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Abstract

A conditional tail index estimator is introduced which explicitly allows for right-tail
censoring (top-coding), which is a feature of the widely used current population
survey (CPS), as well as of other surveys. We show that the factor values used to
adjust top-coded wages have changed over time and depend on individuals’ charac-
teristics, occupations and industries, and propose suitable values. Specifically, we
observe that the factor values used to adjusted the top-coded wages for women in
the Finance industry increased from 1.5 in 1992 to around 2 in 2017 (and similarly
in other industries although of smaller magnitude). We also observe that inequality
in the US weekly wage distribution increased between 1992 and 2017 more than
what had previously been described in the literature. Specifically, contrasting the
results of our approach with those of a conservative fixed adjustment factor of 1.5
(used in the literature), our procedure indicates that inequality in 2017 is 5% larger
than that suggested by the fixed adjustment factor.
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1 Introduction

The sharp rise in overall wage inequality in the second half of the 20th century has

become a stylized fact (Autor, 2019 and Goos et al., 2014). Wage inequality growth in

the 1980s was followed by a slowdown in the 1990s as a result of divergent trends in

the bottom and top of the wage distribution. Both the 90/50 and 50/10 indexes grew

rapidly in the early 1980s, and although lower tail inequality virtually came to an halt

after 1987 upper-tail inequality kept rising. According to Autor et al. (2008) between

1963 and 2005, the 90th percentile wage rose, by more than 55% relatively to the 10th

percentile for both men and women.

The monotonic increase of inequality until the late 1980s followed by the divergent

evolution in the top and lower half of the distribution is robust to different measures

and samples.1 Steady growth in the upper-tail inequality can also be seen from the

rising share of wages paid to the top 10% and 1% earners (Piketty and Saez, 2003). For

instance, Burkhauser et al. (2012) using March CPS and IRS tax returns data observe

that income inequality changes since 1993 are largely driven by changes in the incomes

of the top 1%. However, literature based on public-use CPS data has produced a less

than perfect picture of the right tail of the wage distribution because of the top-coding

(Armour et al., 2016). CPS wage data has historically been censored at the top (top-

coded) and ignoring this fact or not adequately handling it may result in inconsistent

tail index estimates, lead to understatements of inequality and affect the estimates of

its dynamics (Feng et al., 2006). In addition, top-coding has changed over time. For

instance, the weekly wage measure was top-coded at $1923 between 1989 and 1997, and

at $2884 between 1998 and 2017. But even during periods of constant nominal top-coding

the data may hide changes in inequality (Levy and Murnane, 1992).

Hlasny and Verme (2021) using CPS data show that income inequality in the US

between 1979 and 2014 has been consistently underestimated by several percentage points

and Hlasny and Verme (2018) using EU SILC data also find downward biased inequality

estimates for several European countries. In both papers the authors use two alternative
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correction methods of the right censoring, a stochastic approach based on reweighing and

a semi-parametric approach based on replacing observations.

While some authors have tried to address the top-coding issues by restricting the

sample under analysis, the method presented in this paper makes use of the complete set

of information available from the public use CPS data, for every year, in a time-consistent

fashion, arguably providing better estimates of the level of weekly wage inequality than

other available measures. Our procedure provides additional flexibility by allowing re-

searchers to evaluate which determinants impact the probability of being in the right tail

of the weekly wage distribution and the corresponding Gini coefficient. The approach

allows for a detailed analysis on how inequality has spread across industries, occupation,

gender and other population characteristics.

Our paper relies on the tail index parameter to assess wage inequality. The tail index

characterizes the rate of decay of the tail of a power law distribution, i.e., the likelihood of

observing extreme wages. The smaller the values of the tail index, the larger the likelihood

of observing extreme wages and large fluctuations in the right tail of the distribution.

To relate heavy-tailedness and upper-tail inequality, it is worth noting that for a Pareto

distribution with a tail index of α, the Gini coefficient is given by G = 1/ (2α− 1) , α > 1

(see Ibragimov and Ibragimov, 2018). Hence, since the Gini coefficient2 is directly related

to the tail index, the additional information that we obtain from the estimation of the

conditional tail index does therefore extend to the Gini coefficient. Thus, the tail index

estimates of a Pareto-type distribution can be used as an additional measure of inequality.

Specifically, if a variable follows approximately a Pareto distribution for large wages, the

value of the right tail index and corresponding Gini coefficient may be considered as

measures of upper tail inequality, that is, inequality between moderate or high wages

and extremely high wages. Our paper shows that this tail index and Gini coefficient

vary across age, education, gender, race, marital status, occupation and industry, which

means that the likelihood of observing extreme weekly wages, and hence different wage

inequality patterns, varies across these groups.

Several estimation approaches have recently been proposed which consider either non-
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random or random covariates; see e.g. Ma et al. (2019) (and references therein). Our

contribution falls into the latter class and provides a tail index estimator which takes

the top-coding explicitly into consideration, providing in this way more efficient and

consistent estimates than methods currently available in the literature. The superior

performance of the new approach is illustrated. It is shown, using the public-use CPS

database from 1992 to 2017, that the factor values used for the adjustment of the top-

coded weekly wages changed over time and across individuals’ characteristics, occupations

and industries, which highlights the heterogenous nature of inequality; moreover results

also show that the tail index has been decreasing since 1992, which corresponds to an

increasing Gini coefficient, and which suggests an increase in the right-tail inequality.

The contribution of this paper is threefold: First, a conditional tail index estimator

is introduced that explicitly handles the top-coding problem, and its finite sample per-

formance is evaluated and compared to competing methods; second, it is shown that the

factor values necessary to adjust the top-coded wages has change over time and across

individuals’ characteristics, occupations and industries, and suitable values are proposed;

and third, an in-depth analysis of the dynamics of the US weekly wage distribution’s right

tail using the public-use CPS database from 1992 to 2017 is provided.

The remainder of the paper is organized as follows. Section 2 introduces the method-

ology of analysis, the new tail index estimator and a detailed description of the compu-

tation of the partial effects; Section 3 presents the results of an in-depth Monte Carlo

analysis on the finite sample properties of the new approach and a comparison to exist-

ing procedures as well as an analysis of their performance for the imputation of weekly

wages using non-censored data; Section 4 describes and discusses the results of the right

tail characteristics of the weekly wage distribution and weekly wage inequality in the US

using the CPS database from 1992 to 2017; and finally, Section 5 presents the main con-

clusions of the paper. A technical appendix collects the proofs of the results put forward

throughout the paper.
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2 Methodology

To reduce the top-coding bias researchers typically impute top-coded values to create

consistent series. Until recently one of four approaches has been adopted in the literature:

(1) the top-coding problem is ignored i.e., top-coded observations are dropped (see e.g.

Jensen and Shore, 2015); (2) an ad hoc adjustment of the top-coded wages is made (e.g.

Lemieux, 2006 and Autor et al., 2008 multiplied top-coded hourly wages by 1.4, and top-

coded weekly wages by 1.5, respectively); (3) a Pareto distribution is used to estimate

wages at the top of the distribution (e.g. Bernstein and Mishel, 1997, Piketty and Saez,

2003); and (4) cell means or rank-proximity swapped data based on the still-censored

internal CPS data is used (e.g. Larrimore et al., 2008 and Burkhauser et al., 2008); for a

discussion and shortcomings of these approaches see, e.g., Burkhauser et al. (2010) and

Armour et al. (2016).

In a recent contribution Armour et al. (2016) proposed an alternative approach which

consists of the estimation of the tail index of a censored Pareto distribution. To briefly

illustrate the procedure consider first the survival function, F , of an uncensored Pareto

distribution,3 F (y) := P
(
Y > y

)
=
(
y0/y

)α
with y ≥ y0 > 0, α > 0, and corresponding

density function fY (y) = αyα0 /y
α+1. A large number of tail index estimators is available

in the literature. One widely used approach is the conditional maximum likelihood

estimator (MLE) proposed by Hill (1975),

α̂Hill := m

[
m∑
j=1

log y(j) − log y(0)

]−1

(2.1)

where m is the number of largest order statistics, y0 is the tail cut off point and y(j), j =

1, ...,m, is the jth largest value used in the estimation of α.

However, recognizing the limitations of α̂Hill when the data is top-coded, Armour

et al. (2016) proposed an alternative approach, which consists of an adaptation of the Hill

estimator taking the censoring into consideration. This approach provides an unbiased

estimate of the censored Pareto parameter, α, while using all available information.

In the case of a censored sample the outcome variable is,
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ωi =

 yi if y0 ≤ yi < yc

yc if yi ≥ yc

, (2.2)

where y0 is the tail cut off point and yc is the censoring threshold. The density function

of the censored Pareto distribution is,

gY (ωi) =

(
αyα0
ωα+1
i

)I(y0≤ωi<yc)[(y0

yc

)α]I(ωi≥yc)
(2.3)

and the respective log-likelihood function,

m∑
i=1

log [gY (ωi)] =
m∑
i=1

I(y0≤ωi<yc)

(
log(α) + α log(y0)− (α + 1) log(ωi)

)
+

m∑
i=1

I(ωi≥yc)

(
α log(y0)− α log(yc)

)
. (2.4)

Consequently, the conditional MLE estimator proposed by Armour et al. (2016) com-

puted from (2.4) is,

α̂cHill = n0

( m∑
i=1

I(y0≤yi<yc) log(yi) + nc log(yc)− (n0 + nc) log(y0)

)−1

(2.5)

where n0 is the number of individuals with wages between y0 and yc, nc is the number of

individuals with wages at or above yc, and n0 + nc = m.

