Residual-augmented IVX predictive regression”

Matei Demetrescu®’ and Paulo M.M. Rodrigues®
@ Christian-Albrechts-University of Kiel

b Banco de Portugal and Nova School of Business and Economics, Universidade Nova de Lisboa

October 24, 2017

Abstract

Bias correction in predictive regressions is known to stabilize the empirical size prop-
erties of OLS-based predictability tests. This paper shows that bias correction also
improves the local power of tests, in particular so in the context of the extended instru-
mental variable (IVX) predictability testing framework introduced by Kostakis et al.
(Review of Financial Studies 2015). Concretely, we introduce new IVX-based statis-
tics subject to a bias correction analogous to that proposed by Amihud and Hurvich
(Journal of Financial and Quantitative Analysis 2004). Four important contributions
are provided: first, we characterize the effects that bias-reduction adjustments have
on the asymptotic distributions of the IVX test statistics in a general context allow-
ing for short-run dynamics and heterogeneity; second, we discuss the validity of the
procedure when predictors are stationary as well as near-integrated; third, we conduct
an exhaustive Monte Carlo analysis to investigate the small-sample properties of the
test procedure and its sensitivity to distinctive features that characterize predictive
regressions in practice, such as strong persistence, endogeneity, and non-Gaussian in-
novations; and fourth, an application of the new procedure to analyze return and rent
growth predictability in 19 OECD countries, the US, OECD and Euro area is also
provided.
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1 Introduction

Predictive regressions are widely used in economics and finance; see, e.g., Campbell (2008)
and Phillips (2015) for surveys. Typically, the variable of interest is regressed on lagged values
of a predictor and the existence of predictability assessed through the statistical significance
of the resultant estimate of the corresponding slope parameter. However, two important
features of predictors need to be taken into consideration in this analysis: i) many predictors
are often characterized by highly persistent autoregressive dynamics, and ii) many predictors
also exhibit innovations which are strongly correlated to the innovations of the dependent
variable. These features raise serious problems of endogeneity which can lead to sizeably
biased estimates in finite samples (Stambaugh, 1986 and Mankiw and Shapiro, 1986) and to
substantial over-rejections of the null hypothesis of no predictability. The usual asymptotic
approximation employing the (standard) normal distribution performs particularly bad when
predictors are persistent, even though the largest autoregressive roots of the typical predictor
candidate are usually smaller than one — reason for which near-integrated asymptotics has
been favored as an alternative framework for inference (Elliott and Stock, 1994 and Campbell
and Yogo, 2006). In the context of near-integrated regressors, the limiting distribution of
the slope parameter estimator is not centered at zero, and this bias depends on the mean
reversion parameter of the near-integrated regressor. Although near-integrated asymptotics
approximates the finite-sample behavior of the ¢-statistic for no predictability considerably
better when predictors are persistent, the exact degree of persistence of a given predictor, and
thus the correct critical values for a predictability test, are not known in advance. Moreover,
standard estimation or pretests also fail in this context (Cavanagh et al., 1995). Similarly,
regression misspecification tests are difficult to conduct; Georgiev et al. (2015) propose for
this reason a fixed-regressor wild bootstrap implementation of a residual stationarity test.
These difficulties have led to the proposal of a number of alternative approaches, which
differ mainly in the assumptions that characterize the stochastic properties of predictors
(i.e., whether these are stationary or near-integrated); see for instance, Campbell and Yogo
(2006); Jansson and Moreira (2006); Maynard and Shimotsu (2009); Camponovo (2015);
Breitung and Demetrescu (2015) and references therein. The recently proposed extended
instrumental variable estimation approach [denoted IVX] motivated by the work of Magdali-
nos and Phillips (2009) is becoming increasingly popular in predictive regressions, especially
because the relevant ¢-statistic exhibits the same limiting distribution in both, stationary
and near-integrated setups and is in this sense invariant to persistence; see, e.g., Kostakis
et al. (2015); Gonzalo and Pitarakis (2012); Phillips and Lee (2013) and Lee (2016). The
reasoning behind the approach consists in the generation of an instrumental variable whose
persistence can be controlled, and this is achieved by suitably filtering the actual predictor.
To some extent, all methods lose some power by having to robustify against unknown

persistence; however, as illustrated by Kostakis et al. (2015) the IVX methodology offers a



good balance between size control and power loss. Given however that the signal-to-noise
ratio in predictive regressions is quite low, one should strive to further improve this balance.
For instance, Demetrescu (2014b) uses a simple variable addition scheme to improve the
convergence rates of IVX estimators (and thus the local power of the corresponding t-tests)
when the instrument used is relatively close to stationarity. Yet, for instrument choices closer
to near-integration a different approach is required to improve the finite sample power of
IVX-based tests without giving up size control.

To this end, we take a closer look at the class of reduced-bias techniques proposed by
Amihud and Hurvich (2004) and extended by Amihud et al. (2009, 2010); see, inter alia, Bali
(2008), Avramov et al. (2013) and Johannes et al. (2014) for recent empirical applications
building on this approach. When compared to other available procedures, the distinctive
characteristic of these techniques is that they estimate the predictive slope coefficient and
its standard error in a suitably augmented predictive regression, so that the bias is reduced
to a minimum. While this bias correction was intended to stabilize the size properties of
OLS-based predictability tests, we argue that it may also contribute to improve power, in
particular so for IVX-based testing.

This paper discusses the large-sample behavior of IVX-statistics subject to bias correc-
tion, i.e., the implementation of IVX in an augmented predictive regression context analo-
gous to that of Amihud and Hurvich (2004), considering both stationary and near integrated
predictors. Our main objectives are fourfold: i) to characterize the effects that our bias-
reduction adjustments have on the asymptotic distribution of the IVX-statistics in a general
context; ii) to establish the validity of the procedure when predictors are stationary as well
as near-integrated; iii) to provide an exhaustive Monte Carlo analysis to investigate the
small-sample properties of the test procedures under distinctive conditions that characterize
predictive regressions in practice, such as strong persistence, endogeneity, and non-Gaussian
innovations, and to contrast them to the properties of available procedures, such as those of
Amihud and Hurvich (2004), Campbell and Yogo (2006) and the IVX approach proposed by
Kostakis et al. (2015); and iv) to conduct an in-depth analysis of return and rent growth pre-
dictability for 19 OECD countries, the US, OECD and Euro area 16 countries composition
(EA16).

The remainder of the paper is organized as follows. Section 2 briefly describes the char-
acteristic features of predictive regressions and the bias-reduction technique proposed by
Amihud and Hurvich (2004), and gives a brief preview of the advantages of the residual-
augmented IVX approach. Section 3 presents the large-sample theory under empirically
relevant assumptions, including for instance time-varying unconditional variances. Section
4 discusses the finite sample performance of several procedures used to test for predictabil-
ity. Section 5 presents the empirical analysis of the predictive power of rent-to-price ratios
to predict returns and rent growth, and section 6 summarizes and concludes. A technical

appendix collects the proofs of the main theoretical statements put forward in the paper.



2 Predictive regression framework and tests

2.1 The simplest model

To illustrate the issues with predictive regressions in general and the advantages of our
approach in particular, we start by considering the single predictor theoretical model set up
analyzed in Stambaugh (1999) and adopted, among many others, by Amihud and Hurvich
(2004) and Campbell and Yogo (2006). This setting characterizes the joint dynamics of
a stochastic process, {y;}.,, and its posited predictor, {x;}.!, in a two-equation linear
system as,

Yy = Prig+w, t=2,..,T (1)

Ty = p]?t_l‘i‘vt (2)

where the innovations &, := (u, vt)/ in the two-equation system are typically serially inde-
pendent Gaussian distributed with mean zero and covariance matrix .

In this setting, predictability is formally analyzed by examining whether the null hy-
pothesis, Hy : B = 0, is statistically rejected through a t-statistic on the OLS estimate B
computed from (1). The usual alternative hypothesis is that 5 > 0, focusing on one-sided
tests, but two-sided tests 8 # 0, are also frequently used in the literature. We shall refer

to the resultant least-squares statistic as ¢5 in the sequel. It is a well-documented fact that

when the correlation, UZ";’v, between the innovations u; and v; is large and p ~ 1, the dis-
tribution of ¢; largely departs from the typical standard normal limit, posing therefore an
interesting challenge on inference; see, e.g., Elliott and Stock (1994) and Stambaugh (1999).

Specifically, under these simple assumptions, weak convergence of the partial sum of &,
holds, i.e., T~/ ZES:TE (us, v) = (0 Wy (8),0,W, (8))', where (W, (s), W,(s))" is a vector of
dependent standard Wiener processes (see, e.g., Davidson, 1994, Chapter 29). Furthermore,
considering that the autoregressive coefficient p is local to unity, p := 1 — ¢/7, we have,
jointly with the above weak convergence, that Tfl/Qx[ST} = B.(s), where B, is an Ornstein-
Uhlenbeck [OU] process driven by W,(s), i.e., B (s) := Wy(s) —c [; e "W, (r)dr. Given
these results it follows that the limiting distribution of the OLS based t-test, ¢, computed

from (1) when the predictor is near-integrated is given by

2 ' B (5)dWV,
T Ty BE(s)ds

where Z is a standard normal variate independent of the Wiener process W, (r) driving
B.(r).

Remark 2.1 The assumptions of normality and serial independence allow for considerable

simplification of the exposition, but shall be relaxed in the following section by allowing for



more general forms of serial dependence or heterogeneity. U

2.2 Residual Augmented Predictive Regressions

Considering (1) - (2) and stationarity of {z;}, i.e., the additional assumption that p in (2) is
fixed and satisfies [p| < 1, Stambaugh (1986, 1999) shows that the exact OLS bias of § in (1)
is yE (p — p), with p denoting the OLS estimate of p and 7 := 0,,/0? is the slope coefficient
in a regression of u; on v;. Since p is known to be downward biased in small-samples,
and (uy, vy)" are typically highly negatively contemporaneously correlated, the autoregressive
OLS bias feeds into the small-sample distribution of B causing over-rejections of the null
hypothesis of no predictability, Hy : 8 = 0.

To correct for this effect, Amihud and Hurvich (2004) [AH] propose a simple statistical
device that builds upon the OLS estimates obtained from a predictive regression which
is augmented with estimates of wv;, the innovations to the predictor in (2). The initial
motivation for this type of augmentation is that the null distribution of the t-statistic on B

in the infeasible regression
Y = Bri—1 + v + & (3)

converges asymptotically to a standard normal distribution irrespectively of the stochastic
nature of x; and the degree of contemporaneous correlation of (uy,v;)’. Although it is tempt-
ing to use some proxy of v; to make this regression feasible, it should be noted that the
appealing asymptotic properties of the infeasible test do not automatically extend to the
feasible counterpart resulting from the use of the OLS residuals from (2), say v;. The reason
is that the bias of p still feeds into the estimation of § via oy, = v, — (p — p) 41 and, as
a result, the distribution of the OLS t-statistic for § = 0 in this regression, is simply a re-
scaling of that of ¢5; see Rodrigues and Rubia (2011); Cai and Wang (2014) and Demetrescu
(2014a), for further details.

The distinctive feature of the AH procedure is that it uses a bias-adjusted estimate of v,

to reduce the bias of B . Thus, the resulting feasible regression becomes,
Yo = By +0; + e, (4)

where 0} := x;, — p*z,_1, with p* denoting finite-sample bias-corrected OLS estimates of p in
(2). The central idea is to obtain a p* as close to unbiasedness as possible. The procedure
however also requires a correction in the form of specific standard errors which is not easily

generalized to higher-order dynamics; see Amihud et al. (2009, 2010).

Remark 2.2 Augmenting linear regression models with covariates is often motivated in
terms of efficiency gains (Faust and Wright, 2011). Arguably, the primary purpose of the

residual-augmented regression in (4) is to stabilize size, with power gains playing a secondary



role. This is partly because the true process of the errors is unobservable and must be replaced
by some empirical proxy (which prompts the correction for ensuring size control of the AH
procedure). We argue in the following that power gains can indeed be expected in the IVX

framework, while at the same time controlling for size. U

2.3 The IVX Test Procedures
2.3.1 The Original IVX Approach

Our interest lies in the evaluation of the impact that the bias correction through augmenta-
tion may have on the IVX approach. The IVX procedure, introduced to predictive regres-
sions by Kostakis et al. (2015), centers on the construction of instrumental variables from
the potential predictors. This ensures relevance of the instruments while at the same time
controlling for persistence. In particular, for the implementation of the procedure, one uses
2 1= Z;;QO Az ;= (1— QL)_T_l Awx; as instrument for z;, where L is the conventional lag
operator; the idea is to choose o :=1—aT™", with 0 < n < 1, and a > 0 and fixed, such that
2, is by construction only mildly integrated when the predictor x; is (nearly) integrated.
The resulting IVX estimator of 8 (henceforth 5%%), computed from (1) using 2 as in-
strument has a slower convergence rate than the conventional OLS estimator, but is mixed
Gaussian in the limit irrespective of the degree of endogeneity implied by . This estimator

is given by

T

> th2 Zt—1L1—1
~ T
fuyTema®in  Kogtakis et al. (2015)

S sim
suggest the use of OLS residuals @; (whose consistency properties do not depend on the

: (5)
and its standard error is computed as se (BA“’I> =

persistence properties of the instrument z;) for the computation of 62.
Breitung and Demetrescu (2015) analyze the power function of the IVX-based t-test,
computed as t;, = 37 /se <wa)’ under local alternatives of the form g := bT~(1/2+1/2)

and show that the limiting distribution under such local alternatives is

opV2
ouwn/a

where Z is a standard normal variate independent of the OU process B.(r), a is the non-

0 [ B84m0 (0

centrality parameter used in p for the construction of the instrument, and o, and o, are the
standard deviations of v; and wu,, respectively. Note that the reduced convergence rate of
B“’“" has consequences on the type of neighborhoods where the IVX based test has nontrivial
power. This, however, is the price paid for obtaining a pivotal limiting null distribution.

While Kostakis et al. (2015) do show that the power loss is moderate, one would of course



prefer to further reduce this loss whenever possible.

2.3.2 The Bias-reduced IVX Approach

Turning our attention to the bias correction approach proposed by Amihud and Hurvich
(2004), note that, the residuals 0] used in the residual-augmented predictive regression in
(4) rely on a bias-corrected estimate of p in order to reduce the endogeneity of the predictor.
Interestingly, since the IVX approach uses for estimation an instrument that is less persistent
than the original predictor, it turns out that in order to use the residual augmentation
approach in the IVX framework it is not necessary to construct a bias corrected estimator,
such as p* used by Amihud and Hurvich (2004). This is an important advantage of the IVX
procedure since it simplifies the analysis considerably and allows for easy generalizations to

higher order dynamics in the predictor as we will show below.

