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1 Introduction

Predicting stock market returns or the equity premium dates back almost a century to the

work of Dow (1920). Despite this long tradition, the out-of-sample (OOS) empirical results �

the relevant metric from the perspective of an investor � have been somewhat disappointing.

In fact, for a large set of variables, predictability is either completely absent (Goyal and

Welch, 2008) or concentrated in speci�c periods (Neely et al., 2014). Notwithstanding, in

recent years there is increasing evidence that stock returns are, at least to some extent,

predictable when using more advanced econometric techniques and novel macroeconomic

and �nancial variables.

The interest on the spectral properties of �nancial asset returns (Dew-Becker and Giglio,

2016 and Chaudhuri and Lo, 2016) and of equity returns predictability (Bandi et al., 2018

and Faria and Verona, 2018) has recently increased. Along these lines, this paper contributes

to the literature on the OOS predictability of the equity premium by proposing a method

that exploits the time-frequency relationship between the equity premium and fourteen well-

known variables from the equity premium predictability literature. Concretely, in the spirit

of the trend-cycle decomposition of a time series (as proposed by e.g. Watson, 1986), we �rst

use multiresolution wavelet analysis to decompose the time series of the equity premium and

of its predictors into n time series components, each of them capturing the oscillations of the

original variable within a speci�c frequency interval. A key feature of this decomposition

is that, by adding those n time-frequency series components, the original time series is

recovered. Then, considering one predicting variable at a time, we forecast separately each

of the n time-frequency series component of the equity premium using the corresponding

component of the predictor. At last, we aggregate those n forecasts to produce the forecast

of the equity premium based on that predictor.

The main results of this paper can be summarized as follows. First, for all predictors con-
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sidered, by selecting the proper time-frequency series components, the OOS forecasting per-

formance is noticeably better than that using traditional time series forecasting methods.

Furthermore, �ve variables (the earnings-price ratio, the dividend-payout ratio, the in�ation

rate, the long-term government bond return and the term spread) deliver positive and statis-

tically signi�cant OOS R-squares (R2
OS), that is they outperform the historical mean (HM)

of returns, which is the standard benchmark in the literature. This result thus unveils that

some of the variables considered to be poor equity premium predictors are good predictors

once the noisy components embedded in their original time series are �ltered out and only the

relevant frequencies for equity premium forecasting purposes are retained. Second, from an

economic point of view, there are signi�cant utility gains when making the forecasts using the

proper time-frequency components of each predictor. Third, with the proposed method some

predictors outperform the HM benchmark also during normal and good economic periods,

which is typically not the case in the time series analysis.

The rest of the paper is organized as follows. In section 2 we review related literature to

provide context for our contribution. Section 3 presents the data and the methodology.

Section 4 presents the OOS results and section 5 the results of the robustness exercises.

Finally, section 6 concludes.

2 Related literature

Multiresolution wavelet analysis allows to decompose any variable (regardless of its time

series properties) into a trend, a cycle, and a noise component in a way which is similar to the

traditional time series trend-cycle decomposition approach (Watson, 1986) or other �ltering

methods like the Hodrick and Prescott (1997) or the Baxter and King (1999) bandpass �lter.

In particular, the wavelet multiresolution decomposition allows to separately forecast each

component of the time series in order to improve the forecast accuracy of the series as a
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whole.1 As wavelet methods allow for a granular decomposition of a time series, they could

in principle help making better forecast than traditional time series forecasting methods.

Wavelet-based forecasting methods have indeed been successfully used to forecast OOS eco-

nomic and �nancial variables.2 As regards forecasting economic variables, Rua (2011, 2017)

proposes a wavelet-based multiscale principal component analysis to forecast GDP growth

and in�ation, while Kilponen and Verona (2016) forecast aggregate investment using the

Tobin's Q theory of investment. As regards forecasting �nancial variables, Mitra and Mitra

(2006) forecast exchange rates, while Zhang et al. (2017) and Faria and Verona (2018) focus

on stock return predictability. In particular, Faria and Verona (2018) propose the SOPWAV

method, which is a time-frequency forecast of stock market returns in the context of Ferreira

and Santa-Clara (2011) sum-of-the-part method. In this paper we follow the idea of Faria

and Verona (2018) but we run the time-frequency forecast of the equity premium within a

more general OOS predictive setting instead of the sum-of-the-part method.

This paper is naturally related to the literature on the OOS forecasting of the equity pre-

mium, which was stimulated by Goyal and Welch (2008) �ndings that several equity pre-

mium predicting variables perform very poorly OOS. In the context of a single equation

bivariate regression setup, recent methodological contributions that improved the OOS fore-

castability of the equity premium include regressions with time-varying coe�cients (Dangl

and Halling, 2012), with learning and time-varying volatility (Johannes et al., 2014), with

economic constraints (Pettenuzzo et al., 2014), and with single predictor quantile combina-

1 A related strand of literature debates whether it is better to forecast an aggregate variable directly (like
GDP or in�ation) or forecasting its components (like consumption, investment and government consumption,
or each component of in�ation) and then summing the component forecasts. Although there is not a full
consensus, the empirical work on forecast aggregation is broadly supportive of the idea that aggregating
forecasts can lead to improvements in accuracy when forecasting in�ation and output (see Bermingham and
D'Agostino, 2014 for a review).

2 In the econometric literature, the recognition of frequency-speci�c modeling dates back at least to the
work by Grether and Nerlove (1970) and to band-spectrum regression of Engle (1974). Crowley (2007) and
Aguiar-Conraria and Soares (2014) provide excellent reviews of economic and �nance applications of wavelets
tools.
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tion (Meligkotsidou et al., 2014). This paper contributes to this literature by proposing a

di�erent method for e�ciently using the information embedded and aggregated in the time

series of each individual variable.3 In particular, after running the OOS equity premium

forecast on a frequency-by-frequency basis, we show that statistically and economically OOS

gains can be obtained by removing some frequencies (for each individual predictor) from the

forecasting exercise.

Interestingly, we �nd that, for all predictors under analysis, their lowest frequency compo-

nents are always selected as a relevant frequency for equity premium forecasting purposes.

