was in an expansion or in a recession prior to the shock. As we show in the next section, local

projections that involve interactions of Ht−1 and xt recover IRFs conditional on Gt−1 = {Ht−1}.

Although the counterfactual y∗t+h is not observed, it may be recovered from the structural model

given E∗ and H∗. The values of y∗t+h obtained from solving the model given these sequences is related

to the notion of potential outcomes, as defined by Angrist and Kuersteiner (2011) and Angrist, Jordà

and Kuersteiner (2016). Further discussion of potential outcomes for time series processes can be

found in White (2016) and Rambachan and Shephard (2021).

3 What happens when Ht is exogenous?

3.1 Expression for CIRF

In this section, we present an expression for CIRFh (Ht−1) for the state-dependent structural model

given in (3). For expositional purposes, we set δ = 1. We focus on a counterfactual that treats Ht

as exogenous with respect to εt such that H∗ = H in Definition 1. To describe the population IRF,

we evaluate the difference between y∗t+h and yt+h. Since Ct−1 satisfies the identification condition (2),

the inverse matrix of Ct−1 exists and is given by

C−1t−1 =

(
1 0

C−122,t−1C21,t−1 C−122,t−1

)
≡
(

1 0
C21t−1 C22t−1

)
,

where for any matrix A, we let Aij denote the block (i, j) of A−1.

Pre-multiplying (1) by C−1t−1 yields

zt = C−1t−1µt−1 + C−1t−1Bt−1 (L) zt−1 + C−1t−1εt,
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which we rewrite as

zt = bt−1 +At−1 (L) zt−1 + ηt, (4)

where ηt ≡ C−1t−1εt, bt−1 ≡ C
−1
t−1µt−1, and

At−1 (L) ≡ C−1t−1Bt−1 (L) = A1,t−1 +A2,t−1L+ . . .+Ap,t−1L
p−1,

with Aj,t−1 ≡ C−1t−1Bj,t−1.

The value of yt+h and y∗t+h can be obtained from the companion-form representation of the reduced-

form model (4). Let

Zt
np×1

=
(
z′t, z

′
t−1, . . . , z

′
t−p+1

)′ , ξt
np×1

=
(
η′t, 0

′)′ , at−1
np×1

=
(
b′t−1, 0

′)′ ,
and

At−1
np×np

=


A1,t−1 A2,t−1 · · · Ap−1,t−1 Ap,t−1
In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

 .

We can rewrite (4) as

Zt = at−1 +At−1Zt−1 + ξt. (5)

To obtain yt from Zt, let

Sk
k×np

=
(

0k×1 Ik 0k×n(p−1)
)

denote a k× np selection matrix (with k = n− 1 equal to the number of variables in yt) which selects

the subvector yt from the vector Zt. With this notation,

yt = SkZt,

and, more generally, for any h,

yt+h = SkZt+h.

Note that for k = 1 (i.e., for a bivariate system with n = 2), Sk = e′2,2p, where e2,2p = (0, 1, 0′) is a

2p× 1 vector whose only non-zero element is equal to 1 and occurs in position 2. More generally, we

let ej,m denote a m× 1 vector with 1 in position j and 0 elsewhere.

Next, we use the companion form (5) to obtain the difference y∗t+h − yt+h for different values of h.

Starting with h = 0, and noting that the two sample paths coincide up to time t− 1, we have that

Zt = at−1 +At−1Zt−1 + ξt and Z∗t = at−1 +At−1Zt−1 + ξ∗t .

Hence,

Z∗t − Zt = ξ∗t − ξt =

(
η∗t − ηt

0n(p−1)×1

)
,
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where η∗t − ηt = C−1t−1 (ε∗t − εt). Since we only perturb the first element of εt, the following decompo-

sition of ηt is useful:

ηt ≡ C−1t−1εt =

(
1

C21t−1

)
ε1t +

(
0

C22t−1

)
ε2t ≡ C−1t−1e1,nε1t + C−1t−1I2:nε2t,

where e1,n ≡ (1, 0′)′ is n × 1 and I2:n is k × n and is equal to the n × n identity matrix with its first

column removed:

I2:n =
(
e2,n · · · en,n

)
.

With this notation,

η∗t − ηt = C−1t−1e1,n(ε∗1t − ε1t)︸ ︷︷ ︸
=1

+ C−1t−1I2:n(ε∗2t − ε2t)︸ ︷︷ ︸
=0

= C−1t−1e1,n,

given our definition of E and E∗. It follows that

Z∗t − Zt =

(
η∗t − ηt

0n(p−1)×1

)
=

(
C−1t−1e1,n
0n(p−1)×1

)
= e1,p ⊗ C−1t−1e1,n,

and, consequently,

y∗t − yt = Sk (Z∗t − Zt) = Sk
(
e1,p ⊗ C−1t−1e1,n

)
.

The conditional response at h = 0 is given by

CIRF0 (Ht−1) = E (y∗t − yt|Ht−1) = Sk
(
e1,p ⊗ C−1t−1e1,n

)
, (6)

since C−1t−1 is known conditionally on Ht−1. In particular, the individual impact responses of each

variable in yt can be obtained as

CIRF0,j (Ht−1) = E
(
y∗jt − yjt|Ht−1

)
= e′j,np

(
e1p ⊗ C−1t−1e1n

)
,

for j = 2, . . . , n.

The expression (6) shows that the conditional impact response can take on two different values,

depending on whether Ht−1 = 1 or Ht−1 = 0,

CIRF0 (Ht−1) =

{
Sk
(
e1,p ⊗ C−1E e1,n

)
, if Ht−1 = 1

Sk
(
e1,p ⊗ C−1R e1,n

)
, if Ht−1 = 0,

since Ct−1 ≡ CEHt−1 +CR(1−Ht−1). It also shows that only the first column of C−1t−1 (i.e., C
−1
t−1e1,n)

matters for the identification of the conditional impact response.

For h = 1, we use the companion form to evaluate first Z∗t+1−Zt+1 and then y∗t+1−yt+1, as follows.

In particular,

Zt+1 = at +AtZt + ξt+1,
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where ξt+1 =
(
η′t+1, 0

′)′ = ((C−1t εt+1
)′
, 0′
)′
, and where at, At and Ct depend on Ht. Similarly,

Z∗t+1 = a∗t +A∗tZ
∗
t + ξ∗t+1,

where ξ∗t+1 =
(
η∗′t+1, 0

′)′ =
((
C∗−1t ε∗t+1

)′
, 0′
)′
and a∗t , A

∗
t and C

∗
t depend on H

∗
t . Given our choice of

structural shocks, ε∗t+1 = εt+1. Moreover, the assumption that H∗t = Ht implies a∗t = at, A∗t = At and

C∗t = Ct. It follows that

Z∗t+1 − Zt+1 = At (Z∗t − Zt) = At
(
e1p ⊗ C−1t−1e1n

)
,

given that Z∗t − Zt = e1p ⊗ C−1t−1e1n. Thus, we have that

y∗t+1 − yt+1 = Sk
(
Z∗t+1 − Zt+1

)
= SkAt

(
e1p ⊗ C−1t−1e1n

)
,

implying that

CIRF1 (Ht−1) = SkE (At|Ht−1)
(
e1p ⊗ C−1t−1e1n

)
.

