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Abstract

Bias correction in predictive regressions is known to stabilize the empirical size prop-

erties of OLS-based predictability tests. This paper shows that bias correction also

improves the local power of tests, in particular so in the context of the extended instru-

mental variable (IVX) predictability testing framework introduced by Kostakis et al.

(Review of Financial Studies 2015). Concretely, we introduce new IVX-based statis-

tics subject to a bias correction analogous to that proposed by Amihud and Hurvich

(Journal of Financial and Quantitative Analysis 2004). Four important contributions

are provided: first, we characterize the effects that bias-reduction adjustments have

on the asymptotic distributions of the IVX test statistics in a general context allow-

ing for short-run dynamics and heterogeneity; second, we discuss the validity of the

procedure when predictors are stationary as well as near-integrated; third, we conduct

an exhaustive Monte Carlo analysis to investigate the small-sample properties of the

test procedure and its sensitivity to distinctive features that characterize predictive

regressions in practice, such as strong persistence, endogeneity, and non-Gaussian in-

novations; and fourth, an application of the new procedure to analyze return and rent

growth predictability in 19 OECD countries, the US, OECD and Euro area is also

provided.
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1 Introduction

Predictive regressions are widely used in economics and finance; see, e.g., Campbell (2008)

and Phillips (2015) for surveys. Typically, the variable of interest is regressed on lagged values

of a predictor and the existence of predictability assessed through the statistical significance

of the resultant estimate of the corresponding slope parameter. However, two important

features of predictors need to be taken into consideration in this analysis: i) many predictors

are often characterized by highly persistent autoregressive dynamics, and ii) many predictors

also exhibit innovations which are strongly correlated to the innovations of the dependent

variable. These features raise serious problems of endogeneity which can lead to sizeably

biased estimates in finite samples (Stambaugh, 1986 and Mankiw and Shapiro, 1986) and to

substantial over-rejections of the null hypothesis of no predictability. The usual asymptotic

approximation employing the (standard) normal distribution performs particularly bad when

predictors are persistent, even though the largest autoregressive roots of the typical predictor

candidate are usually smaller than one – reason for which near-integrated asymptotics has

been favored as an alternative framework for inference (Elliott and Stock, 1994 and Campbell

and Yogo, 2006). In the context of near-integrated regressors, the limiting distribution of

the slope parameter estimator is not centered at zero, and this bias depends on the mean

reversion parameter of the near-integrated regressor. Although near-integrated asymptotics

approximates the finite-sample behavior of the t-statistic for no predictability considerably

better when predictors are persistent, the exact degree of persistence of a given predictor, and

thus the correct critical values for a predictability test, are not known in advance. Moreover,

standard estimation or pretests also fail in this context (Cavanagh et al., 1995). Similarly,

regression misspecification tests are difficult to conduct; Georgiev et al. (2015) propose for

this reason a fixed-regressor wild bootstrap implementation of a residual stationarity test.

These difficulties have led to the proposal of a number of alternative approaches, which

differ mainly in the assumptions that characterize the stochastic properties of predictors

(i.e., whether these are stationary or near-integrated); see for instance, Campbell and Yogo

(2006); Jansson and Moreira (2006); Maynard and Shimotsu (2009); Camponovo (2015);

Breitung and Demetrescu (2015) and references therein. The recently proposed extended

instrumental variable estimation approach [denoted IVX] motivated by the work of Magdali-

nos and Phillips (2009) is becoming increasingly popular in predictive regressions, especially

because the relevant t-statistic exhibits the same limiting distribution in both, stationary

and near-integrated setups and is in this sense invariant to persistence; see, e.g., Kostakis

et al. (2015); Gonzalo and Pitarakis (2012); Phillips and Lee (2013) and Lee (2016). The

reasoning behind the approach consists in the generation of an instrumental variable whose

persistence can be controlled, and this is achieved by suitably filtering the actual predictor.

To some extent, all methods lose some power by having to robustify against unknown

persistence; however, as illustrated by Kostakis et al. (2015) the IVX methodology offers a
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good balance between size control and power loss. Given however that the signal-to-noise

ratio in predictive regressions is quite low, one should strive to further improve this balance.

