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Abstract

The maximum-likelihood estimator of nonlinear panel data models with fixed effects
is asymptotically biased under rectangular-array asymptotics. The literature has
devoted substantial effort to devising methods that correct for this bias as to salvage
standard inferential procedures. The chief purpose of this paper is to show that
the (recursive, parametric) bootstrap replicates the distribution of the (uncorrected)
maximum-likelihood estimator in large samples. This justifies the use of confidence
sets constructed via conventional bootstrap methods. No adjustment for the presence
of bias needs to be made.
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Introduction

The maximum-likelihood estimator of models for panel data is well known to perform

poorly when fixed effects are included. The estimator is inconsistent under asymptotics
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where the number of individuals, n, grows large while the number of time periods, m, is

held fixed (Neyman and Scott 1948). In fact, many parameters of interest are simply not

(point) identified in such a setting (see, e.g., Honoré and Tamer 2006). Maximum likelihood

is, however, consistent under so-called rectangular-array asymptotics, where n and m grow

large at the same rate (Li, Lindsay and Waterman, 2003). Nevertheless, it is asymptotically

biased, in general. This implies that confidence sets based on a naive normal approximation

to the distribution of the maximum-likelihood estimator have incorrect coverage, even in

large samples.

Over the last two decades substantial effort has been devoted to devising procedures

that remove the asymptotic bias, thereby recentering the limit distribution around zero

and restoring the validity of conventional inference procedures based on it. A discussion

of this literature as well as an overview of many available approaches is given by Arellano

and Hahn (2007).1 Theoretical guidelines on which bias-correction method to use and on

how to select their respective tuning parameters are mostly absent. This is inconvenient

because, although all proposals lead to estimators with the same (first-order) asymptotic

properties, they vary greatly in ease of implementation and in how effective they are at

salvaging standard inferential procedures in finite samples (an evaluation of many of the

available options via Monte Carlo simulations is provided in Dhaene and Jochmans 2015b,

for example).

The current paper shows that, under rectangular-array asymptotics, the parametric

bootstrap consistently estimates the distribution of the (uncorrected) maximum-likelihood

estimator, including its asymptotic bias. This implies that confidence sets constructed

using either the basic bootstrap (also known as the reverse-percentile bootstrap) or the

studentized bootstrap (using the terminology of Davison and Hinkley 1997, p. 194) have

1Approaches to correct the maximum-likelihood estimator, either via analytical formulae or a jackknife,

are considered by Hahn and Newey (2004), Hahn and Kuersteiner (2011), and Dhaene and Jochmans

(2015b). Adjustments to the (profile) likelihood or score equation have been considered by Lancaster (2002),

Hahn and Newey (2004) and Arellano and Hahn (2016). Strategies based on simulation are discussed in

Dhaene and Jochmans (2015a), Kim and Sun (2016), and Chen (2021).
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correct coverage in large samples. Thus, bias correction is not needed. The same conclusion

is true for averages over the fixed effects, such as their moments or average marginal

effects (Chamberlain 1984). Through several examples we find that simple bootstrapping

outperforms inference based on bias correction. Iterating the bootstrap (as proposed by

Beran 1988) can yield further improvement.

In its simplest form, inference based on the bootstrap only requires a routine to compute

the maximum-likelihood estimator.2 It is useful to stress that, in spite of the presence of

possibly many fixed effects, conventional numerical optimization is, in fact, straightforward,

by exploiting the sparsity of the Hessian matrix.3 Furthermore, because many popular

fixed-effect specifications such as probit and tobit models involve likelihood functions that

are globally concave, finding the global maximizer requires only a few iterations. Finally,

an excellent starting value for the bootstrap maximum-likelihood estimator comes in the

form of the maximum-likelihood estimator based on the original data, as the latter is used

to generate the bootstrap samples.

In Section 1 we present the setting and state our main objectives. In Section 2 we

describe our bootstrap procedure and give examples of its use. In Section 3 we investigate

the performance of the bootstrap in three examples using both theoretical calculations

and simulations. In Section 4 we discuss computation via an efficient Newton-Raphson

routine. In Section 5 we collect all the assumptions and formal results that underlie our

claims about the validity of the bootstrap in our setting. Concluding remarks end the

2Corrections to the estimator require first estimating the asymptotic bias. The latter depends on

moments and cross-moments of higher-order derivatives of the likelihood, which can be cumbersome to

derive and compute. Adjustments to the (profile) likelihood have the additional inconvenience that they

can be difficult to maximize whereas modified (profile) score equations may have multiple roots. An

example where this problem arises is discussed in Dhaene and Jochmans (2016).
3The usefulness of partitioned-inverse formulae in models with many parameters has been mentioned

before; Prentice and Gloeckler (1978) and Chamberlain (1980) did so in the context of duration models and

binary-choice models, respectively. Greene (2004) has iterated the point. It is not clear that it is widely

appreciated, however, as estimation with fixed effects is often said to be computationally demanding or

even judged to be infeasible.
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paper. An appendix contains proofs. Additional technical derivations are collected in the

supplementary material.

1 Maximum-likelihood estimation

Suppose that we have data on n independent stratified observations {yi, yi−, xi}, with

yi := (yi1, . . . , yim), yi− = (yi(1−p), . . . , yi0), and xi := (xi1, . . . , xim). We consider models

where the conditional density of yi given yi− and xi (relative to some dominating measure)

is given by
m∏
t=1

f(yit|yit−1, . . . , yit−p, xit;ϕ0, ηi0),

and f is known up to the finite-dimensional parameters ϕ0 and ηi0. This framework covers

autoregressive processes (of order p), for which yi− serves as the initial condition, as well

as models with exogenous covariates, xi. In what follows we will treat both the initial

condition and the covariates as fixed.

It is convenient to introduce the shorthand

`(ϕ, ηi|zit) := log f(yit|yit−1, . . . , yit−p, xit;ϕ, ηi),

where zit := (yit, yit−1, . . . , yit−p, xit). The maximum-likelihood estimator is

(ϕ̂, η̂1, . . . , η̂n) := arg max
ϕ,η1,...,ηn

n∑
i=1

m∑
t=1

`(ϕ, ηi|zit).