Remark 2.3 It may be surprising that, although simple augmentation using OLS residuals
does not work for the OLS estimation of the predictive regression, it will work for IVX.
The key observation is that, the estimation noise (0; — vy) does not affect the IVX estimator
given the lower convergence rate of the latter compared to the OLS estimator. Moreover, the
improved local power is the same as if the true v, were used in (4): the local power of the
test based on the augmented IVX regression is obtained by replacing o, with o. in (6); see
the next section for more details. Since o. < o, whenever v # 0, we obtain by construction
a larger drift term in the distribution under the local alternative B := bT~1/>t1/2)  Thijs
may not increase the convergence rate, but considering the typically high correlation of the
innovations u; and vy (given by ow/o,0, ), the ratio (9u/s.) can be considerably larger than
unity and power gains in finite samples are to be expected. This is confirmed in the Monte

Carlo analysis in Section 4. O

The implementation of our bias-reduced IVX approach in the simple introductory setup

given by (1) and (2), is as follows:

1. Regress x; on x;_; to obtain the residuals v; := v, — (p — p) 41, where p = p +
T
Zf#—zt;m is the usual OLS estimator.
D=2 T
T ~
2. Regress y, on 1, to obtain 7, := vy, — 40, = &, + fa,_1 + Yv; — Y0y, where ¥ := —%ﬁ Ulfgt
t=2 "t

is the usual OLS estimator.

3. Regress §; on 2,_; via IVX to obtain 5%* and the corresponding ¢-statistic, #;,,; simi-
larly to the original IVX, it helps in finite samples if the residuals are computed using
the OLS estimator, 3, of this regression given its consistency and higher convergence

rates.



Remark 2.4 Considering v; as the dependent variable provides a convenient way to think
about residual augmented predictive regressions. As discussed in Campbell and Yogo (2006),
the unobservable process [y, — F (ug|vy)] results from subtracting off the part of the innovation
to the predictor variable that s correlated with vy,. This provides a less noisy dependent
variable in the regression analysis and, therefore, yields power advantages over conventional
predictive regressions that steam from a relative gain in statistical efficiency. In particular,
since E (e2) = (1 — p2,) 02, the larger the degree of endogenous correlation in the system,
the larger the amount of variability in the regressand not related to x;_1 that can be filtered
out — conversely, we can think of the standard predictive regression analysis as a particularly
inefficient tool to detect predictability when p is large. However, since [y, — E (us]vy)] cannot

be directly observed, the feasible representation uses the OLS-based proxy 1, in the equation.[]

Remark 2.5 In practice, one may need to account for non-zero means of y;; this is accom-
plished by including an intercept in the regression in step 2 and by demeaning the regressor
xy in the IVX regression in step 3 (see Kostakis et al., 2015, for the justification of this
demeaning procedure in step 3). In the near-integrated case, including an intercept in the
autoregression in the first step is typically not needed for the kind of data one has in mind
with stock return predictability, where deterministic trends are in general not an empirical

1Ssue. O

Thus, following the three steps above we obtain the bias-corrected IVX estimator, viz.,

T ~ ~ T ~
Bivx — Zt:g Zt—1Yt _ Bivx . ﬁYZt:Z Zt—10¢ (7)

pal— T
Zt:Q Zt—1T¢—1 Zt:2 Z—1Lt-1

and its corresponding standard error,

se (3) = ar fa VEi (8)

t=9 At—1Tt—1

where 7; := y; — Y0; , 0. is the estimate of the standard deviation of ¢, computed from the
ST 1g
ZtT:Q x?—1

in (8) includes a finite sample correction,

residuals &; := 1, — Bmt,l and B = . Note that the estimator of the standard error

T 2
(360 S0s 7ame s )

R T T :
02 Et:Z 21:2—1 Zt:Q m%—l

A detailed discussion of the importance of the correction factor gr will be presented in

(9)

qr =1+

the following section, but it may be noted that (9) is in principle only required when the

predictors used are stationary; see section 3 for details.



Hence, considering (7) and (8) inference can be performed based on the IVX t-statistic,
Eil).f = Bivx/se <me> (10)

which turns out to remain standard normal irrespectively of the stationarity or near-integratedness

of the regressor.

2.4 Short-run dynamics and heterogeneity

This section looks into the properties of the residual-augmented IVX approach in the em-
pirical relevant cases where predictors may display short-run dynamics and heterogeneity.
Hence, in this section we lay out a fairly general setting, which is the framework we will use
to characterize the asymptotic properties of the procedures introduced in this paper.

The starting question is how to deal with short-run dynamics in the increments of x;,
since this has implications as to which residuals to use for augmentation in the IVX testing
procedure. Here, it is the innovations of v, (for which a finite-order AR process is a natural
choice) that should correlate with u, rather than v, itself, like in the case without short-run
dynamics. The augmentation approach (described in Section 2.2) relies on decomposing the
shocks to the predictive regression as the sum of two orthogonal components; should v; be
one of them, this induces serial correlation in u;, which is not a plausible feature of the null
hypothesis of no predictability. Hence, the general set up considered is formalized in the

following assumptions.

Assumption 1 The data is generated according to (1) - (2) with initial condition x1 bounded

ST D ct8et
Vy - O—I/tgl/t

where (&.4,&,) is a heterogeneous independent sequence with unity covariance matriz and,
for some & > 0, with uniformly bounded moments E (|§4+5 ) and E (‘§4+5 ) Furthermore,

et vt

in probability.

Assumption 2 Let

let ooy == 0. (Y1) and 0, := o, (Y1), where 0. (+) are piecewise Lipschitz continuous functions

on (—oo, 1], bounded away from zero.

Assumption 3 The errors u; and v; are given as

Vo= @Vt Gy U T

U = € + Yy, t e,

where the innovations (e,v;) are contemporaneously orthogonal white noise as indicated in

Assumption 2.



Assumption 4 The autoregressive parameter p is either i) fived when |p| < 1, or i) time-
varying near unity, p := 1 — <t/T with ¢, :== ¢ (Y1) and c(-) is a piecewise Lipschitz function

on [0, 1].

Assumption 2 acknowledges that time series (and in particular financial series) may
exhibit permanent volatility changes, which is an important stylized fact of many financial
series; see, ; i.a., Guidolin and Timmermann (2006); Terasvirta and Zhao (2011); Amado
and Terdsvirta (2013) and Amado and Terdsvirta (2014). Such forms of nonstationarity
typically invalidate the usual standard errors,! and we resort to heteroskedasticity robust
[HC] standard errors (also known as Eicker-White standard errors) to account for this feature.
The use of Eicker-White standard errors is moreover recommended by Kostakis et al. (2015)
to deal with conditional heteroskedasticity — albeit under strict stationarity of the error series
ve. In fact, examining the proofs in the appendix, it can be seen that one may relax the
independence assumption to allow for weakly dependent martingale difference sequences at
the cost of additional moment restrictions, however we do not pursue this topic here and
leave it for future work.

The AR(p — 1) structure of v; in Assumption 3 is taken as an approximation to more
general data generating processes [DGP]s. In theory, this would require letting p — oo at
suitable rates as T" — o0; dealing with the asymptotics related to the order of augmentation
determination is beyond the scope of this paper, but relevant results can be found, for
instance, in Chang and Park (2002). Finally, Assumption 4 characterizes the persistence
properties of the predictor. The flexible near-integrated DGP resulting from Assumption
4 ii) is motivated by the high, yet uncertain persistence of typical predictor series. Since
persistence needs not always be constant in practice, in particular when close to the unit
root region, we allow for time variation in persistence in the near integrated case.

Hence, the implementation of our residual-augmented IVX approach in the general frame-

work described by Assumptions 1 through 4 consists of the following steps:

1. Compute the residuals 7, from an autoregressive model of order p for the predictor z;,

viz.,
P

p
ﬁt:mt_ngjxt_j:Vt_z<¢j_¢j>xt—j7 t:p+1a7Ta
j=1 j=1
with (ﬁj, j =1,....p, the OLS autoregressive coefficient estimates. One may use some
information criteria in levels to determine the autoregressive order p (we use Akaike’s
information criteria [AIC] in sections 4 and 5); note that conducting model selection

in levels copes with both the stationary and the integrated cases.

!This is especially the case when dealing with (near-) integrated regressors; see, e.g., Cavaliere (2004)
and Cavaliere et al. (2010).
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2. Regress y; on 1y to obtain y; as regression residuals. From this regression step we also
obtain 4, the OLS estimate of ~.

3. Finally, regress ¢; on x;_; via IVX and use the provided standard errors (see (12)

below) to compute the relevant IVX t-statistic.

From step 3) we thus obtain,

T -
Biv;ﬁ . Zt:PJrl “t—1Yt

= = 7
Zt:erl “t—1Lt—1

(11)

which, upon standardization, is used for inference.

Note that under Assumptions 1 to 4, the standard errors need to take into account two
specific features of the data. First, time varying variances bias the usual standard errors, even
asymptotically. Second, while the estimation error (0; — v;) has no asymptotic effect on the
limiting distribution of 37 in the near-integrated context, it does so when z; is covariance
stationary. Yet treating the two cases in a different manner is inconvenient since exact
knowledge about which is actually the relevant case is typically not available. Consequently,
we derive heteroskedasticity-consistent standard errors for the stationary case and show that
these are also valid in the near integrated context. In this way, we are indeed able to use
the same statistic with the same limiting distribution to cover both cases without having to
decide which is which — analogously to the original IVX test of Kostakis et al. (2015).

In specific, we use

T 2 22 | A2A 1/2
(o) o (B4
se =
T
Zt=p+1 “t—1Lt—1

(12)

where the finite-sample correction Q7 used in (12) is given by

QT = HzmH;algmevH;inm
: T T T .
With Hae = Dy Tep®i_py Hea = D piq 21Ty Hawo = D y_piy Top®i_ 0, and
Ti—p = (T4—1, ..., 21—p)". To compute the Eicker-White-type standard errors in (12) we make
use of the OLS residuals computed from the residual-augmented predictive regression, &; :=
~ ~ T -
G — B, where 3015 ;= Zt=2"-10t 1athor than IVX residuals due to the superconsistency

T
2 5’3?—1

properties of the former in the near-integrated context.

Remark 2.6 One may resort to alternative HC' variance estimators, e.q., with correction
for degrees of freedom (HC1). The HC1 version is obtained here by multiplying the estimated

variance by T—Lp—fi' O

11



Remark 2.7 The standard errors in (12) are basically the Ficker-White standard errors that
would have been appropriate under stationarity of x;, where the estimation error of vy does
not vanish asymptotically. We show that Qr in (12) is dominated under near-integration so

that the standard error in (12) is asymptotically equivalent to the one implied by the near-

on1/2
) . . ST 2282 . .
integrated framework, which turns out to be simply (ZtT B 1;) as can be seen in Section
t=p+1 At—1Lt—1

3. U

Remark 2.8 The near-unit root in x; allows us in principle to use the residuals without the
need to use the finite sample correction, but the statistics fare better in finite samples if the
correction is included (essentially because, in finite samples, any |p| < 1 is “caught between”

stationarity and integration). U

2.5 Extensions to Multiple Predictors

The discussion so far has side-stepped a couple of aspects relevant for empirical work which
we address in this section. They are in fact straightforward extensions of the baseline case
and we shall omit some of the technical details.

It is often the case that several predictors are simultaneously considered. Thus, the

resulting multiple predictive regression is
yr = B'ei1 4wy

where x;_; follows a K-dimensional vector autoregressive data generating process of order

p, such as,

xr, = Rx, |+ v,

p—1
vy = E Ajvt_j+Vt
J=1

which is either stable or (near) integrated as before depending on the properties of the
autoregressive coefficient matrix R (v; is taken to be a stable autoregression in either case).
There is endogeneity, possibly in all regressors, expressed as a nonzero coefficient vector in
the decomposition

N
U .—’71/t+€t,

and the shocks v; and ¢; are heterogeneous, serially independent obeying a multivariate
version of Assumption 3.
The implementation of the IVX approach introduced in this paper in the multiple pre-

dictive regression case is as follows:

12



1. Get the vector of residuals &, from a vector autoregression of order p,
p A
ﬁt::wt—Z@jwt,j, tzp—l—l,,T,
j=1

with éj, 7 =1,..., p, the matrix of OLS coefficient estimates. Note that the use of
AIC (or some other information criteria) in levels, for determining the order p, is again

recommended.

2. Regress y; on v, to obtain the adjusted y; as,

~ Al A

Y=Yt — YVt
with 4 the OLS estimate of the vector of parameters ~.

3. Regress ¢, on x; 1 via IVX with z; 1 := (1 — QL)J_F1 Az, as instruments to obtain

wa and use the standard errors provided in Equation (13) below to conduct inference.

The estimated covariance matrix of 8" in this context is given by the familiar “sandwich”

formula,
Cov (8"") = By Mr (B7") (13)
where
T
BT = Z zt_lmgfl
=2
and

-1
_ T =2 / 1 T / T /
Mr = ), ;2121 1€ + (’7 ® (:T Do Zt%mhp,K) (Zt:p+1 a:tfpwatfp,K) ) X

1
T / ’ T / 1 T /
X (Zt:p—‘,—l Vv @ mt_p,Kwt—p,K> ('Y & (Zt:p+1 mt—p,Kmt—p,K> (T Do mt—p,Kzt—1>)

with @, ,, ;¢ corresponding to the vector stacking all p lags of all K regressors, i.e., T_, x =
(Tp1 s e o s T Ky Tt 1y e ooy T2, Ky e e o s Tt 1y e oy Ttp K )-

The limiting distribution of Bim is normal in the stationary case and mixed normal
in the near-integrated context; the proofs are simple multivariate extensions of the results
from the single-regressor case (see the following section) so we do not spell them out. More
importantly, individual and joint significance tests have their usual standard normal and x?
limiting distributions irrespective of the persistence and heterogeneity of the DGP as long

as the robust covariance matrix estimator in (13) is used.
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3 Asymptotic results

In this section, we analyze the limiting distributional characteristics of the new reduced-bias
IVX tests considering the general framework described in Section 2.4, which also provides
us with the results for the simplest case in Section 2 as a particular case. We consider two
different theoretical frameworks that critically determine the stochastic properties of the
predictive variable. On the one hand, we consider stationary predictors, characterized by a
fixed coefficient |p| < 1 in (2), and on the other, we allow for near-integration by considering
p:=1—cT'!, with ¢ > 0 and fixed. The main objective of this setting is to acknowledge the
uncertainty that researchers face regarding the stochastic properties of the predictor, i.e.,
whether it is stationary or near-integrated when p is close to, but strictly less than unity in
finite samples. This setting includes of course the extreme case of a unit-root when the local
parameter ¢ equals zero (¢ = 0).

In the following, we maintain the predictive regression framework in (1) but allow for
significant departures from Gaussianity and the restrictive AR(1) structure for the regressor.
We also allow for heterogeneity in the form of time-varying variances, different shapes of the
distributions, and even changes in the persistence of the regressor. Financial variables often
exhibit time-varying variances in addition to GARCH effects; Kostakis et al. (2015) discuss
the GARCH case considering strict stationarity, whereas we relax the i.i.d. assumption by
replacing stationarity with smoothly varying volatility.