In some cases, e.g. the term spread, it is even the only relevant frequency. This �nding

adds to recent empirical evidence that the level and price of aggregate risk in equity markets

are strongly linked to low-frequency economic �uctuations (see e.g. Dew-Becker and Giglio,

2016, Bianchi et al., 2017 and Gallegati and delli Gatti, 2018).

3 Data and methodology

We focus on the OOS predictability of monthly equity premium, measured by the di�erence

between the log (total) return of the S&P500 index and the log return on a one-month

Treasury bill. As it has been emphasized in the literature (e.g. Goyal and Welch, 2008

and Huang et al., 2015), the OOS exercise is more relevant to evaluate e�ective return

predictability in real time while avoiding the in-sample over-�tting issue, eventual small-

sample size distortions and the look-ahead bias concern. Moreover, we only focus on the

one-month forecasting period as it has been documented that return predictability with a

3 Methodological contributions that make use of several predictors to forecast the equity premium include
dynamic factor models (Ludvigson and Ng, 2007, Kelly and Pruitt, 2013 and Neely et al., 2014), forecasts
combination from di�erent predictors (Rapach et al., 2010 and Pettenuzzo and Ravazzolo, 2016), regime-
switching vector autoregression models (Henkel et al., 2011), the sum-of-the-parts method (Ferreira and
Santa-Clara, 2011 and Faria and Verona, 2018), and Bayesian regime-switching combination or quantile
combination approach (Zhu and Zhu, 2013 and Lima and Meng, 2017, respectively).
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short horizon is usually magni�ed at longer horizons (see e.g. Cochrane, 2001).

We use monthly data from January 1973 to December 2016 for fourteen predictors from

Goyal and Welch (2008) updated database. Speci�cally, we use the log dividend-price ratio

(DP), the log dividend yield (DY), the log earnings-price ratio (EP), the log dividend-payout

ratio (DE), the excess stock return volatility (RVOL), the book-to-market ratio (BM), the

net equity expansion (NTIS), the Treasury bill rate (TBL), the long-term bond yield (LTY),

the long-term bond return (LTR), the term spread (TMS), the default yield spread (DFY),

the default return spread (DFR) and the lagged in�ation rate (INFL). In appendix 1 these

predictors are brie�y explained and their time series are plotted. Table 1 reports summary

statistics for the equity premium and its predictors. The average monthly equity premium

is 0.41%, which, together with a monthly standard deviation of 4.44%, corresponds to an

average monthly Sharpe ratio of 0.09 in the sample period.

Our methodology to forecast the equity premium is based on the wavelet multiresolution

analysis, which is described in sub-section 3.1. The OOS procedure is then explained in

sub-section 3.2.

3.1 Wavelet multiresolution analysis

Wavelets are signal processing techniques that were developed to overcome some of the lim-

itations of traditional frequency domain tools (spectral analysis and Fourier transforms), as

they provide a more complete decomposition of the original time series without su�ering their

weaknesses. For instance, and di�erently from the Fourier analysis, wavelets are de�ned over

a �nite window in the time domain, with the size of that window being adjusted automati-

cally according to the frequency of interest. This means that the high-frequency features of

the time series can be captured by using a short window, whereas by looking at the same

signal with a large window, the low-frequency features are revealed. Hence, wavelets allow
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to extract both time-varying and frequency-varying features simultaneously just by changing

the size of the window. They are thus better to handle variables (like e.g. �nancial variables)

that exhibit jumps, structural breaks, and time-varying volatility.

The wavelet multiresolution analysis (MRA) allows the decomposition of a time series into

its constituent multiresolution (frequency) components.4 Given a time series yt, its wavelet

multiresolution representation can be written as

yt = ySJ
t + yDJ

t + y
DJ−1

t + . . .+ yD1
t , (1)

where ySJ
t is the wavelet smooth component and y

Dj

t , j = 1, 2, . . . , J , are the J wavelet detail

components. Equation (1) shows that the original series yt, exclusively de�ned in the time

domain, can be decomposed in di�erent components, each also de�ned in the time domain

and representing the �uctuation of the original time series in a speci�c frequency band.

In particular, for small j, the j wavelet detail components represent the higher frequency

characteristics of the time series (i.e. its short-term dynamics). As j increases, the j wavelet

detail components represent lower frequencies movements of the series. Finally, the wavelet

smooth component captures the lowest frequency dynamics (i.e. its long-term behavior).

In this paper, we use the maximal overlap discrete wavelet transform (MODWT) MRA with

the Haar wavelet �lter and re�ecting boundary conditions.5 Given the su�ciently long data

series, we apply a J=6 level MRA so that the decomposition delivers seven time-frequency

series: six wavelet detail components (yD1
t to yD6

t ) and the wavelet smooth component (yS6
t ).6

4 In this section, we closely follow the presentation of the wavelet multiresolution approach done in Faria
and Verona (2018) and limit the description to the basic concepts which are directly useful to understand
our empirical analysis. A more detailed analysis of wavelets methods can be found in Percival and Walden
(2000) and in appendix 2.

5 Examples of papers using the MODWT MRA decomposition include Galagedera and Maharaj (2008),
Xue et al. (2013), Bekiros and Marcellino (2013), Barunik and Vacha (2015), Caraiani (2015), Bekiros et al.
(2016), Berger (2016), Zhang et al. (2017) and Faria and Verona (2018). While the Haar �lter is simple and
widely used (see e.g. Manchaldore et al., 2010, Bandi et al., 2018 and Faria and Verona, 2018), the results
in this paper are qualitatively the same using other wavelet �lters (like e.g. Daubechies).

6 As regards the choice of J, the number of observations dictates the maximum number of frequency bands
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As we use monthly data, the �rst detail component yD1
t captures oscillations between 2 and 4

months, while detail components yD2
t , yD3

t , yD4
t , yD5

t and yD6
t capture oscillations with a period

of 4-8, 8-16, 16-32, 32-64 and 64-128 months, respectively. Finally, the smooth component

yS6
t , which in what follows we re-denote yD7

t , captures oscillations with a period longer than

128 months (10.6 years).7

To illustrate the rich set of di�erent dynamics aggregated (and therefore hidden) in the

original time series, �gure 1 plots the time series of the (log) equity premium (top left panel)

and of its seven time-frequency series components (remaining panels). As expected, the lower

the frequency, the smoother the resulting �ltered time series.