In sufficiently regular models we have, as n,m → ∞ with n/m → γ2 for some 0 < γ < ∞,

that
√
nm(ϕ̂− ϕ0)

L→ N(γβ,Σ), (1.1)

where β is a non-random (asymptotic) bias term and the variance isΣ := (limn,m→∞Ωnm)−1

for

Ωnm := − 1

nm

n∑
i=1

m∑
t=1

E
(
∂2`(ϕ0, ηi0|zit)

∂ϕ∂ϕ′
− ρi,m

∂2`(ϕ0, ηi0|zit)
∂ηi∂ϕ′

)
,
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with

ρi,m :=

(
1

m

m∑
t=1

E
(
∂2`(ϕ0, ηi0|zit)

∂ϕ∂η′i

))(
1

m

m∑
t=1

E
(
∂2`(ϕ0, ηi0|zit)

∂ηi∂η′i

))−1

.

See Hahn and Newey (2004) and Hahn and Kuersteiner (2011) for early derivations of this

result in static and dynamic models, respectively.

An implication of (1.1) is that confidence regions based on the limit distribution have

to account for the bias term β in order to have correct coverage unless n/m is close to zero,

which is not the case in most applications. Corrections to the estimator have the generic

form

ϕ̂− β̂

m
,

where β̂ is an estimator of β. Such corrections recenter the estimator’s limit distribution

around zero, thereby restoring the validity of conventional inference procedures based on

it.

We may also be interested in parameters of the form

∆ := lim
n,m→∞

1

nm

n∑
i=1

m∑
t=1

E(µ(zit, ϕ0, ηi0)),

for a chosen function µ. Average marginal effects (as discussed in Chamberlain 1984) or

moments of the fixed effects are typical examples. The maximum-likelihood estimator of

∆ is

∆̂ :=
1

nm

n∑
i=1

m∑
t=1

µ(zit, ϕ̂, η̂i)

which, similar to ϕ̂, also suffers from asymptotic bias. In particular,

√
nm(∆̂−∆)

L→ N(γ∇, σ2).

The form of the bias, ∇, is complicated. The asymptotic variance is

σ2 := lim
n,m→∞

1

nm

n∑
i=1

m∑
t=1

E
(∑+∞

j=−∞υit υit−j + ω2
it

)
.
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Here the term involving υit := µ(zit, ϕ0, ηi0) − E(µ(zit, ϕ0, ηi0)) is the long-run variance of

the infeasible estimator that presumes the parameters to be known. The second term is

the variance of

ωit := $′nmΩ
−1
nm

(
`(ϕ0, ηi0|zit)

∂ϕ
− ρi,m

`(ϕ0, ηi0|zit)
∂ηi

)
− %i,m

∂`(ϕ0, ηi0|zit)
∂ηi

,

where

$nm :=
1

nm

n∑
i=1

m∑
t=1

E
(
∂µ(zit, ϕ0, ηi0)

∂ϕ
− ρi,m

∂µ(zit, ϕ0, ηi0)

∂ηi

)
and

%i,m :=

(
1

m

m∑
t=1

E
(
∂µ(zit, ϕ0, ηi0)

∂η′i

))(
1

m

m∑
t=1

E
(
∂2`(ϕ0, ηi0|zit)

∂ηi∂η′i

))−1

.

The term making up the second contribution to σ2 reflects the fact that the parameters of

the model need to be estimated in a first step to be able to estimate ∆.

2 Bootstrap inference

The (parametric) bootstrap we consider imposes the data generating process implied by

the maximum-likelihood estimator. A bootstrap observation y∗i := (y∗i1, . . . , y
∗
im) can be

generated recursively by drawing y∗it from the fitted transition density obtained from the

original data, i.e.,

f(y∗it|y∗it−1, . . . , y
∗
it−p, xit; ϕ̂, η̂i).

The initial condition, like the covariates, is held fixed, i.e., y∗i− = yi−. The associated

maximum-likelihood estimator is

(ϕ̂∗, η̂∗1, . . . , η̂
∗
n) := arg max

ϕ,η1,...,ηn

n∑
i=1

m∑
t=1

`(ϕ, ηi|z∗it),

with z∗it := (y∗it, y
∗
it−1, . . . , y

∗
it−p, xit).

The main observation of this paper is that, in regular situations,

√
nm(ϕ̂∗ − ϕ̂)

L∗→ N(γβ,Σ), (2.2)
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as n,m → ∞ with n/m → γ2. Throughout, we use
L∗→ to denote weak convergence of

the bootstrap measure. Equations (1.1) and (2.2) reveal that the bootstrap distribution

is consistent for the distribution of the maximum-likelihood estimator. Importantly, the

bootstrap mimics the asymptotic bias. It follows from (2.2) that asymptotically-valid

confidence intervals can be constructed by the usual reverse-percentile method without the

need to correct the maximum-likelihood estimator (or, indeed, its bootstrap counterpart)

for its bias.

As an example, let

F ∗(a) := P∗(c′(ϕ̂∗ − ϕ̂) ≤ a),

for a chosen vector of conformable dimension c. The notation P∗ refers to a probability

computed with respect to the bootstrap measure, i.e, conditional on the original sample.

Let

Q∗(α) := inf {q : α ≤ F ∗(q)}

be the implied quantile function. Then

{c′ϕ : c′ϕ̂−Q∗(α) ≤ c′ϕ} , {c′ϕ : c′ϕ̂−Q∗(α/2) ≤ c′ϕ ≤ c′ϕ̂−Q∗(1− α/2)}

are, respectively, an upper one-sided confidence interval and a two-sided (equal-tailed)

confidence interval for the linear combination c′ϕ0 with confidence level equal to α (in large

samples).

The conditions underlying (1.1) and (2.2) equally imply the consistency of the plug-in

estimator Σ̂ and of its bootstrap counterpart Σ̂∗ for the inverse Fisher information Σ.

We may, therefore, also use the studentized bootstrap. For inference on c′ϕ0 we would

proceed in the same way as with the basic bootstrap, only now using the quantiles of the

distribution of

(c′Σ̂∗ c)−
1/2c′(ϕ̂∗ − ϕ̂),

scaled up by (c′Σ̂ c)1/2, as critical values. For multivariate restrictions we can rely on,

e.g., a Wald statistic to construct confidence sets. Bootstrap theory advocates the use of

the studentized bootstrap over the basic bootstrap when the studentized quantity has a
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(limit) distribution that is pivotal. This argument cannot be used here, however. The

presence of asymptotic bias renders the relevant limit distribution non-pivotal even after

studentization.