This expression generalizes to other values of h as follows.

Proposition 3.1 Let E, H, E∗ and H∗ be as defined in Section 2.2. If H∗ = H, the impact impulse

response of yt to a one-time shock in ε1t of size δ = 1, conditional on Ht−1, is

CIRF0 (Ht−1) ≡ E (y∗t − yt|Ht−1) = Sk
(
e1,p ⊗ C−1t−1e1,n

)
,

and for any h ≥ 1,

CIRFh (Ht−1) ≡ E
(
y∗t+h − yt+h|Ht−1

)
= SkE (At+h−1At+h−2 . . . At|Ht−1)

(
e1,p ⊗ C−1t−1e1,n

)
.

To identify CIRFh (Ht−1), we need to identify the first column of C−1t−1, C
−1
t−1e1,n, as well as

the coeffi cients that enter the matrices At+h−1 through At. Given that these matrices are linear in

the state indicators, identification can be achieved from the reduced-form model (4), where ε1t is

identified from the first equation in the structural model (1) given the identification condition (2).

Even when the model is fully identified, evaluating E (At+h−1At+h−2 . . . At|Ht−1) is challenging and

requires knowledge of the conditional density of Ht+h−1, . . . ,Ht, given Ht−1.5 Local projections are a

much simpler alternative and do not require imposing a model assumption on Ht. In the next section,

we provide a set of suffi cient conditions under which local projections are consistent.

5Kole and van Dijk (2021) provide closed-form expressions for the first- and second-order moments of a Markov
switching SVAR model under the assumption that Ht is a first-order Markov process. Although they also provide
formulas for nonlinear CIRFs, their definition relies on a different counterfactual than ours.
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3.2 Local projections

A state-dependent LP regression is a direct regression of yt+h onto a constant, xt and Zt−1, each

interacted withHt−1 and 1−Ht−1. The slope coeffi cients associated with xtHt−1 are usually interpreted

as the CIRF of yt+h, conditionally on Ht−1 = 1, whereas the slope coeffi cients associated with xt(1−

Ht−1) are interpreted as the CIRF of yt+h when we condition on Ht−1 = 0. The goal of this section

is to provide a set of regularity conditions under which this interpretation is asymptotically valid.

Let Wt−1 ≡ (1, Z ′t−1)
′ denote an (np+ 1)× 1 vector of control variables which include a constant

and p lags of zt. A state-dependent LP for identifying the causal effect on yt+h of a one-time shock in

ε1t of size δ = 1 can be written as

yt+h = bE,hxtHt−1 + ΠE,hWt−1Ht−1 + bR,hxt(1−Ht−1) + ΠR,hWt−1(1−Ht−1) + vt+h, (7)

where the k × 1 vectors bE,h and bR,h contain the main parameters of interest. In particular, bE,h is

interpreted as the CIRF of yt+h when Ht−1 = 1, whereas bR,h contains the CIRF of yt+h, conditionally

on Ht−1 = 0. The matrices ΠE,h and ΠR,h are of size k × (np+ 1); each row contains the constant

and the slope coeffi cients associated with Zt−1 for the LP regression of each variable in yt+h. The LP

regression for variable yj,t+h is

yj,t+h = bE,j,hxtHt−1 + π′E,j,hWt−1Ht−1 + bR,j,hxt(1−Ht−1) + π′R,j,hWt−1(1−Ht−1) + vj,t+h, (8)

where j = 2, . . . , n. The scalar coeffi cients bE,j,h and bR,j,h are the (j − 1)th elements of bE,h and bR,h,

respectively. Similarly, π′E,j,h and π
′
R,j,h are the corresponding rows of ΠE,h and ΠR,h.

Since Ht is observed, the coeffi cients in the multivariate state-dependent LP regression (7) can

be obtained by running a multivariate LS regression of yt+h onto xtHt−1, Wt−1Ht−1, xt (1−Ht−1)

and Wt−1 (1−Ht−1). Note that this is equivalent to running a regression of yj,t+h onto xtHt−1,

Wt−1Ht−1, xt (1−Ht−1) and Wt−1 (1−Ht−1), for each j = 2, . . . , n. Put differently, the multivariate

LS regression (7) is equivalent to the k univariate OLS regressions (8), equation-by-equation.

Let b̂E,h and b̂R,h denote the LS estimators of bE,h and bR,h in (7) based on a sample of size T

given by {yt+h, xt, Zt−1, Ht−1 : t = 1, . . . , T}. We can estimate each of these vectors separately, by

restricting the sample to Ht−1 = 1 and Ht−1 = 0, respectively. For instance, b̂E,h can be obtained

from a regression of yt+h on xtHt−1 and Wt−1Ht−1 (omitting xt (1−Ht−1) and Wt−1 (1−Ht−1) in the

regression). This follows because Ht−1 (1−Ht−1) = 0 for all t. Similarly, we can obtain b̂R,h from

a regression of yt+h on xt (1−Ht−1) and Wt−1 (1−Ht−1) (omitting xtHt−1 and Wt−1Ht−1 in this

regression).

As it turns out, Assumption 1 suffi ces to show the consistency of b̂E,h and b̂R,h when h = 0. To

identify the CIRF at horizons h = 1, . . . , hmax we add the following assumption.
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Assumption 2 Let hmax ≥ 1 denote the maximum horizon of the response function of interest. Then,

for h = 1, . . . , hmax,

(a) E
(
εt|Ht+h−1, . . . ,Ht,F t−1

)
= E

(
εt|F t−1

)
.

(b) E
(
εtε
′
t|Ht+h−1, . . . ,Ht,F t−1

)
= E

(
εtε
′
t|F t−1

)
.

Assumption 2 characterizes the relationship between the structural shocks {εt} and the state in-

dicators {Ht}. This condition is crucial for proving the validity of state-dependent local projections.