Furthermore, wavelets allow to analyze the variability of a time series on a frequency-by-

frequency basis. In particular, by running the so-called energy decomposition analysis, it is

possible to compute the variance decomposition by frequency and, hence, to detect which

frequency bands contribute relatively more to the overall volatility of the original time series.

Table 2 reports the results of the energy decomposition analysis for the variables under

analysis. For the variables with low persistence (equity premium, LTR and DFR), most of

the volatility (more than 70%) is concentrated at higher frequencies (D1 and D2), whereas

for the more persistent variables the lowest frequencies components (D5 and above) account

for the majority of the total variability of the series.

3.2 Out-of-sample forecasts

The one-step ahead OOS forecasts are generated using a sequence of expanding windows.

We use an initial in-sample period (1973:01 to 1989:12) to make the �rst one-step ahead

that can be used. In particular, if t0 is the number of observations in the in-sample period, then J has to
satisfy the constraint J ≤ log2 t0.

7 In the MODWT, each wavelet �lter at frequency j approximates an ideal high-pass �lter with passband
f ∈

[
1/2j+1 , 1/2j

]
, while the smooth component is associated with frequencies f ∈

[
0 , 1/2j+1

]
. The level j

wavelet components are thus associated to �uctuations with periodicity
[
2j , 2j+1

]
(months, in our case).
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OOS forecast. The in-sample period is then increased by one observation and a new one-step

ahead OOS forecast is produced. This is the procedure until the end of the sample. The full

OOS period therefore spans from 1990:01 to 2016:12.

3.2.1 Predictive regression model: time series

Let r be the equity premium. For each individual predictor xi, i = 1, ..., 14, the predictive

regression model is

rt+1 = α + βxi,t + εt+1 , (2)

and the one-step ahead OOS forecast of the equity premium, r̂t+1, is given by:

r̂t+1 = α̂t + β̂txi,t , (3)

where α̂t and β̂t are the OLS estimates of α and β in equation (2), respectively, using data

from the beginning of the sample until month t. We denote this forecast as the TS (time

series) forecast.

3.2.2 Wavelet-based forecasting

To forecast with wavelets, we follow the method suggested by Rua (2011) and Faria and

Verona (2018). In a nutshell, we �t a model like (2) to each time-frequency component of the

MODWTMRA decomposition of r and xi. The overall forecast for r can then be obtained by

aggregating the forecasts of its time-frequency components.8 Importantly, as the MODWT

MRA at a given point in time uses information of neighboring data points (both past and

8 This is also the spirit of the scale predictability in Bandi et al. (2018), who explore a model where
returns and predictors are linear aggregates of components operating over di�erent frequencies, and where
predictability is frequency-speci�c. Similarly, by using a scale-by-scale selection of the series, Gallegati (2014),
Voutilainen (2017), and Gallegati and delli Gatti (2018) construct a composite wavelet-based leading indicator
of the business cycle, a proxy for the �nancial cycle, and a global crisis index, respectively.
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future), we recompute the time-frequency series components at each iteration of the OOS

forecasting process. This ensures that our method does not su�er from any look-ahead bias

as the forecasts are made with current and past information only.

Let us explain in more detail the steps involved. Firstly, we apply the MODWT MRA

decomposition to the variable to be forecasted (r) as well as to all predictors (xi). Second,

for each predictor xi, we estimate a model like (2) for each frequency level j = 1, ..., 7. That

is, we estimate � separately � each time-frequency component of the equity premium using

the time-frequency component of the predictor at the same level j :9

r
xi,Dj

t+1 = αxi
t,j + βxi

t,jx
Dj

i,t + εt+1 . (4)

Third, we use the estimation results to produce the one-step ahead forecast of the corre-

sponding time-frequency component of r :

r̂
xi,Dj

t+1 = α̂xi
t,j + β̂xi

t,jx
Dj

i,t ,

where α̂xi
t,j and β̂

xi
t,j are the OLS estimates of αxi

t,j and β
xi
t,j in equation (4), respectively, using

data from the beginning of the sample until month t. Fourth, the one-step ahead forecast for

r using predictor xi is obtained by summing those 7 forecasts (j = 1, ..., 7). As an example,

the one-step ahead wavelet-based forecast of the equity premium using the dividend-payout

ratio (DE) as a predictor, r̂DE
t+1, is given by:

r̂DE
t+1 =

J+1∑
j=1

r̂
DE,Dj

t+1 =
J+1∑
j=1

(
α̂DE
t,j + β̂DE

t,j DE
Dj

t

)
, (5)

where DE
Dj

t , j = 1, ..., 7, are the time-frequency series components of DE. As in (5) we use

9 In principle it is possible to �t di�erent forecasting models for each frequency components. For instance,
we could include more lags of the predictor and of the equity premium when forecasting the lowest frequency
components of the latter. We leave this for future research.
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all the frequency components to make the forecast of the equity premium, we denote this

speci�cation as WAV_ALL. After running the forecast with the forecasting model (5), we

�nd that it does not outperform the HM benchmark. Our conjecture is that, by considering

all frequency components, we are also including the more noisy ones, which in turn make the

forecasting exercise too imprecise.

Hence, to improve the forecast, we exploit the �exibility and granularity of this method and

propose a new way of improving the equity premium forecast. Namely, for each individual

predictor, we search for the combination of its time-frequency series components that maxi-

mizes the Campbell and Thompson (2008) R2
OS statistic (as explained in sub-section 3.2.3).