The assumptions underlying our theorems given below also validate the use of the

double bootstrap (as introduced in Beran 1988), both in its basic and in its studentized

form. To describe the double bootstrap, observe that, given ϕ̂∗ and η̂∗i , we can generate

y∗∗i := (y∗∗i1 , . . . , y
∗∗
im) using the transition density f(y∗∗it |y∗∗it−1, . . . , y

∗∗
it−p, xit; ϕ̂

∗, η̂∗i ) for all

strata, and subsequently apply maximum likelihood to obtain the estimators ϕ̂∗∗ and η̂∗∗i

of ϕ̂∗ and η̂∗i . Consider the quantile function

Q∗∗(α) := inf {q : α ≤ F ∗∗(q)}

associated with F ∗∗(a) := P∗∗(c′(ϕ̂∗∗ − ϕ̂∗) ≤ a) where, now, the notation P∗∗ indicates

probabilities taken conditional on both the original sample and the (first layer) bootstrap

sample. Suppose we again wish to construct an upper one-sided confidence interval for c′ϕ0

with level α. We can mimic this process via the double bootstrap. More precisely, for a

given a ∈ (0, 1),

β∗(a) := P∗(c′ϕ̂ ∈ {c′ϕ : c′ϕ̂∗ −Q∗∗(a) ≤ c′ϕ})

is the (actual) coverage probability of an upper one-sided confidence interval for c′ϕ̂ with

(theoretical) level a using the bootstrap. Let α∗ be such that β∗(α∗) = α. Then the double

bootstrap constructs its one-sided confidence interval with (theoretical) level α for c′ϕ0 as

{c′ϕ : c′ϕ̂−Q∗(α∗) ≤ c′ϕ} .

The developments for two-sided confidence intervals and the studentized double bootstrap

are parallel.

Inference on ∆ may equally be done via the bootstrap. Given a bootstrap sample

and the associated maximum-likelihood estimator, we construct the corresponding plug-in

estimator

∆̂∗ :=
1

nm

n∑
i=1

m∑
t=1

µ(z∗it, ϕ̂
∗, η̂∗i ).

8



The bootstrap distribution of
√
nm(∆̂∗ − ∆̂) mimics the distribution of

√
nm(∆̂ − ∆) in

large samples, i.e.,
√
nm(∆̂∗ − ∆̂)

L∗→ N(γ∇, σ2),

as n,m → ∞ with n/m → γ2. The construction of confidence intervals for ∆ is then

completely analogous to before.

3 Examples

Many normal means In the classic problem of Neyman and Scott (1948) we observe

independent variables

zit ∼ N(ηi0, ϕ0).

Maximum likelihood estimates the mean parameters by the within-strata sample averages

zi := 1/m
∑m

t=1 zit and the common variance parameter by

ϕ̂ =
1

nm

n∑
i=1

m∑
t=1

(zit − zi)2.

It is well-known that, in this case,

√
nm(ϕ̂− ϕ0)

L→ N(−γϕ0, 2ϕ
2
0),

under rectangular-array asymptotics. Here, starting from the fact that nm ϕ̂/ϕ0 ∼ χ2
n(m−1),

the exact distribution of the maximum-likelihood estimator can be derived. We find that

√
nm(ϕ̂− ϕ0) ∼ Gamma

(
−
√
nmϕ0,

n(m− 1)

2
,

2ϕ0√
nm

)
,

where Gamma(ϑ1, ϑ2, ϑ3) refers to the Gamma distribution with location ϑ1, shape ϑ2 and

scale ϑ3. It is readily verified that the mean and variance of this distribution are equal to

−
√
n

m
ϕ0, 2ϕ2

0

(
1− 1

m

)
,

respectively.
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In this example, the bootstrap independently samples z∗it ∼ N(zi, ϕ̂). The associated

maximum-likelihood estimators are z∗i and

ϕ̂∗ =
1

nm

n∑
i=1

m∑
t=1

(z∗it − z∗i )2.

Conditional on the data, the latter estimator follows the same Gamma distribution as above,

only with ϕ0 replaced by ϕ̂. Noting that we can write
√
nm(ϕ̂− ϕ0) = −

√
n/mϕ0 + ε, for

a mean-zero random variable ε = OP (1), this implies that

√
nm(ϕ̂∗−ϕ̂) ∼ Gamma

(
−
(√

nmϕ0 −
√
n

m
ϕ0 + ε

)
,
n(m− 1)

2
,

2ϕ0√
nm

(
1− 1

m

)
+

2ε

nm

)
conditional on the sample. Its mean and variance are

−
√
n

m
ϕ0 +

1

m

(√
n

m
ϕ0 − ε

)
, 2ϕ2

0

(
1− 2

m
+

1

m2

)
+OP

(
1

m

)
,

which, to first order, agree with the corresponding moments of the maximum-likelihood

estimator.

The studentized maximum-likelihood estimator follows a (translated) inverse-Gamma

distribution, mirrored about the origin. Moreover,

−
√
nm

(ϕ̂− ϕ0)√
2ϕ̂2

∼ Inverse-Gamma

(
−
√
nm

2
,
n(m− 1)

2
,

√
nm

2

nm

2

)
.

This distribution is pivotal, and the bootstrap replicates it exactly. Thus, at least in this

example, the studentized bootstrap yields confidence intervals whose probability of covering

ϕ0 can be controlled exactly.

A first-order correction to ϕ̂ based on a plug-in estimator of its asymptotic bias is

ϕ̌ := ϕ̂+
ϕ̂

m
.

It is interesting to compare the performance of confidence intervals for ϕ0 based on bias

correction with those obtained via the bootstrap. The bias-correction approach uses the

large-sample approximation

√
nm

(ϕ̌− ϕ0)√
2ϕ̂2

L→ N(0, 1).
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Its coverage accuracy can be evaluated for any given sample size from the observation that

−
√
nm

(ϕ̌− ϕ0)√
2ϕ̂2

∼ Inverse-Gamma

(
−
√
nm

2

(
1 +

1

m

)
,
n(m− 1)

2
,

√
nm

2

nm

2

)
.

Notice that this distribution coincides with that of the studentized maximum-likelihood

estimator up to the location parameter; the current distribution being located closer to

zero. An alternative in this particular example is to studentize the bias-corrected estimator

using
√

2ϕ̌2. We find that

−
√
nm

(ϕ̌− ϕ0)√
2ϕ̌2

∼ Inverse-Gamma

(
−
√
nm

2
,
n(m− 1)

2
,

√
nm

2

nm

2

(
m

m+ 1

))
.