A suffi cient condition for Assumption 2 is to assume that {Ht} is fully independent of {εs}. This

assumption is satisfied if we construct Ht on the basis of variables not contained in zt that are in-

dependent of the structural errors εt. Assumption 2 is a milder assumption than full independence

between εt and Ht. It only requires the conditional first two moments of εt to be independent of

{Ht, Ht+1, . . . ,Ht+h−1}, conditionally on F t−1, where h ≤ hmax. This allows for the possibility that

Ht is obtained as a function of past values of zt. How many lags of zt can be included in Ht depends

on the value of hmax. For hmax = 1, Ht can depend on zt−1 (and previous lags of zt−1), but for

hmax = 2, Ht must not depend on zt−1 (although it can depend on zt−2 or further lags of zt−2). As

hmax increases, the set of lags used to construct Ht shrinks. In the limit, if we are interested in the

entire impulse response function, Ht cannot be chosen as a function of {zt}. We will further illustrate

the content of Assumption 2 in the next section when we specialize Ht to be a deterministic function

of zt.

Under Assumptions 1 and 2, we can prove the following result.

Proposition 3.2 Under Assumptions 1 and 2, as T →∞, for any h = 0, 1, . . . , hmax,

b̂E,h −→p CIRFh (Ht−1 = 1) and b̂R,h −→p CIRFh (Ht−1 = 0) ,

where CIRFh (Ht−1) is as defined in Proposition 3.1.

The proof of Proposition 3.2 is in the Appendix. Proposition 3.2 shows that the LP regression

(7) identifies the conditional IRF defined in Proposition 3.1. The latter corresponds to the CIRF of

yt+h derived under the counterfactual experiment that sets H∗ = H. In other words, we assume that

the shock of ε1t does not change the state of the economy on impact or in the future. This is consis-

tent with Assumption 2, which imposes moment-independence conditions on εt and Ht+h−1, . . . ,Ht,

conditionally on F t−1.

The model equation for yt+h implied by the structural model may be used to heuristically un-

derstand why the state-dependent LP works without Assumption 2 when h = 0, but not other-

wise. More specifically, consider a simplified bivariate version of model (1), where xt = ε1t and
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yt = βt−1xt + γt−1yt−1 + ε2t. Consider first h = 0. Then, if we condition on Ht−1 = 1,

yt = βExt + γEyt−1 + ε2t︸ ︷︷ ︸
=vt

,

where βE , the coeffi cient associated with ε1t, is the conditional IRF whenHt−1 = 1. To understand why

the state-dependent LP estimator b̂E,0 recovers βE without further assumptions other than Assumption

1 (and the assumed stationarity and ergodicity of the data), note that the probability limit of b̂E,h is

equal to bE,h =
E(xtyt+h|Ht−1=1)
E(x2t |Ht−1=1)

, the population OLS coeffi cient associated with xt = ε1t in a linear

regression of yt+h on xt which conditions on Ht−1 = 1. For h = 0, this coeffi cient is βE provided

the error term vt ≡ γEyt−1 + ε2t is orthogonal to xt, conditionally on Ht−1 = 1. This orthogonality

condition holds under the m.d.s. assumption on εt (i.e., Assumption 1) without further restrictions

on Ht.

For h = 1, conditionally on Ht−1 = 1, the model equation for yt+1 now is

yt+1 = βtxt+1 + γt (βExt + γEyt−1 + ε2t) + ε2t+1 = γtβExt + vt+1,

where vt+1 = γtγEyt−1+γtε2t+βtxt+1+ε2t+1 depends onHt through γt and βt. Hence, without further

assumptions that restrict the dependence between Ht and εt, we cannot conclude that vt+1 is orthog-

onal to xt, conditionally on Ht−1 = 1. Assumption 2(a) together with Assumption 1 ensures that this

is true, i.e., that E (xtvt+1|Ht−1 = 1) = 0. We obtain E (xtyt+1|Ht−1 = 1) = E
(
γtx

2
t |Ht−1 = 1

)
βE .

To conclude that the state-dependent LP estimand bE,1 = E(xtyt+1|Ht−1=1)
E(x2t |Ht−1=1)

equals E (γt|Ht−1 = 1)βE ,

we further impose Assumption 2(b). In particular, by the law of iterated expectations, we can write

E
(
γtx

2
t |Ht−1 = 1

)
= E

(
γtE

(
x2t |Ht,F t−1

)
|Ht−1 = 1

)
. Using Assumption 2(b) and the conditional

homoskedasticity assumption on ε1t, E
(
x2t |Ht,F t−1

)
= E

(
x2t |F t−1

)
= σ21. This implies that the

LP estimand for h = 1 is equal to E (γt|Ht−1 = 1)βE , the conditional IRF for h = 1 derived in

Proposition 3.1. It is worth noting that this result relies not only on the conditional moment indepen-

dence assumption between εt and Ht (Assumption 2(b)), but also on the conditional homoskedasticity

assumption on ε1t.

For general values of h, we can write yt+h as a function of xt and an error term that depends

on Ht+h−1, . . . ,Ht−1. Conditionally on Ht−1, this is a state-dependent equation, as it depends on

Ht+h−1, . . . ,Ht. A linear local projection of yt+h on xt which conditions only on Ht−1 recovers the

conditional IRF derived in Proposition 3.1 provided the error term is orthogonal to ε1t, condition-

ally on Ht−1. Since this error depends on Ht+h−1, . . . ,Ht, we require that ε1t be independent of

Ht+h−1, . . . ,Ht, conditionally on Ht−1. Assumption 2 formalizes this independence condition. Be-

cause local projections are least squares estimates, it is natural that only first- and second-order
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conditional moment independence conditions on εt are required. As for h = 1, the conditional ho-

moskedasticity assumption implied by Assumption 1 is also important for deriving the consistency of

the state-dependent LP estimator for general values of h ≥ 1.

Note that the asymptotic validity of the state-dependent LP estimator does not depend on the

full identification of the structural model parameters. The crucial condition is that the shock of

interest ε1t is identified. With this condition, and under Assumptions 1 and 2, the LP identifies the

correct conditional IRF even though the contemporaneous state-dependent matrix Ct−1 is only block

recursive. This result is expected. Proposition 3.1 shows that the conditional IRF depends on the

conditional expectation of a function of At+h−1, . . . , At and the first column of C
−1
t−1, which can all be

identified from the reduced-form model (4).

4 What happens when Ht is endogenous?

In this section, we investigate the properties of state-dependent LPs when Ht does not satisfy As-

sumption 2. In particular, we consider the case when Ht depends on current values of the outcome

variables yt. To simplify the exposition and make the arguments clearer, we consider the special case

of a bivariate structural model for zt ≡ (xt, yt)
′, where xt is a directly observed shock and yt has

limited dynamics: 
xt = ε1t,

yt = βt−1xt + γt−1yt−1 + ε2t.
(9)

In terms of our previous notation, n = 2, k = 1, C22,t−1 = 1, C21,t−1 = βt−1, C21,t−1 (L) = 0 and

B22,t−1 (L) = γt−1. The state-dependent parameters βt−1 and γt−1 depend on Ht−1 as before. For

instance, βt−1 = βEHt−1 + βR (1−Ht−1). Crucially, we now endogenize Ht with respect to the

structural shocks εt. In particular, we let Ht = 1 (yt > 0). Given that the structural model sets the

time t coeffi cients as a function of Ht−1, as is typically assumed in the empirical literature, setting

Ht = 1 (yt > 0) implies that βt−1 and γt−1 are a function of yt−1. A generalization of this scenario is

to allow Ht to depend on current and lagged values of yt, as in Alloza’s (2022) study of the impact of

a fiscal policy shock on output. Alloza sets Ht = 1(yt > 0 or yt−1 > 0).