Note first that the time-varying properties of the DGP, as stated in Assumptions 1
through 4, imply different behavior in the limit compared to the Gaussian i.i.d. case. In this

case, the partial sums of v; converge weakly to
M (s) := / o, (r)dW, (r),
0

and the partial sums of ¢; to fos o (r) dW, (r), with W, and W,, independent standard Wiener
processes; the “classical” case is only recovered when o, and o, are constant. Moreover, the
suitably normalized regressor can be shown to converge weakly to an Ornstein-Uhlenbeck

type process driven by the diffusion M (s), i.e.,

TV = w /0 e~ T eOUGNL (1) = wX (s) (14)

-1
where w = (1 - Zf;i aj) ; see, e.g., Cavaliere (2004) for the case with constant c.

In the case where z; is stationary, i.e., |p| < 1 and fixed, the following results can be
stated.
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Theorem 3.1 Under Assumptions 1, 2, 3 and 4i), we have, as T — oo, that
T2 (Bm — 5) 4 N (0,02) (15)

where
2. 0 NG s5)ds + 72 e, ) ot (s)ds
B
[ozo fo o2 (s) ds}
with o, = (ag ..., 1) and Q := {O‘\i—jl}1<ij<pf where ap, = bjbj 1, with b; the moving
average coefficients of x,, (1 — pL) ™ (1 — a1 L — ... — ap_ LP7') = > 50 bil? . Furthermore,

(16)

TY?se (me) N og
and, under the null hypothesis, Hy : § = 0,
Fivw — N(0,1). (17)
The limit behavior changes under near-integration as shown in the following Theorem.

Theorem 3.2 Under Assumptions 1, 2, 8 and 4ii), we have, as T — oo, that

T2/ < Five 5) = MN | o, afo s) ds
202 (X2 (1) = f; X (s) M (5) + fO ds)

(18)

and (fl 2 (5) 02 (5)d )1/2

o, (s)oZ(s)ds
se () = (23)2)1/2 X2 (1) fl);( V 1)
— Jo X (s)dM (s) + f s)ds
where a and 1 are fived, w? plays the role of the long-run variance (and is defined in (14)),
X (s) = [Je lre®dta, (r)dW, (r) and, o2(s) and 02 (s) are the variances of v, and &,
respectively. Moreover, under the null hypothesis, Hy : 5 =0,

tive = N (0,1). (20)

The proof of Theorem 3.2 establishes that Q7 = o, (T"*") so that it is dominated in (12)
by Zf:p 1 %-1€; which is of exact order O, (T"*") (see the Appendix for details), and the
residuals estimation effect is negligible in the near-integrated case. The near-integrated case
is also more interesting for an evaluation of the local power and for comparison with the

original IVX.2 The power function of the residual augmented IV X is provided next.

2The local power in the stationary case is easily derived and we omit the details.
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Theorem 3.3 Under Assumptions 1, 2, 3 and 4ii), we have for local alternatives f :=
b —(1/241/2) g5 T — oo that

1. (1)

2\ 1/2 y2 ol s s 1cs 2 (&) ds
Fow = N b<%) X2(1) — [ X (s)dM (s) + [ ¢(s) X2 (s)d

’ (fl o2 ()02 (s)s)

Setting X = B,, M = W, w? =1, 0, (s) = 04, 0-(s) = 0. and c(s) = ¢, and using
B.dW, — c¢B.ds as shorthand for dB., leads to the results for the particular case studied in

Section 2.

4 Finite sample performance

4.1 Monte Carlo Setup

This section compares the two versions of the IVX procedure, the original IVX test which we
denote as t;,, and the residual augmented version tivs, With extant procedures under several
heterogeneous DGPs. As benchmarks we use the tests of Campbell and Yogo (2006) and of
Amihud and Hurvich (2004) and Amihud et al. (2010).

Concretely, we generate y; and x; as in equations (1) and (2) but allow for an intercept

in the predictive regression, i.e.,

Y = M‘i‘ﬁl‘t_l‘i‘ut, t:2,,T (22)
Ty = PTe—1+ U (23)

and
UV = A V—1 + € (24)

with a; € {=0.5,0.5} and e, ~ idN(0,1). We focus on local alternatives of the form
B = bT ! for two sample sizes, T = 200 and T = 500. To study the empirical size of the
tests we let b = 0, and for the local power evaluation we consider b € {5,10, 15,25}, and the
persistence of the predictor is controlled by p := 1 — ¢TI, with ¢ € {0, 10, 20, 30,40, 50}.
The correlation causing endogeneity is set to —0.95, which is not an uncommon value in
practice; see, e.g., Campbell and Yogo (2006).

The efficient tests of Campbell and Yogo (2006) (denoted as C'Y') are analyzed, and the
residual augmented predictive regression based test of Amihud et al. (2010) (denoted as
AHW) is computed for a fixed p = 2 to keep complexity under control. In comparison, t;,,
does not require specifying the lag length, while for ¢;,, we chooses p via Akaike’s information
criteria (AIC). Both ¢;,, and tive are computed by demeaning the dependent variable and the

regressor, but not the instrument (see Section 2.5 for details). Since all tests are invariant
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to the intercept p, we set u = 0 without loss of generality.

Also, we follow Kostakis et al. (2015) and choose a = 1 and n = 0.95 for the construction
of the instruments in both. We employ the proposed standard errors from (12) in the
computation of #;,,, while, for the classical t;,,, we use Eicker-White standard errors as
recommended by Kostakis et al. (2015). Later on, we shall also consider a version of the
original VX test without Eicker-White standard errors, denoted by ¥ to illustrate the
impact of neglected time-varying volatility on the performance of this approach.

The rejection frequencies are computed at the nominal 5% level based on 10000 Monte
Carlo replications, and all results for the ¢;,, and #;,, tests are computed based on standard

normal critical values.

4.2 Empirical size and power performance

From Table 1, which presents the results obtained when v; follows an AR(1) with a; = —0.5
(negative autocorrelation) in (24) we observe, when b = 0 and for the values of ¢ considered,
that AHW and t;,, are slightly oversized, but that this oversizing decreases as the sample
size increases. At the same time, we also observe that ¢;,, displays slightly conservative
behavior. In this experiment CY presents the largest size distortions as a consequence of
the negative short-run dynamics. This feature of the CY test has already been noted in the
literature; see,e.g., Jansson and Moreira (2006). Note also that for the unit root case (¢ = 0)
there are some significant size distortions also for the t¢;,, and AHW tests. Regarding the
empirical power we observe that the #;,, test displays superior power when ¢ > 0, relative to
the other procedures.

As a robustness check, we also provide in the appendix results for positive short-run
dynamics, i.e., when a; = 0.5 (see Table B.1). We observe in general some size distortions
for all tests, with t;,, displaying the most severe distortions when compared to the other

procedures, and AHW and t;,, displaying the smallest distortions.

4.3 Robustness against empirical features of the data

To evaluate the performance of the procedures under other empirically relevant features we
report results for the empirical size under DGPs with time-varying volatility and time-varying

persistence. In specific, we consider five common variance patterns, namely:
1. constant, o2 (s) = 02 (s) = 1;
2. an early upward break, o2 (s) = 02 (s) = 1+ 8 (s > 0.3);

3. a late upward break, 02 (s) = 2 (s) = 1+ 8 (s > 0.7);

W~

. an early downward break, o2 (s) = 02 (s) =9 — 8I (s > 0.3); and
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Table 1: Empirical rejection frequencies against local alternatives (negative short-run AR

parameter)

AHW  CY  tie  livs AHW  CY  tie  tive

b T =200 T = 500
0 8.9 1.1 10.6  6.30 9.4 2.5 104 6.3
) 17.5 283 544 375 17.3 307 53.2  39.0
c=0 10 67.8 94.7 93,5 86.1 65.9 97.4 93.0 87.9
15 98.2 99.4 989 973 97.8 99.8 98.7 98.1
25 100.0 99.95 100.0 99.9 100.0 100.0 100.0 99.9

T =200 T = 500
0 6.6 0.0 5.4 5.0 6.8 0.4 4.6 4.6
) 8.1 0.2 13.8 145 7.2 2.8 124 144
c=10 10 17.1 3.8 33.2  39.6 15.0 14.8 31.0 38.7
15 37.0 29.2 65.1 78.1 33.2 49.6 61.3 774
25 96.6 94.7  96.8 994 95.2 98.8  96.0 99.5

T =200 T = 500
0 6.4 0.0 4.1 4.5 6.4 0.0 4.1 4.8
5 7.1 0.0 10.4 123 6.4 0.2 9.4 11.1
c=20 10 13.3 0.0 219  26.5 11.3 1.6 206 254
15 24.5 0.3 40.5  50.3 19.4 7.9 372 472
25 68.8 226 842 939 60.4 54.3  80.1 93.2

T =200 T = 500
0 6.0 0.0 4.3 4.9 5.8 0.0 4.0 4.9
5 6.4 0.0 9.1 10.5 6.0 0.0 8.5 10.3
c=30 10 11.4 0.0 17.7 219 9.1 0.0 15.8  20.2
15 20.1 0.0 324 393 16.1 0.5 284 359
25 54.1 0.3 70.6  81.3 42.4 12.1 63.7 77.1

T =200 T =500
0 6.1 0.1 4.0 4.7 5.5 0.0 4.1 5.0
5 6.8 0.1 8.9 105 5.7 0.0 7.2 9.4
c=40 10 10.5 0.1 16.8  20.0 9.1 0.0 14.3  18.3
15 18.5 0.1 28.1  34.1 13.5 0.0 24.3  30.2
25 45.1 0.1 60.8 714 34.9 0.8 52.5  65.2

T =200 T = 500
0 5.9 0.1 3.6 4.4 9.5 0.0 3.7 5.0
) 6.5 0.1 7.8 9.7 6.2 0.0 7.1 9.5
c=50 10 10.4 0.1 15.3 194 8.1 0.0 12.5 16.5
15 16.6 0.1 26.4  32.1 12.1 0.0 20.5  26.3
25 41.6 0.1 55.5  64.9 30.2 0.0 45.1  56.3

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2;
CY denotes the Campbell and Yogo test, t;,, is IVX test computed following Kostakis et
al. (2015) and #;,, the residual-augmented IVX test procedure introduced in this paper, all
with maximal lag length p = [4(T/100)%2?°]. The DGP is as in (1) and (2) with p = 1— T
and B = bT~'. For further details see the text.
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5. a late downward break, o2 (s) = 02 (s) =9 — 8I (s > 0.7),

where [ (+) is an indicator function; and to allow for time-varying persistence, we also consider

six patterns for the localization parameter c:
1. constant close to integration, ¢ (s) = 5;
2. small break towards stationarity, ¢ (s) =5+ 5l (s > 0.5);
3. large break towards stationarity, ¢ (s) =5+ 20I (s > 0.5);
4. constant close to stationarity, ¢ (s) = 25;
5. small break towards integration, ¢ (s) = 25 — 5[ (s > 0.5);
6. large break towards integration, ¢ (s) = 25 — 20I (s > 0.5).

To gauge the necessity of a correction for time-varying variances, we now compute, in addi-
tion, the IVX test without Eicker-White heteroskedasticity correction and denote it by t?ﬁz;
tive is computed with (the usual) Eicker-White standard errors, and tive is computed using
the heteroskedasticity-robust standard errors from (12) as before.

Table 2 confirms the conclusions obtained under the homogenous DGPs. The test based
on t;,, exhibits practically the same behavior under the variance patterns employed here, but
can be oversized for constant small ¢ (here, it is the closeness to the unit root that matters
and not the breaks in ¢). On the other hand, the size control of ¢, is overall quite good, for
all persistence patterns, and the Eicker-White-type standard errors account for time-varying
variances as well.3

1V X without robust standard errors can be seriously oversized, which, again, was ex-
pected; the worst effect is observed for late upward breaks in the variance. AHW exhibits a
similar pattern, to an even larger extent. We note that breaks in the persistence parameter
c tend to rather have a dampening effect, if any. CY is severely undersized, in line with the
previous experiments for negative short-run correlation.

As second robustness check of the findings Table B.2 in the appendix shows that, for
positive short-run correlation, CY now controls size fairly well except for late upward and
early downward breaks in the variance; the other three tests do not appear to be sensitive
to the sign of the short-run serial correlation of the predictor. The effects are practically
the same for both sample sizes, indicating that the size distortions are not finite-sample in

nature.

3Unreported simulations show that not employing the Eicker-White-type standard errors for the ;,, test
under time-varying variances leads to size distortions similar to those of the tffw test.

19



Table 2: Empirical rejection frequencies under breaks in variance and persistence, negative
short-run AR parameter

AHW CY 7 tivw  tive AHW  CY 7 tiw  tive

T T

c Var T =200 T =500
const 7.6 0.1 9 9.6 5.5 7.4 1.2 104 10.7 5.9
early up 11.5 0.1 132 98 64 11.2 1.6 135 99 6.6
const small late up 241 06 179 96 5.8 252 39 193 10 6.1
early down 21,5 04 151 88 5.5 221 3.0 164 94 59
late down 107 04 113 93 5.6 111 23 123 96 6.3
T = 200 T =500
const 7.0 0.0 83 88 59 7.3 0.7 96 99 6.3
early up 11.7 0.0 121 93 59 115 15 129 96 6.6
up small late up 232 0.1 164 93 5.6 241 23 174 94 538
early down 222 0.2 149 82 6 222 2.8 17 9.3 6.9
late down 109 0.1 11 8.6 6.3 11.3 1.8 121 92 6.6
T =200 T = 500
const 6.6 00 72 79 54 6.8 0.3 89 9 6.2
early up 109 0.0 103 81 55 115 0.3 115 87 59
up large late up 215 00 136 85 438 215 03 142 88 5.2
early down 223 02 147 7.8 6.9 228 2.7 171 8 6.9
late down 11.6 0.0 105 7.5 6.3 11.3 1.1 114 84 6.9
T =200 T = 500
const 6.2 0.0 56 6.1 53 5.6 0.0 6.7 6.7 55
early up 10.6 0.0 102 78 6.1 104 0.0 11.3 81 6.2
const large late up 244 0.1 156 7.8 6.3 245 0.1 168 79 6.7
early down 240 00 11 5.5 5.5 232 00 134 64 64
late down 111 00 78 58 5.6 11.0 00 84 59 54
T =200 T = 500
const 6.1 0.0 59 6.2 55 6.1 0.0 7.1 74 5.6
early up 10.9 0.0 104 8 6 11.1 0.1 11.1 7.9 6.1
down small late up 236 0.1 164 82 6.9 239 0.2 169 82 6.6
early down 234 00 107 54 56 232 01 125 6.2 58
late down 106 00 75 59 54 10.8 0.0 93 66 5.8
T =200 T = 500
const, 7.0 00 72 76 5.1 7.4 0.2 9.1 93 5.9
early up 11.2 0.1 124 94 6.2 11.4 1.3 136 94 6.6
down large late up 250 04 199 91 7.1 254 43 214 9 7.3
early down 21.3 0.0 10 6 4.3 21.3 0.2 11.8 6.8 4.5
late down 102 00 89 75 46 103 0.3 95 82 46

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2; CY denotes
the Campbell and Yogo test, tffw is IVX test computed following Kostakis et al. (2015) but without the
Eicker-White correction, and #;,, is the residual-augmented IVX test procedure introduced in this paper, all
with maximal lag length p = [4(7/100)%-25]. The DGP is as in (1) and (2) with p=1—¢, 7! and 8 = bT !
and exhibits time-varying variance. For further details see the text.
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5 Real estate returns and rent growth predictability

5.1 Background

The real estate market is of considerable economic importance; see, e.g., Englund et al.
(2002) and Case et al. (2005). As argued by Helbling and Terrones (2003) and Rapach
and Strauss (2006), changes in housing wealth can be more important in their effects on
the economy than changes in wealth caused by stock price movements. In effect, some of
the most severe systemic financial crises have been associated with boom-bust cycles in real
estate markets; see Bordo and Jeanne (2002), Reinhart and Rogoff (2013), and Crowe et al.
(2013). Hence, understanding the dynamics of house prices is quite of relevance, not only
from an academic perspective.