Here, there is no change in the location parameter (compared to maximum likelihood)

but, rather, in the scale parameter. This, then, affects the entire shape of the sampling

distribution.

To simplify the presentation we use the shorthand notation

ê :=
√
nm(ϕ̂− ϕ0), ŝ := 2−

1/2 ê/ϕ̂,

for the (scaled) sampling error of the maximum-likelihood estimator and for its studentized

version, respectively. The bootstrap quantities ê∗ and ŝ∗ are defined analogously. We

similarly let

ě :=
√
nm(ϕ̌− ϕ0), š := 2−

1/2 ě/ϕ̂, s̃ := 2−
1/2 ě/ϕ̌,

for the bias-corrected estimator. The left and right plots in Figure 1 contain, respectively,

the density and distribution functions of these quantities for (n,m) = (10, 5) and ϕ0 = 1.

The solid black curves refer to ê. The dashed black curves capture the behavior of ê∗ up to

first order (i.e., by setting ε = 0, thereby ignoring the randomness induced by its dependence

on the original sample). The solid grey curves, in turn, refer to a mean-zero normal variable

with variance 2ϕ2
0 while the dashed grey curves depict ě, the analytically bias-corrected

estimator. Here, the distribution of ê∗ does not have quite enough mass in the left tail,

compared to the distribution of ê, but mimics the right-tail well. The sampling distribution

of ě, compared to that of ê, is closer to the normal reference distribution but the sample
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Figure 1: Many normal means: Sampling densities and distributions
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Upper panel: Density functions (left plot) and cumulative distributions (right plot) of ê (solid black

curve), ê∗ (dashed black curve), and ě (dashed grey curve), together with the normal density with zero

mean and variance 2ϕ2
0 (solid grey curve). Lower panel: Density functions (left plot) and cumulative

distributions (right plot) of ŝ and ŝ∗ (solid black curve), and š (dashed grey curve), and s̃ (dashed-dotted

grey curve), along with the standard-normal density (solid grey curve). Plots generated with ϕ0 = 1 and

(n,m) = (10, 5).

size is not sufficiently large for the distribution to resemble well its normal approximation.

The lower plots in Figure 1 provide corresponding results for the studentized estimators.

All these distributions are pivotal and, hence, independent of ϕ0. Here, ŝ and ŝ∗ follow
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Table 1: Many normal means: Coverage of two-sided 95% confidence intervals

n m MLE BC1 BC2 BB DBB SB

10 10 0.827 0.904 0.928 0.918 0.950 0.950

20 10 0.763 0.903 0.929 0.918 0.950 0.950

40 10 0.637 0.902 0.929 0.916 0.950 0.950

100 10 0.330 0.897 0.926 0.911 0.950 0.950

exactly the same distribution; it is given by the solid black curve. The dashed grey curves

for š are the same as those for ŝ (and ŝ∗) up to a translation that brings them closer to

the standard-normal reference curves (in solid grey). The distribution of š has considerable

excess mass in its left tail so that confidence intervals constructed by treating it as standard

normal will be too short. By using an unbiased estimator of the asymptotic variance, s̃

reduces this issue somewhat and yields a sampling distribution that is closer to the normal

benchmark.

To complement this graphical illustration, Table 1 gives coverage rates of two-sided

95% confidence intervals for ϕ0 across different sample sizes. These rates are invariant to

the value of ϕ0. The conclusions from the graphical analysis are borne out in the table.

The naive normal approximation (MLE) does poorly when applied to maximum likelihood

but bootstrapping the maximum-likelihood estimator, both using the basic bootstrap (BB)

and the studentized bootstrap (SB), yields reliable inference. Here, the latter gives exact

coverage but this will not be true in general. Because the distribution of ê is not pivotal

we can also construct confidence intervals with more accurate coverage by using the double

(basic) bootstrap (DBB). In this example, the double bootstrap also yields exact coverage.

The table also confirms the improved approximation of s̃ (BC2) by a standard-normal

random variable relative to š (BC1).
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Dynamic logit For our next example we consider the Markov process

yit =

 1 if ηi0 + ϕ0yit−1 > εit

0 if not
,

where the εit are independent and identically distributed logistic random variables, i.e.,

P(εit ≤ a) = (1 + e−a)−1 =: F (a). The initial conditions, yi0, are observed and held fixed

throughout.

In this example the maximum-likelihood estimator is not available in closed form.

Nonetheless, the log-likelihood function is globally concave and numerical optimization via

a Newton-Raphson procedure is straightforward (see the next section for details). Given ϕ̂

and η̂1, . . . , η̂n we generate bootstrap samples by recursively drawing y∗it from a Bernoulli

distribution with success probability F (η̂i + ϕ̂y∗it−1).

The exact distribution of ϕ̂ is not known so we resort to simulations. We draw yi0 from

its stationary distribution,

P(yi0 = 1) =
F (ηi0)

1− F (ηi0 + ϕ0) + F (ηi0)
,

set ηi0 = 0 for all the strata, and consider ϕ0 ∈ {1/2, 1}. Table 2 provides the coverage

rate of (two-sided) 95% confidence intervals for the autoregressive parameter together with

their average length. Results are reported for confidence intervals based on (the naive

large-sample approximation to) maximum likelihood (MLE), the basic bootstrap and stu-

dentized bootstrap (BB and SB, respectively) and their iterated version (DBB and DSB,

respectively), as well as on two procedures that adjust the maximum-likelihood estimator

for its bias. The first of these adjustments (BC1) is the analytical correction of Hahn and

Kuersteiner (2011). The second adjustment (BC2) is due to Fernández-Val (2009) and

exploits the model structure to implement a refined correction that replaces certain sample

averages by expected quantities. Both these approaches require a bandwidth choice. We

report results for a bandwidth equal to one, which we found was the choice that performed

best. The bootstrap results, in turn, are based on the use of 999 bootstrap replications. For

the double bootstrap, we use 999 replications in the outer iteration and 316 replications in
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Table 2: Dynamic logit: Properties of two-sided 95% confidence intervals

COVERAGE LENGTH

ϕ0 n m MLE BC1 BC2 BB DBB SB DSB MLE BC1 BC2 BB DBB SB DSB

1/2 100 10 0.111 0.942 0.970 0.964 0.958 0.928 0.940 0.567 0.573 0.575 0.630 0.616 0.543 0.571

1/2 100 20 0.378 0.952 0.962 0.958 0.955 0.943 0.949 0.378 0.380 0.381 0.396 0.394 0.373 0.381

