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Abstract

We estimate a nonlinear VAR to quantify the responses of output, consump-
tion, investment, and hours to a financial uncertainty shock in booms and busts
in the post-WWII U.S. data. We find evidence of comovements both in expan-
sions and in recessions, with stronger responses of all real activity indicators in
the latter state. We interpret this state-dependent responses with a version of
the Basu and Bundick (2017) model in which an uncertainty shock conceptually
comparable to the one used in our VAR analysis generates comovements in real
activity. A state-contingent estimation of this model conducted via Bayesian di-
rect inference points to counter-cyclical risk aversion as the crucial ingredient to
replicate the evidence produced with our nonlinear IVAR. An exercise focusing on
the great recession suggests that the nonlinear DSGE model is able to replicate
about 50% of the cumulative output loss in the 2009-2014 period, twice as much
what the same model would predict if estimated conditional on a linear VAR.
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1 Introduction

The great recession has revamped the attention on the role played by fluctuations in

uncertainty as a possible driver of the U.S. business cycle. Table 1 documents the

correlations between financial volatility, a proxy for uncertainty widely employed in the

literature, and four indicators of real activity, i.e., output, consumption, investment,

and hours per capita, all expressed in quarterly growth rates. These correlations

are negative, i.e., uncertainty is countercyclical, a well known fact (see, e.g.., Bloom

(2014)). Interestingly, such correlations are two- to six-time larger when one focuses on

observations corresponding to NBER recessions as opposed to expansions, a fact robust

to excluding the zero lower bound period from the sample.

This paper offers a structural interpretation to these correlations. We do so by

proceeding in two steps. First, we show that the real effects of uncertainty shocks are

stronger in recessions by estimating a nonlinear interacted vector autoregressive (IVAR)

model with post-WWII U.S. quarterly data. A jump in uncertainty of the same size

in the two phases of the business cycle is associated to a peak response of output in

recessions 50% larger than in expansions, and to a response of investment and hours

twice as large. Second, we estimate a version of the Basu and Bundick (2017) model

with the Bayesian minimum-distance direct inference approach developed by Christiano

et al. (2011) by considering as facts the impulse responses produced with our nonlinear

VAR. This strategy, which allows us to estimate the nonlinear DSGE framework in

a state-dependent fashion, is designed to identify the crucial parameter instabilities

one needs to allow to replicate the IVAR asymmetric responses of real activity to an

uncertainty shock. We find the estimated DSGE model to be able to replicate the

documented facts in both states of the business cycle. While our strategy allow us to

estimate a large vector of structural parameters, counter-cyclical risk aversion arises

as the necessary and suffi cient a model needs to possess to match the facts. This

finding supports the idea of working with a state-specific calibration of the risk aversion

parameter to correctly quantify the role played by uncertainty shocks in explaining the

fluctuations of U.S. real activity.

We then push our investigation further and scrutinize how the "risk-aversion only"

story fares when it comes to replicating an extreme event in our sample such as the great

recession. Exploiting the flexibility of our nonlinear IVAR framework, we first move

from states to dates and document the time-varying response of output, consumption,

investment, and hours to an uncertainty shock. The global peak response of all four
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real activity indicators is found to occur during the great recession, with values that are

between two and three times as large as those estimated with a linear VAR framework.

We then re-estimate the nonlinear DSGE framework conditional on the IVAR responses

produced when focusing on the effects of an uncertainty shock in 2008Q4, which is the

quarter associated to the highest realization of the uncertainty shock in our sample.

We find a combination of a high degree of risk aversion and a moderately inertial, weak

policy response to inflation to be suffi cient for replicating our IVAR responses. We then

use our estimated DSGE model to compute the contribution of an uncertainty shock

in 2008Q4 to the loss of output registered during and after the great recession. We

find such model to be able to explain about 1/2 of the total output loss in 2008-2014.

By contrast, the very same DSGE model estimated conditional on impulse responses

produced with a standard linear VAR explains just about 1/4 of the total output loss.

This result clearly speaks in favor of using correctly calibrated structural frameworks

for replicating the facts and, ultimately, for conducting policy analysis.

Our paper relates to different but interconnected strands of the literature. The

identification of uncertainty shocks is achieved by focusing on financial uncertainty,

which has previously been singled out as a possible driver of the US business cycle

(Bloom (2009), Ludvigson, Ma, and Ng (2017)). Methodologically, we use a nonlinear

IVAR model to establish novel facts regarding the different intensity of comovements

along the business cycle. IVAR model have increasingly been exploited to study the

nonlinear effects of macroeconomic shocks other than uncertainty shocks (Towbin and

Weber (2013), Sá, Towbin, and Wieladek (2014), Aastveit, Natvik, and Sola (2017)).

Caggiano, Castelnuovo, and Pellegrino (2017) employ IVARs to investigate the link be-

tween uncertainty shocks and the stance of systematic policy. With respect to them,

we focus on the stance of the business cycle and document the nonlinear effects of

uncertainty shocks in recessions and expansions. In computing our impulse responses,

we follow Pellegrino (2017a,b) and Caggiano, Castelnuovo, and Pellegrino (2017) and

allow both uncertainty and real activity - i.e., the interaction terms in our nonlinear

VAR - to endogenously evolve after an uncertainty shock. This modeling feature is

highly desirable in light of the well-documented interactions between uncertainty and

the business cycle that can occur after an uncertainty shock (Jurado, Ludvigson, and

Ng (2015), Ludvigson, Ma, and Ng (2017)). Our IVAR-related findings, which point to

more severe consequences for output, investment, consumption, and hours when uncer-

tainty shocks hit in recessions, complement those documented with alternative nonlin-

ear frameworks and related to unemployment (Caggiano, Castelnuovo, and Groshenny
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(2014), Caggiano, Castelnuovo, and Figueres (2017)) and industrial production and

employment (Caggiano, Castelnuovo, and Nodari (2017)), or obtained with indicators

correlated with the business cycle like financial stress (Alessandri and Mumtaz (2014)).

Turning to the DSGE-based part of the analysis, nonlinear frameworks have re-

cently been shown to be able to generate comovements in real activity in response

to uncertainty shocks. Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramírez, and

Uribe (2011) and Born and Pfeifer (2014b) investigate the real effects of a second

moment shock to the world real interest rate for Argentina, Brazil, Ecuador, and

Venezuela. Turning to the U.S., Fernández-Villaverde, Guerrón-Quintana, Kuester,

and Rubio-Ramírez (2015) study the role of fiscal policy uncertainty; Born and Pfeifer

(2014a) quantify the relevance of policy risk; Born and Pfeifer (2017) investigate the role

of second moment shocks to technology and fiscal spending; Drautzburg, Fernández-

Villaverde, and Guerrón-Quintana (2017) investigate the role of political distribution

risks; Basu and Bundick (2017) show that a demand uncertainty shock which can be

interpreted as a negative financial uncertainty shock triggers a negative response of real

activity indicators. Our decision of working with a version of the last framework is jus-

tified by the presence, in such model, of a formally precise definition of implied financial

volatility which can be meaningfully matched to the one we employ in our IVAR analy-

sis. We exploit this match to estimate the third-order approximation of the DSGE

model via the Bayesian impulse response function matching proposed by Christiano,

Trabandt, and Walentin (2011). This novel empirical strategy enables us to estimate

the nonlinear DSGE model we work with in a state-dependent fashion, something we

do in order to unveil instabilities at a structural level which are needed to track the

dynamic response of real activity in booms and busts.1 Our approach represents an

alternative to the GMM/SMM-based methodology recently developed by Andreasen,

Fernández-Villaverde, and Rubio-Ramírez (2017), who rely on moments simulated with

a pruned version of the third-order approximation of a DSGE model. The common

characteristic of these two approaches is that they solve the nonlinear DSGE frame-

work by appealing to perturbation, developed by Schmitt-Grohe and Uribe (2004) and

Andreasen (2012) and shown to be particularly effi cient against alternatives - such

1Castelnuovo and Pellegrino (2017) perform a similar exercise by working with Bayesian impulse
response function matching in order to assess the performance of some medium-scale DSGE frameworks
in presence of high/low uncertainty. Crucially, they work with linearized models, while this paper
estimates a truly nonlinear DSGE framework in a state-dependent fashion. At least a third-order
approximation of the model is required to study the effects of a time-varying uncertainty shock in a
structural framework.
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as value function iteration or projection - by Caldara, Fernández-Villaverde, Rubio-

Ramírez, and Yao (2012). Methodologically, the closest approach to ours is probably

the one by Ruge-Murcia (2017), who estimates a small-scale third-order approximated

DSGE model with an impulse-response matching procedure based on a class of non-

linear VAR models as an auxiliary model for the purpose of indirect inference via a

classical minimum distance estimator. In doing so, he imposes the perturbation solu-

tion on the nonlinear DSGE model on the nonlinear VAR framework to approximate as

closely as possible the DSGE-related policy functions. His approach, which is extremely

neat, becomes diffi cult to implement when one works with models with several states.