Taking again DE as an example, the equity premium wavelet-based forecasting econometric

model is given by:

r̂DE
t+1 =

J+1∑
j=1

δj r̂
DE,Dj

t+1 =
J+1∑
j=1

δj

[
α̂DE
t,j + β̂DE

t,j DE
Dj

t

]
. (6)

For each predictor, the weights of each frequency component are chosen in order to maximize

the predictor's statistical performance. For computational reasons, in (6) we only consider

�ve possible values for each weight δj: 0, 0.25, 0.50, 0.75 and 1. A weight of 0 excludes a

particular frequency from the forecast, thus allowing to completely remove the information

carried by that frequency to the forecast exercise.Although the results are likely to improve by

using a �ner grid, the main message of this exercise would be the same. Notwithstanding, the

grid used in this paper represents an improvement with respect to Faria and Verona (2018),

who only consider two possible weights, either inclusion (δj = 1) or exclusion (δj = 0) of a

speci�c frequency.10

As we are interested in analyzing which frequencies of each predictor are, on average, relevant

to forecast the equity premium, we use a time-invariant weighting scheme. However, several

10 Similarly to Ludvigson and Ng (2007), our forecasting model selection is done on the basis of a search
across several potential model speci�cations performed over the entire OOS period.
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factors like e.g. market sentiment, monetary policies and uncertainty can motivate the use of

time-varying schemes so that one can assess the importance of each frequency at each point

in time. This is an interesting exercise that we leave for future research.

We denominate this speci�cation as the WAV_BEST and should inform about the relevant

frequencies of each predictor for the equity premium forecasting purposes.

3.2.3 Forecast evaluation

The forecasting performances of the time series (TS) and wavelet based (WAV) models are

evaluated using the Campbell and Thompson (2008) R2
OS statistic. As standard in the

literature, the benchmark model is the prevailing mean forecast rt, which is the average

excess return up to time t. The R2
OS statistic measures the proportional reduction in the

mean squared forecast error for the predictive model (MSFEPRED) relative to the historical

mean (MSFEHM) and is given by

R2
OS = 100

(
1− MSFEPRED

MSFEHM

)
= 100

[
1−

∑T−1
t=t0

(rt+1 − r̂t+1)
2∑T−1

t=t0
(rt+1 − rt)2

]
,

where r̂t+1 is the excess return forecast for t+1 from the TS or the WAV models considered

and rt+1 is the realized stock market return from t to t+1. A positive (negative) R2
OS indicates

that the predictive model outperforms (underperforms) the HM in terms of MSFE.

The statistical signi�cance of the results is evaluated using the Clark and West (2007) statis-

tic. This statistic tests the null hypothesis that the MSFE of the HM model is less than or

equal to the MSFE of the TS or speci�c WAV model against the alternative hypothesis that

the MSFE of the HM model is greater than the MSFE of the TS or speci�c WAV model

(H0 : R
2
OS ≤ 0 against HA : R2

OS > 0).
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3.3 Asset allocation

We analyze the economic value of the di�erent predictive models (TS and WAV) from an

asset allocation perspective, considering a mean-variance investor who allocates his or her

wealth between equities and risk-free bills. At the end of month t, the investor optimally

allocates

wt =
1

γ

R̂t+1

σ̂2
t+1

(7)

of the portfolio to equity for period t+1. In (7), γ is the investor's relative risk aversion

coe�cient, R̂t+1 is the time t (TS or WAV) model forecast of equity premium for t+1, and

σ̂2
t+1 is the forecast of the variance of the equity premium. As in Rapach et al. (2016), we

assume a relative risk aversion coe�cient of three, use a ten-year moving window of past

equity premium to estimate the variance forecast and constrain the weights wt to lie between

-0.5 and 1.5. These constraints limit the possibilities of short selling and leveraging the

portfolio.

The realized portfolio return at time t+1, RPt+1, is given by RPt+1 = wtRt+1+RFt+1, where

RFt+1 denotes the risk-free return from time t to t+1 (i.e. the market rate, which is known

at time t). The average utility (or certainty equivalent return, CER) of an investor that uses

the portfolio rule (7) is given by CER = RP − 0.5γσ2
RP , where RP and σ2

RP are the sample

mean and variance of the portfolio return, respectively. We report the annualized utility

gain, which is computed as the di�erence between the CER for an investor that uses the

TS/WAV model to forecast equity premium and the CER for an investor who uses the HM

benchmark for forecasting. The di�erence is multiplied by 12, which allows to interpret it as

the annual portfolio management fee that an investor would accept to pay to have access to

the alternative forecasting model versus the historical average forecast.
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4 Out-of-sample forecasting performance

4.1 Statistical performance

The second, fourth and �fth columns of table 3 report the R2
OS statistics for each predictor

using di�erent model speci�cations versus the HM, for the entire OOS period (1990:01-

2016:12).

The standard time series analysis (second column) con�rms Goyal and Welch (2008) re-

sults, i.e. that traditional predictors perform badly OOS. As regards the wavelet-based

forecasts, there is no value added by considering all frequencies (fourth column, WAV_ALL

model). In fact, except for in�ation (INFL), all the R2
OSs are negative. This suggests that the

forecasting exercise is too imprecise when considering the information from all frequencies.

However, when the time-frequency series components are optimally chosen (�fth column,

WAV_BEST), all R2
OSs are higher than the respective TS R2

OS. That is, the OOS fore-

casting performance of the WAV_BEST model is always better than that of the time series

analysis. For some predictors their OOS performance is still not enough to outperform the

HM benchmark (R2
OS < 0). However, there are �ve variables for which the R2

OSs are pos-

itive and statistically signi�cant. This means that some of the equity premium predictors

with reported poor performance in the literature have nevertheless predictability power, as

long as their frequencies are properly chosen and used. Consider, for example, the dividend-

payout ratio (DE) and in�ation (INFL). In the time series analysis, their R2
OSs are -2.17 and

-0.69, respectively. However, using the WAV_BEST model, their R2
OSs are 2.82 and 1.85,

respectively, both statistically signi�cant.