1/2 250 10 0.001 0.895 0.968 0.957 0.949 0.928 0.932 0.358 0.362 0.363 0.397 0.389 0.343 0.364

1/2 250 20 0.054 0.937 0.952 0.958 0.961 0.942 0.945 0.239 0.241 0.241 0.250 0.250 0.236 0.240

1 100 10 0.086 0.880 0.941 0.964 0.949 0.916 0.937 0.605 0.620 0.623 0.657 0.629 0.577 0.614

1 100 20 0.332 0.907 0.921 0.948 0.948 0.931 0.940 0.404 0.410 0.410 0.418 0.416 0.398 0.408

1 250 10 0.000 0.745 0.898 0.970 0.952 0.907 0.952 0.383 0.392 0.394 0.414 0.393 0.366 0.396

1 250 20 0.039 0.881 0.922 0.959 0.950 0.954 0.944 0.256 0.259 0.259 0.264 0.263 0.251 0.258

the inner iteration; this choice follows a suggestion of Booth and Hall (1994). The results

in the table are based on 5,000 Monte Carlo replications.

The naive normal approximation to the sampling distribution of the maximum-likelihood

estimator again yields unreliable inference in this problem. Bias correction yields a large

improvement in coverage rates and comes with only minor increases in the length of the

confidence intervals (which is informative about efficiency). Confidence intervals based on

the correction underlying BC2 tend to give better coverage than those based on BC1, with

the difference sometimes being considerable (up to 15 percentage points). This highlights

the sensitivity of bias-corrected inference to how the bias is being estimated, an issue not

accounted for by first-order theory. The bootstrap, rather than estimating the bias, mimics

it. Both the basic and the studentized bootstrap are competitive with bias correction. BB

does at least as well as BC2 in terms of coverage, and its iterated version DBB gives very

similar coverage. SB and SDB yield somewhat shorter confidence intervals. For m = 10 the

intervals based on SB do have some slight undercoverage, but this problem is essentially

resolved for m = 20. Iterating the studentized bootstrap gives very accurate coverage for

all designs.
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Table 3: Many normal means: Properties of two-sided 95% confidence intervals for

limn→∞ 1/n
∑n

i=1 η
2
i0

COVERAGE LENGTH

n m MLE BB DBB SB DSB MLE BB DBB SB DSB

50. 10 0.550 0.954 0.952 0.917 0.945 0.232 0.232 0.231 0.210 0.234

50 20 0.702 0.942 0.934 0.915 0.929 0.156 0.156 0.153 0.145 0.153

50 50 0.782 0.939 0.932 0.916 0.929 0.095 0.095 0.094 0.091 0.094

100 10 0.256 0.956 0.962 0.922 0.965 0.163 0.163 0.165 0.147 0.178

100 20 0.517 0.947 0.942 0.918 0.937 0.110 0.110 0.109 0.101 0.110

100 50 0.702 0.949 0.945 0.935 0.943 0.067 0.067 0.066 0.064 0.066

Many normal means (cont’d) In our third and final example we reconsider the setup

of Neyman and Scott (1948) but change the parameter of interest to

∆ = lim
n→∞

1

n

n∑
i=1

η2
i0,

the second moment of the fixed effects. The plug-in estimator is 1/n
∑n

i=1 z
2
i . Using the fact

that zi ∼ N(ηi0, ϕ0/m) by normality of the data it is easy to verify that the plug-in bias due

to the estimation of the fixed effects is ϕ0/m, while the estimator’s sampling variance equals

2ϕ0

nm

(
2

∑n
i=1 η

2
i0

n
+
ϕ0

m

)
.

The second component in the expression of the variance is of smaller order and not picked

up by our general expression for σ2 given previously.

The exact distribution of the estimator is a complicated mixture and so we again resort

to simulations to evaluate the performance of the bootstrap. In our simulations we set

ηi0 = i/n so that, in large samples, the distribution of the fixed effects is uniform on [0, 1];

hence, ∆ = 1/3. Data were generated with ϕ0 = 1. We report results for several choices

of (n,m) in Table 3. The bootstrap confidence intervals are again found to yield a large

improvement in coverage rates relative to the ones based on the naive plug-in approach.
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Again the basic bootstrap does better than the studentized version and has actual coverage

very close to theoretical coverage for all designs. Iterating the former does little in terms

of coverage rates. Iterating the latter gives further improvement, especially in the shorter

panels. The average length of the confidence intervals is very similar across the different

methods.

4 A note on implementation

In most applications the bootstrap distribution is unknown and needs to be simulated.

This, in turn, requires computation of the maximum-likelihood estimator many times.

In spite of the presence of a large number of fixed effects, a standard Newton-Raphson

procedure is feasible here by exploiting the sparsity of the Hessian matrix. Furthermore,

as many popular fixed-effect specifications involve log-likelihood functions that are globally

concave, such an algorithm is numerically stable and requires only few iterations to locate

the global maximizer.

Collect all parameters in θ := (ϕ, η1, . . . , ηn). A Newton step starting at θ is of the form

θ − `−1
θθ `θ,

where `θ and `θθ are the score vector and Hessian matrix. The Hessian matrix is large and

so direct inversion can be both slow and numerically inaccurate. Fortunately, the Hessian

has a particular block structure. Moreover,

`θ =



`ϕ

`η1

`η2
...

`ηn


`θθ =



`ϕϕ `ϕη1 `ϕη2 · · · `ϕηn

`η1ϕ `η1η1 0 · · · 0

`η2ϕ 0 `η2η2
. . . 0

...
...

. . . . . .
...

`ηnϕ 0 0 · · · `ηnηn


,
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where the individual components are

`ϕ :=
n∑
i=1

m∑
t=1

∂`(ϕ, ηi|zit)
∂ϕ

,

`ϕϕ :=
n∑
i=1

m∑
t=1

∂2`(ϕ, ηi|zit)
∂ϕ∂ϕ′

,

`ηi :=
m∑
t=1

∂`(ϕ, ηi|zit)
∂ηi

,

`ηiηi :=
m∑
t=1

∂2`(ϕ, ηi|zit)
∂ηi∂η′i

,

and

`ϕηi :=
m∑
t=1

∂2`(ϕ, ηi|zit)
∂ϕ∂η′i

= `′ηiϕ.

By making use of partitioned-invere formulae we arrive at an expression for `−1
θθ that can

be computed by using only the inverses of the substantially smaller matrices `ϕϕ and `ηiηi .