Our novel estimation strategy easily accommodates large state spaces.

The paper develops as follows. Section 2 presents the non-linear VAR model em-

ployed and presents results on the business cycle-dependent consequences of uncertainty

shocks from this relatively unrestricted framework. Section 3 briefly presents the Basu

and Bundick (2011) model, describes the econometric strategy adopted to estimate the

DSGE model and discusses the regime-dependent estimation results found with a focus

on the sources of the different transmission mechanism of uncertainty shocks between

recessions and expansions. Section 4 quantifies the performance of our empirical frame-

work as regards the negative effects of the large uncertainty shock happened at the

onset of the great recession. Section 5 concludes. An Appendix available upon request

reports additional results, the algorithm for the computation of the generalized impulse

response functions and the relevant derivation for a version of the Basu and Bundick

model extended to consider external habits in consumption.

2 Uncertainty-driven comovements: Empirical evi-
dence

2.1 Nonlinear empirical methodology

The IVAR is a nonlinear framework which augments a standard linear VAR model with

interaction terms to determine how the effects of a shock to a variable depend on the

level of another variable. Following Pellegrino (2017a,b) and Caggiano, Castelnuovo,

and Pellegrino (2017), we focus on a parsimonious IVAR to maximize the available

degrees of freedom while capturing the nonlinearity of interest.

Our IVAR is the following:
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Yt = α+

L∑
j=1

AjYt−j +

[
L∑
j=1

cj lnV XOt−j ×∆ lnGDPt−j

]
+ ut (1)

where Yt is the (n× 1) vector of the endogenous variables, α is the (n× 1) vector

of constant terms, Aj are (n× n) matrices of coeffi cients, and ut is the (n× 1) vector

of error terms whose variance-covariance (VCV) matrix is Ω. The interaction term in

brackets makes an otherwise standard VAR a non-linear IVAR model. Per each lag,

such interaction term includes a (n×1) vector of coeffi cients cj, a measure of uncertainty

lnV XOt, and an indicator of the business cycle ∆ lnGDPt−j, which is the quarter-on-

quarter growth rate of real GDP. The interaction term lnV XOt−j×∆ lnGDPt−j enables

us to capture the potentially state-contingent effects of a shock to lnV XOt−j (i.e., an

uncertainty shock) conditional on the state of the business cycle, which is proxied by the

growth rate of real GDP. Alternatives to IVAR frameworks are available to capture the

nonlinear effects of macroeconomic shocks (for a recent survey, see Teräsvirta (2017)).

We prefer to employ the above formalized IVAR framework for three reasons. First,

it closely resembles the approximated nonlinear policy functions of nonlinear DSGE

frameworks we work with.2 Second, it naturally focuses on nonlinearities related to the

business cycle, which is the research question under scrutiny. Third, it does not feature

nuisance parameters, which are often diffi cult to estimate in nonlinear frameworks.3

We model the vector Yt = [lnV XO, lnGDP, lnC, ln I, lnH, lnP, FFR]
′
, where

V XO denotes the stock market S&P 100 implied volatility index, GDP per capita

GDP, C per capita consumption, I per capita investment, H per capita hours worked,

P the price level, and FFR the federal funds rate.4 Uncertainty shocks are identified via

a Cholesky decomposition of the reduced-form VCV matrix Ω, with the VXO ordered

first. This assumption implies that the VXO does not contemporaneously respond to

first moment shocks like, e.g., technology and preference shocks. Importantly, this as-

sumption is in line with the predictions of Basu and Bundick’s model. In fact, while

being technically endogenous, the VXO in their model is almost exclusively explained

2Such nonlinear policy functions typically feature different, higher order interaction terms. We
focus on terms featuring uncertainty and the real GDP growth because of our interest in the nonlinear
effects to uncertainty shocks along the business cycle. Simulations conducted with higher order terms
deliver even stronger empirical results in favor of such nonlinear effects. Appendix A documents the
state-dependent impulse responses obtained with a framework involving a higher number of terms.

3Notice that IVARs featuring interactions terms resemble approximated Smooth Transition VAR
frameworks (Teräsvirta, Tjøstheim, and Granger (2010)).

4The vector closely resembles the one used by Basu and Bundick (2017) in their linear VAR analysis,
which also features the presence of money. Adding money implies no changes in our empirical results.
The definition and construction of the variables is exactly the same as in Basu and Bundick (2017).
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by second moment preference shocks, i.e., uncertainty shocks. Non surprisingly, an ex-

ercise conducted by simulating data with the Basu and Bundick model and estimating

a VAR framework on such simulated data with shocks identified as described above

returns VAR impulse responses which perfectly replicate those produced by the DSGE

model. Appendix B documents this result, which enables use to estimate the parame-

ters of the Basu and Bundick model with a direct inference approach (explained below).

Appendix B also documents the correlation between second moment preference shocks

and the model consistent VXO in the Basu and Bundick model, which confirms that

the latter is clearly driven by the former.

We estimate an IVAR model with four lags over the 1962Q3-2017Q2 sample. Given

that the VXO is unavailable before 1986, we follow Bloom (2009) and splice it with the

within-month volatility of S&P500 daily returns, which has displayed an extremely high

correlation with the VXO since 1986. The sample includes the zero lower bound period

experienced by the Federal Reserve during the period 2008Q4-2015Q4. Appendix C

shows that our results are robust to the employment of the shadow rate constructed by

Wu and Xia (2016).

A standard likelihood-ratio test favors our IVAR specification against the Basu and

Bundick’s (2016) linear VAR model (which is nested in our IVAR model in case of the

overall exclusion of the interaction terms from model (1)). In particular, the LR test
suggests a value for the test statistic χ28 = 60.16, which allows us to reject the null

hypothesis of linearity at any conventional statistical level in favor of the alternative of

our I-VAR model.

The interaction term of our IVAR is treated as an endogenous object. We compute

GIRFs à la Koop et al. (1996) to account for both the endogenous reaction of the

growth rate of per capita GDP, i.e. our conditioning variable, to the uncertainty shock

and the feedback this reaction can imply on the dynamics of the economy. GIRFs

acknowledge the fact that, in a fully nonlinear model, responses depend on the sign

of the shock, the size of the shock, and initial conditions. Theoretically, the GIRF at

horizon h of the vectorYt to a shock of size δ computed conditional on an initial history

$t−1 = {Yt−1, ...,Yt−L} is given by the following difference of conditional expectations:

GIRFY,t(h, δt, $t−1) = E [Yt+h | δ,$t−1]− E [Yt+h | $t−1] .

Along with this history-conditional GIRF, thanks to which we can recover one em-

pirical response for each quarter in our sample, one can also define some states so that

to recover state-conditional GIRFs summarizing the average evidence for a given state.
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We will use this latter approach with the purpose of comparing IVAR-based responses

with DSGE-based responses, something clarified later on. In computing our GIRFs,

we focus on "extreme events", i.e., deep recessions (strong expansions) characterized

by initial conditions associated to realizations of the real GDP growth rate belonging

to the first (tenth) decile of the empirical distribution. We do so in order to minimize

the risk of confounding recessions and expansions, a risk one incurs when considering

initial conditions which are too close to the sample mean of the conditioning vari-

able (which is, the growth rate of real GDP) (Ferrara (2003)). Papers adopting this

logic when studying the nonlinear effects of fiscal spending shocks, see Auerbach and

Gorodnichenko (2012) and Caggiano, Castelnuovo, Colombo, and Nodari (2015), while

Caggiano, Castelnuovo, and Groshenny (2014) follow the same strategy to study the

response of unemployment to uncertainty shocks in recessions. The GIRF conditional

on a given state is computed by simulating the system starting from the average initial

condition across the histories linked to the state, i.e., starting from the unconditional

mean of each state. Conditional on being in a regime, this method is consistent with

the way responses are usually computed for a nonlinear DSGE model, i.e. by simulating

the model starting from the ergodic mean. Appendix D describes the algorithm used

to compute the GIRFs.

2.2 Empirical results

Figure 1 plots the generalized impulse responses computed with our IVAR approach. A

few facts stand out. First, there is evidence in favor of uncertainty-driven comovements

in both states. Hence, one needs to use DSGE models able to generate comovement in

response to an uncertainty shock no matter what the state of the economic system is.