2.1 The conditional tail index estimator and properties

In this paper, we introduce a conditional tail index estimator which also takes the right

censoring of the data into account and uses covariates in the estimation process. The

procedure has the advantage of allowing for an in depth analysis of the determinants that

impact the tail index according to individuals’ characteristics, occupations and industries,

which will be useful for a better understanding of the heterogenous nature of inequality.

To introduce the approach consider observations (Xi, Yi), i = 1, ..., n, where Yi ∈ R1

is the response of interest, and Xi := (x1i, ..., xpi)
′ ∈ Rp is an associated p-dimensional

vector of predictors. In addition, let F (y|x;θ) := P [Yi ≤ y|Xi = x] be the cumula-
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tive distribution function of Yi conditional on Xi, and assume that the corresponding

uncensored survival function is,

F (y|x;θ) := 1− F (y|x;θ) = y−α(x)L(y; x), (2.6)

where α(x) := exp(x′θ), θ ∈ Rp is the unknown vector of coefficients and L(y; x) is

some predictor-dependent slowly varying function, such that L(yk; x)/L(y; x) → 1 for

any k > 0 as y →∞. Following Hall (1982) we characterize the slowly varying function

as,

L(y; x) := c0(x) + c1(x)y−β(x) + o(y−β(x)) (2.7)

where c0(x) and c1(x) are functions in x with c0(x) > 0, β(x) > α(x) a positive function

and o(y−β(x)) is the higher-order remainder term. As a result, as y →∞, L(y; x)→ c0(x)

and L̇(y; x) := ∂L(y; x)/∂y → 0.

From (2.6), it follows that the probability density function of Yi conditional on Xi is,

f(y|x; θ) = α(x)y−α(x)−1L(y; x)− y−α(x)L̇(y; x). (2.8)

Considering (2.7) and assuming that y is sufficiently large, it follows that the density in

(2.8) can be approximated as, f(y|x; θ) ≈ c0(x)α(x)y−α(x)−1; see also Wang and Tsai

(2009). Thus, the conditional probability function of Yi given Xi and Yi > y0 can be

approximated as,

f(y|x; θ) ≈ α(x)(y/y0)−α(x)−1, (2.9)

where y0 is the threshold that controls the sample fraction used for estimation. (2.9) is

the approximate conditional Pareto density function of an unrestricted random variable

and its use when some form of censoring (such as right censoring4 in the CPS database)

is imposed on the data will originate inconsistent tail index parameter estimates.

In the censored case, rather than observing the outcome yi we effectively observe wi

as defined in (2.2). The adequately adjusted conditional Pareto density function is,

g(ωi|xi, yc,θ) := f(ωi|xi, yc,θ)I(y0≤wi<yc) [1− F (yc|xi, yc,θ)]I(wi≥yc) (2.10)
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where I(.) is the indicator function and f ( .|x) and F ( .|x) are the conditional Pareto

density function and the conditional cumulative Pareto distribution function, respec-

tively. The negative log-transformed likelihood function for the top-coded data is,

Kcn(θ; yc) :=
n∑
i=1

log g (wi|xi; yc;θ) (2.11)

where g (wi|xi; yc;θ) is as in (2.10), wi is given in (2.2) and yc is the censoring threshold.

Since

log [g(ωi|xi, yc,θ)] = I(y0 ≤ wi < yc) log f(ωi|xi, yc, θ) + I(wi ≥ yc) log [1− F (yc|xi, yc, θ)]

= I(y0≤wi<yc) (logα (xi) + α (xi) log y0 − [α (xi) + 1] logwi)

+I(wi=yc) (α (xi) [log (y0)− log(yc)]) , (2.12)

using α (xi) = exp (x′iθ) the approximate negative log-likelihood function in (2.11) (omit-

ting for simplicity of notation the terms not related to θ) becomes,

Kcn(θ; yc) =
n∑
i=1

I(y0≤wi<yc)

(
exp

(
x
′

iθ
)

log

(
wi
y0

)
− x

′

iθ

)
−

n∑
i=1

I{wi=yc} exp
(
x
′

iθ
)

log

(
y0

yc

)
.

Hence, we see from this approximate log-likelihood function that censoring the data

imposes a penalty term, which the unrestricted estimator does not take into consideration.

To derive the limit distribution of the parameter estimators and corresponding test

statistics we consider, as in Wang and Tsai (2009), the following assumptions:

Assumption A:

A.1: n−1
0

n∑
i=1

ZniZ
′
niI (wi ≥ y0) = Σ

−1/2
y0 Σ̂y0Σ

−1/2
y0

p→ Ip, where Zni := Σ
−1/2
y0 xi, Ip is a

p× p identity matrix and Σ̂y0 := n−1
0

∑
(xix

′
i)I(wi ≥ y0).

A.2: (Slowly varying function) We assume that the remainder term o(y−β(x)) satisfies

supx y
β(x)o(y−β(x))→ 0 as y →∞.

A.3: (Convergence rate) Assume that n0 →∞ and n
n0
E
[
Znic1(xi)

β(xi)
α(xi)+β(xi)

y
−α(xi)−β(xi)
0

]
→ h, for some non-zero constant vector h ∈ Rp.
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As indicated by Wang and Tsai (2009) Assumption A.1 enforces the weak law of large

numbers for the standardized covariate Zni; Assumption A.2 regularizes the extreme

behavior of the slowly varying function L(y; x); and Assumption A.3 implicitly specifies

the optimal convergence rate of y0. A rate faster than that in A.3 mitigates the asymptotic

bias of the parameter estimates but increases its variability. In contrast, a rate slower

than that in Assumption A.3 reduces variability but increases bias; see Wang and Tsai

(2009) for further details.

The following theorem characterizes the limit distribution of the MLE estimators of

θ.

Theorem 2.1 Under Assumptions A.1 - A.3 as n→∞ it follows that

n−1/2Σ−1/2
y0

Λ−1/2(θ̂ − θ0)
d→ N(0, Ip),

where Λ := E(e2
i |xi) and ei =

 exp (x′iθ) log
(
wi
y0

)
− 1, for I(y0≤wi<yc)

− exp (x′iθ) log
(
y0

yc

)
, for I(wi=yc)

.

Corollary 1 Under the same conditions of Theorem 2.1 it follows as n → ∞ that,

Tj = n−1/2
(

Σ
−1/2
y0,jj

)
Λ−1/2θ̂j

d→ N(0, 1), where Σ
−1/2
y0,jj

corresponds to the (j, j)th element of

the Σ−1/2
y0

matrix.

2.2 Computation of partial effects

A further important and not immediately obvious aspect of the methodology just de-

scribed relates to the computation of the partial effects of the covariates used in the con-

ditional tail index regression. In specific, for ease of presentation consider F (y|x;θ) :=

P (Y > y|x;θ) = (y0/y)α(x) , where for the sake of simplicity, but with no loss of gen-

erality, x is a scalar and continuous. Thus, to measure the impact of x on α (x) and

subsequently on F (y|x;θ), consider

δ :=

(
F̄ (y|∆x+ x;θ)− F̄ (y|x;θ)

F̄ (y|x;θ)

)
× 100 (2.13)

8



where y is an extreme value, say the (1 − u) quantile, with u ∈ (0, 1), such that,

y = (1− u)
1

α(x) y0. The expression in (2.13) measures the percentage of variation in the

probability of an extreme value due to a variation of x, ∆x. For example, considering

u = 0.15 and ∆x = 1, if δ = 20% then P(Y > y0) , where y0 is the 0.85 quantile, increases

by 20% as a result of ∆x = 1. Therefore, the variation of x increases the likelihood of

observing extreme values by 20%.5

For computational purposes, assuming that α (x) := exp (φ (x)), and φ(x) is some

function of x, we show in the appendix that δ (u) =
[
(1− u)φ

′(x)∆x − 1
]
× 100. For

instance, in the multivariate case, φ (x) := x′β, where x is a p × 1 vector of covariates

and α (x) = exp (x′β), the impact of xj on F (y|x;θ) is,

δj (u) =
[
(1− u)βj∆x − 1

]
× 100. (2.14)

A negative coefficient, βj < 0, which implies δj > 0, increases the likelihood of having

more extreme values. This is also obvious from the impact on α(x) since α(x) decreases

and the right tail becomes heavier. Similarly, βj > 0 implies δj < 0, and the likelihood

of having more extreme values decreases.6

A further interesting way to discuss partial effects is to consider the right-tail Gini

coefficient. Considering for the sake of simplicity that x is a scalar, the right tail Gini

coefficient is,

G (x) = (2α (x)− 1)−1, (2.15)

where α (x) = exp(xβ). Thus, to measure the impact of a change in x on α (x) and

consequently on G (x) we take the derivative of G (x) with respect to x which, after some

simplifications (noting that α (x) = [1 +G (x)] /2G (x)), is G′ (x) = −G (x) (1 +G (x)) β.