With

`−1
θθ =



(`−1
θθ )ϕϕ (`−1

θθ )ϕη1 (`−1
θθ )ϕη2 · · · (`−1

θθ )ϕηn

(`−1
θθ )η1ϕ (`−1

θθ )η1η1 (`−1
θθ )η1η2 · · · (`−1

θθ )η1ηn

(`−1
θθ )η2ϕ (`−1

θθ )η2η1 (`−1
θθ )η2η2

. . . (`−1
θθ )η2ηn

...
...

. . . . . .
...

(`−1
θθ )ηnϕ (`−1

θθ )ηnη1 (`−1
θθ )ηnη2 · · · (`−1

θθ )ηnηn


,

we have

(`−1
θθ )ϕϕ :=

(
`ϕϕ −

n∑
i=1

`ϕηi `
−1
ηiηi

`ηiϕ

)−1

, (`−1
θθ )ϕηi := −(`−1

θθ )ϕϕ`ϕηi`
−1
ηiηi

= (`−1
θθ )′ηiϕ,

and, treating the cases where i = j and i 6= j separately for clarity,

(`−1
θθ )ηiηi := `−1

ηiηi
+ `−1

ηiηi
`ηiϕ (`−1

θθ )ϕϕ `ϕηi `
−1
ηiηi

(`−1
θθ )ηiηj := `−1

ηiηi
`ηiϕ (`−1

θθ )ϕϕ `ϕηj `
−1
ηjηj

.

The Newton step for ϕ then simply is

ϕ− (`−1
θθ )ϕϕ `ϕ −

n∑
i=1

(`−1
θθ )ϕηi `ηi = ϕ− (`−1

θθ )ϕϕ

(
`ϕ −

n∑
i=1

`ϕηi `
−1
ηiηi

`ηi

)
.

The corresponding step for each fixed effect ηi is

ηi − (`−1
θθ )ηiϕ `ϕ −

n∑
j=1

(`−1
θθ )ηiηj `ηj = ηi − `−1

ηiηi

(
`ηi − `ηiϕ(`−1

θθ )ϕϕ

(
`ϕ −

n∑
j=1

`ϕηj `
−1
ηjηj

`ηj

))
.
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A Newton-Raphson algorithm that uses these updating formulae is feasible even in large

data sets. The size of the matrices to be inverted is independent of the sample size. The

computational complexity is, therefore, comparable to that of the setting without fixed

effects.

5 Asymptotic theory

Our results hold under a set of assumptions that are standard in the literature. The

following formulation is mostly borrowed from Kim and Sun (2016). It differs from Hahn

and Kuersteiner (2011) in two respects that are worth noting. The first difference is that the

individual time series need not be stationary. This is useful because the requirement that

the initial condition is a draw from the steady-state distribution, for example, is often hard

to justify. The second difference is that certain requirements are assumed to hold uniformly

over a neighborhood of the true parameter value. This is useful for the derivation of our

results because, like Kim and Sun (2016), we adopt a technique introduced in Andrews

(2005) to obtain these. This technique is to first demonstrate a convergence result for

the maximum-likelihood estimator uniformly over a set around the true parameter value.

Then, as consistency implies that the maximum-likelihood estimator lies in this set with

probability approaching one, this allows us the establish the corresponding property for

the bootstrap estimator.

In the assumptions (and in the proofs) it is important to make clear under which data

generating process certain expectations and probabilities are being computed. We will

write Eθ and Pθ for expectations and probabilities involving data that were generated

using parameters θ = (ϕ, η1, . . . , ηn). Note that some objects, such as Eθ(zit), only depend

on a subset of the elements of θ. For simplicity, however, we do not make this explicit in

the notation.

Denote by Vϕ and Vη the parameter space for ϕ and ηi, respectively. Then the parameter

space for θ is the Cartesian product Θ := Vϕ × Vη × · · · × Vη. We let Θ0 be a subset of Θ.
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Assumption 1.

(i) The function f is continuous in ϕ ∈ Vϕ and ηi ∈ Vη.

(ii) The true parameter value lies in the interior of Θ0, a subset of the compact set Θ.

For our next assumption, consider the mixing coefficients

ai(θ, h) := sup
1≤t≤m

sup
A∈Ait(θ)

sup
B∈Bit+h(θ)

|Pθ(A ∩B)− Pθ(A)Pθ(B)|,

where Ait(θ) and Bit(θ) are the sigma algebras generated by the sequences zit, zit−1, . . . and

zit, zit+1, . . . when these sequences were generated from our model with the parameter equal

to θ.

We will also make use of an open set that covers Θ0. This set is of the form

Θ1 := {θ ∈ Θ : d(θ, Θ0) < δ}

for some δ > 0, where d(θ, Θ0) := inf{‖θ − ϑ‖2 : ϑ ∈ Θ0}, i.e., the distance between the

point θ and the set Θ0.

Assumption 2. sup1≤i≤n supθ∈Θ1
ai(θ, h) = O(rh) for some constant 0 < r < 1.

The next assumption collects smoothness conditions and moment requirements.

Assumption 3.

(i) The function `(ϕ, ηi|zit) is four times continuously-differentiable in ϕ and ηi.

(ii) The function `(ϕ, ηi|zit) and all its cross-derivatives up to fourth order are bounded by

a function b(zit) for which

sup
1≤i≤n

sup
1≤t≤m

sup
θ∈Θ1

Eθ(|b(zit)|q) <∞

for some q such that 3 + (dim(ϕ)+dim(ηi))/2 < qs with 0 < s < 1/10.

(iii) As m→∞, 1/m
∑m

t=1 Eθ(b(zit)) converges to limm→∞ 1/m
∑m

t=1 Eθ(b(zit)) uniformly in

i and θ ∈ Θ1.
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Let

Gi(ϕ, ηi|ϑ) := lim
m→∞

1

m

m∑
t=1

Eϑ(`(ϕ, ηi|zit)).

The next assumption ensures that our parameters are identified from time series variation.

Assumption 4. For each ε > 0 there exists a δε > 0 such that

inf
1≤i≤n

inf
θ∈Θ1

(
Gi(ϕ, ηi|θ) − sup

{(ϕ̄,η̄i):‖(ϕ̄,η̄i)−(ϕ,ηi)‖2>ε}
Gi(ϕ̄, η̄i|θ)

)
> δε.

Assumption 5 states that we are working under rectangular-array asymptotics.

Assumption 5. As n,m→∞, n/m→ γ2 for some 0 < γ <∞.