Second, the response of real activity is larger in recessions than in expansions, a fact

implying that the statistical evidence in favor of the use of a nonlinear VAR implies

an economically relevant difference when it comes to quantifying the reaction of real

activity along the business cycle to an equally sized uncertainty shock. To fix ideas about

this point, Table 2 collects figures regarding the peak (i.e., maximum, in absolute value)

responses produced with our nonlinear VAR. The peak response of output in recessions

is about 50% larger than in expansions. The same holds as regards consumption, whose

peak reaction is 36% larger in contractions, and even more so for investment and hours,

whose peak responses is more than twice as large. Third, the larger strength of the

response in recessions regards the entire path of the short-run response of real activity
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after an uncertainty shock, and not only its peak reaction. Fourth, the synchronization

of real activity indicators in response to an uncertainty shock differs between the two

phases of the business cycle, with investment and hours reacting - in relative terms with

respect to output - about 40% and 50% more in recessions than in expansions. Finally,

the response of the policy rate is negative and persistent in both states of the business

cycle, while that of the price level is not, i.e., the price level persistently decreases in

recessions but increases in expansions.

Are these responses actually different from a statistical standpoint? Figure 2 shows

the one standard deviation confidence bands of differences between the reactions in

recessions and in expansions.5 As evident from the figure, the responses of output,

investment, and hours are significantly larger in recessions, an evidence which offers

statistical support to the comovement-related facts motivated above. The reaction of

consumption is only borderline significant, with the mass of the distribution which

however hints to a larger response in recessions. Finally, also the response of the price

level and the nominal interest rate is found to be significantly different in recessions.6

Overall, these results point to an economically and significantly stronger response of

real activity to an uncertainty shock. This fact calls for the use of a structural model,

something we do in the next Section.

3 Uncertainty-driven comovements: A structural
interpretation

3.1 DSGE model: Description

The Basu and Bundick (2017) model extends an otherwise standard New Keynesian

model to consider an ex-ante second moment shock in the preference shock process,

which can be interpreted as a demand-side uncertainty shock. Households work, con-

5Per each variable, the figure is based on the distribution stemming from 1,000 differences between
responses in recessions and responses in expansions. Such responses are generated from 1,000 samples
obtained via the standard residual-based bootstrap, computing - per each of such samples - the corre-
sponding state-conditional GIRFs in recessions and expansions, and taking the difference between the
latter and the former. The 16th and 84th percentiles of each density are then reported. The construc-
tion of the test statistic takes into account the correlation between the estimated impulse responses.
Given the equal size of the shock in the two states per each given draw, the differences take - by
construction - an on-impact zero value.

6These results are robust to the use of a recursive-design wild bootstrap (based on a Rademacher
distribution) which is robust to possible conditional heteroskedasticity of unknown form (see Goncalves
and Kilian (2004) for the proposal, and Kilian (2009) and Mertens and Ravn (2014) as examples of
applications).
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sume, and invest in equity shares and one-period risk-free bonds. Households are all

similar and are indexed with j ∈ [0, 1]. They feature Epstein-Zin preferences over

streams of consumption and leisure, formalized as follows:

Vt(j ) = [at(
(
Ct(j )−HC

t (j )
)η

(1−Nt(j ))
(1−η))(1−σ)/θV + β(EtV

1−σ
t+1 (j ))1/θV ]θV /(1−σ)

where Ct(j) is household j’s consumption, HC
t (j) is the habit level for consumption

which is assumed to be external and to follow the lagged aggregate consumption level

in the form HC
t (j) = bCt−1, Nt(j) is household j’ s hours worked, β is the discount

factor, σ measures the degree of risk aversion, ψ is the intertemporal elasticity of sub-

stitution, θV ≡ (1− σ)/(1− ψ−1)−1 captures households’preferences for the resolution
of uncertainty, η weights consumption and labor in households’happiness function, and

at is a stochastic shifter influencing the relevance of today’s realizations of consumption

and labor vs. those expected to occur during the next period. The stochastic process

followed by this preference shock is:

at = (1− ρa)a+ ρaat−1 + σat−1ε
a
t

σat = (1− ρσa)σa + ρσaσ
a
t−1 + σσ

a

εσ
a

t

where εat is the first-moment preference shock, and ε
σa

t is a second-moment uncer-

tainty shock to the preference process which loads the law of motion regulating the

evolution of the time-varying second moment σat relative to the distribution of ε
a
t .
7

The original framework by Basu and Bundick (2017) is modified to allow for (external)

habit formation in consumption. We do so to capture the hump-shaped response of

consumption in the data. Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017)

also jointly model Epstein-Zin preferences and habits in consumption in order to match

macro-finance facts (see Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramírez

7Epstein-Zin preferences written in this way imply a direct impact of the uncertainty shock on the
current utility level only. This way of writing such preferences is not uncommon, see, on top of Basu and
Bundick (2017), Albuquerque, Eichenbaum, Luo, and Rebelo (2016), Andreasen, Fernández-Villaverde,
and Rubio-Ramírez (2017). A note recently circulated by de Groot, Richter, and Throckmorton (2017)
shows that these preferences imply a response of real activity indicators to an uncertainty shock which
is discontinuous over the set of values the intertemporal elasticity of substitution ψ can take. When
ψ = 1, the reaction of real activity is not defined, while values of ψ below (above) one are consistent with
a negative (positive) response of real activity. While acknowledging the intellectually stimulating point
made by de Groot, Richter, and Throckmorton (2017), we stress here that our paper is an empirical
contribution whose aim is that of replicating the negative response of real activity to an uncertainty
shock with an estimated model. In this sense, we see no clash with the findings in de Groot, Richter,
and Throckmorton (2017).
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(2012) and Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017), respectively,

for the importance of Epstein-Zin preferences and habits in consumption in this regard

in the context of New Keynesian models).

Intermediate goods producers rent labor from households, pay wages, and produce

intermediate goods in a monopolistically competitive framework. They own capital and

choose its utilization rate, issue equity shares and one-period riskless bonds, and invest

in physical capital to maximize the discounted stream of their profits. In doing so,

they face quadratic costs of adjusting nominal prices à la Rotemberg (1982), capital

adjustment costs à la Jermann (1998) and capital utilization costs influencing the cap-

ital depreciation rate.8 All intermediate firms have the same Cobb-Douglas production

function, and are subject to a fixed cost of production and stationary technology shocks.

Intermediate goods are packed by a representative final goods producer operating in a

perfectly competitive market. The model is closed by assuming that the central bank

follows a standard Taylor rule.

As anticipated above, the model features a well-defined implied volatility concept.

This is due to the fact that intermediate firms issue equity shares on top of one-period

riskless bonds.9 Each equity share has a price PE
t and pays dividends DE

t , implying a

one-period return RE
t+1 =

(
PE
t+1 +DE

t+1

)
/PE

t . The model-implied financial uncertainty

index V M
t is computed as the annualized expected volatility of equity returns, i.e.,

V M
t = 100 ·

√
4 · V ARt

(
RE
t+1

)
, where V ARt

(
RE
t+1

)
is the quarterly conditional variance

of the return on equity RE
t+1. Equity returns are endogenous in the model, which makes

V M
t endogenous too. However, it can be shown that, in this model, V M

t is almost entirely

driven by second-moment preference shocks. This enables us to treat the uncertainty

shock as a financial uncertainty shock proxied by V M
t , which has a clear empirical

counterpart and which enable us to exploit the facts established in the previous Section

to estimate the model.

In this framework, an uncertainty shock propagates to the economy via precaution-

ary savings and precautionary labor supply. The former effect reduces current consump-

8Given that adjustment costs are convex, this model does not imply a "wait-and-see" effect after
an uncertainty shock. To solve the model, we use perturbation methods which require policy functions
to be differentiable, a feature which is not possessed by threshold policy functions arising in presence
of real option effects.

9Basu and Bundick (2017) assume that firms finance a share ν of their capital stock each period
with one-period riskless bonds. Given that the Modigliani-Miller theorem holds in their model, leverage
does neither influence firms’value nor firms’optimal decisions. Firms’leverage only influences the first
two unconditional moments of financial-related quantities (e.g., the average level and unconditional
volatility of the model-implied VXO and the equity premium), but it does not influences impulse
responses to an uncertainty shock.
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tion in response to an increase in uncertainty, while the latter increases labor supply,

which drives real wages and firms’marginal costs down. Given that prices are sticky,

the price mark up increases. Output, which is demand-driven in this model, falls due

to the drop in consumption, and labor demand contracts driving hours down. Given

the lower return on capital, investment falls too. Hence, in equilibrium, an increase in

uncertainty causes a drop in all four real activity indicators, i.e., output, consumption,

investment, and hours, which is what we observe in the data.

We work with a third-order approximation of the nonlinear framework, which we

solve via perturbation techniques (Schmitt-Grohe and Uribe (2004)). The third order

approximation of agents’ decision rules feature an independent role for uncertainty,

whose independent effect on the equilibrium values of the endogenous variables of the

framework can therefore be studied (Andreasen (2012)). Perturbation represents an

accurate and fast way to find a solution also working with frameworks featuring recursive

preferences (Caldara, Fernández-Villaverde, Rubio-Ramírez, and Yao (2012)).