Next, we discuss the implications of this choice of Ht for the validity of the LP estimator. First, we

show that the conditional IRF of interest is no longer given by the formula derived in Proposition 3.1.

Next, we argue why the LP estimand is not the same as the one derived in Proposition 3.2. Finally,

because an analytical characterization of this estimand is infeasible, we numerically illustrate the

magnitude of the asymptotic bias of the state-dependent LP estimator in this context.
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4.1 Conditional IRF when Ht is endogenous

As before, the goal is to obtain the response of yt+h to a shock of size 1 in ε1t. We follow the same

approach as in Section 2.2 and compare the value of yt+hwith a counterfactual value y∗t+h which

corresponds to what we would have observed if we had perturbed ε1t by 1 without changing any of

the other inputs to the system. Note that when Ht depends on yt, the current and future values of Ht

cannot be kept constant across these two sample paths. Thus, a counterfactual experiment that sets

H∗ = H is not consistent with this choice of Ht. We need to account for the impact of the shock in

ε1t on the current and future values of the states of the economy such that H∗s 6= Hs for s ≥ t.

Consider h = 0. Following the same steps as in Section 3.1, we can show that

y∗t − yt = βt−1 (x∗t − xt) = βt−1 ≡ βEHt−1 + βR (1−Ht−1) ,

since x∗t = xt + 1, and importantly, β∗t−1 = βt−1 and γ
∗
t−1 = γt−1. This follows because β

∗
t−1 and

γ∗t−1 are defined as βt−1 and γt−1, but depend on H
∗
t−1 = 1

(
y∗t−1 > 0

)
= Ht−1 = 1 (yt−1 > 0) since

y∗t−1 = yt−1. This implies that the conditional impact response defined in Proposition 3.1 is

CIRF0 (Ht−1) = βt−1 =

{
βE if Ht−1 = 1
βR if Ht−1 = 0.

To see that this expression is a special case of Proposition 3.1, note that when k = 1, Sk = (0, 1),

e1,p = 1 and C−1t−1e1,n =
(
1, βt−1

)′.
For h = 1, an important difference emerges. Now, β∗t and γ

∗
t depend on H

∗
t = 1 (y∗t > 0). Since y∗t

is not equal to yt, we cannot set β∗t = βt and γ
∗
t = γt when defining the counterfactual value of yt+1.

In particular, we now have

y∗t+1 = β∗tx
∗
t+1 + γ∗t y

∗
t + ε∗2t+1 = β∗txt+1 + γ∗t y

∗
t + ε2t+1,

where the second equality follows because ε∗2t+1 = ε2t+1, and x∗t+1 = ε∗1t+1 = ε1t+1. The difference

between y∗t+1 and yt+1 is

y∗t+1 − yt+1 = (β∗t − βt)xt+1 + (γ∗t − γt) y∗t + γt (y∗t − yt) ,

where y∗t − yt = βt−1. The fact that Ht is a function of yt implies that a shock at time t in ε1t has an

impact on yt and hence an impact on the state-dependent coeffi cients β∗t and γ
∗
t . This explains the

presence of the two extra terms in y∗t+1 − yt+1.

The conditional impulse response at horizon h = 1 is the expectation of this difference, conditionally

on Ht−1:

CIRF1 (Ht−1) = E
(
y∗t+1 − yt+1|Ht−1

)
= E[(β∗t − βt)xt+1|Ht−1] + E[(γ∗t − γt) y∗t |Ht−1]︸ ︷︷ ︸

Indirect effect

+ E (γt|Ht−1)βt−1︸ ︷︷ ︸
Direct effect

.
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The second term corresponds to the CIRF derived in Proposition 3.1 under the assumption that the

counterfactual value of H∗t is equal to the observed value Ht, i.e., H = H∗. We interpret this as the

direct effect as it captures the effect on yt+1 of the shock in ε1t assuming that there is no change in the

state Ht (and therefore no change in βt and γt). The first term accounts for the effect on yt+1 that

occurs because Ht has changed. When Ht is exogenous, this indirect effect is zero, but not otherwise.

Note that we can use the model equations to express the indirect effect as a function of observables.

In particular, it can be shown that6

Indirect effect = (γE − γR)E[1
(
yt + βt−1 > 0

)
− 1 (yt > 0)

(
yt + βt−1

)
|Ht−1].

The decomposition of the conditional response into a direct effect and an indirect effect generalizes to

larger values of h. For instance, for h = 2,

CIRF2 (Ht−1) = E
(
y∗t+2 − yt+2|Ht−1

)
= E[

(
β∗t+1 − βt+1

)
xt+2 +

(
γ∗t+1 − γt+1

)
y∗t+1|Ht−1]︸ ︷︷ ︸

Indirect effect due to time t+1 change in parameters

+E[γt+1 (β∗t − βt)xt+1 + γt+1 (γ∗t − γt) y∗t |Ht−1]︸ ︷︷ ︸
Indirect effect due to time t change in parameters

+ E[γt+1γtβt−1|Ht−1]︸ ︷︷ ︸
Direct effect if no change in parameters

,

where the last term is the CIRF at h = 2 derived in Proposition 3.1 under the assumption that

H∗ = H. This term captures the direct effect for h = 2. The indirect effect is represented by the

first two terms. Characterizing these expectations analytically becomes intractable, even under strong

assumptions about the conditional distribution of εt.

The overall message is that when Ht depends on yt, the conditional IRF is no longer the same as

the one defined in Proposition 3.1. It now contains additional terms that capture the indirect effect

of the shock in ε1t on yt+h that operates through the effect of the shock on the transition path of Ht

through Ht+h−1.