The last assumption ensures a well-defined asymptotic variance for ϕ̂. We write Ωnm,θ

for the matrix defined below (1.1) to highlight its dependence on θ.

Assumption 6. There exist positive finite constants ε1, ε2 and ε1, ε2 such that, for n and

m large enough,

(i) ε1 ≤ inf
1≤i≤n

inf
θ∈Θ1

mineig

(
1

m

m∑
t=1

Eθ
(
∂2`(ϕ, ηi|zit)

∂ηi∂η′i

))

≤ sup
1≤i≤n

sup
θ∈Θ1

maxeig

(
1

m

m∑
t=1

Eθ
(
∂2`(ϕ, ηi|zit)

∂ηi∂η′i

))
≤ ε2,

(ii) ε1 < infθ∈Θ1 mineig(Ωnm,θ) ≤ supθ∈Θ1
maxeig(Ωnm,θ) < ε2.

Our main result is stated in the following theorem.

Theorem 1. Let Assumptions 1–6 hold. Then

P
(

sup
a

∣∣P∗(√nm(ϕ̂∗ − ϕ̂) ≤ a)− P(
√
nm(ϕ̂− ϕ) ≤ a)

∣∣ > ε

)
= o(1)

for any ε > 0.

Theorem 1 justifies the use of the basic bootstrap for inference.

Next, let Σ̂ := Ω̂−1
nm where

Ω̂nm := − 1

nm

n∑
i=1

m∑
t=1

(
∂2`(ϕ̂, η̂i|zit)

∂ϕ∂ϕ′
− ρ̂i,m

∂2`(ϕ̂, η̂i|zit)
∂ηi∂ϕ′

)
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is the plug-in estimator of Ωnm based on the maximum-likelihood estimator, and we used

ρ̂i,m :=

(
1

m

m∑
t=1

∂2`(ϕ̂, η̂i|zit)
∂ϕ∂η′i

) (
1

m

m∑
t=1

∂2`(ϕ̂, η̂i|zit)
∂ηi∂η′i

)−1

.

A consistency result for this estimator, as well as for its bootstrap counterpart, is given

next.

Theorem 2. Let Assumptions 1–6 hold. Then Σ̂
P→ Σ and Σ̂∗

P ∗→ Σ.

Theorem 2, when taken together with Theorem 1, justifies an application of the bootstrap

to standardized quantities such as the Wald statistic, for example.

The proofs of both theorems establish a stronger uniform consistency result that equally

validates the use of the double bootstrap.

Conclusion

The purpose of this paper has been to show that in panel data models with fixed effects,

inference based on the bootstrap remains valid under rectangular-array asymptotics. Our

results cover quite general nonlinear models and allow for dynamics in the outcome of

interest.

The main advantage of the bootstrap is that it avoids the need to correct for the bias

in the limit distribution of the maximum-likelihood estimator. The presence of bias makes

the limit distribution non-pivotal, even after studentization. Therefore, the usual argument

in favor of the studentized bootstrap to obtain a theoretical refinement does not apply.

Improvements can be obtained via the double bootstrap (Beran 1988), at the increased

computational expense of an additional bootstrap layer.4 In our examples, though, we

find that already the most basic versions of the bootstrap are competitive with inference

4‘Fast’ or ‘warp-speed’ versions of the double bootstrap that use a small fixed number of simulations in

the inner bootstrap (Davidson and McKinnon 2007, Giacomini, Politis and White 2013) can also be used.

However, they do not yield confidence intervals with refined coverage over the standard bootstrap (Chang

and Hall, 2015) .
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based on bias correction. On the other hand, the parametric bootstrap we consider is

restricted to the correctly-specified likelihood setting. While this is arguably the default

for nonlinear panel problems, some of the approaches to bias correction can be generalized

to other settings, such as partial likelihoods. In related work, Gonçalves and Kaffo (2015)

have shown that a version of the wild bootstrap replicates the bias in the setup of Hahn

and Kuersteiner (2002). However, their approach is residual-based and is tailored quite

specifically to the linear model.

While our attention has been devoted to one-way models, we see no reason why our main

message would not carry over to models with two-way fixed effects. The available results

on the behavior of the maximum-likelihood estimator of such models are more restrictive,

however, in that they impose additive or multiplicative restrictions on the way the fixed

effects enter the likelihood; see Fernández-Val and Weidner (2016) for bias expressions (and

corrections) in such a setting. In the same way, two-step estimators such as those considered

by Fernández-Val and Vella (2011) (to deal with, e.g., the issue of sample selection) should

also be amenable to bootstrapping.

Appendix

Proof of Theorem 1. Note that

P
(

sup
a

∣∣P∗(√nm(ϕ̂∗ − ϕ̂) ≤ a)− P(
√
nm(ϕ̂− ϕ0) ≤ a)

∣∣ > ε

)
is bounded from above by

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ(
√
nm(ϕ̂− ϕ) ≤ a)

∣∣ > ε

)
which, in turn, is below

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ(√nm(ϕ̂ − ϕ) ≤ a)− Pθ(vθ ≤ a)
∣∣ > ε

2

)
+ sup

θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ(vθ ≤ a)
∣∣ > ε

2

)
.

(A.1)
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Here and later, we let

vθ ∼ N(γβθ, Σθ)

for βθ and Σθ the asymptotic bias and asymptotic variance of the maximum-likelihood

estimator for data generated with parameter θ. Therefore, it suffices to show that each of

the terms in (A.1) is o(1).

In the supplement we show that

sup
θ∈Θ1

∣∣Pθ(√nm(ϕ̂ − ϕ) ≤ a)− Pθ(vθ ≤ a)
∣∣ = o(1)

for any a. Further, because the normal distribution is a continuous function, we have that

sup
θ∈Θ1

(
sup
a

∣∣Pθ(√nm(ϕ̂ − ϕ) ≤ a)− Pθ(vθ ≤ a)
∣∣) = o(1) (A.2)

by Polya’s theorem. This allows us to invoke Lemma A.1 of Andrews (2005) to establish

that

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ(√nm(ϕ̂ − ϕ) ≤ a)− Pθ(vθ ≤ a)
∣∣ > ε

2

)
= o(1).

This handles the first term in (A.1).

Moving on to the second term in (A.1), note that

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ(vθ ≤ a)
∣∣ > ε

2

)
≤ sup

θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ̂(vθ̂ ≤ a)
∣∣ > ε

4

)
+ sup

θ∈Θ0

Pθ
(

sup
a
|Pθ̂(vθ̂ ≤ a)− Pθ(vθ ≤ a)| > ε

4

)
.