3.2 Minimum-distance estimation strategy

We estimate Basu and Bundick’s (2017) model via an impulse response function-matching

approach, i.e., we choose the values of the structural parameters of the DSGE model

which minimize a measure of the distance between our IVAR impulse responses, which

are interpreted as "data", and the DSGE model-based ones. Following Christiano,

Trabandt, and Walentin (2011), we employ a Bayesian approach via which we impose

economically sensible prior densities on the structural parameters while asking the data

to shape the posterior density of the estimated model. With respect to Christiano et

al. (2011), who focus on a linearized DSGE framework and a linear VAR as auxiliary

model, we estimate a nonlinear DSGE framework approximated at a third order with

moments produced with an Interacted VAR.10

The state-dependent Bayesian minimum distance estimator works as follows. Denote

by ψ̂i the vector in which we stack the I-VAR estimated generalized impulse responses

over a 20-quarter horizon to an uncertainty shock for regime i = 1, 2 (for us the responses

10One way of interpreting this exercise is to think of a regime-switching time of estimation in which
we allow the parameters of the nonlinear DSGE model to be state-dependent. Bianchi and Melosi
(2017) formally model policy-related uncertainty with a regime-switching approach which allows agent
to formulate a prediction over future regime switches in an empirical framework where the DSGE
model is a linearized framework within each state. A challenge for future research is how to conduct
such an exercise with a nonlinear DSGE model like the one we work with.
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displayed in figure 2).11 When the number of observations per each regime ni is large,

standard asymptotic theory suggests that

ψ̂i a∼ N(ψ
(
ζi0
)
,Vi(ζi0, n

i)), for i = 1, 2 (2)

where ζi0 denotes the true vector of structural parameters that we estimate (i = 1, 2)

and ψ
(
ζi
)
denotes the model-implied mapping from a vector of parameters to the

analog impulse responses in ψ̂i.

As already explained earlier, the IVAR GIRFs ψ̂i conditional on a given state i are

computed by iterating forward the system starting from the average initial condition

across the histories linked to the state, i.e., starting from the unconditional mean of each

state. As regards the DSGE model-related responses per each given set of parameter

values ψ
(
ζi
)
, we compute them by iterating forward the approximated solution of the

DSGE model starting from the (state-specific in our case) simulated stochastic steady

state.12 Both DSGE-based and VAR-based impulse responses are interpreted as percent

deviations of variables induced by an uncertainty shock, with the exception — in our

case —of the interest rate response which would be measured in percentage points terms

as implied from the VAR specification.

To compute the posterior density for ζi given ψ̂i using Bayes’rule, we first need to

compute the likelihood of ψ̂i conditional on ζi. Given (2), the approximate likelihood

of ψ̂i as a function of ζi reads as follows:

f(ψ̂i|ζi) =

(
1

2π

)Ni

2 ∣∣Vi(ζi0, n
i)
∣∣− 1

2×exp

[
−1

2

(
ψ̂i −ψ

(
ζi
))′

Vi(ζi0, n
i)−1

(
ψ̂i −ψ

(
ζi
))]
(3)

11For a paper proposing information criteria to select the responses that produce consistent estimates
of the true but unknown structural parameters and those that are most informative about DSGE model
parameters, see Hall, Inoue, Nason, and Rossi (2012).
12Following Basu and Bundick (2017), we set the value of the exogenous processes to zero and

iterate forward until the model converges to its stochastic steady state. Then, we hit the model with
a one standard deviation uncertainty shock and compute impulse responses as the percent deviation
between the stochastic path followed by the endogenous variables and their stochastic steady state.
Given that no future shocks are considered, this way of computing GIRFs does not line up with Koop,
Pesaran and Potter’s (1996) algorithm. We do so to avoid simulating the model several times and
then integrate across all simulations, a procedure which would be very time consuming, above all
when combined with the MCMC algorithm we adopt for our Bayesian estimation. Basu and Bundick
(2017) show that the differences between these two ways of computing GIRFs are negligible with a
framework like theirs. We also verified that our IVAR GIRFs remained unchanged when future shocks
are not taken into account, something which augments the comparability between IVAR and DSGE
GIRFs. Analytical expressions for GIRFs produced with nonlinear models are available in Andreasen,
Fernández-Villaverde, and Rubio-Ramírez (2017).
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where N i denotes the number of elements in ψ̂i and Vi(ζi0, n
i) is treated as a fixed

value. We use a consistent estimator of Vi. Because of small sample-related consider-

ations, such estimator features only diagonal elements (see Christiano, Trabandt, and

Walentin (2011) and Guerron-Quintana, Inoue, and Kilian (2017)).13 In our case, Vi

is a regime-dependent diagonal matrix with the variances of the ψ̂i’s along the main

diagonal14. This choice is widely adopted in the literature and allows one to put more

weight in replicating VAR-based responses with relatively smaller confidence bands.

Treating eq. (3) as the likelihood function of ψ̂i , it follows that the Bayesian posterior

of ζi conditional on ψ̂i and Vi is:

f(ζi|ψ̂i) =
f(ψ̂i|ζi)p(ζi)

f(ψ̂i)
, (4)

where p(ζi) denotes the priors on ζi and f(ψ̂i) is the marginal density of ψ̂i. The

mode of the posterior distribution of ζi is computed by maximizing the value of the

numerator in 4. The posterior distribution of ζi is computed using a standard Markov

Chain Monte Carlo (MCMC) algorithm.

We estimate 8 structural parameters, i.e. ζi =
[
ρσa , σ, b, φK , φP , ρR, ρπ, ρy

]
. These

parameters are the persistence of the second moment preference shock ρσa, the house-

hold risk aversion parameter σ, the consumption habit formation parameter b, the

parameter regulating investment adjustment costs φK , the parameter regulating price

adjustment costs φP , and the parameters of the Taylor rule ρR, ρπ, ρy which - respec-

tively - capture the degree of interest rate smoothing and the systematic response to

inflation and output growth. Our priors are described in columns 3-4 of Table 3. We

calibrate our prior means with the parameters used in Basu and Bundick’s (2017) analy-

sis, and we use diffuse priors. For the habit formation parameter and the parameters

13Guerron-Quintana, Inoue, and Kilian (2017) studies the asymptotic theory for VAR-based impulse
response matching estimators of the structural parameters of linearized DSGE models when the number
of impulse responses exceeds the number of linear VAR model parameters. The number of impulse
responses in our analysis (140) is lower than the number of estimated coeffi cients of the VAR (251,
constants excluded). We are aware of no contributions studying the asymptotic theory for this estimator
when nonlinear frameworks are employed.
14Denoting by Ŵi the bootstrapped variance-covariance matrix of VAR-based impulse responses ψ̂

i

for regime i, i.e., 1
M

∑M
j=1(ψ

i
j − ψ̄

i
)(ψij − ψ̄

i
)′ (where ψij denotes the realization of ψ̂

i
in the jth (out

of M = 1000) bootstrap replication and ψ̄
i
denotes the mean of ψij), Vi is based on the diagonal

of this matrix. Notice that Vi contains the same variances that will be used to plot the confidence
intervals for the I-VAR responses in next Section. This is the same approach used in Altig, Christiano,
Eichenbaum, and Lindé (2011).
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of the Taylor rule, we use the same priors employed by Christiano et al. (2011).15 The

remaining parameters of the model are calibrated as in Basu and Bundick (2017). We

confine a discussion on the calibration of these parameters to Appendix E for the sake

of brevity.

3.3 Regime-specific estimation results

Our state-conditional model-based responses are reported in Figures 3 and 4 along with

the IVAR-based bootstrapped confidence bands.16 The model captures remarkably well

the unrestricted dynamics of the economy in both regimes. Most of the DSGE impulse

responses lie within the 68% confidence bands of the IVAR impulse responses. The

model is able to replicate the stronger responses of real variables during contractions

as well as the fact that their responses are longer-lived than responses in expansions.

While working well for output, consumption, and investment, a note on the response of

hours in recessions produced by the DSGE model is warranted. The model is able to

generate a persistent contractionary response in hours worked whose shape is the same

as the one produced by the IVAR framework. However, it falls short in replicating the

facts as regards the magnitude of the response, which is clearly underestimated. This

issue, which we share with Basu and Bundick (2017), may be due to various reasons.

First, as pointed out by Basu and Bundick (2017), the dynamics of hours worked in the

data during recessions is substantially influenced by low-productive types, which tend

to quickly exit the labor market and whose dynamics drive hours worked on aggregate.

By contrast, the model features a representative agent. Hence, by construction, it is

ill-suited to represent aggregate dynamics driven by heterogeneities in the labor mar-

ket. Second, the model predicts an expansions in precautionary labor supply which is

contrasted by the contraction of labor demand due to the weakened demand for goods.