4.2 Asymptotic bias in the LP estimator when Ht is endogenous

We now investigate the effect of endogenizing Ht on the estimand of a state-dependent LP. For sim-

plicity, we again focus on the simple bivariate model considered in (9) with Ht = 1 (yt > 0). The

state-dependent LP in this context is given by

yt+h = bE,hxtHt−1 + π′E,hWt−1Ht−1 + bR,hxt(1−Ht−1) + π′R,hWt−1(1−Ht−1) + vt+h, (10)

6Further simplifying this expression involves computing truncated moments of yt+βt−1, conditionally on Ht−1. This
can be done for h = 1 under parametric assumptions on the conditional distribution of yt given Ht−1. However, this
approach quickly becomes intractable as we increase the value of h. A simpler approach is to use numerical methods to
approximate this expectation, which is the approach we use below to evaluate the asymptotic bias of the LP estimates.
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where W ′t−1 = (1, yt−1).

Proceeding as in Section 3.2, we can show that the LP estimate of bE,h converges in probability to

bE,h =
E (xtHt−1yt+h)

E
(
x2tHt−1

) =
E (xtyt+h|Ht−1 = 1)

E
(
x2t |Ht−1 = 1

) .

The LS estimate of bE,h in (10) can be obtained from an OLS regression of yt+h on xt, conditionally on

Ht−1 = 1. This result does not depend on whether Ht is exogenous or endogenous. Rather it follows

from the fact that E (xtHt−1Wt−1) = 0 by the m.d.s. assumption on εt (i.e., by Assumption 1).

When h = 0, one can easily show that bE,0 = βE = CIRF0 (Ht−1). Thus, the state-dependent

LP recovers the correct impact conditional IRF even when Ht depends on yt. This follows because

conditionally on Ht−1 = 1, the structural model equation for yt is

yt = βExt + γEyt−1 + ε2t,

and a linear local projection of yt onto xt and yt−1 that conditions on observations with Ht−1 = 1

recovers βE provided ε2t is orthogonal to xt and yt−1 (conditionally on Ht−1 = 1 ). Assumption 1

alone suffi ces for this result.

When h = 1, evaluating bE,1 = p lim b̂E,1 is more challenging when Ht is endogenous. To see this,

note that conditionally on Ht−1 = 1, the equation for yt+1 can be described as

yt+1 = γtβExt + γtγEyt−1 + ut+1,

where

ut+1 = βtε1t+1 + γtε2t + ε2t+1.

Thus, conditionally on Ht−1, the model for yt+1 is state-dependent because it depends on Ht through

the parameters γt and βt.

As explained in Section 3.2, under exogeneity of Ht (as stated in Assumption 2), the LP estimand

of the slope coeffi cient associated with xtHt−1 is equal to E (γt|Ht−1 = 1)βE . This is the correct CIRF

when Ht satisfies Assumption 2 and it is the direct effect contained in the population CIRF when Ht is

endogenous. The LP estimand of this coeffi cient is not necessarily equal to E (γt|Ht−1 = 1)βE , when

Ht = 1 (yt > 0). The main reason is that Assumption 2 is not satisfied. For this choice, Ht and εt are

no longer mean independent, conditionally on Ht−1. For instance,

E
(
ε1t|Ht,F t−1

)
= E

(
ε1t|yt > 0,F t−1

)
= E

(
ε1t|βt−1ε1t + ε2t > −γt−1yt−1,F t−1

)
,

which is a conditional truncated moment of ε1t. Although under Assumption 1, ε1t has mean zero

conditionally on F t−1, adding information onHt in the form of the restriction βt−1ε1t+ε2t > −γt−1yt−1
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makes this mean not zero. The same is true for the second conditional moment of εt. For instance,

E
(
ε21t|Ht,F t−1

)
is no longer equal to σ21 = E

(
ε1t|F t−1

)
.

Next, we evaluate the limit of the LP estimator by simulations and compare it with the population

CIRF and its decomposition into a direct and indirect effect.

4.3 Does the LP Estimator Converge to the Population Response?

The literature has taken for granted that the LP estimator asymptotically recovers the population

response, when the DGP is a state-dependent structural VAR model (see, e.g., Auerbach and Gorod-

nichenko (2013a); Alloza (2022)). Our analysis shows that this conclusion is indeed correct, when Ht

is exogenous with respect to zt. In the empirically more relevant case when Ht directly or indirectly

depends on yt, however, our suffi cient conditions ensure the asymptotic validity of the state-dependent

LP estimator only for the impact response. Although our theoretical analysis does not formally prove

that the LP estimator of the response function is invalid at other horizons in this case, there is no

presumption that it does recover the population response function. In this section, we explore this

question based on several stylized bivariate DGPs and show that the LP estimator of the response

function indeed appears to be inconsistent when Ht is endogenous. We consider four DGPs. The

first three DGPs focus on the special case where xt is a directly observed i.i.d. shock, whereas DGP4

considers the case where xt is an AR(1) process. More specifically, we let

xt = ρxt−1 + ε1t (11)

yt = βt−1xt + αt−1xt−1 + γt−1yt−1 + ε2t

where

αt−1 = αEHt−1 + αR(1−Ht−1)

βt−1 = βEHt−1 + βR(1−Ht−1),

γt−1 = γEHt−1 + γR(1−Ht−1), (12)

εt = (ε1t, ε2t)
′ ∼ N (0, I2) and Ht is an indicator function that determines the state of the economy.

When Ht = 1 the economy is in an expansion, E, and when Ht = 0 the economy is in recession, R.

DGP1-DGP3 focus on the case where xt = ε1t, and therefore set ρ = 0. In addition, these DGPs

set αt−1 = 0, so that only xt and yt−1 enter the equation for yt. In DGP1, Ht = F (qt) ≡ 1 (qt > 0),

where qt follows an exogenous process

qt = 0.6qt−1 + ut,
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and ut ∼ N (0, 1) is independent of εt. DGP2 and DGP3 differ from DGP1 in that the indicator

function is given by Ht = 1 (yt > 0), so that the state of the economy is determined endogenously.

DGP1 and DGP2 set βE = 2.4, βR = 1.6, γE = 0.7 and γR = 0.1, whereas DGP3 sets βE = 2.5,

βR = 3.5, γE = 0.9 and γR = −0.1. Finally, DGP4 specifies xt as an AR(1) process with ρ = 0.8. In

addition, this DGP sets αt−1 6= 0, with αE = 1.2 and αR = 0.9.

We consider the effect on yt+h of a shock of size 1 in ε1t. The conditional impulse response function

is evaluated as E
(
y∗t+h − yt+h|Ht−1

)
, whereas the LP estimands are evaluated as bE,h =

E(xtHt−1yt+h)

E(x2tHt−1)

and bR,h =
E(xt(1−Ht−1)yt+h)
E(x2t (1−Ht−1))

. We also compute the direct effect (given by the formula in Proposi-

tion 3.1) and the indirect effect (which we obtain as the difference between E
(
y∗t+h − yt+h|Ht−1

)
and

the direct effect). The number of draws used to compute all these conditional expectations is equal to 50

million. In addition to reporting results of the effect of the shock on the level of yt+h, we also compute

the cumulative effects. These are obtaining by summing the individual CIRFs and the corresponding

LP coeffi cients. For instance, the cumulative CIRF at horizon h = 1 equals
∑1
h=0E

(
y∗t+h − yt+h|Ht−1

)
and the LP estimand is

∑1
h=0 bi,h with bi,h = bE,h if Ht−1 = 1 and bi,h = bR,h if Ht−1 = 0.