For instance, Demetrescu (2014b) uses a simple variable addition scheme to improve the

convergence rates of IVX estimators (and thus the local power of the corresponding t-tests)

when the instrument used is relatively close to stationarity. Yet, for instrument choices closer

to near-integration a different approach is required to improve the finite sample power of

IVX-based tests without giving up size control.

To this end, we take a closer look at the class of reduced-bias techniques proposed by

Amihud and Hurvich (2004) and extended by Amihud et al. (2009, 2010); see, inter alia, Bali

(2008), Avramov et al. (2013) and Johannes et al. (2014) for recent empirical applications

building on this approach. When compared to other available procedures, the distinctive

characteristic of these techniques is that they estimate the predictive slope coefficient and

its standard error in a suitably augmented predictive regression, so that the bias is reduced

to a minimum. While this bias correction was intended to stabilize the size properties of

OLS-based predictability tests, we argue that it may also contribute to improve power, in

particular so for IVX-based testing.

This paper discusses the large-sample behavior of IVX-statistics subject to bias correc-

tion, i.e., the implementation of IVX in an augmented predictive regression context analo-

gous to that of Amihud and Hurvich (2004), considering both stationary and near integrated

predictors. Our main objectives are fourfold: i) to characterize the effects that our bias-

reduction adjustments have on the asymptotic distribution of the IVX-statistics in a general

context; ii) to establish the validity of the procedure when predictors are stationary as well

as near-integrated; iii) to provide an exhaustive Monte Carlo analysis to investigate the

small-sample properties of the test procedures under distinctive conditions that characterize

predictive regressions in practice, such as strong persistence, endogeneity, and non-Gaussian

innovations, and to contrast them to the properties of available procedures, such as those of

Amihud and Hurvich (2004), Campbell and Yogo (2006) and the IVX approach proposed by

Kostakis et al. (2015); and iv) to conduct an in-depth analysis of return and rent growth pre-

dictability for 19 OECD countries, the US, OECD and Euro area 16 countries composition

(EA16).

The remainder of the paper is organized as follows. Section 2 briefly describes the char-

acteristic features of predictive regressions and the bias-reduction technique proposed by

Amihud and Hurvich (2004), and gives a brief preview of the advantages of the residual-

augmented IVX approach. Section 3 presents the large-sample theory under empirically

relevant assumptions, including for instance time-varying unconditional variances. Section

4 discusses the finite sample performance of several procedures used to test for predictabil-

ity. Section 5 presents the empirical analysis of the predictive power of rent-to-price ratios

to predict returns and rent growth, and section 6 summarizes and concludes. A technical

appendix collects the proofs of the main theoretical statements put forward in the paper.
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2 Predictive regression framework and tests

2.1 The simplest model

To illustrate the issues with predictive regressions in general and the advantages of our

approach in particular, we start by considering the single predictor theoretical model set up

analyzed in Stambaugh (1999) and adopted, among many others, by Amihud and Hurvich

(2004) and Campbell and Yogo (2006). This setting characterizes the joint dynamics of

a stochastic process, {yt}Tt=2, and its posited predictor, {xt}T−1t=1 , in a two-equation linear

system as,
yt = βxt−1 + ut, t = 2, ..., T (1)

xt = ρxt−1 + vt (2)

where the innovations ξt := (ut, vt)
′

in the two-equation system are typically serially inde-

pendent Gaussian distributed with mean zero and covariance matrix Σ.

In this setting, predictability is formally analyzed by examining whether the null hy-

pothesis, H0 : β = 0, is statistically rejected through a t-statistic on the OLS estimate β̂

computed from (1). The usual alternative hypothesis is that β > 0, focusing on one-sided

tests, but two-sided tests β 6= 0, are also frequently used in the literature. We shall refer

to the resultant least-squares statistic as tβ̂ in the sequel. It is a well-documented fact that

when the correlation, σuv
σuσv

, between the innovations ut and vt is large and ρ ' 1, the dis-

tribution of tβ̂ largely departs from the typical standard normal limit, posing therefore an

interesting challenge on inference; see, e.g., Elliott and Stock (1994) and Stambaugh (1999).