The sign of β indicates whether an increase of x leads to an increase or decrease in G (x) .

For example, β < 0 or β > 0 lead to an increase or a decrease of inequality in the tail,

respectively, since G′ (x) < 0 for the former or G′ (x) > 0 for the latter. The extend of this

increase or decrease depends on the magnitude of G (x). From the previous expression,

we establish that (∆G (x) /G (x))100% ' −((1 +G (x)) β∆x)100%, which represents the
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percentage of change in G (x), when x changes by ∆x (ceteris paribus). Interestingly,

this result shows that the higher the inequality, the greater the impact of a change in

x. Since these effects depend on x (or on xi ∈ RK in the general case) we compute the

partial effects of xj as the average of the partial effects at every observation (average

partial effect). For example, to estimate (∆G (x) /G (x)) 100% we consider

(
− 1

n

n∑
i=1

(
1 + Ĝ (xi)

)
β̂j

)
100%, where Ĝ (xi) = (2α̂ (xi)− 1)−1 . (2.16)

If the covariate under analysis is a dummy variable, say d, then the partial effect of group

d = 1 over d = 0 is obtained as,

1

n

n∑
i=1

(
Ĝ (xi, di = 1)− Ĝ (xi, di = 0)

)
. (2.17)

3 Monte Carlo simulation

In this section we evaluate the finite sample properties of the procedures and their per-

formance in imputing mean wages above the top-code.

3.1 Finite sample performance of the tail index estimators

To evaluate the finite sample performance of the conditional tail index estimator intro-

duced in the previous section, we conduct an in-depth Monte Carlo analysis using several

data generation processes (DGPs). Specifically, data is generated from the general frame-

work,

yi ∼ D (α (xi)) (3.1)

α (xi) = exp (β1 + β2xi) , xi ∼ U (0, 1) (3.2)

where β1 = β2 = 1 and the k100%, k ∈ (0, 1), largest observations of the empirical

distribution D(.) closely follow a Pareto distribution. We consider the case of right

censoring given by the censoring threshold yc so that the sequence {yi} is not completely
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observed. Instead, we observe wi = min (yi, yc).

To be more precise about the framework used to generate the data, we consider that

D(.) in (3.1) is either a Pareto or a Burr distribution7 and generate samples of size

n ∈ {2500, 5000, 10000, 50000}. The samples are censored using yc = {q̂y0.95, q̂
y
0.99} which

corresponds to the 95th and 99th empirical quantile of y. For estimation of the tail

index we use the bknc largest observations, with k = 0.2 when the Pareto distribution

is considered and k = {0.05, 0.10, 0.20} for the Burr. Note that in the case of samples

generated from a Pareto distribution we could have set k = 1, however, in order to mimic

the conditions typically found in empirical analysis a lower value was considered.

Based on the specifications described above 10,000 sequences of {yi} and {wi} of size

n are generated and in each iteration three approaches are used to compute the tail index:

i) the tail index regression of Wang and Tsai (2009) applied to the sequence of {yi}.

We define the resulting estimator as α̂. This method should provide the best results

since it is applied to the original uncensored data.

ii) the censored tail index regression introduced in this paper applied to the sequence

{wi}. The resulting estimator is denoted as α̂c.

iii) the tail index regression of Wang and Tsai (2009) applied to the censored data

{wi}. The resulting tail index is defined as α̃. This approach will be useful in

providing information on the impact of neglecting the censoring on the tail index

estimates.

Table S1 in the Supplementary Appendix provides the bias and root mean square

errors (RMSEs) associated with the estimates of β1 and β2 in (3.2) computed based on

the three approaches described in i), ii) and iii). The first observation we can make is that,

in general, the largest bias and RMSEs (regardless of considering β1 or β2) result from

the use of the approach described in iii), i.e., when censoring is ignored. Additionally,

it is interesting to observe that the difference in the bias and RMSEs obtained from the

approaches described in i) and ii) are relatively small, which suggest that the estimation
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approach which accounts for the censoring produces results close to those obtained when

the sample without censoring is used for estimation as is the case in i).

This Table also shows that the bias remains relatively stable and does not decrease

as n increases. There are however different patterns according to the values of k and

yc. For instance, in Cases 3 to 6, which use the Burr distribution as DGP, a small value

of k tends to improve the estimation results given that the tail of the Burr distribution

approximates the tail of a Pareto distribution, this is also illustrated in Figure 1.

Figure 1 plots the ratios of the RMSEs of the α estimates obtained under i), ii) and

iii), i.e.,
R(α̂c, α̂) =

RMSE (α̂c (xi))

RMSE (α̂ (xi))
, R(α̃, α̂) =

RMSE (α̃ (xi))

RMSE (α̂ (xi))
.

Since α̂, obtained as described in i), is in this Monte Carlo exercise the best estimator

by design, R(α̂cα̂) and R(α̃α̂) are larger than 1 across the different values of n. However,

R(α̂c, α̂) is just slightly above 1, which means that the censored estimator, α̂c, performs

very well and mimics closely the behavior of the best estimator, α̂, although the former is

based on the censored data. The relative performance of α̃ worsens as n increases (Figure

1). This occurs because α̃ is inconsistent since it neglects the right-censoring of the data.

So, the bias remains relatively unchanged as n increases. The asymptotic variance of α̃

may decrease, but the RMSE decreases only slightly since the bias does not converge to

zero. On the contrary, α̂ and α̂c are consistent and, therefore, their statistical properties

improve as n increases. This is reflected in a sharp decrease of the RMSE statistics (see

Table S1 in the Supplementary Appendix). As a consequence the ratio R (α̃, α̂) exhibits

an increasing trend as n increases.

The censoring threshold yc also impacts the estimation results. The lower its value,

the greater the impact of censoring on estimation will be, and R(α̃, α̂) tends to be larger

(see, for example, the results for Case 4 in Table S1 in the Supplementary Appendix and

Figure 1).
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Figure 1: Ratios of the tail index estimates’ RMSEs

Note: R(α̂c, α̂) = RMSE (α̂c)/RMSE (α̂) and R(α̃, α̂) = RMSE (α̃)/RMSE (α̂). R(α̂c, α̂) com-
pares the censored estimator with the best estimator α̂ in the Monte Carlo design, while R(α̃, α̂)
compares the estimator that ignores the censoring with the best estimator α̂. The results reported
are based on the Pareto and the Burr distributions as DGPs.
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3.2 Imputing mean wages

To provide further insight on the usefulness of the procedure introduced in this paper

we compare next the performance of the different methods for imputing mean wages.

Specifically, we compare,

i) the Pareto-imputed mean wage above the top-code yc,

τ̂1 (yc) =
α̂1

α̂1 − 1
yc, (3.3)

where α̂1 is the tail index estimate obtained assuming an uncensored Pareto distri-

bution as in Section 2 (see e.g. Hill, 1975 and Nicolau and Rodrigues, 2019 for tail

index estimators);

ii) the imputed mean wage based on the approach suggested by Armour et al. (2016),

τ̂2 (yc) =
α̂cHill

α̂cHill − 1
yc, (3.4)

where α̂cHill is a consistent estimate of the tail index parameter computed as in

(2.5). Note that τ2 (yc) := E (yi|yi > yc) ;

iii) two approaches to impute wages based on the method introduced in this paper:

a) the mean predictor,

τ̂3 (xi, yc) =
α̂ (xi)

α̂ (xi)− 1
yc, (3.5)

b) the median predictor,

τ̂4 (xi, yc) = 21/α̂(xi)yc, (3.6)

where α̂ (xi) = exp
(
x′iθ̂
)
.

Note that τ3 (xi, yc) := E (yi|xi, yi > yc) and that τ̂4 (xi, yc) is particularly useful

when α̂ (xi) ≤ 1.

The main difference between τ̂k (xi, yc), k = 3, 4, and τ̂1 (yc) and τ̂2 (yc) is that in the

former the particular characteristics of the individuals whose wage is above the threshold
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are explicitly taken into account through xi. Interestingly, τ̂3 (xi, yc) corresponds to

the optimal mean square predictor since it is the conditional expectation of yi given

xi and yi > yc. This follows from the well known result E (yi − E (yi|xi, yi > yc))
2 ≤

E (yi − g (.))2, where g (.) is any other predictor of yi given yi > yc. It turns out that

τ2 (yc) is optimal only if yi is mean-independent of xi, in which case both τ2 (yc) and

τ3 (xi, yc) coincide.