Figures 1 and 2 contain the results when Ht is exogenous (DGP1) whereas Figures 3 through 8

contain results for the endogenous case (DGP2, DGP3 and DGP4). Starting with DGP1, Figure 1

shows that the CIRF is equal to the LP estimand at all horizons. In addition, the indirect effect is

zero, making the CIRF equal to the direct effect. This is consistent with our theoretical results (cf.

Proposition 3.2). Because the LP estimand coincides with the CIRF for yt+h, LP also recovers the

cumulative effect, as shown by Figure 2.

Figures 3 through 8 show that these results change when Ht = 1 (yt > 0), making Ht endogenous

with respect to ε1t. These figures show that the LP estimands no longer coincide with the population

response function of interest (both in levels and as a sum). In particular, although the impact effect is

recovered by the state-dependent LP, this is no longer true at intermediate values of h. As h increases

further, the CIRF and the corresponding LP estimand both tend to zero, making the bias disappear.

This is no longer true for the cumulative LP bias, however, which remains non-zero for all values of h.

The decomposition of the CIRF into the direct and indirect effect shows that the LP estimand follows

closely the direct effect, while missing the indirect effect.

The size of the asymptotic bias depends on the parameter values we choose. In DGP2 and DGP3,

the bias increases with γE − γR, implying that it is larger in absolute value in DGP3 than in DGP2.

For example, compare Figures 3 and 5 for the CIRF and Figures 4 and 6 for the cumulative CIRF.

Although Figures 3 and 5 seem to suggest that the bias of the LP estimator is modest relative to

the value of the impulse response function, this bias is significant when measured as a function of the
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population CIRF of interest. For instance, for DGP2, the bias of LP relative to the CIRF is equal

−10%, −13%, −14%, and −15% for h = 1, 2, 3, 4, when in expansions, and −20%,−20%,−20%,−21%

when in recessions. These numbers imply a relative bias for the cumulative response function that

varies between −4% and −7% in expansions and −6% and −10% in recessions. For DGP3, the relative

bias of the LP estimator for the CIRF varies between −6% and −14% in expansions and −29% and

−40% in recessions. This translates to a relative bias in the cumulative CIRF that varies between

−3% and −8% for expansions and −11% and −23% for recessions.

The results for DGP4 follow the same patterns for DGP2 and DGP3, although in relative terms

the bias is smaller than in DGP2 and DGP3. In particular, the relative bias of LP relative to the CIRF

is at most −5.6% in expansions and −10.4% in recessions. For the cumulative effects, the maximum

relative bias over h = 1, . . . , 10 is −3.6% for expansions and −7.4% in recessions.

It is standard in nonlinear time series analysis to report responses to one and two standard deviation

shocks in recognition of the fact that in nonlinear models changing the magnitude of the shock may

affect the value of the impulse responses. As we have shown, the state-dependent LP estimator

implicitly sets the shock size δ to unity, which need not correspond to a one standard deviation shock

in general. More generally, for a shock of size δ the LP estimator may be scaled by a factor of δ.

This approach, of course, is only expected to work when Ht is exogenous. It is useful to illustrate

the sensitivity of the asymptotic bias of the LP estimator to the magnitude of the ε1t shock when Ht

is endogenous. In our DGPs, setting δ = 1 corresponds to a one standard deviation shock. Figure

9 illustrates that the asymptotic bias of the LP estimator relative to the population CIRF increases

substantially when increasing δ from 1 to 2, corresponding to a two standard deviation shock. In

this example, which is based on DGP 4, at most horizons, the asymptotic bias is near 10 percent in

expansions and may exceed 20 percent in recessions.

5 Conclusion

State-dependent LP impulse response estimators have become one of the most commonly used tools

in empirically macroeconomics in recent years. The idea that the effects of economic shocks may

differ depending on the state of the economy has a long tradition, but apparent nonlinearities in

recent macroeconomic data such as the zero lower bound on interest rates have, if anything, further

heightened interest among applied researchers in such state dependencies. Much of what we know

about the state dependence of fiscal multipliers and the state-dependent effects of monetary policy

shocks, for example, is based on this LP approach, yet the validity of this approach has never been

formally established.
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Although there has been much discussion of the perceived advantages of this approach in the

literature compared to the estimation of state-dependent structural VARmodels, including its apparent

simplicity and its potential robustness to possible dynamic misspecification of nonlinear VAR models,

it is not clear under what conditions the state-dependent LP estimator recovers the population impulse

response functions of interest. It also remains unclear what impulse response function the LPs are

estimating, among many competing impulse response concepts. In this paper, we made precise the

nature of the state-dependent impulse responses captured by the LP estimator, and we provided

suffi cient conditions, under which this estimator is consistent. These conditions tend to be violated in

many empirical studies. Our analysis suggests that, when the state of the economy is endogenously

determined, the LP estimator tends to be valid only for the impact response. This is a concern not

only for impulse response analysis but also for the construction of fiscal and monetary multipliers that

are often computed at higher horizons (or relative to the peak in the response function).

While our theoretical analysis does not formally establish the inconsistency of the LP estimator

(and the multipliers derived from those responses) when the state of the economy is endogenous, we

showed numerically that in practice the LP estimator of the response function tends to be asymptoti-

cally biased. The fact that many applications of the state-dependent LP estimator implicitly treat the

state of the economy as exogenous with respect to the model variables, when it clearly is endogenous,

calls into question their substantive conclusions. This result is important not only from an econometric

point of view, but also for the ongoing debate about the magnitude of fiscal and monetary multipliers.

Our analysis highlights the need to be specific about the nature of the state dependence when applying

the state-dependent LP estimator. LP estimators cannot be interpreted and their validity cannot be

assessed without taking a stand on the data generating process.
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A Appendix

Proof of Proposition 3.1. The proof for h = 0 and h = 1 is in the text. We omit the proof for

general h since it follows from similar arguments.

Proof of Proposition 3.2. To define b̂E,h, let

Y
T×k

=

 y′1+h
...

y′T+h

 , X1
T×1

=

 x1H0
...

xTHT−1

 , and X2
T×(np+1)

=

 W ′0H0
...

W ′T−1HT−1

 ,
and define M2 = IT −X2 (X ′2X2)

−1X ′2.