The weights of the frequency components (δ1 − δ7) are listed in the last seven columns

of table 3. Regardless of the predictor used, the lowest frequency component is always

included (δ7 > 0). This �nding adds to recent empirical evidence that the level and price of
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aggregate risk in equity markets are strongly linked to low-frequency economic �uctuations

(e.g. Dew-Becker and Giglio, 2016) and also that there are low-frequency, decades-long shifts

in asset values relative to measures of macroeconomic fundamentals in the US (e.g. Bianchi

et al. (2017)). For some predictors, it is also bene�cial to include some high frequency

�uctuations (δ1), whereas intermediate frequencies (especially δ3 and δ4) are usually less

important. Finally, considering the entire spectrum of predictors/frequencies, more than

50% of the frequencies have zero weight. This means that a lot of information needs to be

removed from the predictive regressions in order to improve the forecastability of the equity

premium.

To evaluate the consistency over time of the OOS performance of the forecasting model, we

report the dynamics of the di�erence between the cumulative square forecasting error for

the HM forecasting model and the cumulative square forecasting error when the TS or the

WAV_BEST model for each predictor is used. Results, plotted in �gure 2, should be read as

follows. When the line increases/decreases, the predictive regression of the WAV model (in

blue) or of the TS model (in black) outperforms/underperforms that of the HM. A forecasting

model that consistently outperforms the HM will thus always have a positively sloped curve.

In the time series analysis (black lines), all predictors underperform the HM, so their cor-

responding lines are almost always below zero. Looking at the WAV_BEST models (blue

lines), it is possible to broadly classify the predictors into four di�erent groups as regards the

consistency of their OOS performance over time. The �rst group includes predictors (DP,

DY, NTIS, TBL and DFY) with an OOS performance close to that of the HM most of the

time (i.e. the lines are relatively stable around zero). A second group includes predictors

(RVOL, LTY and DFR) with an erratic forecasting performance, as the slopes of their plotted

graphs swing between positive and negative values. A third group includes predictors (EP,

DE, BM and INFL) which post a strong OOS outperformance versus the HM only during

the last NBER-dated recession. Finally, two predictors (LTR and TMS) post a consistent
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positive outperformance throughout the entire OOS period (except for the �rst 5 years), with

their corresponding lines featuring smooth upward-sloping trends.

4.2 Economic performance

In the previous sub-section we have shown that the proposed wavelet-based forecasting

method delivers statistically signi�cant gains. We now analize the performance of this method

from an asset allocation perspective. Results are reported in the third and sixth columns of

table 3.

The CER gains using the WAV_BEST forecasting method are usually larger than those in

the TS analysis. Furthermore, 11 out of 14 predictors deliver positive CER gains with the

WAV_BEST model, with the highest utility gains (548 basis points) obtained when using

the term spread (TMS).

Figure 3 provides a dynamic perspective of the portfolio and cumulative wealth for an investor

that uses the HM model, the WAV_BEST model for the dividend-payout ratio (DE, which

obtains the highest R2
OS in the OOS sample period under analysis) and the WAV_BEST

model for the term spread (TMS, which obtains the highest CER gains in the OOS sample

period under analysis).

Panel A presents the dynamic equity weights (constrained to lie between -0.5 and 1.5) for

those three alternative portfolios. Two results stand out. First, the equity exposure of the

HM portfolio (black line) is smoother than the alternative portfolios under analysis. Second,

changes in the equity allocation in a portfolio based on the WAV_BEST TMS (blue line)

are smoother than those on the WAV_BEST DE (red line). This can be explained by the

fact that the WAV_BEST TMS only considers the lowest frequency (i.e. the long run) of

the TMS, while the WAV_BEST DE considers both higher and lower frequencies of the DE.

Panel B shows the log cumulative wealth for an investor that invests 1$ in January 1990 and
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reinvests all proceeds. Both strategies based on the WAV_BEST models clearly outperform

the strategy based on the HM, with that outperformance being particularly strong during

recession periods. This is essentially due to the improved market timing of both WAV_BEST

model based strategies versus the HM based strategy, as illustrated in Panel A.

5 Robustness tests

We run two tests to evaluate the robustness of the wavelet-based forecast methodology. We

�rst analyze the forecasting performance in di�erent sample periods (sub-section 5.1), and

then run the forecasting exercise using quarterly data (sub-section 5.2).

5.1 Di�erent sample periods

5.1.1 Great moderation and great �nancial crisis

We divide the OOS period into two sub-periods: from January 1990 to December 2006,

which broadly corresponds to the so-called great moderation period, and from January 2007

onward, which corresponds to the great �nancial crisis and aftermath.

Table 4 reports the R2
OS and the CER gains for all predictors. Regardless of the forecasting

method used (TS or WAV_BEST), the OOS predictability in the �rst period is usually

weaker than in the second period.11 In any case, in both sample periods there are signi�cant

OOS forecasting improvements for almost all predictors using the WAV_BEST forecasting

model. In the �rst period, �ve variables yield positive and statistically signi�cant R2
OSs

using the WAV_BEST model, while in the time series analysis no predictor outperforms the

11 Regarding the WAV_BEST model, for each predictor and for each sub-sample period, we use the same
weights for the frequencies as the ones in the full OOS period (reported in table 3). This is a conservative
approach, as we would expect to improve the performance of the WAV_BEST models by choosing the optimal
weights of di�erent frequencies for each predictor and for each sub-sample period.
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HM benchmark in a statistically signi�cant way. A similar pattern is visible in the second

period. Interestingly, with the WAV_BEST model four predictors (earnings-price ratio,

dividend-payout ratio, long-term return and term spread) outperform the HM benchmark

in both sub-sample periods. Very similar conclusions arise from the utility gains analysis.

The maximum CER gains obtained are 500 and 811 basis points in the �rst and second sub-

sample periods (term spread and in�ation with WAV_BEST model, respectively), which

are signi�cantly higher than the gains achieved in the time series analysis (115 and 83 basis

points for Treasury bill rate and earnings-price ratio, respectively).

5.1.2 Bad, normal, and good growth periods

A typical �nding in the equity premium forecasting literature is that there is no predictability

during expansions or good times (see e.g. Henkel et al., 2011 and Neely et al., 2014). However,

Dangl and Halling (2012) and Huang et al. (2016) �nd positive and statistically signi�cant

levels of OOS predictability during expansions using time-varying coe�cients regression and

state-dependent predictive regression models, respectively.