Thus, having established the superiority of τ3 (xi, yc), it remains to be shown how

much improvement is obtained from τ3 (xi, yc) when compared to τ1 (yc) and τ2 (yc) in

computing the mean wage above yc. The following Monte Carlo study looks to answer

this question. Our experiment is based on the following steps:

1. Simulate yi, i = 1, 2, ..., n, with n ∈ {250, 500, 1000, 2000, 5000, 20000}, according

to a conditional Pareto distribution P (α (xi)) where α (xi) = exp (1 + 2xi) and

xi ∼ U (0, 1) . For each i = 1, 2, ..., n simulate α (xi) and then the corresponding yi;

2. All observations above quantile 0.95, which corresponds to yc, are censored, but

their original values are saved for comparison purposes (these values are used

to assess the estimators’ predictive precision). The data used for estimation are

{wi, i = 1, 2, ..., n} , where wi = min (yi, yc) and from which we compute τ̂1 (yc) ,

τ̂2 (yc), τ̂3 (xi, yc) and τ̂4 (xi, yc) .

3. Predict the imputed mean value above the threshold yc based on τ̂1 (yc) , τ̂2 (yc) ,

τ̂3 (xi, yc) and τ̂4 (xi, yc).

4. Steps 1 to 3 are repeated 2000 times and the mean square errors (MSE) of the

estimators computed.

Other combinations of α (xi) produce essentially the same results as long as α (xi) ≥ 1,

and for this reason only results for α (xi) = exp (1 + 2xi) (note that E (α (xi)) = 3.7) are

presented. Note that, α (xi) should be set so that α (xi) > 1, otherwise the conditional

and marginal expected values do not exist, and consequently τ̂1 (yc) , τ̂2 (yc) and τ̂3 (xi, yc)
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are not well defined. The case 0 < α (xi) < 1 can be dealt with using τ̂4 (xi, yc), as

indicated above. Figure 2 illustrates our results.

1.
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1
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M13 M23 M43

Figure 2: MSE ratios computed for sample sizes n = (250, 500, 1000, 2000, 5000, 10000)

Note: The lines represent the MSE ratios, M13 := MSE(τ̂1(yc))
MSE(τ̂3(xi,yc))

, M23 := MSE(τ̂2(yc))
MSE(τ̂3(xi,yc))

and

M43 := MSE(τ̂4(xi,yc))
MSE(τ̂3(xi,yc))

.

Figure 2 shows that τ̂3(xi, yc) and τ̂4(xi, yc) produce the best results. M13 and M23

are larger than one and larger than M43, and the gains increase steadily as the sample

size grows. Moreover, τ̂2(yc) (Armour et al., 2016) is better than τ̂1(yc) and τ̂3(xi, yc) is

slightly better than τ̂4(xi, yc).

3.3 Robustness testing using non-censored data

To evaluate the performance of the conditional tail index estimator in a real situation

we use the Portuguese labor force survey. As wages in this survey are not censored,

we can simulate different top-codes and thus accurately measure the potential gains of

our methodology (as an ordinary out-of-sample forecast exercise). We censor the sample

considering yc ∈ {q̂y0.97, q̂
y
0.975, ..., q̂

y
0.99} , where the generic element q̂yp corresponds to the

pth empirical quantile of wages. The order of these quantiles is approximately the same

as the top-codes in the CPS database since 1992 (they have been decreasing from 0.99

in 1992 to 0.95 in 2017).
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To estimate the conditional tail index, we use the bκnc largest observations, where

κ ∈ {0.1, 0.15, 0.2, 0.25} . We start by computing α̂ (xi) from the censored tail index

regression introduced in this paper, and use τ̂4 (xi, yc) to predict the censored wage values.

At this point we should add two remarks. The first is related to the choice of the

covariates xi. We have more than 30 variables to choose from in our data set, such as, age,

gender, tenure, education, job, region and industry. However, instead of searching for the

covariates with greatest explanatory power in each year, for simplicity of analysis, we use

the same basic covariates throughout all combinations of year, κ and yc. Specifically, xi =

[genderi, agei, educationi, tenurei]. Although we do not fully demonstrate the potential

of our estimator over the competing estimators (as likely we do not use all relevant

explanatory variables), the results still clearly show that the tail index regression is

preferable. The second remark is related to the use of the conditional median, τ̂4 (xi, yc).

Since, some estimates of α̂ (xi) , i = 1, 2, ..., n, are close to 1, and given that for these cases,

the conditional mean τ̂3 (xi, yc) may not be defined, we opt for the use of τ̂4 (xi, yc), which,

in most cases, performs very well (see results in Section 3.2). For comparison purposes

we also use τ̂1(yc) in (3.3) and τ̂2(yc) in (3.4) to predict the censored wages.

The forecast performance is assessed with the RMSE statistics, RMSE (j) =
√

1
s

∑s
i=1 [τ̂j (yc)− yi]2, j =

1, 2 and RMSE (4) =
√

1
s

∑s
i=1 [τ̂4 (xi, yc)− yi]2, where s is the number of predicted

wages above the top-code; results are presented in Figure 3. τ̂2(yc) generally performs

better than τ̂1(yc) in 2009 and 2019. This is especially clear when the top-code is defined

for high or very high wages. In these cases, the number of wages above the top-code

is relatively small, but their magnitude is large (forecast errors are particularly high in

these cases).

τ̂4 (xi, yc) outperforms the other estimators, especially when the top-code is defined

for high or very high wages. Adding more information about the individuals whose

salary is coded significantly improves the quality of the forecast, compared to other

non-conditional methods, especially when the top-code is relatively high. We have also

observed that by adding more information related to profession, industry and region,

further improves the quality of the forecasts (results are available upon request).
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Figure 3: RMSE of imputed wages based on τ̂1(yc), τ̂2(yc) and τ̂4(xi, yc), computed from
non-censored wage data from the Portuguese Labor force survey.
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4 Empirical analysis of the CPS data

In this section, we use the censored publicly available CPS data to evaluate how the right

tail inequality of the US weekly wage distribution has changed over time and how these

changes may differ across the characteristics of individuals, occupations and industries.

In specific, we show that the new tail index estimator introduced provides very rich and

detailed insights about the right tail distribution of weekly wages and inequality. We also

assess the sensitivity of the adjustment of the top-coded weekly wage to changes over

time and across the characteristics of individuals.

4.1 Data

For the empirical analysis the March CPS files from IPUMS for the period between 1992

and 2017 are used. The weekly wage measure is top-coded at $1923 between 1989 and

1997, and at $2884 between 1998 and 2017. The sample is restricted to workers between

16 and 64 year-old on full-time full year basis employed during the CPS sample survey

reference week (35+ hours per week, 40+ weeks per year). Following Autor and Dorn

(2013) the real weekly wage data are weighted by the appropriate CPS weight to provide

a measure of the full distribution of the weekly wages paid.8,9

Occupations are defined as job task requirements of the US Department of Labor

Dictionary of Occupational Titles (DOT, 1977) and Census occupation classifications for

routine, abstract and manual task classifications (Autor and Dorn, 2013).

In Figure 4 we present the distribution of the weekly wages for 1992, 1997, 1998, 2007,

2010 and 2017. From 1992 to 2017 the concentration of wages has become more skewed

to the right. Between 1992 and 1997 the mass points around the top-code increased and

with the relaxing of the top-code in 1998 real values beyond that top-code are potentially

observable. The same phenomenon also occurs in the most recent period. In 2017 the

mass point around the current top-code used in the CPS data is much larger.
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Figure 4: Annual unconditional histograms of the weekly wage.

The means and proportions of workers according to their characteristics, occupations

and industry, for observations above the 80th percentile, are presented in Table 1. In

contrast to 1992, in 2017 the population in the right tail is older (41.03 years on average in

1992 and 43.83 years in 2017), the percentage of women is greater (25% in 1992 increased

to 33% in 2017), and is about one year more educated (15.20 years of education in 1992

and 16.06 years in 2017).
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Table 1: Characteristics of individuals in the right tail (observations above
percentile 80) of the wage distribution: means and proportions

Year
Mean 1992 2017
Age 41.03 43.83
Female 0.25 0.33
Education 15.20 16.06
Race

White 0.90 0.83
Black 0.05 0.05
Other race 0.05 0.12

Marital Status
Married 0.83 0.81
Married no spouse 0.01 0.02
Separated 0.02 0.01
Divorced 0.09 0.09
Widowed 0.01 0.01
Single 0.14 0.16

Occupations
Managers 0.72 0.81
Administrative 0.10 0.08
Low skill 0.01 0.01
Craft 0.04 0.01
Operators 0.02 0.01
Transportation 0.11 0.08

Industrya

Agriculture 0.02 0.03
Construction 0.05 0.05
Manufacturing 0.22 0.14
Transports 0.11 0.08
Trade 0.11 0.09
Finance 0.09 0.10
Repair 0.04 0.10
Personal 0.28 0.32
Public 0.08 0.09

Observations 112,960 64,002
Observations above Percentile 80 22,485 12,791
Observations censored 1,110 3,197

Notes: This table reports the means for the variables used in the analysis for both 1992 and 2017.
These statistics were calculated for the right tail (for observations above percentile 80). All variables are
reported on a scale between 0 and 1 with the exception of age and education which are reported in years.
The occupation dummies using 6 aggregate occupation groups are based on the International Standard
Classification of occupations (ISCO) as used in Autor and Dorn (2013). The category Managers includes
management, professional, technical, financial sales and public security occupations. The category Ad-
ministrative consists of routine non cognitive occupations and includes administrative support and retail
sales occupations. The category Low-skill includes low-skill services, such as cleaning, guard, food, health,
janitors, beauty, recreation, working with children and other personal low-skill services. The category
Craft aggregates precision production and craft occupations. The category Operators refers to machine
operators, assemblers and inspectors. Finally, the category Transportation includes transportation, con-
struction, mechanics, mining and agricultural occupations. In Table S2 of the Supplementary Appendix
we provide a detailed description of the industry classification.
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The results in Table 1 show that the 7% decrease of white individuals in the right tail

in 2017, when compared to 1992, seems to be compensated by a 7% increase of individuals

from other races (non-white nor non-black). There is a 3% change in the composition of

the sample, where the reduction of married individuals is compensated by an increase in

individuals that are single. However, married still represents the marital status of the

majority of individuals in the right tail (83% in 1992 and 81% in 2017).