A strong effect on hours by the expansion in labor supply makes the life of the model

hard when it comes to generating a contraction in the equilibrium level of hours. Third,

15Canova and Sala (2009) show that the use of priors can hide identification issues even in population
when it comes to estimating linearized DSGE frameworks. Given that we use priors common to the two
regimes we focus on, lack of identification would work against finding state-dependent parameter values.
We anticipate that our results point to differences in the parameter estimates between regimes. An
exercise dealing with identification issues in the estimation of nonlinear DSGE frameworks is material
for future research.
16Our bootstrapped confidence bands are based over 1,000 bootstrapped realizations for the impulse

responses, which are used to compute the bootstrapped estimate of the standard errors of the impulse
response functions. As in Altig, Christiano, Eichenbaum, and Lindé (2011), the confidence bands are
constructed by considering the point estimates of the impulse response ±1.64 times the bootstrapped
estimate of the standard errors.
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the labor market model in this framework features no relevant rigidities. Leduc and Liu

(2016) show that search frictions work in favor of magnifying the effects of uncertainty

shocks on labor market indicators. Our choice of working with a flexible labor mar-

ket makes our results more directly comparable to those in Basu and Bundick (2017).

Moreover, while falling short from a quantitative standpoint, the model is clearly able

to generate comovements involving also hours worked in recessions.

The overall good performance of the model can also be appreciated by looking at

Table 2, which compares the peak responses produced by the DSGE framework with

the data. The model is clearly able to generate a relatively strong response of all real

activity indicators in recessions with respect to expansions.

Turning to the nominal side, the performance of the model is admittedly less success-

ful. The response of prices is, in general, not well captured by the DSGE model. The

reason is that this model features an upward pricing bias (also present in other frame-

works, see Born and Pfeifer (2014a), Fernández-Villaverde, Guerrón-Quintana, Kuester,

and Rubio-Ramírez (2015), and Mumtaz and Theodoridis (2016)). This upward pricing

bias, which relates to the uncertainty over future profits faced by entrepreneurs when

setting their prices, contrasts the price effects of the contraction in real activity. Con-

sequently, the model response of the federal funds rate is also milder than in the data.

However, the lack of adherence of the model with the facts does not prevent the DSGE

framework to replicate the generalized fall in real activity after an uncertainty shock in

the two states of interest, which is what we focus on in this paper.

Table 3 (last two columns) collects the estimated parameters of the DSGE model

for both regimes. In spite of sharing the same priors, some of the estimated parameters

are clearly state-dependent.17 In particular, household’s risk aversion is estimated to

be larger in recessions; prices are found to be stickier during recessions. On the other

hand, the persistence of the second moment preference shock ρσa is estimated to be

the same between states. This implies that the different effects of uncertainty shocks

in model—based responses are fully due to a different propagation mechanism which

is only explained by differences in deep structural parameters. The degree of habits

in consumption b and the parameter regulating investment adjustment costs φK are

estimated to be basically the same in the two states. Given the difference between the

prior means on the parameters and their posterior means, as well as the smaller posterior

17Appendix F reports priors and posterior densities of the estimated parameters. While not being
a suffi cient condition for identification, it is interesting to notice that priors and posteriors are clearly
different. Appendix G reports detailed convergence diagnostics for the MCMC estimation.
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standard deviation with respect to prior standard deviations, this result does not seem

to be driven by an identification issue. Finally, the estimated policy rule signals a

mildly stronger response to inflation and output in expansions, where monetary policy

is also found to be more inertial. However, the differences between estimated policy

parameters appear to be small.

Going back to the parameter instabilities detected by our econometric exercise,

one may wonder what is the contribution of each single parameter to the different

responses produced by our DSGE model in recessions and expansions. We then check

the impact of each parameter on the impulse responses produced by the DSGE model as

follows. Conditional on the set of estimates in expansions, we replace the value of each

parameter with the corresponding estimated value in recessions. To be sure, the way

in which the exercise is designed is such that, if we replaced all estimated parameters

contemporaneously, by construction we would replicate the impulse responses produced

by the DSGE in recessions. Appendix H documents the outcome of this exercise. Among

the unstable parameters of the model, the dominant role is played by risk aversion. In

line of this finding, we re-estimate the DSGE model by allowing only the degree of risk

aversion to be state-dependent, while the other parameters take the estimated values

conditional on the impulse responses produced with the linear version of the VAR. The

estimated parameters conditional on the linear VAR are presented in Table 4 (fourth

column). When we allow only the risk aversion parameter to vary we get estimates of

150.36 and 83.90 for recessions and expansions, respectively. Figures 3 and 4 plots the

impulse responses produced by the version of the DSGE model in which risk aversion

is the only parameter free to adjust between states over the responses produced by

allowing all parameters to adjust. Evidently, risk aversion, which is estimated to be

countercyclical, does the job by itself.

Wrapping up, our empirical investigation reveals that a DSGE model estimated by

matching facts produced with a linear VAR does an excellent job in replicating the

impulse responses produced with a nonlinear VAR framework and related to recessions

and expansions. However, such excellent job occurs if risk aversion is actually allowed

to change between states. In particular, risk aversion is estimated to be larger in re-

cessions. Interestingly, a countercyclical risk aversion has recently been advocated by

Cochrane (2017) as a feature macro-finance models should possess to match the data.

Cohn, Engelmann, Fehr, and André Maréchal (2015) provide experimental evidence sug-

gesting that financial market professionals are more risk averse during a financial bust

than a boom. This evidence suggests that fear may play an important role in explain-
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ing countercyclical risk aversion. The same conclusion is reached by Guiso, Sapienza,

and Zingales (2017), who provide experimental evidence in favor of a fear model in

which agents experience higher risk aversion in periods of crisis. Kim (2014) estimates

a consumption-based capital asset pricing model with time-varying risk aversion based

on the Epstein—Zin recursive utility, and finds strong support for the countercyclicality

of the risk aversion parameter. Our paper lines up with these contributions by identify-

ing countercyclical risk aversion as crucial to replicate the asymmetric response of real

activity to uncertainty shocks along the business cycle. As conjectured by Cohn, Engel-

mann, Fehr, and André Maréchal (2015), we find that risk aversion amplifies economic

dynamics in response to a shock.18

The ability of the estimated model to replicate the empirical facts produced with our

nonlinear VAR depends exclusively from the instability in the risk aversion parameter.

In fact, the role played by initial conditions in the nonlinear DSGE model we work with

is empirically negligible. Appendix I shows this by computing the DSGE-based (state-)

conditional GIRFs as defined in Andreasen, Fernández-Villaverde, and Rubio-Ramírez

(2017). Conditional GIRFs relative to uncertainty shocks are found to be quantitatively

insensitive to different initial conditions. Hence, to replicate the different real effects

of uncertainty shocks, the estimated DSGE model has to rely on parameter instability.

The message in this paper is that instability in risk aversion is empirically found to be

necessary and suffi cient for the DSGE model to replicate the facts.

4 The great recession

So far, our analysis has shown that a nonlinear DSGEmodel estimated with an auxiliary

nonlinear VAR framework goes a long way in replicating the asymmetric reaction of real

activity indicators to an uncertainty shock. In performing this exercise, the reference

facts we considered regarded the different responses of real activity in recessions and

expansions in general. However, the recent great recession is clearly a rare event which

hardly falls under the "standard recessions" category. A way to lend support to this

statement is to exploit the flexibility of our nonlinear VAR, which allows us to move

18Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017) show that, in a model featuring a
portfolio allocation problem related to short- and long-term bonds plus a systematic response of the
central bank to the term spread, uncertainty shocks to households’ preferences generate moments
consistent with the data even in presence of moderate values of risk aversion. The moments studied
by Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017) are, however, unconditional moments,
i.e., they are not state-specific.
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from an analysis between states to an analysis across dates. This is possible because of

the dependence of impulse responses to initial conditions in nonlinear models (Koop,

Pesaran, and Potter (1996)). We then work out the temporal evolution of the peak

response of GDP, consumption, investment and hours worked over a five-year horizon

to an equally sized uncertainty shock by associating to each quarter an uncertainty

shock occurring in each initial quarter of our sample.19

Figure 5 displays the outcome of this exercise. The peak responses are much higher

(in absolute terms) in recessions, a finding in line with the empirical facts documented in

Section 2. Moreover, the peaks point to a particularly strong response of real activity in

three recessions, i.e., 1974-1975, 1981-1982, and 2007-2009. Clearly, the great recession

is an outlier, i.e., all four real activity indicators display their maximum responses (in

absolute terms) during that extreme event. When compared to the peaks predicted

by a linear VAR model, the nonlinear framework returns figures regarding the great

recession which are between two and three times larger.