By the Frisch-Waugh-Lovell (FWL) Theorem, b̂′E,h = (X ′1M2X1)
−1X ′1M2Y, or

b̂E,h = T−1(Y ′M2X1)
(
T−1X ′1M2X1

)−1 ≡ Q̂1y.2,hQ̂−111.2.
A similar expression holds for b̂R,h with the difference that the regressors xt and Wt−1 are interacted

with 1−Ht−1 rather than Ht−1.

Our goal is to derive the probability limit of b̂E,h (and b̂R,h) as T →∞. We can write

Q̂11.2 = T−1X ′1X1 − T−1X ′1X2
(
T−1X ′2X2

)−1
T−1X ′2X1, and

Q̂1y.2,h = T−1Y ′X1 − T−1Y ′X2
(
T−1X ′2X2

)−1
T−1X ′2X1.

If a law of large numbers applies to each term7,

Q̂11.2
p→ Q11.2 ≡ E

(
x2tHt−1

)
− E

(
xtHt−1W

′
t−1
)

[E
(
Wt−1W

′
t−1Ht−1

)
]−1E (Wt−1Ht−1xt) , and

Q̂1y.2,h
p→ Q1y.2,h ≡ E (yt+hxtHt−1)− E

(
yt+hHt−1W

′
t−1
)

[E
(
Wt−1W

′
t−1Ht−1

)
]−1E (Wt−1Ht−1xt) .

We distinguish two cases: (i) xt = ε1t, and (ii) xt = µ1,t−1+B11,t−1 (L)xt−1+B12,t−1 (L) yt−1+ε1t =

α′t−1Wt−1+ε1t (where αt−1 is a state-dependent vector that collects the coeffi cients of µ1,t−1, B11,t−1 (L)

and B12,t−1 (L)).

7We assume that the data are strictly sationary and ergodic and that the usual moment and rank conditions on the
regressors are satisfied. We leave these as implicit high level assumptions since our focus here is on the conditions that
Ht needs to satisfy in order for the LP estimator to be consistent. Kole and van Dijk (2021) (and references therein)
provide primitive conditions for stationarity and ergodicity of a Markov Switching SVAR model when the states Ht are
assumed to be a first-order exogenous Markov process. Deriving analogous primitive conditions for our setting, when
the process for the exogenous Ht is not specified, is beyond the scope of this paper.
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In case (i), it is easy to see that E
(
xtHt−1W ′t−1

)
= 0 under the assumption that xt = ε1t is a

m.d.s. Thus,

Q11.2 = E
(
x2tHt−1

)
and Q1y.2,h = E (yt+hxtHt−1) ,

implying that8

b̂E,h
p→ bE,h ≡ E (yt+hxtHt−1) [E

(
x2tHt−1

)
]−1 = E (yt+hxt|Ht−1 = 1) [E

(
x2t |Ht−1 = 1

)
]−1.

In case (ii), we can show that

Q11.2 = E
(
ε21tHt−1

)
= Pr (Ht−1 = 1)E

(
ε21t|Ht−1 = 1

)
and

Q1y.2,h = E (yt+hε1tHt−1) = Pr (Ht−1 = 1)E (yt+hε1t|Ht−1 = 1) ,

implying that bE,h = E (yt+hε1t|Ht−1 = 1) [E
(
ε21t|Ht−1 = 1

)
]−1. Heuristically, this follows because

by the FWL theorem, and conditioning on Ht−1 = 1, the slope coeffi cient associated with xt from

regressing yt+h on xt and Wt−1 can be obtained in two steps. First, we regress xt on Wt−1 (interacted

with Ht−1) and obtain the residual. Under our identification condition, this is ε1t. Then, we regress

yt+h on ε1t (interacted with Ht−1). More specifically, note that

E
(
xtHt−1W

′
t−1
)

= E
(
α′t−1Wt−1W

′
t−1Ht−1

)
+ E

(
ε1tHt−1W

′
t−1
)

= E
(
α′t−1Wt−1W

′
t−1Ht−1

)
,

since E
(
ε1tHt−1W ′t−1

)
= 0 by the m.d.s. assumption on ε1t. It follows that

E
(
xtHt−1W

′
t−1
)

= α′EE
(
Wt−1W

′
t−1|Ht−1 = 1

)
Pr (Ht−1 = 1) .

Hence, the term E
(
xtHt−1W ′t−1

)
[E
(
Wt−1W ′t−1Ht−1

)
]−1E (Wt−1Ht−1xt) equals

α′EE
(
Wt−1W

′
t−1|Ht−1 = 1

)
[E
(
Wt−1W

′
t−1|Ht−1 = 1

)
]−1E

(
Wt−1W

′
t−1|Ht−1 = 1

)
αE Pr (Ht−1 = 1)

= α′EE
(
Wt−1W

′
t−1|Ht−1 = 1

)
αE Pr (Ht−1 = 1)

= E
(
α′t−1Wt−1W

′
t−1αt−1|Ht−1 = 1

)
Pr (Ht−1 = 1) .

Since x2t =
(
α′t−1Wt−1 + ε1t

)2
= α′t−1Wt−1W ′t−1αt−1 + 2α′t−1Wt−1ε1t + ε21t, where the second term has

conditional mean equal to zero, it follows that

Q11.2 = Pr (Ht−1 = 1)E
(
ε21t|Ht−1 = 1

)
.

We can use similar arguments to show that

Q1y.2,h = Pr (Ht−1 = 1)E (yt+hε1t|Ht−1 = 1) .

8This result is consistent with the fact that when xt is a directly observed shock we can simply regress yt+h onto
xtHt−1 to obtain a consistent estimator of bE,h. When xt = ε1t, adding the controls Wt−1Ht−1 is not required for
consistency, but can be important for effi ciency.

26



Thus, both in cases (i) and (ii), we conclude that

b̂E,h
p→ bE,h = E (yt+hε1t|Ht−1 = 1) [E

(
ε21t|Ht−1 = 1

)
]−1 ≡ NhD,

where Nh stands for numerator and D is the denominator. Next, we express Nh and D in terms of

the model’s parameters. To evaluate Nh, we use the fact that for any h, yt+h = SkZt+h, where Zt+h
is obtained from the companion form representation of the model given by (5). Consider first h = 0.