Price determination in housing markets implies that rents are a fundamental determinant
of the housing value and that the rent-to-price ratio (also known as ’cap rate’) summarizes
market expectations of future housing returns or rent growth (cf. Plazzi et al., 2010, Ghysels
et al., 2013 and Engsted and Pedersen, 2015 [EP]). Several recent studies have analyzed the
predictive power of the rent-to-price ratio for future housing returns and rent growth in the
US housing market (i.a., Gallin, 2008, Plazzi et al., 2010, Cochrane, 2011, and Ghysels et al.,
2013), but the European housing market (see, e.g., EP) and the housing market in other
countries have received less attention.

The analysis in this section contributes to this literature with further evidence for a
large set of OECD countries, the US and the Euro area 16 countries composition (EA16),
complementing and consolidating the findings in EP. The framework of analysis follows from
the log-linear approximation of one-period gross returns to a housing investment as proposed
by Campbell and Shiller (1988), which relates the current log rent-to-price ratio (r; — p;) to
the expected future rate of housing returns and expected future rent growth, such that, the

following present value relation is obtained,

K > ;
A e + E, Z P (heiry — Ariysg) (25)
=0

where h;, 7, and p; denote, respectively, the log housing return, the log rent, and the log house
price at time ¢, p is the discount factor and « is a linearization constant; see Campbell et al.
(2009), Plazzi et al. (2010), Ghysels et al. (2013) and EP. Note that in (25) the transversality
condition (i.e., no-bubble), lim; o p?(rir; — piy;) = 0, is imposed.

Hence, the model in (25) indicates that the rent-to-price ratio is a useful measure of
valuation if it can predict future housing returns or rent growth (see, e.g., EP and Gallin,
2008). The intuition behind (25) is that, holding expected housing returns constant, an
increase in expected future rents leads to an increase in today’s house price which originates

a decrease in the rent-to-price ratio. Similarly, holding the expected rent growth constant,
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an increase in expected future housing returns must imply a lower price today and thereby
an increase of the rent-to-price ratio.

The idea of using valuation ratios for prediction is not new. As noted in Ghysels et al.
(2013), several ratios have been used in the literature. In particular, for real estate the most
commonly used are the rent-to-price ratio (Hamilton and Schwab, 1985, Meese and Wallace,
1997, Geltner and Mei, 1995, Campbell et al., 2009, Himmelberg et al., 2005, Gallin, 2008,
Plazzi et al., 2010), the loan-to-value ratio (Lamont and Stein, 1999), and the price-to-income
ratio (see, e.g., Malpezzi, 1999).

If expected rent growth and expected housing returns are both stationary, then the rent-
to-price ratio should also be stationary, however empirical evidence suggests that this is not
necessarily always the case; see Kishor and Morley (2015). Most methods which use ratios as
predictors of future returns typically assume stationarity of the ratios, 7.e., that the variables
used to form the ratios are cointegrated in logs (see, e.g., Campbell et al., 2009, and Plazzi
et al., 2010).

For instance, to test for return and rent growth predictability by the rent-to-price ratio
in the US housing market, Plazzi et al. (2010) apply a generalized method of moments ap-
proach in which they impose the present value restriction. EP on the other hand report the
probability of the upper (lower) one-sided alternative, if the estimated predictive coefficient
is positive (negative). To conduct inference, they simulate the p-values. If the predictive
coefficient is positive (negative) and the null hypothesis is rejected it is concluded that the
rent-to-price ratio has positive (negative) predictive power of either housing returns or rent
growth depending on the null hypothesis considered. EP’s argument for considering this re-
lation through these joint tests is to obtain statistics with better power performance than the
usual marginal tests (see also Cochrane, 2008). EP’s joint test directly exploits the connec-
tion between housing returns, rent growth and the rent-to-price ratio given in (25). In testing
the joint hypotheses, EP follow Cochrane (2008), and simulate data under the respective
nulls and test the hypotheses of interest using simulated small sample distributions.

In our analysis below we apply the new residual-augmented IVX predictive regression test
introduced in Section 2.3.2, and contrast the results obtained with those of the conventional
IV X predictive regression test proposed by Kostakis et al. (2015), and the conventional OLS
based t-ratio computed with and without Newey-West standard errors (the latter was also
used in EP and Ghysels et al., 2013).

5.2 Data

Our analysis focuses on housing returns and rent growth predictability for 19 OECD countries
(Australia (AUS), Belgium (BEL), Canada (CAN), Switzerland (CHE), Germany (DEU),
Denmark (DNK), Spain (ESP), Finland (FIN), France (FRA) the UK (GBR), Ireland (IRL),
Italy (ITA), Korea (KOR), Japan (JPN), the Netherlands (NLD), Norway (NOR), New
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Zealand (NZL), Portugal (PRT), Sweden (SWE)) and the US. We also look at overall in-
dexes for the OECD and the EA16. The data consists of seasonally adjusted quarterly real
and nominal house prices, and the rent-to-price ratio from 1970Q1 to 2016Q1 for all coun-
tries except Australia (begins 1972Q3), Belgium (begins 1976Q2), Korea (begins 1986Q1),
Portugal (begins 1988Q1), Spain (begins 1971Q1), Norway (begins 1979Q1), and Sweden
(begins 1980Q1). From the real and nominal house prices, inflation in each country is com-

puted, and from the house prices and the rent-to-price ratio real and nominal rent growth

Pi1+Rita
P, :

For a clearer understanding of the series under analysis, we computed the averages for

as well as housing returns are computed. The latter is computed as H; 1 =

the total sample size of each series, as well as for four sub-periods (sub-period I: 1990Q1
- 1999Q4; sub-period II: 2000Q1-2007Q4; sub-period III: 2008Q1-2012Q4; sub-period IV:
2013Q1-2016Q1); see Table 3.

In terms of nominal housing returns, most countries obtained the highest average return
rates in sub-period II (2000Q1 - 2007Q4). In specific, in this sub-period the highest returns
where observed in Spain (3.1 %), Ireland (2.6%), the United Kingdom (2.5%) and France
(2.5%). Overall, during this period 16 countries had nominal average quarterly return rates
greater than 1.5%, although two countries displayed negative quarterly housing return rates
(Germany (DEU) -0.09% and Japan (JPN) -1.07%). In sub-period I and sub-period IV, most
countries present more moderate returns. In sub-periods I and IV only 3 (Ireland (IRL), the
Netherlands (NLD) and Portugal (PRT)) and 5 (Australia (AUS), Ireland (IRL), Newzealand
(NZL), Sweden (SWE) and the UK (GBR)) of the 20 countries considered displayed returns
larger than 1.5% and in both periods 3 countries displayed negative returns (Finland (FIN),
Japan (JPN) and Switzerland (CHE) in sub-period I and Finland (FIN), France (FRA) and
Italy (ITA) in sub-period IV). Sub-period IIT (2008Q1 - 2012Q4) registered overall the worst
performance (9 of the 20 countries considered as well as the OECD and the EA16 index
displayed negative returns over this period). Ireland (IRE) (-3.4%), Spain (ESP) (-1.95%),
Denmark (DNK) (-0.9%), Portugal (PRT) (-0.87%) and the Netherlands (NLD) (-0.85%)
displayed the lowest return rates. On the other hand, Norway (NOR) (1.2%), Switzerland
(CHE)(1%), Canada (CAN) (0.88%) and Germany (DEU) (0.85%) registered the highest

returns over this sub-period. The evolution of real returns is qualitatively very similar.
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Table 3: Average housing returns, rent growth and rent-to-price ratio.

AUS BEL CAN DNK FIN FRA DEU IRL ITA JPN KOR NLD NZL NOR PRT ESP SWE CHE GBR USA OECD EA16
Nominal Returns
1990-2000 0.875 1.248 0.163 1.244 -0.020 0.261 0.529 2.325 0.750 -0.232 0.093 2.266 1.090 1.337 1.570 1.183 0.632 -0.702 0.832 0.793 0.611 0.793
2000-2007  2.452 1.864 2.014 2.073 1.233 2.524 -0.093 2.594 1.928 -1.069 1.515 1.527 2.433 2.012 0.514 3.122 2.206 0.568 2.537 1.501 1.333 1.570
2008-2012  0.623 0.563 0.882 -0.906 0.612 0.042 0.846 -3.418 -0.467 -0.229 0.652 -0.852 0.175 1.206 -0.867 -1.953 0.744 1.042 -0.160 -0.720 -0.161 -0.189
2012-2016  1.930 0.272 1.216 1.244 -0.003 -0.312 1.272 2.318 -0.865 0.524 0.419 0.267 2.215 0.997 0.745 0.151 2.443 0.577 1.862 1.474 1.001 0.291
Total 2.028 1.396 1.613 1.452 1.462 1.487 0.699 2.022 1.904 0.666 0.841 1.307 2.202 1.745 0.904 2.230 1.695 0.824 2.209 1.228 1.357 1.431
Real Returns
1990-2000 0.314 0.744 -0.330 0.770 -0.618 -0.057 0.041 1.662 -0.326 -0.415 -1.626 1.694 0.691 0.727 0.203 0.138 -0.210 -1.165 0.092 0.235 0.026 0.120
2000-2007  1.746 1.256 1.594 1.617 0.830 2.026 -0.454 1.776 1.285 -0.877 0.776 0.912 1.958 1.577 -0.341 2.273 1.864 0.333 2.158 0.927 0.860 1.003
2008-2012 -0.017 0.118 0.557 -1.431 0.010 -0.189 0.529 -3.156 -0.925 0.074 -0.093 -1.153 -0.339 0.704 -1.123 -2.416 0.324 1.070 -0.767 -1.135 -0.566 -0.545
2012-2016 1513 0.091 0.851 1.107 -0.326 -0.336 1.103 1.945 -0.909 0.392 0.240 0.080 2.035 0.397 0.603 0.317 2.200 0.702 1.551 1.250 0.835 0.213
Total 0.740 0.502 0.649 0.401 0.289 0.467 0.073 0.646 0.257 0.119 -0.224 0.502 0.790 0.632 -0.075 0.588 0.498 0.242 0.892 0.352 0.379 0.330
Nominal Rents
1990-2000  0.568 0.754 0.465 0.687 0.194 0.750 1132 -0.051 1.433 0.374 1.032 1.048 0.810 0.688 2.011 1.601 1.611 0.785 1.529 0.843 0.907 1.143
2000-2007  0.784 0.532 0.338 0.621 0.714 0.593 0.271 2.924 0.600 -0.056 0.564 0.636 0.215 0.746 0.657 1.037 0.479 0.388 0.701 0.788 0.600 0.628
2008-2012  1.279 0.382 0.343 0.694 0.338 0.404 0.292 -1.202 0.568 -0.094 0.704 0.540 0.495 0.660 0.519 0.425 0.606 0.357 0.616 0.319 0.410 0.395
2012-2016  0.504 0.343 0.311 0.453 0.707 0.219 0.327 0.206 0.055 -0.082 0.628 0.908 0.545 0.664 0.511 -0.124 0.395 0.194 0.621 0.710 0.490 0.230
Total 1.397 0.896 0.714 1.188 1.129 1.219 0.782 1.279 1.578 0.659 0.832 1.124 1.543 1.017 1.273 1.550 1.262 0.774 1.773 1.157 1.148 1.195
Real Rents
1990-2000  0.007 0.250 -0.028 0.214 -0.404 0.432 0.644 -0.714 0.358 0.191 -0.687 0.477 0.411 0.079 0.644 0.555 0.770 0.321 0.789 0.284 0.321 0.470
2000-2007  0.078 -0.076 -0.082 0.165 0.311 0.095 -0.090 2.105 -0.043 0.136 -0.175 0.021 -0.261 0.310 -0.197 0.188 0.137 0.153 0.321 0.213 0.128 0.061
2008-2012  0.639 -0.063 0.019 0.169 -0.264 0.173 -0.024 -0.939 0.110 0.209 -0.041 0.240 -0.018 0.157 0.262 -0.038 0.185 0.384 0.009 -0.096 0.005 0.040
2012-2016  0.086 0.162 -0.053 0.316 0.385 0.195 0.158 -0.167 0.010 -0.215 0.449 0.721 0.365 0.063 0.369 0.041 0.152 0.319 0.309 0.485 0.234 0.151
Total 0.122 0.166 -0.250 0.136 -0.044 0.199 0.156 -0.097 -0.069 0.112 -0.234 0.318 0.132 0.092 0.294 -0.093 0.362 0.193 0.455 0.282 0.170 0.094
Rent to price
1990-2000 1.706 1512 1.344 1.701 1414 1.587 0.799 2.888 1173 0.648 1.015 1.813 1.898 1.731 1.020 1.632 1.502 0.899 1.795 1.365 1214 1.213
2000-2007  1.125 1.110 1.101 1.099 1.107 1.191 0.966 1.195 1.118 0.918 1.027 1.028 1.248 1.041 0.986 1.236 1.074 1.021 1.154 1.119 1.074 1.080
2008-2012  0.971 0.863 0.771 1.039 0.954 0.943 0.986 1.726 1.031 1.066 0.837 1.067 0.942 0.808 1.209 1.099 0.796 0.939 1.003 1.239 1.063 1.008
2012-2016  0.924 0.856 0.683 1.089 0.985 1.001 0.843 1.893 1.238 1.023 0.888 1.361 0.818 0.722 1.395 1.450 0.693 0.843 0.959 1.207 1.048 1.067
Total 1.587 1.344 1.468 1.381 1.401 1.362 0.789 2.923 1.267 0.806 0.959 1.547 1.652 1.341 1.076 2.081 1.118 0.873 1.452 1.249 1.166 1.186
Rent _to price (real)
1990-2000 1.708 1.716 1.505 1.884 1.583 1.697 0.905 2.608 1.282 0.705 1.207 1.979 2.168 1.914 1114 1.748 1.693 0.961 2.008 1.536 1.350 1.327
2000-2007  1.126 1.260 1.233 1.217 1.240 1.273 1.094 1.079 1.222 0.999 1.223 1.123 1.426 1.151 1.076 1.324 1.210 1.092 1.291 1.259 1.195 1.182
2008-2012  0.972 0.979 0.863 1.150 1.069 1.009 1117 1.558 1.127 1.160 0.996 1.165 1.076 0.894 1.320 1177 0.897 1.004 1.123 1.395 1.183 1.104
2012-2016  0.925 0.971 0.765 1.206 1.103 1.071 0.955 1.710 1.353 1113 1.057 1.486 0.935 0.799 1.523 1.553 0.781 0.901 1.073 1.358 1.165 1.168
Total 1.589 1.525 1.644 1.530 1.569 1.456 0.893 2.640 1.384 0.877 1.141 1.689 1.887 1.483 1.175 2.229 1.260 0.934 1.624 1.406 1.296 1.298