Accordingly, and following Rapach et al. (2010), we evaluate the individual forecasts during

periods of bad, normal, and good economic growth. Those regimes are de�ned as the bottom,

middle, and top third of sorted growth rates of industrial production in the US, respectively.12

We report the R2
OSs and the CER gains for each regime in table 5.

Looking at the R2
OS during bad growth periods, no predictor is statistically signi�cant in the

time series analysis, whereas �ve predictors are statistically signi�cant and obtain expressive

CER gains when using the WAV_BEST models. In particular, the maximum R2
OS and CER

gains are 7.09% and 1011 basis points, respectively, both achieved using the dividend-payout

ratio.

12 The data for the industrial production in the US was downloaded from Federal Reserve Economic Data
at http://research.stlouisfed.org/fred2/.
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The same qualitative conclusions can be extended to the normal growth period, even if for

this regime only two predictors are statistically signi�cant using the WAV_BEST model.

Although the maximum R2
OSs and CER gains using the WAV_BEST model during normal

periods are usually lower than during bad periods, the levels are still quite high: the maximum

R2
OS and CER gains are 2.73% and 453 basis points using the stock return volatility and the

term spread, respectively.

As regards the good period regime, three predictors (EP, LTR, and TMS) are statistically

signi�cant when using the WAV_BEST models. Moreover, the OOS performance is rather

good, as their R2
OSs are 2.93%, 1.03% and 0.93%, respectively. From an utility perspective,

results are also strong, as their annualized CER gains are 606, 278 and 503 basis points,

respectively.

Overall, for some predictors the wavelet-based forecasting method allows to improve the OOS

forecast performance also when splitting the OOS period in bad, normal, and good growth

periods.

5.2 Quarterly data

At last, we test the robustness of the wavelet-based forecasting method using quarterly data.

As before, the OOS forecasts are made using a sequence of expanding windows. To have

a su�ciently large initial sample period, we use data from 1952:Q1. The initial in-sample

period is 1952:Q1 to 1989:Q4, and the full OOS period spans from 1990:Q1 to 2016:Q4. As

in the analysis using monthly data, we apply a J=6 level MRA so that the decomposition

delivers seven time-frequency series. We perform the MODWT MRA using the Daubechies

�lter with length 8 and re�ecting boundary conditions. We adopt this �lter, instead of the

Haar �lter used with monthly data, as it is more suited for (and more commonly used with)

quarterly data.
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We consider seventeen predictors: the same fourteen predictors used in the monthly data anal-

ysis plus the (lagged) investment to capital ratio (IK), the consumption-wealth ratio (CAY),

and Tobin's Q (Q).13 Table 6 reports the R2
OSs for each predictor for both the time series

analysis and the WAV_BEST model speci�cation. The main conclusion is that the wavelet-

based forecasting method is robust towards the use of quarterly data. There are indeed

signi�cant OOS forecasting improvements for almost all predictors using the WAV_BEST

forecasting model. Furthermore, four variables (earnings-price ratio, dividend-payout ratio,

long-term yield and investment rate) yield positive and statistically signi�cant R2
OSs using

the WAV_BEST model, while in the time series analysis no predictor outperforms the HM

benchmark in a statistically signi�cant way.

6 Concluding remarks

Goyal and Welch (2008) and subsequent research have documented the poor out-of-sample

(OOS) equity premium forecasting performance of an extensive list of predictors. In this

paper we propose a wavelet-based method to forecast the equity premium. The series are de-

composed into their time-frequency components, forecasted separately, and then aggregated

to obtain the forecast of the equity premium. Regardless of the predictor used, the OOS pe-

riod, and the frequency of the data considered, this method signi�cantly improves upon the

OOS forecast done using traditional time series tools. The proposed wavelet-based method

allows for a more granular analysis, leading to its strong and robust empirical performance.

In particular, the crucial step to improve the forecasting performance of the predictors is to

exclude the noisy components embedded in the original time series so as to only retain the

13 The quarterly time series of the IK and the CAY are available from the Goyal and Welch (2008) updated
database, while the series for Tobin's Q is computed using the Federal Flow of Funds data. These three
variables, which are brie�y explained in appendix 1, have usually been used as equity premium predictors
when using quarterly data (see e.g. Rapach et al., 2010, Lettau and Ludvigson, 2001, 2002 and Bianchi et al.,
2017).

20



frequencies that are relevant for the equity premium forecasting exercise.

The proposed wavelet-based forecasting method could, in principle, be helpful to improve

the forecast of other �nancial variables (e.g. equity market returns variance) and returns

in other markets such as �xed income, currency and commodities. Moreover, given the role

that the equity premium forecast has in asset allocation decisions, the proposed method

may bring relevant insights about the frequency-domain implications in the optimal dynamic

asset allocation decisions. At last, the proposed forecasting framework can also be useful

for policymakers in their attempt of anticipating possible �over-heated� equity markets that

could, ultimately, pose a threat to macroeconomic and �nancial stability.
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mean median min max std. dev. AR(1)

Equity premium (%) 0.41 0.84 -24.8 14.9 4.44 0.04

DP -3.63 -3.60 -4.52 -2.75 0.44 1.00
DY -3.62 -3.60 -4.53 -2.75 0.44 1.00
EP -2.83 -2.86 -4.84 -1.90 0.48 0.99
DE -0.80 -0.85 -1.24 1.38 0.34 0.99

RVOL (ann.) 0.15 0.14 0.05 0.32 0.05 0.96
BM 0.48 0.35 0.12 1.21 0.29 1.00
NTIS 0.01 0.01 -0.06 0.05 0.02 0.98

TBL (%. ann.) 4.83 5.00 0.01 16.3 3.51 0.99
LTY (%. ann.) 6.95 6.93 1.75 14.8 2.84 1.00

LTR (%) 0.71 0.75 -11.2 15.2 3.13 0.05
TMS (%. ann.) 2.12 2.33 -3.65 4.55 1.48 0.95
DFY (%. ann.) 1.10 0.96 0.55 3.38 0.46 0.96