A further observation that can be made from the results in Table 1 is job polarization.

A significant growth in employment in the right tail for non-routine cognitive tasks is ob-

served in detriment of routine occupations (see also Autor, 2019 and Goos and Manning,

2007). The decrease in the share of employment is even more significant for non-routine

manual tasks (individuals in occupations associated with transportation, construction

and mechanics (Transportation) decreased their share of employment in the right tail,

from 11% in 1992 to 8% in 2017). The percentage of individuals in occupation Managers,

which is the occupation with the largest proportion of individuals, increased from 72%

in 1992 to 81% in 2017.

In 1992, the proportion of individuals, working in manufacturing (transports) was

22% (12%) and this proportion decreased to 14% (8%). This decrease in the share of

employment was compensated by an increase in the repair (+6% between 1992 and 2017)

and finance, personal and public industries (+6% between 1992 and 2017). Note that

the industries with the largest number of individuals in the right tail in (1992, 2017) are

Personal (28%, 32%), Manufacturing (22%, 14%), Finance (9%, 10%), Repair (4%, 10%)

and Public (8%, 9%). However, Manufacturing (22%, 14%), Transport (11%, 8%) and

Trade (11%, 9%) see their weight decrease in 2017.

To illustrate the evolution of the proportions of individuals in the different percentiles

of the overall weekly wage distribution, Figure 5 plots the proportions in percentiles 0.05

to 0.95 considering different attributes, occupations and industries (in the Supplementary

Appendix we present additional plots for all other cases analyzed in Table 1). From this

Figure we distinguish two patterns from 1992 to 2017: Other Race, Female, Single and

Personal increase in proportion from 1992 to 2017 across all percentiles, whereas Ad-
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ministration and Trade decrease across all percentiles. The number of Black individuals

seems to decrease up to around percentile 80 and increases thereafter.

Moreover, this Figure also shows that individuals that are Black, Female or Single, as

well as individuals working in Administration and Trade display a downward trend over

the percentiles, whereas the number of individuals of Other Races and individuals working

in the Personal industry display a different pattern. The former is relatively constant

across all percentiles in 1992, but increases for percentiles larger than the median in 2017,

and the latter is relatively constant across all percentiles in 1992 and 2017. Interestingly,

Finance shows a different pattern when compared to all other covariates. In specific, the

largest proportions are observed at the higher percentiles (i.e. from the median onward).

This pattern is very similar across all years analyzed.
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Figure 5: Proportion of individuals in different weekly wage percentiles

Note: The graphs represent the proportion of individuals in different categories for percentiles

0.05, 0.1, 0.15,..., 0.95, computed for the years of 1992, 1997, 2002, 2007, 2012 and 2017.
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4.2 Tail index and Gini coefficient estimation results

Figure 6 plots the unconditional right-tail index estimates and corresponding Gini coef-

ficients. The tail index is computed as an average of the conditional tail index estimates

obtained from uncensored and censored tail index regressions, i.e.,

α̂t =
1

n

n∑
i=1

α̂ (xt,i) , t = 1992, ..., 2017 (4.1)

where α̂ (xt,i) = exp
(
x′t,iθ̂t

)
. The right tail Gini coefficient estimates are computed as

indicated in (2.15).

A - Tail index estimates B - Right tail Gini coefficient estimates
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Figure 6: Uncensored and censored right tail index estimates (left-plot) and correspond-
ing right tail Gini coefficient estimates (right-plot) from 1992 to 2017

This figure shows, on the one hand, that the uncensored approach misrepresents the

true unconditional tail index, as it ignores the top-coded wages, leading to overestimation

of the true values of αt, which corresponds to an under estimation of inequality as can be

seen from the Gini coefficient plot.10 On the other hand, it also shows that the censored

estimates of α̂t have decreased over the last 20 years, which corresponds to an increase

of the Gini coefficient value. In other words, this Figure shows that the probability of

observing an extreme value today is higher compared to the 90s or even in the more recent

past. This finding, which is also illustrated through the Gini coefficient, supports the idea
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that upper-tail inequality has increased since the 90s and has become more pronounced

over the last 20 years. Autor et al. (2008) observed that the 90th percentile wage rose by

more than 55% relative to the 10th percentile between 1963 and 2005, which represents

a significant increase. However, our approach suggests that the increase in inequality

found by Autor et al. (2008) although significant may correspond to a lower bound of

the true increase in inequality.

Figure 6 also highlights the link between the tail index and the Gini coefficient. The

Gini coefficient plot illustrates the increase in inequality detected by the censored tail

index estimator. The uncensored estimates seem to suggest a stabilization of inequality

in the right tail starting in 2005, and the Gini coefficient estimates suggest that inequality

in recent years is relatively low.

Complementary to Figure 6, Table 2 presents the censored and uncensored tail index

regression results for 1992 and 2017. As discussed in Section 2.2, a negative regression

coefficient corresponds to a decrease in the right tail index (ceteris paribus) and hence a

larger number of extreme values may result as a consequence of changes in the specific

variable associated to such a coefficient. Similarly, a positive regression coefficient leads

to an increase in the tail index which suggests that a smaller number of extreme values

may occur.

Table 2 shows that, in general, estimates based on the method that ignores censored

data underestimate the true effects of the variables (which is in line with Figure 6). This

is especially clear in the estimates for 2017 (e.g. female and finance). However, the

direction of the impact of the covariates is consistent with the results obtained from the

censored tail index regression.

Comparing the censored estimation results for 1992 and 2017, we generally observed

a decrease in the estimates for 2017 (e.g. Transportation and Craft and Precision).

In some cases, although in general not statistically significant (see e.g. other races,

married no spouse, widowed, Transports and Trade), positive estimates in 1992 become

negative in 2017 and vice versa. Considering only the statistically significant covariates

it can be observed that Female, Black, Divorced, Single, Low Skill, Craft, Operators,
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Transportation and Public have a positive impact leading to a reduction in the probability

of individuals with these characteristics being in the right tail (i.e. a decrease in the right

tail Gini coefficient), whereas Age, Education, Construction, Finance and Repair have

a negative impact, originating an increase of the probability of individuals with these

characteristics being in the right tail (i.e. an increase in the right tail Gini coefficient).

It is clear from Table 2 that industries such as Finance, Construction and Repair

are the ones with more extreme wages. The probability of observing an extreme value

increased in 2017 by 4.94% for an individual working in the Finance industry. The

probability of an individual working in the public industry having a wage higher than

the 96th percentile decreased in 2017 by 2.14%. The biggest increase from 1992 to 2017

was observed for individuals that are black, married without a spouse, or widowed. Older

and more educated workers continued to have a significant probability of observing an

extreme wage but there was no relevant change between 1992 and 2017. Women observed

a positive increase between 1992 and 2017, but the impact is still towards an increase in

the tail index (although smaller in absolute value than in 1992), i.e., a decrease in the

probability of being in the right tail. In specific, women in 2017 have a partial effect

on the tail index of -1.26% which corresponds to a decrease in the probability of a wage

being in the right tail.

The impact in terms of occupation is very interesting. For instance, in contrast to an

individual working in a non-routine cognitive occupation (managers) all other occupations

display a positive contribution to observe an extreme value (although smaller in 2017).

However, the picture is very different across occupations. Individuals working in routine

occupations such as administrative workers reduced their presence in the right tail from

10% to 8% (see Table 1) but the probability to observe an extreme value for these

occupations increased in 2017 (-2.14% in 1992 and changed to 2.00% in 2017). The

contribution to the probability of observing an extreme value for an individual working

as an operator was significantly higher in 1992 than in 2017 (the partial effect was -8.04%

in 1992 and it reduced to -1.41% in 2017).