Regarding the nominal rent growth, the number of countries with negative average nom-
inal rent growth is relatively small (only Ireland (IRL) in sub-period I, Japan (JPN) in
sub-period II, Ireland (IRL) and Japan (JPN) in sub-period III, and Japan (JPN) and Spain
(ESP) in sub-period IV, display average negative rent growth). Taking the OECD average
rent growth as benchmark we observe that the average rent growth in EA16 in sub-periods
I and II was higher than in the OECD, but lower in sub-periods III and IV. Overall, in sub-
periods I, IT, ITT and IV, 8, 10, 12 and 9 of the 20 countries considered, respectively, displayed
larger average rent growth than the OECD. The highest values in sub-period I are observed
for Portugal (PRT) (2%), Sweden (SWE)(1.6%), Spain (ESP)(1.6%) and the United King-
dom (GBR)(1.5%); in sub-period II, for Ireland (IRE)(2.9%), Spain (ESP)(1%), the US
(0.8%), and Australia (AUS)(0.8%); in sub-period IIT for Australia (AUS)(1.3%), Korea
(KOR)(0.7%), Denmark (DNK)(0.7%) and Norway (NOR)(0.7%); and finally in sub-period
IV for the Netherlands (NLD)(0.9%), the US (0.7%), Finland (FIN)(0.7%) and Norway
(NOR)(0.7%). The evolution of real rents is qualitatively similar.

Hence, given the heterogeneous evolution of rents and house price dynamics across coun-
tries in the next section we analyze the predictive power of the rent-to-price ratio to predict

these series.

5.3 Testing for predictability
5.3.1 Complete sample analysis

Table 4 presents the findings for nominal housing returns, nominal rent growth and inflation
predictability by the rent-to-price ratio. The present value relation in (25) suggests that
the rent-to-price ratio should predict returns with a positive sign and rent growth with a
negative sign. However, regardless of the test used, the results suggest that this is not always
the case (this was also noted by EP).

Regarding nominal housing return predictability the marginal t-tests, tors and tyw,
suggest that the rent-to-price ratio is a significant predictor in 17 of the 22 countries and
economic areas under analysis, whereas the residual-augmented IVX and IVX only find
predictability in 12 and 16 of the 22 countries and economic areas considered, respectively.
For instance, tyw finds predictability for Italy (ITA), the Netherlands (NLD), OECD and
EA16, which is not confirmed by both the residual-augmented IVX and the IVX. On the
other hand, the residual-augmented [VX and IVX find predictability for nominal housing
returns in Japan (JPN), and Switzerland (CHE) which was not detected by ¢y .

25



9¢

Table 4: Predictability of nominal returns, nominal rent growth and inflation. Sample: 1970 - 2016.

returns rent growth Inflation
trvx tivx tors tnw trvx tivx torLs tnw trvx tivx toLs tyw

AUS 3.027T*FF  3.2302%**  5.6628%FF  4.4544%F*  5.3643%**  4.2232%FF 7 5065*** 6.5025%** 1.0505 0.6146 1.0609 0.8071
BEL 4.0463 **¥*  3.4893***F  4.2513%F*  4.3315%*¥*F  10.464***  6.1540***  5.6817FF* 6.9821*** 1.5256 1.8714* 1.6533* 1.0249
CAN 2.047T7** 1.7801%* 6.1063***  5.2854*** 1.4555 0.9278 7.1563*** 4.5841%%* 0.6043 0.2527 4.2003*** 2.887TH**
DNK 1.4534 1.9480* 3.2563*%**  2.2019*%*  2.8002***  2.1076** 4.0075*** 3.5159%** 1.2366 0.8328 1.6395 1.1044
FIN 1.867* 2.1114** 4.6749%*F*F  45125%**F 1.4283 0.9602 2.9298%** 2.4397** 1.3421 1.0936 3.1299*** 2.2653**
FRA 1.3778 1.6908%* 5.0813***  3.5692*%** (.8868 0.6342 3.9175%** 3.6501%%* -0.5826 -0.7248 1.1151 0.8097
DEU -3.9911%**  _3.0917*%%*  _2.7055** -1.9690%*  -6.8974***  _4 9888*FF* 7 4356**F*F  -10.4520%FF  -6.1334**¥*  _5.4224%*F*  _7.2386%*F*  _5 5412%**
IRL 2.0808** 2.5885*** T OR74***  §.9395%**F  _(.2296 -0.5224 0.1716 0.1397 -0.7814 -1.0963 0.8580 0.5982
ITA -0.6061 -0.6073 3.2715%** 1.9693*%*  -2.2646*%*  -3.1020*** -1.6117 -1.7397* -3.8721%*%  _4.1515%F%  _7.0302%F*  _7.2114%**
JPN -3.0279*** -2 8805*%** _0.8188 -0.8236 -0.569 *F¥  _7.63209%F*  _5 3873FF*F  _6.1726%FF  _8.0175***  _8.2320%F*  _G.1746%*F*  _5.7231%**
KOR -1.2629 -1.6044 -1.0539 -0.7484 -4.6463%FF  _6.1721F**F  _6.7180***  -3.7339*** 1.5949 1.7069* 1.2997 0.9205
NLD 1.5339 2.3149** 4.0122%FF  4.4249%** 1.7738* 1.0922 1.8160** 2.2335** -2.3900*%*  -2.4186** -1.7329* -1.3064
NZL 3.8034 ***  3.0548%**  5.3499%FF 4 5357FF* 4 ABIHF** 3.0720%FF  5.5373F** 7.2056*** 3.0944*** 2 2087** 3.5074%%* 2.8420***
NOR 2.5964***  1.8511* 3.1292%** 2 9GGTHFFF  5.2489%F* D R4TGH*F 4 8848%** 3.5437FF* 1.0594 0.9428 1.8842* 1.7282%*
PRT -1.6618* -1.7741% -3.6626*FF  _2.4250%*F  -4.9672FF*  _2.9261***F  _6.1860***  -3.6955%*F*  _4.9640%*F* -5.9560***  -11.4406*** -9.7824***
ESP 2.5417** 2.71TT¥FF  10.1658***  7.4108***  2.2766** 2.2639** 11.9506***  10.0029*%**  -1.4792 -1.8243* -0.8312 -0.6426
SWE -0.2771 -0.3886 0.2132 0.1881 1.9098* 1.5422 -0.5011 -0.7642 2.3352** 2.1294** 0.0077 -0.1064
CHE -2.7634*F**  _2.1911**  -1.4933 -1.2536 -8.8303***  _0.6615*** -10.0321*** _7.4992%**  _Q 1415%** _8.7407FF*  _0.4543***  _7.1974%**
GBR 1.566 1.8527* 4.1801%*FF  3.7540*** 1.4713 0.7984 2.8170*** 3.4401%%* 0.2001 -0.1449 0.4287 0.2704
USA -1.3772 -0.7907 -0.0779 -0.0426 -1.4280 -2.8236G*** -2, 7984%**  _1.9670** -3.5993***  _3.4562%*F*  _3.8353%FF*  _4.1383%**
OECD -0.5785 -0.1029 5.4989***  4.0903*%**  -1.2246 -1.5299 3.4218%** 3.9040*** -2.2683**  -2.8253*** -1.7533* -1.6592*
EA16 -0.1993 0.1106 5.7127*%%  4.0081%** -1.4208 -1.7441* 3.0531%%* 3.0407***%  _2.5242%*%  _3.1315%** -2.1571** -1.8423*

Note:*** ** and * denote significance at the 1%, 5% and 10% significance level, respectively.



Moreover, considering the results of the residual-augmented IVX which is based on a
bias corrected estimator we observe that 12 (55%) of the parameter estimates for the 22
returns series considered present, as suggested by the present value relation in (25) a positive
parameter estimate (Bh > 0), of which however only eight are statistically significant. From
the results of the residual-augmented IVX we also observe that of the 12 countries and regions
for which the rent-to-price ratio has statistically significant predictive power, 4 display a
negative Bh. From Table 4 it can further be observed that there seems to be stronger
nominal rent growth predictability than nominal housing return predictability which was
also noted in EP. Note that based on txyy the only cases for which the rent-to-price ratio is
not a statistically significant predictor are Ireland (IRL) and Sweden (SWE). The residual
IVX detects predictability in nominal rent growth for 14 of the series of which six display
significant negative parameter estimates (Br < 0).

Overall, the number of significant statistics is greater for the tyy (and tops) statistics
than for the IVX and residual-augmented IVX procedures when nominal housing returns and
rent growth are considered. We note that, in contrast to the ¢y, the residual-augmented
IVX based test does not find significant results for Denmark (DNK), France (FRA), Italy
(ITA), the Netherlands (NLD), the UK (GBR), OECD and EA16 when housing returns are
considered and for Canada (CAN), Finland (FIN), France (FRA), the UK (GBR), the US,
OECD and EA16 when the rent growth is analyzed. However, the residual-augmented IVX
finds significant results for JPN and CHE for housing returns, and for Sweden (SWE) for
rent growth, whereas tyw (and tors) does not.

Table 5 suggests that the evidence of predictability when real housing returns and real
rent growth are considered is considerably weaker than when nominal data is used (Table 4).
When real housing returns are used, the residual-augmented IVX test only finds evidence of
predictability for Belgium (BEL) and Korea (KOR) (whereas when nominal housing returns
where used evidence was found for 12 countries), and when real rent growth is considered
for Belgium (BEL), Canada (CAN), Finland (FIN), Korea (KOR), the Netherlands (NLD),
Spain (ESP) and the UK (GBR) (whereas for nominal rent growth 14 countries displayed
evidence of predictability). According to EP, the present value relation in (25) shows that if
the rent-to-price ratio does not predict future housing returns, then it must predict future
rent growth. In other words, since the rent-to-price ratio varies over time then either expected
housing returns or expected rent growth, or both, must also vary over time, ¢.e., the null
hypothesis cannot consist of having unpredictable housing returns and unpredictable rent
growth.

Following EP, we define the log inflation from ¢ to t + 1 as 741, and rewrite (25) as,

K
1—p

re=pe=E ) p (s = Tiags) = (Arig — mpg)] — (26)

=0
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Table 5: Predictability of real returns and real rent growth. Sample: 1970 - 2016.

returns rent growth
livx livx tors INw livx livx lors 13537%
AUS 0.7911 0.9513 1.5821 1.2546 -1.561 -1.4470 -2.6721%FF*  _2.2098%*
BEL 1.7735% 2.0288 2.8593 2.9338*** 2 .8056%** 2.7458*** 2.6576*** 2.2002**
CAN 0.5747 1.2510 3.2879%**  2.9627*FF*  _1.6606* -1.8218 -6.9834*** 5 3039%**
DNK 0.6780 1.6221 2.3002** 1.7023* 0.9597 0.8664 0.4741 0.6414
FIN -0.2343 0.2671 1.0822 1.0481 -2.0634** -2.2739%* -3.1675%F* 12,9397 **
FRA 1.1579 1.7585 3.4674%**F  2.6664*F*  0.5434 0.1995 -0.1390 -0.1500
DEU 1.2653 1.2358 3.2327*** 2 5844*F*  (.4760 -0.0979 -0.7236 0.7376
IRL 0.9648 1.6866* 4.7997**¥*  4.7689%*F* _0.5763 -1.2168 -2.2951%* -1.8346%*
ITA 0.0833 0.6962 3.0703***  1.8902* -0.1787 -0.7660 -3.4858*** 2 906 T7H**
JPN 0.1097 0.7145 1.8381%* 1.4868 0.6352 0.9974 0.4911 0.3814
KOR -1.8803*  -1.2095 -0.4742 -0.3485 -4.2956%**  -4.9650***  -4.8700 -3.4732%**
NLD 1.2947 2.5492%%  3.9431***  4.6140%FF 2.3185%* 1.2580 1.2099 1.6394
NZL 1.2225 1.0919 1.7428%* 1.5582 0.5131 0.2618 0.4133 0.5771
NOR 0.6207 0.9665 1.6055 1.5288 -0.2195 -0.3641 -0.5465 -0.8595
PRT 0.0222 0.2859 0.4312 0.0811 -0.0424 -0.7013 -1.8154* -1.2596
ESP 0.7196 1.4404 5.2743**¥*  4.2027FFF .2 4588** -2.3168** -5.7807F** 5 0957F**
SWE -1.4855 -1.0309 0.6229 0.5793 0.8705 0.4172 -0.2738 -0.5994
CHE -1.2272 0.6277 1.3494 1.0314 -1.1354 -1.4908 -1.7135 -1.3937
GBR 1.2671 1.8526* 2.9444***  2.9649*%**  1.9019* 1.0496 1.4450 2.0741%*
USA -0.3000 1.2267 1.9475% 1.2960 0.7087 -0.4773 -0.4653 -0.3911
OECD  0.6953 1.5722 4.2769***  3.1460%** 0.8471 0.6648 0.4995 0.6320
EA16 0.7073 1.3910 4.0927FF%  3.3997***  (.4153 -0.0883 -2.1022%* -1.4812
Note: *** ** and * denote significance at the 1%, 5% and 10% significance level,
respectively.

The representation in (26) suggests that if the rent-to-price ratio predicts nominal and real
housing returns or rent growth differently, then it must be due to the rent-to-price ratio
having predictive power for future inflation. For example, if nominal housing returns are
predictable but inflation is not, then the result must be that real housing returns are pre-
dictable. From Table 5 we note that the evidence of predictability found with the nominal
returns for Germany (DEU), Japan (JPN), the Netherlands (NZL), Portugal (PRT) and
Switzerland (CHE) is not observed when real returns are used, but significant results are
observed when analyzing predictability of inflation for these countries. As also indicated
in EP from the present value relation in (25) it is clear that a negative return coefficient
using nominal data can only turn positive if the inflation coefficient is negative and numer-
ically larger than the return coefficient. Note that the rent-to-price ratio predicts inflation
with a negative sign for Germany (DEU), Japan (JPN), Portugal (PRT) and Switzerland
(CHE), which displayed negative return coefficients when nominal data was used but are not

significant for real housing returns.
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Table 6: Predictability of nominal returns, nominal rent growth and inflation. Sub-period 1970 - 2007.