DFR (%) 0.01 0.05 -9.75 7.37 1.48 -0.04
INFL (%) 0.33 0.30 -1.92 1.81 0.39 0.62

Table 1: Summary statistics

This table reports summary statistics for the log equity premium and for the set of predictive

variables. The sample period is from 1973:01 to 2016:12. Equity premium, LTR, DFR, and INFL

(TBL, LTY, TMS, and DFY) are measured in percent (annual percent).
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D1 D2 D3 D4 D5 D6 D7

Equity premium 48 26 12 7 4 2 2

DP 0 0 1 2 3 5 89
DY 0 0 1 2 3 5 89
EP 1 1 3 8 11 11 65
DE 1 2 8 19 29 26 15

RVOL 2 3 6 15 25 29 20
BM 0 0 1 2 3 4 91
NTIS 1 2 4 11 20 18 44
TBL 0 1 2 3 6 10 78
LTY 0 1 1 2 3 5 89
LTR 47 28 13 6 3 1 1
TMS 3 4 7 11 20 30 25
DFY 2 4 7 13 18 18 37
DFR 52 26 11 6 3 1 0
INFL 19 19 16 7 5 5 29

Table 2: Energy decomposition (%)

This table reports the variance decomposition by frequency for the time series under analysis. The

sample period is from 1973:01 to 2016:12. Percentages may not add up to 100 because of rounding.
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1990:01 - 2006:12 2007:01 - 2016:12
TS WAV_BEST TS WAV_BEST

R2
OS CER gains R2

OS CER gains R2
OS CER gains R2

OS CER gains

DP -3.29 -4.49 -0.37 -0.36 -0.13 -0.43 -0.37 -0.65
DY -3.61 -4.36 -0.33 -0.25 -0.01 -0.09 -0.45 -0.82
EP -1.05 -1.02 0.94* 2.39 -1.14 0.83 4.99* 5.12
DE -1.83 -1.60 0.88* 2.27 -2.65 -0.10 5.53** 5.91

RVOL -1.73 -3.02 1.87** 3.72 0.96 0.07 -2.68 -4.50
BM -0.86 -1.14 0.06 0.60 -0.09 -0.02 0.36 0.88
NTIS -2.84 -1.59 0.12 0.67 -3.38 -3.57 -0.20 -0.55
TBL -0.49 1.15 -0.38 0.00 -0.29 -0.11 -0.10 0.45
LTY -0.41 -0.33 -0.62 -0.65 -0.18 0.57 0.47 1.34
LTR -0.83 -0.98 0.67* 1.95 0.36 -0.36 1.58* 3.20
TMS -1.11 1.05 1.52*** 5.00 -0.34 -1.50 2.22*** 6.26
DFY -3.37 -4.43 -0.42 -0.35 -2.31 -4.80 -0.94 -1.42
DFR -2.64 0.96 0.20 0.29 -1.22 -0.04 0.53 -0.09
INFL -0.37 0.56 -0.63 1.01 -1.15 -2.68 5.31** 8.11

Table 4: Out-of-sample R-squares (R2
OS) and annualized CER gains

This table reports the out-of-sample R-squares (in percentage) for equity premium forecasts at

monthly (non-overlapping) frequencies from the model as given by equation (3) for each of the

original predictors (TS) and from the WAV_BEST model in equation (6) for each predictor, where

the frequency components used and corresponding weights (δj , j = 1, 2, . . . , 7) are listed in the last

seven columns of Table 3. The out-of-sample R-squares
(
R2

OS

)
measures the proportional reduction

in the mean squared forecast error for the predictive model relative to the forecast based on the

historical mean (HM). The 1-month ahead out-of-sample forecast of equity premium is generated

using a sequence of expanding windows. It is also reported the annualized certainty equivalent return

(CER) gain (in percent) for an investor who allocates his or her wealth between equities and risk

free bills according to the rule (7), using stock return forecasts from above mentioned models in

equations (3) and (6) instead of forecasts based on the HM. The sample period is from 1973:01 to

2016:12. Two out-of-sample forecasting periods are considered: from 1990:01 to 2006:12 and from

2007:01 to 2016:12, monthly frequency. Asterisks denote signi�cance of the out-of-sample MSFE-

adjusted statistic of Clark and West (2007). ***, ** and * denote signi�cance at the 1%, 5% and

10% levels, respectively.
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TS WAV_BEST
R2

OS R2
OS δ1 δ2 δ3 δ4 δ5 δ6 δ7

DP -4.83 -1.49 0 0 0 0 1 0.25 0.5

DY -6.68 -1.28 0 0 0 0 1 0.25 0.5

EP -2.46 6.60** 0.75 0 0 0 0.25 0 0.5

DE -4.56 2.45* 0 0.5 0 0 0 0 1

RVOL -4.93 -2.75 0 0 0 0 0 0 0.5

BM -1.09 0.37 0 0 1 1 0 0 0.5

NTIS -5.44 -1.32 0 0.75 0 0 0 0 0.75

TBL -1.28 -0.58 1 0.25 0 0 0 0 0.75

LTY 0.06 1.99* 1 1 0 1 0 0 0.75

LTR -2.60 0.81 1 0 0.25 0 1 0 1

TMS -3.47 0.03 0 0 0 0 0 0.25 0.75

DFY -1.92 -1.34 1 0 0 0 0 0 0.5

DFR -1.12 -0.55 0 0 0.25 0.25 0 0 0.5

INFL 1.64 1.47 0 0 0.25 1 1 0.5 0.75

IK 1.49 4.49** 0 1 0.5 0 0 0 1

CAY -2.81 1.29 0 0 0 0 1 1 0.75

Q -3.07 -1.11 0 0 0 1 0.75 0 0.75

Table 6: Out-of-sample R-squares (R2
OS) using quarterly data

This table reports the out-of-sample R-squares (in percentage) for the equity premium forecasts

at quarterly (non-overlapping) frequencies from the model as given by equation (3) for each of

the original predictors (TS, second column) and from the WAV_BEST model (equation 6, third

column) for each predictor where the frequency components used and corresponding weights (δj , j =
1, 2, . . . , 7) are listed in the last seven columns. The out-of-sample R-squares

(
R2

OS

)
measures the

proportional reduction in the mean squared forecast error for the predictive model relative to the

forecast based on the historical mean (HM). The 1-quarter ahead out-of-sample forecast of equity

premium is generated using a sequence of expanding windows. The sample period is from 1952:Q1 to

2016:Q4. The full out-of-sample forecasting period is from 1990:Q1 to 2016:Q4, quarterly frequency.