Can our structural DSGE model replicate the drop in real activity occurred during

the great recession? While to replicate the average effects of uncertainty shocks in

recession an adjustment of the calibration of the risk aversion parameter may be enough,

for this particular recession some other characteristic of the model may also need to

adjust. In fact, the beginning of the great recession called for a dramatic cut of the

policy rate, which moved from 5.25% in July 2008 to basically zero in just five months.

Hence, one would think that also the Taylor rule parameters should adjust to have

the model replicate the spectacular contraction experienced by the U.S. economy. To

investigate this issue, we then focus on 2008Q4, the quarter associated to the largest

realization of the uncertainty shock according to our IVAR model, and estimate our

DSGE model conditional on the IVAR responses for this quarter.

Table 4 (last three columns) collects the estimates relative to different versions of the

estimated model, i.e., one which just allows risk aversion to change; one which allows

risk aversion and the policy parameters to adjust; and one which allows all parameters
to adjust. The information reported in the table confirms that changes in the estimated

values of risk aversion and the policy parameters are needed to replicate the great

recession. This is confirmed by the next exercise.

Equipped with this estimated framework, we conduct an exercise which aims at

quantifying the contribution of uncertainty shocks for the cumulative output loss recorded

19The figure with the cumulative responses of real activity over a five-year horizon delivers the very
same qualitative message.
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by the U.S. economy during and after the great recession. To quantify the relative con-

tribution of the uncertainty shock for the cumulative output loss experienced by the

U.S. economy, we follow Basu and Bundick (2017) and take as an external reference

the CBO output gap, which is a "detrended" measure of output.20 The exercise goes

as follows. Assume output to be at its stochastic steady state before the advent of the

large uncertainty shock in 2008Q4. Then, the real world is hit by the large uncertainty

shock in 2008Q4, as well as a variety of other shocks. We then set the output gap to

zero in 2008Q3, and compute the cumulative output loss during the period is which

this re-scaled measure of the output gap is negative, i.e., 2008Q4-2014Q2. Finally, we

produce the response of output with our estimated DSGE model in which risk aversion

and the Taylor rule parameters are free to adjust. To appreciate the role of nonlineari-

ties for the calibration of the DSGE model, we also produce the response of output to

an equally sized uncertainty shock with a version of the DSGE model estimated condi-

tional on the impulse responses produced with a linear VAR. We consider responses to

a 4.5 standard deviation uncertainty shock, which is the one estimated by our VAR for

the 2008Q4.

Figure 6 compares the responses produced with our favorite DSGE models, i.e., the

one estimated on the nonlinear VAR, a version of the DSGEmodel estimated conditional

on a linear VAR, and the evolution of the output gap (normalized to zero in 2008Q3,

i.e., before the shock hits). The cumulative loss of output in the period considered here

is equal to 53% (with respect to the trend). Our nonlinear DSGE model estimates an

uncertainty shock in 2008Q4 to be associated to a cumulative output loss equal to 24%,

which is almost 1/2 of the total loss. This is twice as much the loss predicted by a

DSGE model estimated conditional on a linear VAR, which is, 13%. Allowing for the

risk aversion only parameter to adjust would still imply a good prediction of the peak

response of output after the shock. However, it would also imply a too quick return of

predicted output to the steady state, which would lead to an underestimation of the

output loss caused by the uncertainty shock.

5 Conclusion

This paper employs a nonlinear VAR framework to document that financial uncertainty

shocks exert a stronger effect on real activity in recessions. A nonlinear structural DSGE

20The evolution of the CBO output gap is quantitatively the same as the one obtained by filtering
log real GDP per capita with a standard Hodrick-Prescott filter (smoothing weight: 1,600).
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model is fitted to the data relative to booms and busts to interpret this evidence.

The estimation of the DSGE model is conducted by working with a Bayesian direct

inference approach, which is applied in a novel manner to a nonlinear DSGE structure.

Counter-cyclical risk aversion is identified as the key element that enables the DSGE

model to replicate the empirical facts. Focusing on the great recession, we show that a

combination of high risk aversion and weak, low-inertial response to inflation is suffi cient

for the structural model to replicate the response of real activity in 2008Q4 produced by

the nonlinear VAR. When estimated targeting such response, the model assigns about

50% of the output loss materialized in 2008-2014 to a big financial uncertainty shock

occurred at the end of 2008. The same DSGE model estimated by targeting the impulse

responses produced by a linear VAR is shown to substantially downplay the role played

by such shock.

This paper offers solid support to Federal Reserve’s former Chairman Alan Greenspan

view on macroeconomic modeling: "[...] it is apparent that a prominent shortcoming of

our structural models is that, for ease in parameter estimation, not only are economic

responses presumed fixed through time, but they are generally assumed to be linear. An

assumption of linearity may be adequate for estimating average relationships, but few

expect that an economy will respond linearly to every aberration." Our results stress the

importance of using nonlinear frameworks for correctly quantifying the effects of uncer-

tainty shocks - and, more generally, macroeconomic shocks - for the U.S. business cycle.

Nonlinear VARs can fruitfully be used to establish facts which serve as a reference to

build and evaluate structural frameworks used to conduct policy analysis. Correctly cal-

ibrating such frameworks is of paramount importance to conduct informative historical

and policy analysis.

Our paper shows that a state-of-the-art nonlinear DSGE model is able to explain

the state-dependent response of real activity to an uncertainty shock via the instability

of the estimated risk aversion parameter. We see this result as informative for the

construction of theoretical models featuring endogenous mechanisms able to replicate

the nonlinear effects of uncertainty shocks.
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Sample Regime Y C I H
Full sample Linear -0.31 -0.31 -0.40 -0.40

Recessions -0.32 -0.31 -0.42 -0.39
Expansions -0.05 -0.14 -0.14 -0.16

Pre-ZLB Linear -0.30 -0.30 -0.38 -0.35
Recessions -0.31 -0.26 -0.37 -0.27
Expansions -0.06 -0.14 -0.17 -0.15

Table 1: Uncertainty-real activity correlations. Real GDP, consumption, invest-
ment, and hours considered in per capita terms and quarterly growth rates. Full sample:
1962Q3-2017Q2, pre-ZLB: 2008Q4-2008Q4. Uncertainty proxied by the VXO (available
since 1986) spliced with the within-quarter volatility of the SP500 returns (available be-
fore 1986) as in Bloom (2009).

Peak responses relative to strong expansions
Deep contractions Strong expansions

Variable VAR DSGE VAR DSGE
Y 1.49 1.67 1 1
C 1.36 1.46 1 1
I 2.08 1.82 1 1
H 2.28 1.79 1 1

Peak responses relative to output
Deep contractions Strong expansions

Variable VAR DSGE VAR DSGE
Y 1 1 1 1
C 0.55 0.42 0.60 0.48
I 3.42 2.67 2.46 2.46
H 1.45 0.64 0.95 0.60

Table 2: IVAR responses: Relative moments. Sample: 1962Q3-2017Q2. VAR
estimated with four lags.
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Figure 1: IVAR impulse responses to an uncertainty shock in recessions and
expansions. Red line: Deep recessions. Blue line: Strong expansions. Green line: Re-
sponses associated to the nested linear VAR. Sample: 1962Q3-2017Q2. VAR estimated
with four lags.
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Figure 2: Differences of the IVAR impulse responses to an uncertainty shock:
Recessions vs. expansions. Solid black lines: difference between the point estimated
state-conditional GIRFs in recessions and expansions (taking the difference between the
latter and the former). Grey areas: 68 percent confidence bands of the difference (from
its distribution constructed with 2,000 bootstrap draws). Sample: 1962Q3-2017Q2.
VAR estimated with four lags.
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Figure 3: DSGE vs. IVAR impulse responses to an uncertainty shock: Expan-
sions. Solid lines with squares: Responses of the DSGE model estimated by allowing
only risk aversion to adjust between recessions and expansions. Solid lines with dia-
monds: Responses of the DSGE model estimated by allowing all parameters to adjust
between recessions and expansions. Areas identified by blue lines: 68% confidence in-
terval produced with the IVAR. Sample: 1962Q3-2017Q2. VAR estimated with four
lags.
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Figure 4: DSGE vs. IVAR impulse responses to an uncertainty shock: Reces-
sions. Solid lines with squares: Responses of the DSGE model estimated by allowing
only risk aversion to adjust between recessions and expansions. Solid lines with dia-
monds: Responses of the DSGE model estimated by allowing all parameters to adjust
between recessions and expansions. Areas identified by blue lines: 68% confidence in-
terval produced with the IVAR. Sample: 1962Q3-2017Q2. VAR estimated with four
lags.
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Figure 5: IVAR time-varying impulse responses to an uncertainty shock. Blue
lines: Peak responses over a five-year horizon. Red lines: Peak responses as computed
by a linear VAR. Sample: 1962Q3-2017Q2. VARs estimated with four lags.
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35



Part II
Appendix

A: Parsimonious vs. extended IVAR

The IVAR model employed in the paper is a parsimonious version of a more sophisti-

cated IVAR which we estimated to check the robustness of our results. Thinking of the

third-order approximation of the DSGE model we work with, it is natural to extent our

baseline IVAR framework to add extra interaction terms involving quadratic terms as

follows:

Yt = α+
L∑
j=1

AjYt−j +


∑L

j=1 cj lnV XOt−j ×∆ lnGDPt−j
+
∑L

j=1 cj(lnV XOt−j)
2 ×∆ lnGDPt−j

+
∑L

j=1 cj lnV XOt−j × (∆ lnGDPt−j)
2

+ ut

Cubic terms ((lnV XOt−j)
3, (∆ lnGDPt−j)

3) are omitted to minimize the risk of

explosiveness.