Returns Rents Inflation
trvx tivx tors tNw trvx tivx tors tNw tivx trvx tors tNw
AUS 2.4384** 1.9566* 3.2466***  2.8141%*%*  4.525T*¥F*  4.0785**F*  7.0468*** 6.7236%** 0.7427 0.5966 1.2713 1.0822
BEL 0.4928 -0.0622 0.3357 0.2555 5.1867***  3.5230*** 2.1108** 2.2614%* 1.9685** 1.5817 1.6306 1.4154
CAN 1.1114 1.1531 4.9224%** 4.1091%** -0.6238 -0.7294 3.4496*** 2.1917** 2.2029** 2.2614** 10.4784***  7.3114***
DNK 0.0038 0.1914 0.6554 0.3172 1.1621 1.0955 2.1902** 1.8392* 0.4278 0.4168 1.5175 1.1581
FIN 0.8772 1.2433 2.6934*** 2.2328** 0.8537 0.3356 1.7369* 1.4696 3.9933*** 3.575T7F** 5.3996%** 4.4630%**
FRA  -2.9666%** -2.6505*** -1.8165* -1.5912 -1.9308* -2.0666** -0.6955 -0.7270 5.6488***  3.3326*** 5.9388%** 6.7835%**
DEU  -8.8727*** _5.5330*** _-5.9832*** _4.8704*** _-9.5014*** _5.0172*%** _5.9061*** -10.6130*** -4.8153*** _3.3362*** -3.6887*** _2.80935%**
IRL 3.0601%**  2.9215%**  6.3611***  7.5837*** -0.5824 -0.6287 -0.8457 -0.6866 3.4425%F* 4 T432%** 8.6092%** 5.2424%**
ITA -0.4019 -0.3026 2.1538** 1.4524 -2.1832%*  _2.9655%**  _D 5542%* -2.7908*** -0.1329 -0.2336 4.3495%** 3.3610%**
JPN -2.9458%*%*  _9 5RARFH* 0.5232 0.4175 -4.8269**%*  _4 (0811*** -0.6669 -0.3870 -2.0087** -1.6024 2.2316** 1.8960*
KOR -1.9792%* -2.3536** -1.7973* -1.2205 -6.1556%**  _7.3703***  -8.9731***  _5.6375*** -1.1315 -1.1318 -2.0313** -1.5855
NLD 0.8091 1.0725 1.8862* 1.8949* 0.8671 0.6778 0.9075 1.0555 4.3727F*F  5.2745%F* 5.9511%** 4.1685***
NZL 0.6743 0.5759 1.9251* 1.8672%* 1.9062* 1.4107 3.5214%** 6.1470%** 2.2909** 1.6307 3.8395%** 5.3995***
NOR 0.1984 0.4168 0.9589 0.8196 2.5583** 1.4842 2.8576%** 2.2234** -0.0499 0.0871 0.0603 0.3521
PRT -2.6493%*%*  _2.6229%%*  _5 5354%*k* 4 1202%FF%  _4 1219%¥k  _3.378RF*F*  _7.7343%¥**  _5.3630%** 4.9534%** 3.3149%** 2.6359%** 2.7662%**
ESP 2.8871*** 2.4682** 6.4131%** 5.0254*** 2.97T4*** 2.1097** 7.5457 5.4946*** 3.6399%** 4.0415%** 9.3903*** 6.5672%**
SWE -1.7019* -1.4978 -0.6891 -0.8601 -0.3252 -0.4229 -3.8652F**  _.3.4293*** 0.7631 0.5142 -2.0401** -1.9807**
CHE  -2.7980***  -2.4074** -1.5221 -1.4053 -9.0914%*%*  _9.4067***  -9.1105***  -7.3020%**  -4.6785*** _5.1967***  -4.5020%*%*  _2.9179%**
GBR -0.6064 -0.1397 1.0196 0.9397 -0.2935 -0.7744 0.2079 0.0858 -0.4012 -0.2234 1.3095 0.8659
USA -2.0437*F%  _2.6004***  -2.0517** -1.4489 -2.0177F*  _3.1518*%%*  _3.3645*** -2.1559%* 1.3462 1.2713 2.3056** 2.0630**
OECD -1.5313 -1.1592 2.7791%** 2.3366** -1.9731%** -2.4928** 0.4871 0.2770 0.9914 1.0775 7.0549%** 5.5041***
EA16 -0.8979 -0.6702 2.3133** 1.7552* -2.2271%%  _2.6926%** -0.2803 -0.4003 2.6773*F*F* 2.5643** 9.6049*** 7.9521%**




5.3.2 Sub-period analysis (1970 - 2007)

Considering the strong impact of the financial crisis of 2008 on the real estate market, we
repeat the previous analysis considering only the period before the crisis (1970 - 2007).

The first observation we can make from the results in Table 6 is that in comparison to
the full sample, the ¢y statistic detects less evidence of nominal housing return and rent-
growth predictability than when the complete sample was considered, i.e., only 11 statistics
display significant results for the former and 14 for the latter, which are in line with the total
number of significant statistics put forward by the residual-augmented IVX test.

Although the number of significant statistics based on the residual augmented IVX and
tyw is very similar, the residual-augmented IVX in contrast to ¢y does not find significant
results for Canada (CAN), Finland (FIN), the Netherlands (NLD), New Zealand (NZL),
OECD and EA16 when housing returns are considered and for Canada (CAN), Finland
(FIN) and Sweden (SWE) when rent growth is analyzed. On the other hand, the residual-
augmented IVX finds significant results for France (FRA), Japan (JPN), Korea (KOR),
Sweden (SWE), Switzerland (CHE) and the US for housing returns, and for France (FRA),
Japan (JPN), OECD and EA16 for rent growth whereas ¢ty (and torg) does not.

Table 7: Predictability of real returns and real rent growth. Sub-period 1970 - 2007.

Returns Rents
trvx trvx tors tnw tivx tivx tors tNw
AUS -0.1648 0.0646 -0.1155 -0.0353 -0.3454 -0.3201 -0.8419 -0.6171
BEL -0.3413  -0.4619 0.3288 0.2109 2.2845** 2.2364** 1.9961** 1.5627
CAN 0.4576 1.1383  2.9726%**  2,7215%** -1.1039 -1.0246 -6.0812%**  _4 3530%**
DNK -0.3698 0.3620 0.4770 0.1916 1.4994 1.5787 1.4596 1.7050%*
FIN -0.9877 -0.3764 -0.1881 -0.2140 -2.4519** -2.4456%*%  -3.0393*%**  _3.1143*%**
FRA -1.8994*  -1.3011 -1.5917 -1.4276 0.4515 0.0118 -0.5969 -1.2831
DEU 0.3333 0.0803 0.0319 0.1076 0.4121 0.3801 -0.1261 -0.0127
IRL 1.3691 1.8366*  3.3144***  4.3291*** -0.8742 -1.3416 -2.9628*** .2 3736**
ITA 0.2411 0.9340 2.3574%* 1.6846* -0.0927 -0.7123 -3.0159%*%* 2 .8121%**
JPN -1.0191 -0.3752 1.5750 1.2277 0.8227 1.4813 1.2419 1.2566
KOR  -1.8152* -1.3650 -0.3335 -0.2104 -3.0210%*%*  _3.7473%**  _3.5332%*F* 2 8331 ***
NLD 0.7700 1.4804 2.2131*%* 2.3571** 1.9049* 1.3150 1.4055 1.9273*
NZL -0.5105 -0.3574 -0.5248 -0.9812 0.2294 0.0015 0.0912 0.0005
NOR -0.9665  -0.0959 -0.0662 -0.3237 -0.3346 -0.4867 -0.8177 -1.2210
PRT -1.0108 -0.6515 -1.4601 -1.1480 -0.7704 -1.4571 -3.8569%**  _2 5731**
ESP 0.6779 1.1517 2.4872%* 2.0923** -2.5764%*% -2 5808***  _6.4541***  _6.1274%**
SWE -1.6640* -1.0824 1.4656 1.0425 0.0000 -0.3560 -1.4641 -1.6336
CHE -1.0098 0.2809 0.8878 0.7650 -1.2002 -1.4405 -2.0173** -1.7267*
GBR 0.0970 0.8205 1.1417 1.2194 1.4868 0.5646 0.4226 0.5342
USA -0.4992 0.2975 0.8867 0.2145 0.1602 -0.4547 -0.6641 -0.7987
OECD 0.4735 1.2329  2.8696***  2.2966** 0.8879 0.6737 -0.4660 -0.8132
EA16 0.4565 1.0240 1.8370* 1.5263 0.4911 -0.0043 -2.4985** -2.2401**

A considerable decrease in the number of significant statistics is also observed when real

housing returns and real rent growth is considered (see Table 7). Note that the residual-
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augmented IVX only detects predictability for France (FRA), Korea (KOR) and Sweden
(SWE), whereas tyw finds predictability for Canada (CAN), Ireland (IRL), the Netherlands
(NLD), Spain (ESP) and OECD. For rent-growth there is a small increase in the number
of significant statistics, the residual-augmented IVX finds predictability for Belgium (BEL),
Finland (FIN), Korea (KOR), and Spain (ESP), whereas tyw finds evidence for Canada
(CAN), Finland (FIN), Ireland (IRL), Italy (ITA), Korea (KOR), Portugal (PRT), Spain
(ESP), Switzerland (CHE) and EA16.

5.4 Discussion

From the results of the predictability tests performed in the previous section we conclude,
using the four competing estimators as well as a sample split, that five countries actually
emerge for which the rent-to-price ratio is relentless in predicting housing returns and rent

growth in nominal terms. In specific one can summarize the results as follows:

a) The findings reveal that the rent-to-price ratio (in nominal terms) is a dominant and
stable predictor for both future housing returns and rent growth for Australia, Ger-
many, Portugal, Spain and Japan. For these countries, the predictive ability of the
rent-to-price ratio consistently predicts regardless of the estimator employed and, ex-

cept for Japan, is robust to the sub-sample split considered.

b) Of these five countries where the rent-to-price ratio is found to be stable in terms of
predictive power and the sign of the coefficient, three countries (Germany, Japan and
Portugal) are shown to have a negative predictive relationship with future housing
returns. That is, using robust inference methods, the pattern that stands out is that
rent-to-price ratios negatively predict housing returns: a divergence from the dynamic
Gordon Growth model, as stated by EP (2015).

c¢) Interestingly, rent growth in Belgium turns out to be the most predictable variable of
all. All four competing estimators predict future rent in both nominal and real terms
and this result holds in the sub-sample analysis. Rent growth is also consistently
predictable in Spain and Korea, but the predictive coefficient of rent growth in Spain

changes signs when shifting the analysis from nominal to real terms.

6 Concluding remarks

This paper introduced a new [VX-based statistic computed from a residual augmented pre-
dictive regression motivated by Amihud and Hurvich (2004), and reexamined the empirical
evidence on returns and rent growth predictability using these new robust methods.

The residual-augmented IVX variant allows practitioners to distinguish more reliably

between the null of no predictability and the alternative. The method is asymptotically
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correct under near-integration as well as under stationarity of the regressor, has improved
local power under high regressor persistence, and allows, e.g., for heterogeneity of the data
in the form of time-varying variances.

The results derived here on bias correction can be generalized for other types of instru-
mental variable estimation than just IVX. The IV framework of Breitung and Demetrescu
(2015), who distinguish between type-I instruments that are less persistent than the initial
regressor (the IVX instrument is actually of type I; see Breitung and Demetrescu, 2015),
and type-II instruments that are (stochastically) trending, yet exogenous, allows for a quick
discussion: a careful examination of the arguments presented here shows that they are eas-
ily extended for type-I instruments, but type-II instruments behave like the OLS estimator
where residual-augmentation is not improving on the test procedure asymptotically.

The provided Monte Carlo evidence shows that the asymptotic improvements are a good
indicative of the finite-sample performance, also in the presence of time-varying volatility or
time varying persistence.

Finally, the analysis of OECD housing price data showed that the bias-adjusted IVX
procedure detected predictability more often than the original IVX procedure, but less often
than non-robust procedures. Overall, this analysis reveals, among other things, that the rent-
to-price ratio (in nominal terms) is a useful predictor for both future housing returns and
rent growth for Australia, Germany, Portugal, Spain and Japan. We leave to further work
the check of whether adding other putative predictors (such as, among others, disposable
income, mortgage rates, unemployment, investment in housing and short-term interest rates)

strengthens the evidence on predictability.
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A Technical Appendix

A.1 Preliminary Results

ki 1— kt T 1— kt 1
Throughout the proofs, we consider that S %~} im0 1_% = (W) < 1T for large
enough T" and fixed k, where ¢ := 1 — 4 with € (0,1) and a > 0 and fixed. Furthermore, let C

denote a generic constant whose value may change from occurrence to occurrence.

Lemma A.1 Under the assumptions of Theorem 3.1, as T — oo, it follows that

1 T oy rl 2 o o /
1. % Zt:erl T 1Tp — fo o, (s)ds, where o := (v, ..., 0p—1), Ti—p = (T4—1, ..., Ti—p)
and oy, is as defined in Theorem 3.1;
2. %ZtT:pH azt,pazg_p Qfo s)ds, where Q is a p X p matriz with generic element a;; =
Ali—j|s
3. 7 Zt —pi1 Tt P put Qfo s)ds;

T P, 1
4 %Zt:p—l—l zp 67 = o fo oy (s) 02 (s)ds.

Proof of Lemma A.1

Phillips and Xu (2006) show in their Lemma 1 that 7! Zt ha1 TtTe—h B ap fo s)ds, h =
0,1,...,p — 1; this suffices to establish the results in the first two items. The result in item 3
also follows directly from Lemma 1 of Phillips and Xu (2006), and the proof can be adapted in a
straightforward manner to establish the result in item 4. H

Lemma A.2 Under the assumptions of Theorem 3.2, as T — oo, it follows that

T
Li=p P15t 4 N (0,1)

1

T 2 _2\2
(thz Zt—15t>

where Z; = Z;;é v

Proof of Lemma A.2

Consider s% := Tl = Zt 9 S =0 2 0¥ o2 Oyi1-j gt and note that s2 is bounded and bounded away
from zero, since

2 T t—2 2 2 T t—2
IIllIl1<t<T g vt m1n1<t<T O' et 2 < < maxlStST Uu,t maxlgtST Us,t 2j
T14+n § : 0" = = T1+n 2 : 0
t=2 j=0 t=2 j=0
t— 1+
where Zt 2 Z o0 ~ COTH.
Since,

1

- T . 3

ZtT:QZtﬂ& _ 1 Zt—1E¢ Zt 22; OQQJUVt 1—50. ?t ? (A1)

1™ 71/249/2 2: T 32 ’ '
t=

2
2 z g
t=2 “t—1%t
(Zt QZt 15t>

%‘Et follows a limiting standard normal distribution by resorting

to a central limit theorem for martingale difference [md] arrays (Davidson, 1994, Theorem 24.3).