The right tail Gini coefficient’s partial effects confirm the general picture already
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presented. First, the groups where the upper-tail inequality (within groups) increased

the most, from 1992 to 2017, were Married no spouse, Repair, Widowed and Finance;

second, the groups where the upper-tail inequality decreased the most from 1992 to 2017

were Agriculture, Public, Low Skill and Transportation. Third, the percentage change

in the right tail Gini coefficient when education increases by one year (ceteris paribus)

was 10.4% in 1992 and 13% in 2017.
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Table 2: Uncensored and censored tail index regression results
partial effects gini partial effects

Uncensored Censored Censored Censored
1992 2017 1992 2017 1992 2017 1992 2017
(1) (2) (3) (4) (5) (6) (7) (8)

Constant 2.597∗∗∗ 2.321∗∗∗ 2.723∗∗∗ 2.812∗∗∗

(0.066 ) (0.076 ) (0.075 ) (0.121 )
Age† −0.011∗∗∗ −0.007∗∗∗ −0.013∗∗∗ −0.012∗∗∗ 0.211 0.195 1.55% 1.53%

(0.001 ) (0.001 ) (0.001 ) (0.001 )
Female 0.272∗∗∗ 0.134∗∗∗ 0.309∗∗∗ 0.229∗∗∗ −5.714 −1.262 −0.043 −0.047

(0.014 ) (0.013 ) (0.016 ) (0.022 )
Education† −0.076∗∗∗ −0.061∗∗∗ −0.085∗∗∗ −0.100∗∗∗ 1.391 1.638 10.36% 12.97%

(0.004 ) (0.004 ) (0.004 ) (0.006 )
Race

Black 0.085∗∗∗ 0.004 0.098∗∗∗ 0.010∗∗∗ −1.659 1.945 −0.044 −0.031
(0.029 ) (0.034 ) (0.031 ) (0.054 )

Other race −0.023∗∗∗ 0.004 −0.031 0.015 0.497 1.888 0.015 0.014
(0.025 ) (0.016 ) (0.030 ) (0.033 )

Marital Status
Married no spouse 0.075 −0.036 0.095 −0.1 −1.607 3.468 −0.018 0.067

(0.063 ) (0.046 ) (0.070 ) (0.091 )
Separated 0.035 0.051 0.044 0.093 −0.728 0.68 −0.025 −0.038

(0.042 ) (0.059 ) (0.047 ) (0.096 )
Divorced 0.018 0.066∗∗∗ 0.025 0.119∗∗∗ −0.411 0.26 −0.019 −0.044

(0.019 ) (0.022 ) (0.022 ) (0.036 )
Widowed 0.003 −0.070 0.022 −0.083 −0.361 3.248 −0.010 0.031

(0.083 ) (0.052 ) (0.077 ) (0.099 )
Single 0.009 0.066∗∗∗ 0.015 0.114∗∗∗ −0.245 0.4 −0.023 −0.061

(0.018 ) (0.018 ) (0.021 ) (0.029 )
Occupations

Administrative 0.113∗∗∗ 0.021 0.125∗∗∗ 0.006 −2.141 2.001 −0.023 −0.007
(0.020 ) (0.022 ) (0.023 ) (0.047 )

Low Skill 0.098 0.093 0.111∗ 0.153∗ −1.89 −0.276 −0.044 −0.083
(0.064 ) (0.060 ) (0.067 ) (0.091 )

Craft 0.289∗∗∗ 0.069 0.324∗∗∗ 0.154∗ −6.029 −0.353 −0.049 −0.064
(0.033 ) (0.056 ) (0.035 ) (0.086 )

Operators 0.394∗∗∗ 0.148∗∗∗ 0.416∗∗∗ 0.217∗∗∗ −8.042 −1.412 −0.075 −0.100
(0.050 ) (0.062 ) (0.053 ) (0.09)

Transportation 0.366∗∗∗ 0.184∗∗∗ 0.400∗∗∗ 0.264∗∗∗ −7.682 −2.43 −0.084 −0.122
(0.023 ) (0.030 ) (0.025 ) (0.045 )

Industry
Construction −0.202∗∗∗ −0.117∗∗∗ −0.234∗∗∗ −0.173∗∗∗ 3.449 4.417 −0.051 −0.086

(0.039 ) (0.042 ) (0.047 ) (0.071 )
Manufacturing 0.003 −0.011 0.004 0.026 −0.065 1.677 0.007 0.008

(0.028 ) (0.029 ) (0.031 ) (0.052 )
Transports 0.050∗∗∗ −0.016 0.051∗∗ −0.001 −0.847 2.106 −0.039 −0.043

(0.021 ) (0.027 ) (0.024 ) (0.04)
Trade 0.002 −0.052∗∗ 0.001 −0.052 −0.016 2.842 0.001 0.008

(0.020 ) (0.024 ) (0.025 ) (0.043 )
Finance −0.126∗∗∗ −0.099∗∗∗ −0.184∗∗∗ −0.219∗∗∗ 2.769 4.943 0.090 0.120

(0.020 ) (0.022 ) (0.026 ) (0.043 )
Repair −0.059∗∗∗ −0.098∗∗∗ −0.071∗∗ −0.142∗∗∗ 1.12 3.921 0.024 0.065

(0.028 ) (0.022 ) (0.033 ) (0.0419
Personal 0.125∗∗∗ 0.048∗∗∗ 0.127∗∗∗ 0.060∗ −2.177 1.248 0.015 0.012

(0.016 ) (0.018 ) (0.019 ) (0.033 )
Public 0.238∗∗∗ 0.120∗∗∗ 0.272∗∗∗ 0.265∗∗∗ −4.953 −2.142 −0.028 −0.068

(0.022 ) (0.024 ) (0.025 ) (0.04)

Note: This table reports the tail index regression results for 1992 and 2017. The first two columns
present the uncensored results while the last two columns contain the censored results. The omitted
categories are white, married, working as manager and the agriculture industry. Standard errors in
parentheses and *, **, *** indicate significance at the 10%, 5% and 1% significance levels.
† It is important to note that the partial effects of the continuous and dummy variables is computed as
in (2.16) and (2.17), respectively.
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4.3 Imputed mean wages

4.3.1 Imputing wages above the top-code

A further important contribution of the approach introduced in this paper is its use for the

imputation of mean weekly wages above the top-code as described in Section 3.2. Some

authors use values to adjust the top-coded weekly wage which are time-varying and differ

by group. For instance, Macpherson and Hirsch (1995) provide separate Pareto estimates

according to gender and by year from 1973 to 2014 using public CPS-Merged Outgoing

Rotation Groups (CPS-MORG). These authors indicate that these values increase over

time and are higher for men than for women (e.g. for 2014 the adjustment coefficient is

2.06 for men and 1.81 for women). In contrast, our analysis is based on the March CPS

(outgoing rotation groups 4 and 8), and on the weekly wages instead of annual earnings,

however, we also find evidence in favor of changing adjustment parameters.

This renders support to the observation that imputed wages above the top-code, based

on a fixed value may lead to misstatement of results, given that this approach considers

wages above the top-code to be independent of time, age, gender, race and other personal

characteristics; as well as industry and occupation.

To impute wages above the top-code, we consider the estimate of E (yi| yi > yc; xi)

given by τ̂3 (xi, yc) in (3.5). However, for some individuals in the CPS database, especially

those in the highest wage groups, α̂ (xi) ≤ 1, which implies that E (yi| yi > yc; xi) does

not exist and, τ̂3 (xi, yc) is inadequate. For these cases, we use the conditional median of

yi given yi > yc and xi, i.e., the τ̂4 (xi, yc) statistic in (3.6). In specific, to accommodate

all situations (i.e. low and high values of α̂ (xi)) we use τ̂4 (xi, yc) when 0 < α̂ (xi) ≤ c

and τ̂3 (xi, yc) for α̂ (xi) > c. In the empirical application we set c = 1.5, since using c = 1

may lead to explosive estimates as α̂(xi)
α̂(xi)−1

→ ∞ as α̂ (xi) → 1+.11 In the application to

the CPS data we observed that for the overwhelming majority of estimates α̂ (xi) > 1.5,

and therefore τ̂3 (xi, yc) is mostly used. For simplicity of presentation, in the discussion

below we will just refer to τ̂3 (xi, yc) although imputed wages were computed as described

above.
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Figure 7 illustrates the estimates of the imputed wages above the top-code computed

from the different approaches discussed in (3.3), (3.4) and (3.5). The τ̂2(yc) and τ̂3 (xi, yc)

estimates are similar. This result is expected given that for the overall analysis τ̂3 (xi, yc)

is based on the values of α̂t computed as in (4.1), which provides an estimate of the

unconditional tail index after considering the characteristics of all individuals in the

sample. However, in the case where estimates for a particular group, occupation or

industry are considered, the τ̂3 (xi, yc) estimates will certainly differ from τ̂2(yc) (see next

section).

0
10

00
20

00
30

00
40

00
50

00
60

00

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

yc τ1(yc)
τ2(yc) τ3(xi, yc)

Figure 7: Prediction of top-coded weekly wages

When the proportion of wages above the top-code is relatively small (as for example,

from 1992 to 2005), the difference between τ̂1 (yc) , τ̂2 (yc) and τ̂3 (xi, yc) is relatively

small; however, as more wages are located in the top-coded category (as for example,

in the years following 2007), the effect of censored data becomes stronger and the bias

(underestimation) produced by the Hill estimator more pronounced (τ̂1 (yc)).