Figure A1 contrasts the impulse responses obtained with our baseline model with

those produced with the enriched framework. If anything, the reactions produced by

this framework speak even more clearly in favor of nonlinearities in the data.

B: Match between VAR and DSGE model

The Basu and Bundick (2017) has a structure which is de facto consistent with the as-

sumptions undertaken in Section 2 which regard the identification of uncertainty shocks.

In our recursively identified nonlinear VAR model the VXO is ordered first and hence it

is assumed that, while uncertainty shocks can contemporaneously affect all variables in

the VAR, the VXO cannot be contemporaneously affected by other shocks. The Basu

and Bundick (2017) model features an endogenous measure of financial uncertainty (a

model-consistent VXO) which responds to three shocks, i.e., a first-moment technology

shock, a first-moment preference shock, and a second-moment preference shock, this last

one being the uncertainty shock. Conditional on Basu and Bundick’s (2017) calibration,

however, the uncertainty shock and the model-consistent VXO move hand-in-hand, i.e.,

the VXO reacts very little to shocks other than the uncertainty one.

A Monte Carlo exercise with artificial data simulated with the Basu and Bundick

(2017) framework confirms this statement. We conduct a population analysis and simu-

late a sample of 50,000 observations with the model calibrated as in Basu and Bundick

A1



(2017). 21 We then estimate a linear VAR and produce impulse responses to an un-

certainty shock identified with a Cholesky decomposition of the reduced-form variance-

covariance matrix. In the VAR, the VXO is ordered first. We focus on a population

analysis and on a linear VAR to make sure that our result is not driven by any small-

sample issue or fancy nonlinear reduced-form framework.

Figure A2 documents the performance of the Cholesky-VAR in replicating the

DSGE-model consistent impulse responses. The ability of the VAR to correctly cap-

ture the responses of the DSGE model is impressive. This result justifies the use of

a direct impulse-response function matching approach when we estimate the DSGE

framework. Figure A3 adds evidence on the "quasi-exogeneity" of the model consistent

VXO process by plotting the volatility of the preference shock against that of the VXO.

The two series clearly comove, and their correlation is equal to 0.95.

C: GIRFs in presence of the shadow rate

Figure A4 shows that our results are practically the same if the Wu and Xia (2016)

shadow rate is used in place of the federal funds rate for the period of zero lower bound.

As shown by the authors the shadow rate, and its meaningful variations, can be used

to proxy unconventional monetary policy at the zero lower bound.

D: Computation of the Generalized Impulse Response Func-
tions

The algorithm for the computation of the Generalized Impulse Response Functions

follows the steps suggested by Koop, Pesaran, and Potter (1996), and it is designed to

simulate the effects of an orthogonal structural shock as in Kilian and Vigfusson (2011).

The idea is to compute the empirical counterpart of the theoretical GIRFy(h, δ,ωt−1)

of the vector of endogenous variables yt, h periods ahead, for a given initial condition

ωt−1 = {yt−1, ...,yt−k}, k is the number of VAR lags, and δ is the structural shock

hitting at time t. Following Koop, Pesaran, and Potter (1996), such GIRF can be

expressed as follows:

GIRFy(h, δ,ωt−1) = E[yt+h |δ,ωt−1] − E[yt+h |ωt−1]
21Notice that nothwistanding the fact that we use a DSGE model with three shock to simulate data

on which to estimate a seven variables VAR model, we do not suffer from stochastic singularity given
that the DSGE model at the basis of the simulation is nonlinearized, and hence there is no linear
combination of variables that is perfectly collinear to others.
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where E[·] is the expectation operator, and h = 0, 1, ..., H indicates the horizons

from 0 to H for which the computation of the GIRF is performed.

Given our model (1), we compute our GIRFs as follows:

1. we pick an initial condition ωt−1. Notice that, given that uncertainty and the

policy rate are modeled in the VAR, such set includes the values of the interaction

terms (lnV XO ×∆ lnGDP )t−j, j = 1, ..., k;

2. conditional on ωt−1 and the structure of the model (1), we simulate the path

[yt+h |ωt−1]r , h = [0, 1, ..., 19] (which is, realizations up to 20-step ahead) by load-

ing our VARwith a sequence of randomly extracted (with repetition) residuals ũrt+h ∼
d(0, Ω̂), h = 0, 1, ..., H,where Ω̂ is the estimated VCV matrix, d(·) is the empirical
distribution of the residuals, and r indicates the particular sequence of residuals

extracted;

3. conditional on ωt−1 and the structure of the model (1), we simulate the path

[yt+h |δ,ωt−1]r , h = [0, 1, ..., 19] by loading our VAR with a perturbation of the

randomly extracted residuals ũrt+h ∼ d(0, Ω̂) obtained in step 2. In particular,

we Cholesky-decompose Ω̂ = ĈĈ
′
, where Ĉ is a lower-triangular matrix. Hence,

we recover the orthogonalized elements (shocks) ε̃rt = Ĉ
−1

ũrt . We then add a

quantity δ > 0 to the ε̃runc,t, where ε̃runc,t is the scalar stochastic element loading

the uncertainty equation in the VAR. This enable us to obtain ε̃rt , which is the

vector of perturbed orthogonalized elements embedding ε̃runc,t. We then move

from perturbed shocks to perturbed residuals as follows: ũrt = Ĉε̃rt . These are

the perturbed residuals that we use to simulate [yt+h |δ,ωt−1]r ;

4. we compute the difference between paths for each simulated variable at each

simulated horizon [yt+h |δ,ωt−1]r − [yt+h |ωt−1]r , h = [0, 1, ..., 19];

5. we repeat steps 2-4 a number of times equal to R = 500. We then store the

horizon-wise average realization across repetitions r. In doing so, we obtain a con-

sistent estimate of the GIRF per each given initial quarter of our sample, i.e., an

history-dependent GIRF, ĜIRF y(h, δt,ωt−1) = Ê[yt+h |δ,ωt−1] − Ê[yt+h |ωt−1] ,
h = [0, 1, ..., 19]. If a given initial condition ωt−1 leads to an explosive response

(namely if this is explosive for most of the R sequences of residuals ũrt+h, in the

sense that the response of the shocked variable diverges instead than reverting to
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zero), then such initial condition is discarded (i.e., they are not considered for the

computation of state-dependent GIRFs in step 6);22

6. in order to produce our state-dependent GIRFs for recessions and expansions, we

first split previous initial conditions into two subsets of interest. To do so, an

initial condition $t−1 = {Yt−1, ...,Yt−L} is classified to belong to the “deep con-
tractions”state if ∆ lnGDPt−1 is in the bottom decile of the quarter-on-quarter

GDP growth rate empirical distribution and to the "strong expansions" state if

∆ lnGDPt−1 is in the top decile of the quarter-on-quarter GDP growth rate empir-

ical distribution. Out of these two sets of initial conditions we take the within-set

average to obtain, for each state, the average initial condition across the histories

linked to the state, i.e. $̄rec.
t−1 and $̄

exp.
t−1 , which work as a sort of unconditional

mean for each state. Then, to produce our state-dependent GIRFs for recessions

and expansions, ĜIRF Y,t(δt, $̄
rec.
t−1) and ĜIRF Y,t(δt, $̄

exp.
t−1), we adopt the same

steps 1-5 above for $̄rec.
t−1 and $̄

exp.
t−1 as initial conditions.

7. confidence bands surrounding the point estimates obtained in step 6 are computed

via a bootstrap procedure. In particular, we simulate S = 1, 000 samples of size

equivalent to the one of actual data. Then, per each dataset, we i) estimate our

nonlinear VAR model; ii) implement step 6.23 In implementing this procedure the

initial conditions and VCV matrix used for our computations now depend on the

particular dataset s used, i.e., ωst−1 and Ωs
t . Confidence bands are the constructed

by considering the 84th and 16th percentiles of the resulting distribution of state-

conditional GIRFs.