Here, using (A.2), coupled with the consistency result

sup
θ∈Θ1

P(‖θ̂ − θ‖2 > ε) = o(1) (A.3)

(which follows from Theorem 1 of Kim and Sun 2016), by another application of Lemma

A.1 of Andrews (2005),

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ̂(vθ̂ ≤ a)
∣∣ > ε

4

)
= o(1)
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while, again using (A.3),

sup
θ∈Θ0

Pθ
(

sup
a
|Pθ̂(vθ̂ ≤ a)− Pθ(vθ ≤ a)| > ε

4

)
= o(1)

follows from the continuous mapping theorem. This takes care of the second term in (A.1)

and completes the proof of the theorem.

Proof of Theorem 2. We introduce the notational shorthand

Vit :=

 V 11
it V 12

it

V 21
it V 22

it

 =

 ∂2`(ϕ,ηi|zit)
∂ϕ∂ϕ′

∂2`(ϕ,ηi|zit)
∂ϕ∂η′i

∂2`(ϕ,ηi|zit)
∂ηi∂ϕ′

∂2`(ϕ,ηi|zit)
∂ηi∂η′i

 ,

where the derivatives are evaluated at the parameter values that were used to generate the

data. In the same manner, we write the plug-in estimator constructed using ϕ̂, η̂i as V̂it.

Then

Ωnm,θ = − 1

nm

n∑
i=1

m∑
t=1

Eθ(V 11
it )−

(
1

m

m∑
t=1

Eθ(V 12
it )

)(
1

m

m∑
t=1

Eθ(V 22
it )

)−1

Eθ(V 21
it )

 ,

and its plug-in estimator is

Ω̂nm,θ := − 1

n

n∑
i=1

 1

m

m∑
t=1

V̂ 11
it −

(
1

m

m∑
t=1

V̂ 12
it

)(
1

m

m∑
t=1

V̂ 22
it

)−1
1

m

m∑
t=1

V̂ 21
it

 .

To show Theorem 2 it suffices to establish that, for all ε > 0,

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 11
it − Eθ(V 11

it ))

∥∥∥∥∥
2

> ε

)
= o(1),

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 12
it − Eθ(V 12

it ))

∥∥∥∥∥
2

> ε

)
= o(1),

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 22
it − Eθ(V 22

it ))

∥∥∥∥∥
2

> ε

)
= o(1).

We can then use Lemma A.1 of Andrews (2005) to verify the consistency of both Σ̂ and

Σ̂∗ as stated in the theorem. The proof for each of the four terms is similar and so we only

provide details for the first of them.
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To begin we note that

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 11
it − Eθ(V 11

it ))

∥∥∥∥∥
2

> ε

)
is bounded from above by

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 11
it − V 11

it )

∥∥∥∥∥
2

>
ε

2

)
+sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V 11
it − Eθ(V 11

it ))

∥∥∥∥∥
2

>
ε

2

)
.

To deal with the first of these terms let Ṽ 111
it be the vector that collects all third-order

derivatives with respect to ϕ and let Ṽ 112
it denote derivatives with respect to ϕ (twice) and

ηi. The tilde is used to indicate that these derivatives are evaluated at values (ϕ̃, η̃i) that

(elementwise) lie between (ϕ̂, η̂i) and (ϕ, ηi). A mean-value expansion around (ϕ, ηi) yields∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 11
it − V 11

it )

∥∥∥∥∥
2

≤ 1

m

m∑
t=1

∥∥∥V̂ 11
it − V 11

it

∥∥∥
2

≤ 1

m

m∑
t=1

∥∥∥Ṽ 111
it

∥∥∥
2
‖ϕ̂− ϕ‖2 +

1

m

m∑
t=1

∥∥∥Ṽ 112
it

∥∥∥
2
‖η̂i − ηi‖2

≤ 1

m

m∑
t=1

∥∥∥Ṽ 111
it

∥∥∥
1
‖ϕ̂− ϕ‖2 +

1

m

m∑
t=1

∥∥∥Ṽ 112
it

∥∥∥
1
‖η̂i − ηi‖2.

The uniform bound on the derivatives in Assumption 3(ii) implies that

1

m

m∑
t=1

∥∥∥Ṽ 111
it

∥∥∥
1
.

1

m

m∑
t=1

b(zit),

1

m

m∑
t=1

∥∥∥Ṽ 112
it

∥∥∥
1
.

1

m

m∑
t=1

b(zit),

where A . B indicates that there exists a finite constant c such that A ≤ cB. Therefore,

max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 11
it − V 11

it )

∥∥∥∥∥
2

.

(
max
1≤i≤n

1

m

m∑
t=1

b(zit)

) (
‖ϕ̂− ϕ‖2 + max

1≤i≤n
‖η̂i − ηi‖2

)
.

Now, the mixing conditions in Assumption 2 and the moment conditions on the bounding

function b in Assumption 3(iii) imply that

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∣∣∣∣∣ 1

m

m∑
t=1

(b(zit)− Eθ(b(zit)))

∣∣∣∣∣ > ε

)
= o(1)
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by an application of Lemma 1 of Hahn and Kuersteiner (2011) (which is easily extended to

our setting; see the supplement). Also, 1/m
∑m

t=1 Eθ(b(zit)) converges to its limit uniformly

over Θ1 by Assumption 3(iv). At the same time, by Theorem 1 in Kim and Sun (2016) we

have that

sup
θ∈Θ1

Pθ (‖ϕ̂− ϕ‖2 > ε) = o(1), sup
θ∈Θ1

Pθ
(

max
1≤i≤n

‖η̂i − ηi‖2 > ε

)
= o(1).

Taken together these results yield

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 11
it − V 11

it )

∥∥∥∥∥
2

>
ε

2

)
= o(1)

follows. Next, again by Assumptions 2 and 3, an application of (a uniform version of)

Lemma 3 of Hahn and Kuersteiner (2011) (see the supplement) gives

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V 11
it − Eθ(V 11

it ))

∥∥∥∥∥
2

>
ε

2

)
= o(1).

Hence,

sup
θ∈Θ1

Pθ

(
max
1≤i≤n

∥∥∥∥∥ 1

m

m∑
t=1

(V̂ 11
it − Eθ(V 11

it ))

∥∥∥∥∥
2

> ε

)
= o(1),

and the proof is complete.
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