Asterisks denote signi�cance of the out-of-sampleMSFE-adjusted statistic of Clark and West (2007).

** and * denote signi�cance at the 5% and 10% levels, respectively.
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Figure 1: Equity premium, time series and wavelet decomposition

The time series of the (log) equity premium as proxied by the log S&P 500 index total return minus

the log return on a one-month Treasury bill is presented in the top left panel. In the remaining panels

are plotted the seven frequency components into which the equity premium time series is decomposed.

It is applied a J = 6 level wavelet decomposition which leads to six wavelet details (D1, D2, . . . , D6),
representing the higher-frequency characteristics of the series, and a wavelet smooth (D7), that
captures the low-frequency dynamics of the series. Sample period from 1973:01 to 2016:12, monthly

frequency.
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A. Equity weights

B. Log cumulative wealth

Figure 3: Equity weights and log cumulative wealth

Panel A plots the dynamics of the equity weight for a mean-variance investor who allocates monthly

his or her wealth between equities and risk free bills according to the rule (7), using stock return

forecasts based on the HM benchmark (black line), on the wavelet forecast with the WAV_BEST

model (6) for the TMS (WAV_BEST TMS, blue line) and the DE (WAV_BEST_DE). The equity

weight is constrained to lie between -0.5 and 1.5. Panel B delineates the corresponding log cumulative

wealth for the investor, assuming that he or she begins with 1$ and reinvests all proceeds. Grey bars

denote NBER-dated recessions. The investor is assumed to have a relative risk aversion coe�cient

of three. Sample period from 1990:01 to 2016:12, monthly frequency.
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Appendix 1. De�nition of equity premium predictors

• Log dividend-price ratio (DP): di�erence between the log of dividends (12-month mov-

ing sums of dividends paid on S&P 500) and the log of prices (S&P 500 index).

• Log dividend yield (DY): di�erence between the log of dividends (12-month moving

sums of dividends paid on S&P 500) and the log of lagged prices (S&P 500 index).

• Log earnings-price ratio (EP): di�erence between the log of earnings (12-month moving

sums of earnings on S&P 500) and the log of prices (S&P 500 index price).

• Log dividend-payout ratio (DE): di�erence between the log of dividends (12-month

moving sums of dividends paid on S&P 500) and the log of earnings (12-month moving

sums of earnings on S&P 500).

• Excess stock return volatility (RVOL): calculated using a 12-month moving standard

deviation estimator.

• Book-to-market ratio (BM): ratio of book value to market value for the Dow Jones

Industrial Average.

• Net equity expansion (NTIS): ratio of 12-month moving sums of net equity issues by

NYSE-listed stocks to the total end-of-year NYSE market capitalization.

• Treasury bill rate (TBL): three-month Treasury bill rate.

• Long-term yield (LTY): long-term government bond yield.

• Long-term return (LTR): long-term government bond return.
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• Term spread (TMS): di�erence between the long-term government bond yield and the

T-bill.

• Default yield spread (DFY): di�erence between Moody's BAA- and AAA-rated corpo-

rate bond yields.

• Default return spread (DFR): di�erence between long-term corporate bond and long-

term government bond returns.

• In�ation rate (INFL): calculated from the Consumer Price Index (CPI) for all urban

consumers.

For quarterly data, we also use:

• Investment to capital ratio (IK): ratio of aggregate (private nonresidential �xed) in-

vestment to aggregate capital for the whole economy.

• Consumption-wealth ratio (CAY): log consumer spending minus log asset wealth (total

household net worth) and minus log labor income, all measured on an aggregate basis.

• Tobin's Q (Q): the data is from the Flow of Funds Table B103 � Balance Sheet of Non-

�nancial Corporate Business; Q is calculated as the ratio of non-�nancial corporate

business, corporate equities, liability (level) to non-�nancial corporate business, net

worth (level).
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Appendix 2.

The discrete wavelet transform (DWT) multiresolution analysis (MRA) allows the decom-

position of a time series into its constituent multiresolution (frequency) components. There

are two types of wavelets: father wavelets (φ), which capture the smooth and low frequency

part of the series, and mother wavelets (ψ), which capture the high frequency components of

the series, where
∫
φ (t) dt = 1 and

∫
ψ (t) dt = 0.

Given a time series yt with a certain number of observations N, its wavelet multiresolution

representation is given by

yt =
∑
k

s
J,k
φ

J,k
(t) +

∑
k

d
J,k
ψ

J,k
(t) +

∑
k

d
J−1,k

ψ
J−1,k

(t) + · · ·+
∑
k

d
1,k
ψ

1,k
(t) , (8)

where J represents the number of multiresolution levels (or frequencies), k de�nes the length

of the �lter, φ
J,k

(t) and ψ
j,k

(t) are the wavelet functions and s
J,k
, d

J,k
, d

J−1,k
, . . . , d

1,k
are the

wavelet coe�cients.

The wavelet functions are generated from the father and mother wavelets through scaling

and translation as follows

φ
J,k

(t) = 2−J/2φ
(
2−Jt− k

)
ψ

j,k
(t) = 2−j/2ψ

(
2−jt− k

)
,

while the wavelet coe�cients are given by

s
J,k

=

∫
ytφJ,k

(t) dt

d
j,k

=

∫
ytψj,k

(t) dt ,

where j = 1, 2, ..., J .
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Due to the practical limitations of DWT in empirical applications, we perform wavelet

decomposition analysis here by applying the maximal overlap discrete wavelet transform

(MODWT). The MODWT is not restricted to a particular sample size, is translation-invariant

so that it is not sensitive to the choice of the starting point of the examined time series, and

does not introduce phase shifts in the wavelet coe�cients (so peaks or troughs in the orig-

inal time series are correctly aligned with similar events in the MODWT MRA). This last

property is especially relevant in the forecasting exercise.
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