E: Model calibration

Some parameters of the model are calibrated as in Basu and Bundick (2017) for com-

parability reasons. Table A1 collects all the calibrated parameters. We do not estimate

these parameters for several reasons. We follow a long tradition in macroeconomics and

calibrate the capital’s share in production α, the household discount factor β and the

steady state depreciation rate δ to values that are standard in the literature. The first-

order utilization parameter δ1 and the consumption weight in the period utility function

22This never happens for our responses estimated on actual data. We verified that it happens quite
rarely as regards our bootstrapped responses.
23The bootstrap used is similar to the one used by Christiano, Eichenbaum, and Evans (1999) (see

their footnote 23). The code discards the explosive artificial draws to be sure that exactly 1,000 draws
are used. In our simulations, this happens a negligible fraction of times.

A4



η cannot be estimated, because the first is determined endogenously by a steady state

relationship (involving δ and β) and the second is fixed in order to imply a Frisch elas-

ticity equal to 2. The steady state inflation rate Π cannot be estimated by a impulse

response functions matching procedure that focuses on out-of-steady state dynamics,

i.e., deviations from the (stochastic) steady state. The firm leverage parameter ν does

not influence impulse responses in the absence of financial frictions and hence is not

identified. As regards the parameters of the stochastic shock processes, we calibrate the

volatility of the second moment preference shock σσa by appealing to the estimated re-

sponses of our nested linear VAR model. The parameters governing the processes of the

preference and technological shocks, i.e. ρa, σa, ρZ and σZ are calibrated by borrowing

values from Basu and Bundick (2017). In spite of our focus on the effects of the uncer-

tainty shocks, we calibrate also these parameters because these stochastic processes can

in principle influence (even on-impact) the response of the model-consistent VXO to

an uncertainty shock. We also do not estimate the second-order utilization parameter

δ2, the elasticity of substitution between intermediate goods θµ, and the IES ψ to not

further increase the computational burden of the estimation procedure.

F: Priors vs. posterior densities in the DSGE model estimation

Figure A5 displays the prior and posterior densities of our estimated parameters. The

evidence points to the information in our sample as able to shift and modify the prior

densities.

G: DSGE model estimation convergence diagnostics

Table A2 shows the results of the Geweke (1992)-convergence diagnostics test that

compares the means of the first 20% retained draws with that of the last 50%. As

indicated by the p-values of the χ2 -test for the equality of the means, all MCMC chains

converge to their stationary distribution. Figures A7 and A8 show the corresponding

MCMC chains and the evolution of their means over time.

H: Counterfactuals to identify relevant parameter instabilities

We conduct counterfactual exercises per each version of our DSGE model to identify

the relevant parameters affecting the impulse responses of the variables of our interest

to an uncertainty shock. As regards our analysis of recessions and expansions, we check

the impact of each parameter on the impulse responses produced by the DSGE model as
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follows. Conditional on the set of estimates in expansions, we replace the value of each

parameter with the corresponding estimated value in recessions. To be sure, the way

in which the exercise is designed is such that, if we replaced all estimated parameters

contemporaneously, by construction we would replicate the impulse responses produced

by the DSGE in recessions. Figures A8 and A9 display the outcome of this exercise.

Bottom line: The parameter which leads to a substantial change of the impulse responses

is clearly the risk aversion parameter.

I: DSGE model state-conditional GIRFs

This Section investigates whether the initial conditions in the nonlinear DSGEmodel we

employ play a role for the dynamics of the system after an uncertainty shock. Andreasen,

Fernández-Villaverde, and Rubio-Ramírez (2017) show that the initial values of the

states are potentially very important for the effects of the macroeconomic shocks they

study. The computation of the GIRFs in our paper follows Basu and Bundick (2017)

and do not properly take into account the role of initial conditions. Hence, this possible

omitted factor could be behind the evidence of countercyclical risk aversion we find.24

It is therefore important to provide a check on the relevance of initial conditions in the

model we work with.

Figure A10 compares DSGE-related unconditional GIRFs computed at the ergodic

mean of the states with those computed in a state-conditional manner, i.e., by tak-

ing initial conditions corresponding to deep contractions and strong expansions.25 To

control for the role of parameter instability, all responses displayed in Figure 10 are

computed conditional on the estimates we obtained with the facts established by the

linear VAR. To ease comparison, we also plot our baseline responses à la Basu and

Bundick (2017) based on the same parameters values. The two states/regimes of deep

contractions and strong expansions are defined consistently with the definition adopted

for the GIRFs computed with our IVAR model.26

Two comments are in order. First, the Basu and Bundick (2017) way of comput-

24As explained in the main text, we compute responses in the model starting from the regime-specific
stochastic steady state implied by the estimated set of parameters.
25Unconditional and conditional GIRFs are computed based on the replication codes of Andreasen,

Fernández-Villaverde, and Rubio-Ramírez (2017). Consistently with their definition, these responses
have to be interpreted as deviations from the (deterministic) steady state of the model.
26Consistently with Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017), we split the initial

values of the state variables between the two regimes on the basis of the first and last deciles of the
distribution of the GDP growth rate obtained from a simulated sample path. 500 draws in each regimes
are selected.
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ing responses produces results very similar to the ones produced by the Andreasen,

Fernández-Villaverde, and Rubio-Ramírez (2017) method.27 Second, the initial con-

ditions in the DSGE model do not materially influence the computed GIRFs to an

uncertainty shock. The evidence documented in Figure 10 points to the role of initial

conditions for the computation of the state-consistent GIRFs as negligible.28

27One difference is observed in the response of investment. This appears due to a different compu-
tation of GIRFs between the two approaches. The adoption of the Basu and Bundick method in our
work is justified by two reasons. First, this choice enhance comparability with their empirical results.
Second, Basu and Bundick (2017) show that their methodology produces impulse responses that are
very similar to the unconditional simulation-based GIRFs à la Koop, Pesaran and Potter (1996).
28Consistently with Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017), we find that initial

conditions are particularly relevant for first moments shocks, like the preference shock in our model
(results available upon request). Our intuition is that initial conditions are less relevant for the propa-
gation of second moments shocks because such shocks propagate only via a third-order approximated
part of the solution.
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Figure A1: IVAR impulse responses: Role of higher order terms. Solid lines in
the first and second columns: Impulse responses and 68% confidence bands produced
with the baseline, parsimonious IVAR. Lines with stars (first and second columns):
Impulse responses produced with the expanded IVAR featuring extra-interaction terms.
Densities of the differences between recessions and expansions (68% bands) plotted in
the third column.
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Figure A2: Monte Carlo simulation: DSGE model vs. VAR responses to
an uncertainty shock. Calibration of the DSGE model as in Basu and Bundick
(2017). Size of the simulated sample: 50,000 observations. Uncertainty shock in the
VAR framework identified by assuming a recursive structure of the economic system
with the VXO ordered first.
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Figure A3: DSGE-consistent processes: Volatility vs. VXO. Series produced
with the Basu and Bundick (2017) model. Simulated series: 100,000 observations,
99,000 used as a burn in. Both series are standardized to ease readibility. Correlation
coeffi cient: 0.95.
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Figure A4: IVAR impulse responses: check with shadow rate. Solid lines in the
first and second columns: Impulse responses and 68% confidence bands produced with
the baseline IVAR with the FFR on all the sample. Lines with stars (first and second
columns): Impulse responses produced with the IVAR featuring the Wu and Xia (2016)
shadow rate for the period of ZLB. Densities of the differences between recessions and
expansions (68% bands) plotted in the third column.
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Figure A5: Estimated parameters: Priors vs. posterior densities. Priors in
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Figure A6: Evolution of the MCMC sampler over time. Grey line: MCMC
evolution for a particular parameter (60,000 draws). Black line: Expanding-window
mean of of the chain over time.
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Figure A7: Evolution of the MCMC sampler over time. Grey line: MCMC
evolution for a particular parameter (60,000 draws). Black line: Expanding-window
mean of of the chain over time.
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Figure A8: Role of structural parameters for the state-contingent IRFs pro-
duced by the DSGE model: First set of parameters.
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Figure A9: Role of structural parameters for the state-contingent IRFs pro-
duced by the DSGE model: Second set of parameters.
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Figure A10: Role of initial conditions for DSGE impulse responses: un-
conditional GIRFs versus conditional GIRFs à la Andreasen, Fernández-
Villaverde, and Rubio-Ramírez (AFVRR, 2017). Green stars: response of the
DSGE estimated on the linear VAR model with computation à la Basu and Bundick
(2017). Green diamonds: unconditional response of the DSGE for the same set of
parameters values with computation à la AFVRR (2017). Red squares: response of
the DSGE conditional on deep contractions for the same set of parameters values with
computation à la AFVRR (2017). Blue circles: response of the DSGE conditional on
strong expansions for the same set of parameters values with computation à la AFVRR
(2017).
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