Figure 8 illustrates the time varying nature of the factor necessary to compute the

imputed mean wages. Recall that to overcome the top-coding bias, in the literature, a

constant value is frequently used to adjust the top-coded wages. For instance, Autor
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and Dorn (2013) consider an adjustment factor of 1.5 on a sample between 1950-2005;

Acemoglu and Autor (2011), 1.5 on a sample between 1973-2009; Autor et al. (2008) 1.5

on a sample from 1963 to 2005; Katz and Murphy (1992) 1.45 on a sample between 1963

and 1987; Lemieux (2006) 1.4 on a sample from 1973 to 2003; and Beaudry et al. (2016)

1.4 on a sample from 1979 to 2011. Figure 8 shows that using a fixed value may have

been adequate for pre-1992 data, but that the adjustment factor has increased over time

reaching an overall value around 1.75 in 2017.
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Figure 8: Top-coded weekly wage adjustment factors between 1992 and 2017 (left-plot)
and corresponding Gini coefficient estimates for the overall weekly wage distribution
(right-plot) from 1992 to 2017

Figure 8 also plots the Gini coefficient for the overall distribution which is computed

based on a sample in which the top-coded values have been imputed using the approach

developed in this paper, in order to illustrate the importance of the adjustment factors

proposed and the use of the censored estimates. From this Figure we observe that the

1.5 adjustment factor reports a Gini coefficient which is aligned with the one computed

based on our procedure from 1992 to 2000, but under evaluates inequality from 2000

onward. We observe that this undervaluation is around 5% in 2017.
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4.3.2 Imputed wages above the top-code by gender and industry

Figure 9 illustrates the difference of the imputed mean values for individuals in the

Finance, Repair, Personal and Public industries, as well as for women and women working

in those industries. The purpose of these graphs is to further highlight the importance of

allowing for different scaling factors depending on individuals characteristics and industry,

but other graphs considering other characteristics can be plotted using our approach.

The first noticeable result is that the imputed wage of individuals decreases when we

compare the wages for individuals in the Finance, Repair, Personal and Public industries.

Finance displays the largest and Public the lowest imputed wages of the four industries.

With the exception of the Public industry, women’s imputed wages are lower for the other

three industries and this observation also holds when we condition women’s imputed

wages on the industry they are in. A further interesting result is that the imputed mean

wages display an increasing trend over time in all industries, for women and for women

in those industries, which is an indication that the adjustment factors used to compute

the imputed wages also changes over time.
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Figure 9: Imputed mean wages between 1992 and 2017 by industry

This is further highlighted in Figure 10, where the graphs show the top-coded wage

adjustment factors between 1992 and 2017, for different combinations of women working

in different industries. Women’s top-coded adjustment factor is always smaller than the

top-coded adjustment factor that would be applied to males in any industry with the

exception of public. This implies that the public industry is the less heavy tailed. On

top of that women working in the public industry earn less in the right tail than women

in the right tail working in other industries.

While women working in personal and repair are not earning much more nor much

less than in other industries we find that women working in finance would need a much

higher adjustment factor. This means that this is the industry in which they have been

earning more and this result is reinforced with a clear positive trend between 1992 and

2017.
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Figure 10: Adjustment factors between 1992 and 2017 by industry to impute top-coded
wages
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Figure 11: Right-tail Gini coefficients in 1992 and in 2017 by individual, occupation and
industry
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Figure 11 shows the right-tail Gini coefficients in 1992 and in 2017 using both the

uncensored and the censored estimators. The censored right-tail estimator shows that

inequality is higher for all specific characteristics of the individuals in 1992 and in 2017.

Moreover, inequality increased more between 1992 and 2017 than we would consider if

we were to neglect the fact that the sample is censored.

For some characteristics of the individuals inequality rose more than what was sug-

gested by the uncensored estimates. For instance, for female the right-tail Gini coefficient

rose less than .05 when the uncensored estimates are considered while when we consider

the censored right-tail index estimates the change is larger than .10. For other charac-

teristics, assuming censored or uncensored samples in the estimation provides opposing

directions of change in the Gini coefficient. For instance, individuals working in the fi-

nance industry observed a small decrease in inequality (uncensored graph on the left)

when in fact, when censoring is taken into account inequality increased for these individ-

uals by .10 points in the Gini coefficient.

5 Conclusions

This paper provides three important contributions to the literature. The first corresponds

to the introduction of a conditional tail index estimator which explicitly handles the

top-coding problem and an in-depth evaluation of its finite sample performance and

comparison with competing methods. The Monte Carlo simulation exercise shows that

the method proposed to estimate the tail index performs well in terms of estimation of

the tail index and when used in the imputation of wages above the top-code when the

sample is censored, which is an intrinsic feature of the public-use CPS database.

Second, evidence is provided which shows that the factor values used to adjust the top-

coded weekly wages have changed over time and across the characteristics of individuals,

occupations and industries and an indication of suitable values is proposed. Interestingly,

the empirical results show that the upper-tail inequality has increased since the 90s and

has become more pronounced over the last 20 years. Our analysis showed that women
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working in finance would need a higher adjustment factor to impute the top-coded weekly

wages, whereas for women in public industry the change in the adjustment factor required

is relatively small. For instance, in the period between 1992 and 2017, the adjustment

factor for women working in the finance industry changed from 1.5 in 1992 to 2 in 2017,

whereas that for women in the public industry the change was only from 1.3 in 1992

to 1.45 in 2017. Moreover, we also observe that the adjustment factor used to impute

top-coded wages should be adapted over time and across characteristics of the individuals.

Third, an in depth empirical analysis of the dynamics of the US weekly wage dis-

tribution’s right tail using the public-use CPS database from 1992 to 2017 is provided.

The application of the procedure to the CPS data reveals that individuals working in

industries such as finance, construction and repair are the ones with the more extreme

wages. Moreover, it is also observed that the biggest increases in the probability of ob-

serving an extreme wage between 1992 and 2017 (which corresponds to an increase in

the Gini coefficient) was for individuals that are black, married without a spouse, or

widowed. Older and more educated workers continued to have a significant probability

of observing an extreme wage but there was no relevant change between 1992 and 2017.

Women observed a positive increase in alpha between 1992 and 2017, i.e. a decrease in

the probability of an extreme wage of -6% in 1992 to -1% in 2017, and a decrease in the

Gini coefficient of 0.04 in 1992 and 0.05 in 2017.

In our analysis we also used our approach to impute mean wages in order to obtain a

consistent series of uncensored weekly wages in order to compute the overall Gini coeffi-

cient. This analysis revealed that the Gini coefficient of the US weekly wages increased

from around 0.32 in 1992 to close to 0.39 in 2017. Furthermore, contrasting the results

of our approach with those of a conservative fixed adjustment factor of 1.5 (as used in

the literature), our procedure indicates that inequality in 2017 is 5% larger than that

suggested by the fixed adjustment factor.

Additionally, although our empirical analysis has focused on the right tail of the

US weekly wage distribution, the approaches proposed in this paper are also useful in

other contexts, as adequately handling top-coding is of importance in a variety of other
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applications. For instance, it can prove helpful in the analysis of returns to education

(Hubbard, 2011) and in the study of differences in gender and race (Burkhauser and

Larrimore, 2009). Moreover, it could also be of value for welfare analysis of government

policies such as tax cuts/increases (Hendren and Sprung-Keyser, 2020).

Notes

1The result holds for male and female samples separately, considering weekly wages of full-time

workers as well as for the March CPS samples (Autor et al., 2006).

2The Gini coefficient takes values between 0 and 1, where 0 refers to perfect equality and 1 to the

most extreme case of inequality. Hence, the lower the value of the Gini coefficient the more equal a

society is, but a Gini above 0.5 is already an indication of considerable inequality.

3This distribution was used, for instance, by Harrison (1981) to analyze earnings by size in the UK.

4An observation is said to be right censored at yc if the exact value of the observation is not known

except that it is greater than or equal to yc.

5If only a portion of the sample to estimate the model is used, say for example, all observations larger

than y0, then y is the quantile of order 1 − u of the conditional distribution P (Y < y|Y > y0) , i.e.

P (Y < y|Y > y0) = 1−u. To determine the quantile order of the unconditional distribution P (Y < y)

we use the relation P (Y < y|Y > y0) = 1− u⇒ P (Y < y) = P (Y < y0) + (1− u)P (Y > y0) . In the

empirical analysis we use all observations larger than the empirical quantile of 0.80 (see also Mishel

et al., 2013), so that P (Y > y0) = 0.20 in the above formula. Hence, for u = 0.15 or u = 0.20, we are

actually analyzing the 96th and 97th quantile, respectively, of the unconditional distribution.

6When the covariate considered is discrete (e.g. a dummy variable) an adaptation of (2.14) leads to the

following formula, which measures the impact of group d = 1 over d = 0, δ (u) :=
[
(1− u)

α(x;d=1)
α(x;d=0)

−1 − 1
]
×

100. Given that α (x; d = 1) and α ( x; d = 0) depend on x, we also need to provide values for x. One

possible solution is to replace x by its respective averages.