1 T Z
we show next that Ti/2+u72 Zt:Q i
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215 p
2, 0 and i) T1+n Zt 9 82T

Zt—1¢€t
ST

However, to apply it, we need to show that, i) max; W
1.

Given that the result in ii) also implies

1

t—2 25 25

ZtZZOQUtl— "
(Shemidir ),

(A.2)

hence the result in (A.1) will follow.

To verify i), note that uniform boundedness of moments of order 2 + 6* for some 6* > 0 of
T-"/2%,_ ¢, suffices to establish this condition. An application of Holder’s inequality shows that
uniformly bounded 4th order moments of T’ =1/2%,_, and uniform L4y s+-boundedness of ¢, suffices,
since 0* may be chosen arbitrarily close to zero, so we check the uniform boundedness of

4 1 t—2 t-2t-2 t-2 A
e (%2771 > = T > " E (i) (A3)
Jj=0 k=0 (=0 m=0

Due to the serial independence of v, the expectation E (v4— ;14— 14— 1v4—y,) is nonzero only if the
indices are pairwise equal, thus we can simplify (A.3) as,

~4 t—2 t—2
Zt—1 1 2j 2k 2
El—— ) = — 0 E(l/t Vi k)

Since v is uniformly Ls-bounded, the expectations on the r.h.s. are uniformly bounded for any ¢,
k and j, therefore,

2 2

4 == 1 t—2 =
t—1 . 27 2]€ 27 - 24
08 (o) < O et = O | ¥ | <0 (L7 <€
j=0 k=0 j=0 j=0
which suffices for the required uniform L4-boundedness.
To check condition ii), it suffices to show that
LN

because sT is bounded and bounded away from zero (we learn from Lemma A.4 below that s3. —

fo (s) ds, but the exact limit does not matter here). To prove (A.4), write
T T t-2t-2 T t-2t-2
Z i€ Z Z Z o vy (e - oZs) + Z Q]QkVt—l—th—l—kUS,t
t=2 t=2 j=0 k=0 t=2 j=0 k=0
= Ar+ BT

Note that Z Z Q] v JVt—1—k (6t — ot t) builds an md array and as such, is uncorrelated
in . Hence, showing Tl A1 to vanish is not difficult, given that from the uncorrelatedness of the
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summands we can write that,

1 T t—2 t—2
_ i k , 2 2
Var <T1+77AT> T ZVar Zgﬂg Vi 1—jVi—1—k (5t O‘avt)
=2 §=0 k=0
2
1 t—2 t—2 )
_ i k A 2 2
- T2+2n ZE Q]Q Vt—1—jVt—1—k E <(€t - Us,t) ) .
t=2 j=0 k=0
Now, &; is uniformly L4-bounded and
2
t—2 t—2 t—2 =2 t—2 t—2
i k U
E [ ) R = > 00" 0 0" E (V-1 jvi—1-pi—1-1Vi-1-m)
j=0 k=0 §=0 k=0 1=0 m=0

where the expectation on the r.h.s. is, as before, uniformly bounded and nonzero only if the indices
are pairwise equal. Hence,

2

242
Pk
A VR VR <C
0

t—2
0<E Z
=0

=0 k=

t—2 t—

2 ¢—2
g2j 2k < CT217
7=0 k=0
leading to Var (T1+n AT) — 0 and thus Ar = o, (TH”).
Regarding B, note that,

T t-2 T t-2t-2
_ plin 2 2j (,,2 2 2 i Kk 2
Br = T st + E E o (Vt—l—j —Uy,t—l—j) Oct T § E E OO V1V -kOCy
t=2 j=0 t=2 j=0 k=0
J#k

= TYs% 4+ By + Bre.

For By we have from the serial independence and L4-boundedness of 14 that

2
E 0¥ (Vt2—1—j - Us,t—l—j) Uz,t = U?,t Z oV E <(Vt2—1—j - 0371:—1—]')2)
< CcT1"

and thus E (‘Z;;% 0% (l/f_l_j gt 1—])

) < cTn?, Hence,

2
> T1+n ZTW —0

and Markov’s inequality indicates that Bri = o, (T”").

(e
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For Bty we proceed similarly,

2
T t-2t-2
i k 2
E E E (o 7 N Z W e
=2 j=0 k=0
J#k
T T t-2t-25-2 s-2
ik lom 2 2
= E E 00" 0' 00z 10z s E (Vi1 1 kVs—1-1Vs—1-m) ,
t=2 5=2 j=0 k=01=0 m=0
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where the expectations on the r.h.s. are nonzero if t —j =s—landt—k=s—morift—j=s—m
andt —k =s—1[ (witht—j=t—kand s — = s —m being excluded by the requirement that
j # k and [ # m). Note that, for any ¢, s, j, k,[,m with j # k and [ # m,

2 2
2 2 2 2
010z s B (Vi1 v 1 kVs 1 1Vs—1-m) < (mtax Ue,t) (mtax ay’t> <C.

Let us now focus on the terms for whicht —s =j—1 =k —m. Thus, fort =s,t=2,...,T, we
obtain )
t—2 t—2 s—2 s—2 t—2 t—2 t—2
P =" oM< D Y|
=0 k=0 I=0 m=0 =0 k=0 j=0
Gk l#£m,t—s=j—l=k—m J#k
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> dokde™ < [ D ¥
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while, for s=t+1,t=2,...,7 — 1 (or equivalently t = s — 1, s = 3,...,T), it follows that,

- 5—3 2
Yo k<o (Z 921> :
=0

Repeating the discussion for s =t £ for r =2,...,T — 2, we have
t—2 t—2 s—2 s—2 t—r—2 2
i k1 2 2
oo™ <207 | > o,
7=0 k=0 =0 m=0 j=0
j#EkJl#EMt—s=j—l=k—m
leading to
T T  t—2t-25s-2 52 T [t-2 T—2 T t—r—2 2
> dotdem <y | D e | 23 0" o
t=2 s=2 =0 k=0 [=0 m=0 t=2 \ j=0 r=1 t=2+r 7=0

The same holds when imposing t — s = j —m = k — [, such that, with Z;;FZ 0% < ZJT;(} 0% and



ST, +»C < CT, thus, we ultimately have

2
t—

[\

-2
Pk 2 143

[ 2 R 7 W o <CT

k=0

J#k

gl

t=2 3

o
=)

and consequently Brs = o, (TH") when 7 < 1, as required to complete the proof. l

Lemma A.3 Under the assumptions of Theorem 8.2, it follows, as T — oo, that

')(ZZ”%—N\/(O 1); and

Zt_1u
Z'L) Zt 2 t21 t2
Et 24114

4 N(0,1).

Lemma A.3 suggests the use of Eicker-White standard errors in the heteroskedastic near-
(Zt 2% 1A2)1/2
Et:Q "

0 both in cases with and without intercept, and also better finite-sample behavior; see Kostakis
et al. (2015). For the stable case, Eicker-White standard errors are “mandatory” under time het-
eroskedasticity (Phillips and Xu, 2006).

integrated case, W.s.e := with é; the OLS residuals guaranteeing supy ;< [€r — ¢ RiS

Proof of Lemma A.3

We first resort to the Phillips-Solo decomposition of v; and write v; = wvy + Ay where ¥y is a linear
process in v, with exponentially decaying coefficients. Let also z; := (1 — QL)J:1 v. Thus, denoting

Z = Z;;E 0’vi_; like in Lemma A.2, it follows that,

t—1

2y = wZQJVt i+ Ut+ —1 ZQ] Vy_ j— l~)1

7=0
= wZz +dy,

and it can then easily be shown that Var (22;11 1o j> < CT" such that d; is uniformly Lo-

bounded given that o — 1 = —aT~". Similarly, T-"/2%, is uniformly La-bounded itself. We now
show that

2 T
w ~
T1+77 Zzt 15 = Ti+n 223—15? +0p (1) (A.5)
=2
and
1 w T
szt—let = WZZH& +op(1). (A.6)
t=2 t=2

Let us consider first (A.5). Note that,

Since,



and 1/2
E (|Z1di1e?]) < (B (32.0) E (d2,)) °E (<)

due to the independence of €; and d;_1 and of ¢; and z;_1. With E (df_l) , E (6%) and T™"E (th_l)
being uniformly bounded, (A.5) then follows. To establish (A.6), write

T

1 _ w . 1

T1/2+40/2 Z F-180 = T a2 Z 18T Zdt—lgt
t=2 t=2 t=2

and note that d;_1e¢ has the md property. Hence, 23:2 di—1e¢ = O, (T1/2) due to the uniform
Ls-boundedness and independence of ; and d;—;. Thus, from (A.5) and (A.6) we obtain that

T = T =
LimpBift____ damp o1t pg (A7)

1/2 1/2
T 22 _2 T 2 _2
(zt:Q zt—15t) (Et:Q Zt—15t>

In a second step we use the same reasoning to show that

Zf:z Z-16t Z;F:z “t—1Et P, (A.8)
1/2 1/2 :
T - T
(Zt:Z Ziﬁ%) (thz Ziﬁ%)
Write to this end z; := z; + r, where ry := — (1 — gL) ZFas1 with
1 1 i CriNJ i\ k 1 !
Var <\/T$t> = T ZZ (1 - TJ> (1 — T) E(Utfjvt—k) < T ZZ |E Vi—jVg— k
Jj=1k=1 j=1k=1

Given the uniform Ls-boundedness of the innovations 1, and the exponential decay of the Wold
coefficients of vy, |E (vi—jv;_)| < Celi=* vt and ﬁxt is easily shown to be uniformly Lo-bounded.

The key in establishing (A.8) is to note that r,_; is independent of e; and uniformly Lo-
bounded, and that 7-7E (27_,) is uniformly bounded too whenever T"E (z?_;) and E (r?) are.

The arguments employed to show (A.7) thus apply for z; and z; as well, and (A.8) holds.

(ZZ”% and @th% are asymptotically equivalent and the result
t=2% t=2"“t—1 t

follows from Lemma A.2.
The proof of the result in ii) follows along the same lines and we omit the details.l

Summing up,

Lemma A.4 Under the assumptions of Theorem 3.2, it holds, as T — oo, that

T P w2
1. T11+n’ Zt:p+1 27167 = 5 fo (s)ds;
T P 2
0 e ST 2Rt B g [102(s) 0% () ds where 0% (s) = o (5) +720% (5);

CREEIES P RT (XQ() fJX<s>dX<s>)

where X (1) is an Ornstein-Uhlenbeck process as defined in (14).

Proof of Lemma A.4

1. To obtain the limit of ﬁ Zf:pﬂ 22 12, we use from the proof of Lemma A.3 (see (A.2)) the
fact that

1 T T t-2
Z 2 2 _ 2j
T1+n Zi—1&t = T1+77 Z Z 0 UZ/t 1—j st + Op (1)
t:p+1 t=2 ] =0
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4 such that

The Lipschitz property implies that

Vt 1-5 = T
T t—2 T t-2
2 2
I S S S B Y S
t=2 j=0 t=2 j=0

On the r.h.s. we have immediately, as T— oo, that

T t—2

2]
e D> i =0

t=2 j=0
. 9 . 2(t—3) 2(t—2)_ (t=3)(_ —2)
given that ZE-:%]Q _ e (Q( ? 1() 1),where %’ < OT 12(t=3) and % <
CT?". We also observe that,

T t—2 T _
Pl o T =l S, T (1)
+ ) ) +
T "t:2 = T ”tQ a 1+p
1 ZT: 2 2 m 1 < o2 .52 T [ o1
= oi,0 — .
T1+n — HEEEL 0 (14 ) T1+’7t 5 Tuifet™y 1+

The first summand on the r.hus. is easily seen to converge to - fol o2 (s) o2 (s)ds, while, for the
second, we have

T

T
1 o o T" [ c 2(t—1) -1
- <) =0 (T" ") =o0(1
Ti+n £ Tvaet ™y ( l+o | = aT & ¢ (1) =o()

as required to complete the proof.
2. The proof of 2 is analogous to the proof of 1 and is therefore omitted.

3. Let S; := 2222 z¢. We first follow Breitung and Demetrescu (2015, Proof of Corollary 1.2)

and show that
1 1

mSt:ﬁxt‘i‘RtT

where 4 /E <\Rt7T]2) — 0 as T — oo uniformly in ¢ = 1,...,T. The arguments are essentially the

same as there; the only difference is having to show that \/E <|xt — art_j\Q) < C.+/j for all t and 7,

which is obvious in their strictly stationary setup, but marginally more difficult here. To this end,
recall that Ax; := v; — CtT‘ L 241 and use Minkowski’s inequality to conclude that,

\/E ((ﬂft - %’t—j)Q)

2

Jj—1 1 Jj—1
Z Vt—j — T Z Ct—k—1Tt—k—1
k=0 k=0

_—
=

j-1 2 = o1\ ?
E (kzzovt]) +\/Tkzzo|0t—k—1| E(( \/T>>’

and therefore using the uniform boundedness of the variance of xt\‘/’%‘l, it follows indeed that

IN
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\/E (|xt — :L‘t_j\2) < C4/7 as required.

We then follow Breitung and Demetrescu (2015, Proof of Theorem 2) and obtain via partial
summation that,

1 & 1 &
T Z A-1T-1 = Z (St—1 — Si—2) x1—1
t=p+1 t=p+1

T

1 1

= m (ST—ll'T—l - Sp—lxp) - W Z St_oAxi_q.
t=p+1

Now, since S,_1z, = O (1) it is negligible in the limit; furthermore note that,

R R R
— g St oAxy 1 = —— E St_2Vt1 — =51 E ct—25t—2T¢—2.
T1l+n T1+n T2+n
t=p+1 t=p+1 t=p+1

For the first summand on the r.h.s., we have using the Phillips-Solo device for the AR process v;_1
that,

T T T
1 w 1 -
T Z Stovi—1 = Tt Z St—Zthl—Fm Z St oAV
t=p+1 t=p+1 t=p+1
=: A+ Br,
where 7y is a linear process with exponentially decaying coefficients.
Then,
W W e
Ap = — T ol 1+ — Ri orvs 1.
T aTthtlﬁZ t—2,TVt—1
t=p+1 t=p+1

It is furthermore seen from the expression of R; 7 (Breitung and Demetrescu, 2015, Proof of The-
orem 2) that R; 7 is independent of w4, vi45 V1 < j < T — t whenever (ug,v¢) is serially inde-
pendent, such that R;_orv;_1 are the elements of a martingale difference array with uniformly
vanishing variance, so Var (Z;‘F:p 11 Rt_27T1/t_1> = 0, (T) as required for the summand involving
Ry 7 to vanish. Since 14 is independent of z;_» and the conditions of Hansen (1992) are fulfilled,
71 ZtT:p 1 Tt—2V—1 converges weakly, and we obtain

1
AT:,‘f/O X (s)dM (s).

Using the partial summation formula on By, it follows that,

T
1 _ B 1 -
Br = T4 (O7—1S7-2 — Vp—15p—1) — Ti+n tgrlvt—2ASt—2~

Since supy<i<r [St| = T sup<i<r |7¢| + 0p (T1/2+’7) = 0, (T1/2+”) and Up—15p—1 = O, (1), it
follows that the first summand on the r.h.s. of the above equation is negligible; for the second, we
have

T T
1 - 1 -
Ti+n E U2 ASy_9 = Ti+n E Vt—2%¢—2-
t=p+1 t=p+1

Clearly, ©;_9 is uniformly Lo-bounded, and it is easily shown that 7~"/2z, is uniformly Lo-bounded
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as well. Then, the Cauchy-Schwarz inequality indicates that E (|0;_22;—2|) < CT"? such that

T
1
TiTn Z U2 ASi 2| | < cT"/?
t=p+1

and ﬁ Zf:p 1 Ut—2AS; 2 vanishes in probability.