Specifically, under these simple assumptions, weak convergence of the partial sum of ξt

holds, i.e., T−1/2
∑[sT ]

t=1 (ut, vt)
′ ⇒ (σuWu (s) , σvWv (s))′, where (Wu(s),Wv(s))

′ is a vector of

dependent standard Wiener processes (see, e.g., Davidson, 1994, Chapter 29). Furthermore,

considering that the autoregressive coefficient ρ is local to unity, ρ := 1 − c/T , we have,

jointly with the above weak convergence, that T−1/2x[sT ] ⇒ Bc (s), where Bc is an Ornstein-

Uhlenbeck [OU] process driven by Wv(s), i.e., Bc (s) := Wv(s)− c
´ s
0
e−c(s−r)Wv(r)dr. Given

these results it follows that the limiting distribution of the OLS based t-test, tβ̂, computed

from (1) when the predictor is near-integrated is given by

tβ̂ ⇒

√
1− σ2

uv

σ2
uσ

2
v

Z +
σuv
σuσv

´ 1
0
Bc(s)dWv(s)√´ 1

0
B2
c (s)ds

where Z is a standard normal variate independent of the Wiener process Wv(r) driving

Bc(r).

Remark 2.1 The assumptions of normality and serial independence allow for considerable

simplification of the exposition, but shall be relaxed in the following section by allowing for
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more general forms of serial dependence or heterogeneity. �

2.2 Residual Augmented Predictive Regressions

Considering (1) - (2) and stationarity of {xt}, i.e., the additional assumption that ρ in (2) is

fixed and satisfies |ρ| < 1, Stambaugh (1986, 1999) shows that the exact OLS bias of β̂ in (1)

is γ E (ρ̂− ρ) , with ρ̂ denoting the OLS estimate of ρ and γ := σuv/σ
2
v is the slope coefficient

in a regression of ut on vt. Since ρ̂ is known to be downward biased in small-samples,

and (ut, vt)
′ are typically highly negatively contemporaneously correlated, the autoregressive

OLS bias feeds into the small-sample distribution of β̂ causing over-rejections of the null

hypothesis of no predictability, H0 : β = 0.

To correct for this effect, Amihud and Hurvich (2004) [AH] propose a simple statistical

device that builds upon the OLS estimates obtained from a predictive regression which

is augmented with estimates of vt, the innovations to the predictor in (2). The initial

motivation for this type of augmentation is that the null distribution of the t-statistic on β̂

in the infeasible regression

yt = βxt−1 + γvt + εt (3)

converges asymptotically to a standard normal distribution irrespectively of the stochastic

nature of xt and the degree of contemporaneous correlation of (ut, vt)
′. Although it is tempt-

ing to use some proxy of vt to make this regression feasible, it should be noted that the

appealing asymptotic properties of the infeasible test do not automatically extend to the

feasible counterpart resulting from the use of the OLS residuals from (2), say v̂t. The reason

is that the bias of ρ̂ still feeds into the estimation of β via v̂t = vt − (ρ̂− ρ)xt−1 and, as

a result, the distribution of the OLS t-statistic for β = 0 in this regression, is simply a re-

scaling of that of tβ̂; see Rodrigues and Rubia (2011); Cai and Wang (2014) and Demetrescu

(2014a), for further details.

The distinctive feature of the AH procedure is that it uses a bias-adjusted estimate of vt

to reduce the bias of β̂. Thus, the resulting feasible regression becomes,

yt = βxt−1 + γv̂∗t + εt, (4)

where v̂∗t := xt− ρ̂∗xt−1, with ρ̂∗ denoting finite-sample bias-corrected OLS estimates of ρ in

(2). The central idea is to obtain a ρ̂∗ as close to unbiasedness as possible. The procedure

however also requires a correction in the form of specific standard errors which is not easily

generalized to higher-order dynamics; see Amihud et al. (2009, 2010).