7The cumulative Burr distribution function considered in the simulations is F (x) := 1− (1 + x−αρ)
1
ρ

and the corresponding probability density function f(x) := x−1−αρ(1 + x−αρ)−1 1
ρα.

8Wages are converted to 2012 values using the GDP personal consumption expenditure deflator.

9Workers in our sample come from outgoing rotation groups 4 and 8 and according to Unicon: When

the Outgoing Rotation files are produced, two rotations are extracted from each of the twelve months

and gathered into a single annual file. The weights on the file must be modified by the user before giving

reliable counts. Since the final weight is gathered from 12 months but only 2/8 rotations, the weight on

the outgoing file should be divided by 3 (12/4) before it is applied. The earner weight is gathered from
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12 months from the 2 rotations. Since those two rotations were originally weighted to give a full sample,

the earner weight must be divided by 12, not 3.

10Note that the Gini coefficient that we present is a measure of upper tail inequality and not a measure

of inequality over the whole wages distribution as is usually computed. For this reason, these results are

not directly comparable with the Gini estimates for the whole distribution found in the literature.

11Other values of c in the neighborhood of c = 1.5 yield basically the same results.
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S.1 Technical Appendix

Proof of Theorem 2.1
For the proof of Theorem 2.1, let us show first that Σ

−1/2
y0

K̇c(θ,yc)
n

p−→ 0. Consider

that the sequence {(yi,xi)} is independently distributed.

Σ−1/2
y0
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(S.1)

Thus, considering (S.1) we cans how that,

E (ei|xi) =
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and E (eiZni) is zero since

E (eiZni) = E (E (eiZni|Zni)) = E (E (ei|Zni) Zni) = 0.

Given these results, considering that θ̂ minimizes the log-likelihood function, K
c(θ,yc)
n

such that K̇
c(θ,yc)
n

= 0, using the Mean Value Theorem it follows that
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n
=
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n
+
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n

(
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)
(S.2)

for some θ1 ∈ [θ̂,θ0]. �

Computation of the partial effects
We have

δ =
F̄ (y|∆x+ x)− F̄ (y|x)
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1

α(x)
y0 , it follows that,

δ =
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(1− u)
α(∆x+x)
α(x)

−1 − 1
)
× 100. (S.4)

Now and given the specification α (x) = exp (φ (x)) where φ (x) is φ (x) = x′β it

follows that,

α (∆x+ x) ' α (x) +
dα (x)

dx
∆x = α (x) + φ′ (x) exp (φ (x)) ∆x.

Therefore
α (∆x+ x)

α (x)
=
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α (x)
= 1 + φ′ (x) ∆x.

In conclusion

δ =
F̄ (y|∆x+ x)− F̄ (y|x)

F̄ (y|x)
× 100 =

(
(1− u)φ

′(x)∆x − 1
)
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�
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S.2 Additional Figures

Figure S.1: Proportion of individuals according to Marital Status by wage percentile
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Figure S.2: Proportion of individuals according to Occupation by wage percentile
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Figure S.3: Proportion of individuals according to Industry by wage percentile
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S.3 Additional Tables
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Table S1: Bias and RMSE of estimators

Case 1: DGP Pareto (k=0.20 and yc = Qy(0.95))
α̂ (xi) α̂c (xi) α̃ (xi) α̂ (xi) α̂c (xi) α̃ (xi) α̂ (xi) α̂c (xi) α̃ (xi) α̂ (xi) α̂c (xi) α̃ (xi)

n 2500 5000 10000 50000
bias(β1) 0.0025 0.0004 0.4553 0.0011 −0.0002 0.4539 0.0004 −0.0005 0.4528 0.0001 −0.0002 0.4526
bias(β2) 0.0029 0.0024 −0.4241 0.0027 0.0034 −0.4237 0.0014 0.0020 −0.4246 0.0003 0.0007 −0.4257
RMSE(β1) 0.0775 0.0937 0.4611 0.0552 0.0660 0.4567 0.0386 0.0465 0.4542 0.0174 0.0208 0.4529
RMSE(β2) 0.1703 0.1942 0.4422 0.1208 0.1369 0.4329 0.0852 0.0963 0.4292 0.0378 0.0430 0.4267

Case 2: DGP Pareto (k=0.20 and yc = Qy(0.99))

n 2500 5000 10000 50000
bias(β1) 0.0025 −0.0012 0.1000 0.0011 −0.0010 0.0984 0.0004 −0.0005 0.0980 0.0001 −0.0001 0.0977
bias(β2) 0.0029 0.0070 −0.1202 0.0027 0.0050 −0.1202 0.0014 0.0023 −0.1219 0.0003 0.0005 −0.1229
RMSE(β1) 0.0775 0.0807 0.1258 0.0552 0.0575 0.1126 0.0386 0.0401 0.1051 0.0174 0.0182 0.0992
RMSE(β2) 0.1703 0.1745 0.2006 0.1208 0.1240 0.1659 0.0852 0.0871 0.1460 0.0378 0.0389 0.1281

Case 3: DGP Burr ρ=-2 (k=0.05 and yc = Qy(0.99))

n 2500 5000 10000 50000
bias(β1) 0.0015 −0.0118 0.3277 −0.0006 −0.0084 0.3241 −0.0025 −0.0065 0.3229 −0.0042 −0.0061 0.3210
bias(β2) 0.0388 0.0488 −0.3189 0.0186 0.0242 −0.3356 0.0134 0.0161 −0.3409 0.0073 0.0097 −0.3452
RMSE(β1) 0.1450 0.1683 0.3562 0.1021 0.1180 0.3387 0.0719 0.0821 0.3301 0.0323 0.0372 0.3224
RMSE(β2) 0.4088 0.4518 0.4549 0.2833 0.3121 0.4043 0.1991 0.2176 0.3754 0.0891 0.0976 0.3523

Case 4: DGP Burr ρ=-2 (k=0.10 and yc = Qy(0.95))

n 2500 5000 10000 50000
bias(β1) −0.0099 −0.0239 0.9137 −0.0120 −0.0258 0.9098 −0.0129 −0.0259 0.9079 −0.0137 −0.0259 0.9071
bias(β2) 0.0297 0.0380 −0.6485 0.0250 0.0402 −0.6489 0.0216 0.0372 −0.6512 0.0200 0.0371 −0.6519
RMSE(β1) 0.1055 0.1596 0.9196 0.0754 0.1129 0.9127 0.0537 0.0820 0.9094 0.0271 0.0434 0.9074
RMSE(β2) 0.2609 0.3563 0.6637 0.1835 0.2492 0.6561 0.1305 0.1773 0.6548 0.0602 0.0857 0.6527

Case 5: DGP Burr ρ=-2 (k=0.20 and yc = Qy(0.99))

n 2500 5000 10000 50000
bias(β1) −0.0364 −0.0435 0.0602 −0.0378 −0.0433 0.0586 −0.0385 −0.0428 0.0582 −0.0386 −0.0421 0.0581
bias(β2) 0.0487 0.0578 −0.0733 0.0486 0.0558 −0.0732 0.0474 0.0531 −0.0748 0.0460 0.0510 −0.0762
RMSE(β1) 0.0847 0.0909 0.0966 0.0665 0.0716 0.0798 0.0542 0.0584 0.0693 0.0422 0.0458 0.0606
RMSE(β2) 0.1737 0.1807 0.1739 0.1283 0.1342 0.1344 0.0961 0.1009 0.1089 0.0592 0.0638 0.0840

Case 6: DGP Burr ρ=-2 (k=0.20 and yc = Qy(0.95))

n 2500 5000 10000 50000
bias(β1) −0.0364 −0.0551 0.4134 −0.0378 −0.0557 0.4119 −0.0385 −0.0559 0.4108 −0.0386 −0.0553 0.4109
bias(β2) 0.0487 0.0702 −0.3813 0.0486 0.0713 −0.3808 0.0474 0.0699 −0.3817 0.0460 0.0682 −0.3831
RMSE(β1) 0.0847 0.1084 0.4196 0.0665 0.0864 0.4150 0.0542 0.0727 0.4124 0.0422 0.0591 0.4112
RMSE(β2) 0.1737 0.2040 0.4010 0.1283 0.1532 0.3908 0.0961 0.1182 0.3866 0.0592 0.0804 0.3841

Note: α̂ (xi) is the tail index regression estimate considering the complete sample of data (with no censoring); α̂c (xi) is the
censored tail index regression estimate; and α̃ (xi) is the uncensored tail index regression estimate computed from censored data. n
corresponds to the total sample size, k to the % of observations used for the tail index estimation and bknc is the effective number
of observations used in the estimation of the tail index. yc is the censoring value used and Qy(τ) corresponds to the τ th quantile
of y.
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Table S2: Industry classification

Agriculture agriculture, forestry, fishing, hunting, mining and utilities;
Construction only construction;
Manufacturing manufacturing of non-durable and durable goods and wood;
Transports transportation, warehousing, utilities electric light;
Trade wholesale and retail trade;
Finance finance and insurance;
Repair business and repair;
Personal personal services, entertainment and recreation, professional and

related services;
Public public administration and armed forces.

Note: This classification is based on the harmonized variable ”ind1990” from IPUMS.
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