Hence
T T T
1 Z 1 x%il 1 aw S 1 2 + (1)
2—1Tp—1 = — —— | = E oV 1 — —= E Ct—9T; 0 .
T1+n t—14t—1 a T a T1+n t—2Vt—1 T2 t—24¢_9 D
t=p+1 t=p+1 t=p+1

Using the weak convergence of Sy and z; we obtain

% XT: BTl = “;2 <X2(1)— (/OlX(s)dM(s)—/Olc(s)XQ (s)ds>>

t=p+1

as required. Note that, interestingly, ﬁ Z?:p 1 St—2vt—1 converges to an Ito-type integral with-

out bias term, unlike % Z:;F:p 41 Zt—2vt—1 under serial correlation. This is because S; and x; require
different normalizations, which is essentially the expression of the same mechanism ensuring mixed
Gaussianity of the unadjusted IVX estimator. H

Proof of Theorem 3.1

Consider -
Bm — Zt:erl Zt—1Yt (A9)
Z?:p+1 Zt—1Tt—1
Since §; := y; — Y0 = Bai_1 + i — A0t + &4 it follows that we can express 57 as,
- ZtT: 1 2t—10t ZtT: 1 21w — A0 + &)
BT = £ =p+ == : (A.10)

Z = E =

I)t =V — (fL — a)/ Lt—p

with x;_, stacking the p lags of z; and a the corresponding coefficients (of (1 — pL) A (L)), i.e. the
pure autoregressive representation of x;.
Then, analyze

t—3
Zt—1 = E Q]Axtflfj
Jj=0

t—4
=z -0 ot (e—1))) duay.
=0
‘We have that
=4 . 2t a
(0—1)) a9 ;= ~ T dxy o j= _ﬁdt—2
7=0 7=0
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where d;_o is here, with x; a stable autoregression, a mildly integrated process which is known to
be O, (T n/ 2). Furthermore, o2 — 0 when ¢ goes to infinity at suitable rates; in the derivations
below, the effect will be quantified precisely whenever needed, but it is important to keep in mind
that z;—1 ~ x;—1 which is a stable autoregression.

We thus have for the numerator of 3% — 3 in (A.10) that,

T
S ma ety —An) = Z 216 — Z 21 (e —w) — (Y =) Z z-1ve (A1)
t=p+1 t=p+1 t=p+1 t=p+1

The first two summands in (A.11) deliver a normal distribution. This is because

1
T1/2 Z F-18t = i Z Ti-18¢ — T1/2+n Z di— 26t""T1/2 Z o P

t=p+1 t p+1 t=p+ t=p+1
1
= T1/2 Z Ti—1€t + 0p (1)
t=p+1

with ZtT:pH di—2gr = O, (T1/2+77/2) given the results in the proofs of Lemmas A.2 and A.3, and
ZtT:pH o' =3¢, = O, (T"/?) given that Var (Z?:p+1 gt_35t> =0, (Z?:pﬂ th) = O, (T"). Fur-

thermore,
T1/2 Zztlz/t—yt Zzt 1xtp T(a—a),
t=p+1 Tz p+1
where the OLS autoregressive estimators,
-1

T
. 1
VT (a4 —a) = T Z L A Z Tiplt,

t=p+1 t p+1

following standard arguments can be shown to have a limiting multivariate normal distribution.
We now show that % 23:2 zt—1%¢—p does not converge to a vector of zeros, such that the limiting

distribution of ﬁ E,‘tr:pﬂ zt—1 (0y — 1) is driven by ﬁ EtT:pH x;—pv¢. Given that

1 1 1 @
T Z Zt—1Tt—p = T Z .’L’t_lmt_p_f Z Qti?’xlwt—p—m Z dt—th—p,

t=p+1 t=p+1 t=p+1 t=p+1

the first summand on the r.h.s. gives the desired limit (see Lemma A.1). The second is easily
seen to vanish since E (xjz;) vanishes at exponential rate (in ¢). For the third, we show that
Z;r:p 11 di2xip = Oy (T) as follows. By resorting to the Phillips-Solo device, it is tedious, yet
straightforward to show that

T T t—3
1 1 ~ ~ .
T E dt_QiUt_p = Op T E dt—QVt—p where dt_Q = E Q]Vt_g_j.
t=p+1 t=p+1 7=0

Then,

1 & - 1 -
T Z dy oV —p = T Z di—p-1vs—p + Op (1),

t=p+1 t=p+1
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and the proofs of Lemmas A.2 and A.3 provide the arguments leading to %ZtT:p o czt_p_lut_p =

Op T1/2T+n/2 = O, (1) as required.

The third summand in (A.11) is

T
7 ) 1
Zzt 1w = (¥— Zzt W+ —= ZZtIVt_Vt)
t=p+1 t p+1 Tt—p+l
= op(1)
since 4 is easily shown to be consistent for -+, ﬁzg‘ip 11 2t-1t = Op (1) like in the case of

% ZtT:pH zi—1€¢, and % ZtT:pH zi—1 (0 — i) = Op (1) as above. Hence,

0
Z ze—1 (8¢ + vt — A1)
=p+

Tt +1
—1
1 & 1 <& 1 <&
— / /
=77 dooaae (g D iy | |5 Do i, Z Te—pte +0p (1)
t=p+1 t=p+1 t=p+1 t p+1
Furthermore, it is shown along the lines of the discussion of 7! Zgﬂ 2t—1%¢—p that
1 T T
— Z Zi_1E¢ = Z Ti18 +0p (1).
\/T t=p+1 t=p+1

For both % ZtT:pH z—16¢ and ﬁ ZtT:pH xi_py, Theorem 24.3 in Davidson (1994) is easily
checked to apply (see Lemma A.1 for the convergence of the sample covariance matrices); since
x;_pvy and z;_1€¢ are orthogonal thanks to the uncorrelatedness of v; and &4, it follows that the term
% ZtT:p 11 2t—1 (et + vy — 44) is asymptotically normal with mean zero and asymptotic variance

1 1
ao/ o2 (s)o?(s)ds +~* (... ap-1) ¥ (... ap_l)// ol (s)ds.
0 0
Checking that
1 ~2 A
Z 7€ + 7Y Qr
estimates the above asymptotic variance consistently is straightforward and we omit the details. B

Proof of Theorem 3.2

Standard OLS algebra shows that the residuals 74 are numerically the same as in the autoregressive
representation of x; if resorting to the error-correction representation, which is more convenient
with near-integration. We may thus write

Uy = — (Gg - ¢> zio1 — (& — @) Azy_piy

with Ax;_p4 1 stacking the first p — 1 lags of Az and ¢ := % (p — 1) (the vector a depends on all
autoregressive coefficients of x4, but its exact value is irrelevant here).
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We have the same representation as in (A.11), i.e.,

T
E a1 (e oy =A%) = Z 2t-18t — Z 21 (0 — ) = (4 =) Z Z -1V,
t=p+1 t=p+1 t=p+1 t=p+1

yet z; is now a mildly integrated variable. Still, Lemmas A.3 and A.4 show that W Zf:p 41 At—1Et

is asymptotically normal with variance w? fol 02 (s) o2 (s)ds, and we may re-write

1 1 1
T2tz Z Zi—1 ( v) = — T Z Zt—1T¢— 1(¢> qﬁ) Tz Z EARVAY A pi1 (@ —a).
t=p+l t=p+1 t=p+1

In the limit, this vanishes because ((;AS - qS) is Op (T71) and (& —a) = O, (T_1/2) as standard

analysis of near-unit root autoregressions shows, while, at the same time,

T

Z Zt—1Tt—1 = Op (TlJrn)

t=p+1
(see Lemma A.4.3) and we only need to show that

T
Z Zt—lAzé—p+1 = Op (T) :

t=p+1

This is known to be the case when 2,1 is a near-integrated or stationary variable; we discuss here
the case where z; is an IVX instrument. Examining ZtT:p 12 z—1Ax;_1 as a representative for the
whole vector,

1 & 1 & 1 &
T Z 2 1Az = T Z thl'Utfl‘Fﬁ Z CL2—1%4—2,

t=p+1 t=p+1 t=p+1

it is easily shown that both = \F and 2 ﬁ are uniformly Lo-bounded, hence E <T2 Zt_p 1 Ct2t—1T¢— 2) =

O (1). Moreover, 7 Zt:p 41 2t—1v—1 is itself Oy (1), which can be shown along the lines of the dis-
cussion for % > qt—2@t—p in the proof of Theorem 3.1. W

Proof of Theorem 3.3

Since the residual effect of €; and 14 is easily checked to be negligible, the correction Q7 is negligible
under the local alternative as well and we have for the residual-augmented IVX t-statistic that,

T
Tive Zt:p—i—l 2t—1 (5t + letfl)

t = + o0, (1
B1 W p( )
t=p+1 -1t

T
Zt—p—l—l Zt—1€&¢ b T1+n Zt—p—‘,—l Zt—1Tt—1

/ 2
Zt =p+1 En \/T1+n Zt =p+1 2z} 16

The first summand on the r.h.s. converges to a standard normal distribution, Z; note that Z would
indeed be independent of the limit process of the regressor z; since z;_1¢6; and 1, are orthogonal.
Thus, the result follows with Lemma A.4, items 1 and 3. B

+o0p(1).
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B Additional Tables

Table B.1: Size and power against local alternatives, positive short-run AR parameter

AHW  CY  tis tiv AHW  CY  tivs Live
b T = 200 T = 500
0 6.5 46 11.1 6.6 6.3 4.1 106 6.3
5 94.7 1000 984  96.1 95.7 100.0 985 97.6
c=0 10 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T = 200 T = 500
0 6.3 4.1 8.7 5.7 6.5 3.7 8.6 6.2
5 26,5 644 79.0 729 273  66.0 799 749
c=10 10 99.5 100.0 100.0 99.7 99.6  100.0 100.0 99.9
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T = 200 T = 500
0 5.7 3.1 7.2 5.6 5.9 3.1 7.5 5.9
5 16.4  28.6 48.7 439 16.4 31.6 492 445
c=20 10 70.2 944 988  97.7 749 967  99.3  98.7
15 100.0 100.0 100.0 100.0 96.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T =200 T = 500
0 6.0 2.2 7.2 5.9 5.8 2.5 7.1 5.6
5 13.3 161 356 32.3 13.2 187 372 341
c=30 10 476 632 86.8 85.4 505 729 89.8  89.2
15 941 982 100.0 99.9 97.0  99.6 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T = 200 T = 500
0 5.5 1.6 6.7 5.5 5.2 1.8 6.5 5.5
5 10.2 104 284 265 11.0 122 297 274
c=40 10 35.7 402 719 702 385 503 763  75.0
15 795 828 984  98.3 844 91.8 992  99.2
25 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
T = 200 T = 500
0 6.1 1.3 6.6 5.7 5.3 1.4 6.7 5.7
5 9.7 7.2 247 229 9.5 87 259 245
c=50 10 28.1 26.8 61.0 59.0 304 338 649  63.3
15 64.3 623 930 927 71.2 757 959  95.7
25 99.9 99.1 100.0 100.0 100.0 100.0 100.0 100.0

Note: See Table 1.

48



Table B.2: Size under breaks in variance and persistence, positive short-run AR parameter

AHW  CY  t* tie  Tive AHW  CY  t*  tie  live
c Var T =200 T = 500
const 6.6 4.5 103 10.7 6.1 6.3 4.2 105 10.7 6
early up 10.0 6.8 146 11.2 6.8 10.0 6.6 139 10 6.5
const small late up 226 104 195 115 6.7 23.4 9.6 204 109 64
early down 19.9 9.0 17.1 10.7 6 19.9 8.4 18 105 6.2
late down 9.8 6.7 125 10.6 6.2 9.5 6.1 12.8 103 64
T = 200 T =500
const 5.8 43 102 109 59 6.4 42 103 105 6.1
early up 10.2 6.4 14 11.1 6.3 10.1 6.1 13.5 10.1 6.8
up small late up 21.7 87 173 10.7 64 21.9 84 185 106 6.1
early down 19.9 93 177 107 7 19.7 9.4 183 10.1 7
late down 9.7 71 131 103 6.6 9.7 6.6 13.5 103 7.2
T = 200 T =500
const 5.9 4.1 9.3 9.7 58 5.9 3.7 98 102 64
early up 9.9 5.7 123 101 5.9 10.4 52 11.7 9.1 6
up large late up 20.5 6.1 141 99 55 20.7 59 146 9.7 55
early down 20.9 9.7 186 10.2 7.6 20.6 104 195 96 7.7
late down 10.1 71 123 94 6.9 104 6.7 12.6 8.8 6.6
T = 200 T =500
const 5.8 2.6 84 9 6.3 5.6 2.8 8 82 6.1
early up 10.9 53 10.8 84 59 10.5 54 11.6 8 6.2
const large late up 22.7 8.0 172 88 7 24.1 9.1 188 94 74
early down 23.1 45 141 738 6.6 22.3 56 154 7.7 6.3
late down 10.7 38 102 79 6.4 10.1 4.1 103 75 5.7
T = 200 T =500
const 5.9 29 85 89 59 6.0 30 84 85 59
early up 10.5 55 11.8 88 5.9 10.7 56 11.8 86 6.3
down small late up 23.3 88 185 95 73 24.2 9.7 19.2 91 72
early down 22.2 4.7 151 8.7 7 21.8 56 159 84 6.8
late down 10.1 39 106 85 6.9 10.3 43 105 78 538
T = 200 T = 500
const 6.3 39 95 10 5.8 6.2 36 94 95 55
early up 10.3 71 135 9.9 6.8 11.0 6.7 144 9.7 6.9
down large late up 25.0 128 21.7 104 79 24.8 12.7 229 9.6 7.4
early down 20.6 4.4 126 9 5.3 19.8 4.5 13.7 9 5.3
late down 9.7 4.7 106 10.3 5.6 9.6 4.2 105 94 49

Note: See Table 2.
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