Then

Zt = at−1 +At−1Zt−1 + ξt,

where

ξt =

(
ηt
0

)
=

(
C−1t−1e1,nε1t + C−1t−1I2:nε2t

0

)
= (e1,p ⊗ C−1t−1e1,n)ε1t + e1,p ⊗ C−1t−1I2:nε2t,

given that ηt = C−1t−1εt and εt = C−1t−1e1,nε1t + C−1t−1I2:nε2t, where e1,n and I2:n are as defined in

Section 3.1. Hence,

yt = SkZt = Sk(e1,p ⊗ C−1t−1e1,n)ε1t + Sk(at−1 +At−1Zt−1) + Sk(e1,p ⊗ C−1t−1I2:nε2t). (13)

Using the above decomposition of yt, we can write N0 = E (ytε1t|Ht−1 = 1) = N0,1 + N0,2 + N0,3,

where

N0,1 = E[Sk(e1,p ⊗ C−1t−1e1,n)ε21t|Ht−1 = 1],

N0,2 = E[Sk(at−1 +At−1Zt−1)ε1t|Ht−1 = 1], and

N0,3 = E[Sk(e1,p ⊗ C−1t−1I2:nε2t)ε1t|Ht−1 = 1].

Under Assumption 1 and applying repeatedly the law of iterated expectations (LIE), it can be shown

that N0,2 = N0,3 = 0, implying that N0 ≡ E (ytε1t|Ht−1 = 1) = N0,1. Thus,

N0 = Sk(e1,p ⊗ C−1E e1,n)E
(
ε21t|Ht−1 = 1

)
.

Since bE,0 ≡ N0D, where D ≡ [E
(
ε21t|Ht−1 = 1

)
]−1, this implies the result. A similar argument shows

that

b̂R,0
p→ bR,0 = Sk(e1,p ⊗ C−1R e1,n).

These results show that the state-dependent LP regression (7) recovers the conditional IRF obtained in

Proposition 3.1 with h = 0 under Assumption 1. No further assumptions are required (provided a law

of large numbers can be applied to Q̂11.2 and Q̂1y.2,0). In particular, conditional homoskedasticity of εt

is not required. Nor do we need to impose further restrictions on the process driving state dependence.
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As we will show next, this is no longer the case when h > 0. To illustrate this, consider h = 1.

Now,

b̂E,1
p→ bE,1 ≡ E (yt+1ε1t|Ht−1 = 1) [E

(
ε21t|Ht−1 = 1

)
]−1 ≡ N1D.

To obtain N1, we can use the fact that

yt+1 = SkZt+1 = Sk(at +AtZt + ξt+1)

= Sk(at +At(at−1 +At−1Zt−1 + ξt) + ξt+1)

= SkAtξt + Sk(at +At(at−1 +At−1Zt−1)) + Skξt+1, (14)

where ξs = (e1,p ⊗ C−1s−1e1,n)ε1s + e1,p ⊗ C−1s−1I2:nε2s for s = t, t + 1. This implies that N1 ≡

E (yt+1ε1t|Ht−1 = 1) = N1,1 +N1,2 +N1,3, where

N1,1 = E(SkAtξtε1t|Ht−1 = 1),

N1,2 = E[Sk(at +At(at−1 +At−1Zt−1))ε1t|Ht−1 = 1], and

N1,3 = E[Skξt+1ε1t|Ht−1 = 1].

Given the definition of ξt+1, we can easily see that N1,3 = 0 by Assumption 1, since it implies that

E
(
ξt+1|F t

)
= 0. However, to conclude that N1,2 = 0, we need further assumptions. More specifically,

this term now depends on Ht (through at ≡ aEHt + aR(1 − Ht) and At ≡ AEHt + AR (1−Ht)).

Conditionally on F t−1, Ht and ε1t may be correlated, implying that N1,2 may be non-zero. Indeed,

by the LIE, we can write

N1,2 = E[Sk(at +At(at−1 +At−1Zt−1))E
(
ε1t|F t−1, Ht

)
|Ht−1 = 1].

A suffi cient condition for N1,2 = 0 is that E
(
ε1t|F t−1, Ht

)
= 0, which holds under Assumptions 1 and

2(a) with h = 1. Under this condition, N1 = N1,1.

Additional conditions are also required to simplify N1,1 = E(SkAtξtε1t|Ht−1 = 1) and show that

bE,1 ≡ N1D = CIRF1 (Ht−1 = 1) ≡ E[SkAt(e1,p ⊗ C−1t−1e1,n)|Ht−1 = 1]. Using the definition of ξt,

N1,1 can be decomposed as follows:

N1,1 = E[SkAt(e1,p ⊗ C−1t−1e1,n)ε21t|Ht−1 = 1] + E[SkAt(e1,p ⊗ C−1t−1I2:nε2tε1t)|Ht−1 = 1].

The presence of At (which depends on Ht) again complicates the evaluation of these expectations. For

instance, the second term is not zero if E
(
ε1tε2t|Ht,F t−1

)
6= 0 even if Σ is diagonal. Assumption 2(b)

with h = 1 ensures E
(
ε1tε2t|Ht,F t−1

)
= 0, implying that

N1,1 = E[SkAt(e1,p ⊗ C−1t−1e1,n)ε21t|Ht−1 = 1].
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It follows that

bE,1=
E[SkAt(e1,p ⊗ C−1t−1e1,n)ε21t|Ht−1 = 1]

E
(
ε21t|Ht−1 = 1

) .

A suffi cient condition for bE,1 to equal E[SkAt(e1,p⊗C−1t−1e1,n)|Ht−1 = 1] is the conditional homoskedas-

ticity condition E
(
ε21t|Ht,F t−1

)
= σ21 = E

(
ε21t|F t−1

)
. This is Assumption 2(b) with h = 1, which

together with Assumption 1 and 2(b) ensures the consistency of the LP estimator for h = 1. The

proof for other values of h follows from similar arguments provided Assumption 1 is strengthening by

Assumption 2.
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Figure 1: DGP1: Exogenous Ht, xt = ε1t, Level Effects
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Figure 2: DGP1: Exogenous Ht, xt = ε1t, Cumulative Effects
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Figure 3: DGP2: Endogenous Ht, xt = ε1t, Level Effects
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Figure 4: DGP2: Endogenous Ht, xt = ε1t, Cumulative Effects

33



0 1 2 3 4 5 6 7 8 9 10
h

0

0.5

1

1.5

2

2.5

3

3.5

4

C
IR

F

Expansions

CIRF
LP
Direct
Indirect

0 1 2 3 4 5 6 7 8 9 10
h

0

0.5

1

1.5

2

2.5

3

3.5

4

C
IR

F

Recessions

CIRF
LP
Direct
Indirect

Figure 5: DGP3: Endogenous Ht, xt = ε1t, Level Effects
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Figure 6: DGP3: Endogenous Ht, xt = ε1t, Cumulative Effects
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Figure 7: DGP4: Endogenous Ht, xt = 0.8xt−1 + ε1t, Level Effects
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Figure 8: DGP4: Endogenous Ht, xt = 0.8xt−1 + ε1t, Cumulative Effects
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Figure 9: DGP4: Endogenous Ht, xt = 0.8xt−1 + ε1t, Asymptotic Bias of the Level Effects
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