Remark 2.2 Augmenting linear regression models with covariates is often motivated in

terms of efficiency gains (Faust and Wright, 2011). Arguably, the primary purpose of the

residual-augmented regression in (4) is to stabilize size, with power gains playing a secondary
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role. This is partly because the true process of the errors is unobservable and must be replaced

by some empirical proxy (which prompts the correction for ensuring size control of the AH

procedure). We argue in the following that power gains can indeed be expected in the IVX

framework, while at the same time controlling for size. �

2.3 The IVX Test Procedures

2.3.1 The Original IVX Approach

Our interest lies in the evaluation of the impact that the bias correction through augmenta-

tion may have on the IVX approach. The IVX procedure, introduced to predictive regres-

sions by Kostakis et al. (2015), centers on the construction of instrumental variables from

the potential predictors. This ensures relevance of the instruments while at the same time

controlling for persistence. In particular, for the implementation of the procedure, one uses

zt :=
∑t−2

j=0 %
j∆xt−j = (1− %L)−1+ ∆xt as instrument for xt, where L is the conventional lag

operator; the idea is to choose % := 1−aT−η, with 0 < η ≤ 1, and a ≥ 0 and fixed, such that

zt is by construction only mildly integrated when the predictor xt is (nearly) integrated.

The resulting IVX estimator of β (henceforth β̂ivx), computed from (1) using zt as in-

strument has a slower convergence rate than the conventional OLS estimator, but is mixed

Gaussian in the limit irrespective of the degree of endogeneity implied by γ. This estimator

is given by

β̂ivx :=

∑T
t=2 zt−1yt∑T

t=2 zt−1xt−1
, (5)

and its standard error is computed as se
(
β̂ivx

)
:=

σ̂u
√∑T

t=2 z
2
t−1∑T

t=2 zt−1xt−1
. Kostakis et al. (2015)

suggest the use of OLS residuals ût (whose consistency properties do not depend on the

persistence properties of the instrument zt) for the computation of σ̂2
u.

Breitung and Demetrescu (2015) analyze the power function of the IVX-based t-test,

computed as tivx := β̂ivx/se
(
β̂ivx

)
, under local alternatives of the form β := bT−(1/2+η/2),

and show that the limiting distribution under such local alternatives is

tivx ⇒ Z + b
σv
√

2

σu
√
a

[
B2
c (1)−

ˆ 1

0

Bc (s) dBc (s)

]
(6)

where Z is a standard normal variate independent of the OU process Bc(r), a is the non-

centrality parameter used in % for the construction of the instrument, and σv and σu are the

standard deviations of vt and ut, respectively. Note that the reduced convergence rate of

β̂ivx has consequences on the type of neighborhoods where the IVX based test has nontrivial

power. This, however, is the price paid for obtaining a pivotal limiting null distribution.

While Kostakis et al. (2015) do show that the power loss is moderate, one would of course
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prefer to further reduce this loss whenever possible.

2.3.2 The Bias-reduced IVX Approach

Turning our attention to the bias correction approach proposed by Amihud and Hurvich

(2004), note that, the residuals v̂∗t used in the residual-augmented predictive regression in

(4) rely on a bias-corrected estimate of ρ in order to reduce the endogeneity of the predictor.

Interestingly, since the IVX approach uses for estimation an instrument that is less persistent

than the original predictor, it turns out that in order to use the residual augmentation

approach in the IVX framework it is not necessary to construct a bias corrected estimator,

such as ρ̂∗ used by Amihud and Hurvich (2004). This is an important advantage of the IVX

procedure since it simplifies the analysis considerably and allows for easy generalizations to

higher order dynamics in the predictor as we will show below.

Remark 2.3 It may be surprising that, although simple augmentation using OLS residuals

does not work for the OLS estimation of the predictive regression, it will work for IVX.

The key observation is that, the estimation noise (v̂t − vt) does not affect the IVX estimator

given the lower convergence rate of the latter compared to the OLS estimator. Moreover, the

improved local power is the same as if the true vt were used in (4): the local power of the

test based on the augmented IVX regression is obtained by replacing σu with σε in (6); see

the next section for more details. Since σε < σu whenever γ 6= 0, we obtain by construction

a larger drift term in the distribution under the local alternative β := bT−(1/2+η/2). This

may not increase the convergence rate, but considering the typically high correlation of the

innovations ut and vt (given by σuv/σuσv), the ratio (σu/σε) can be considerably larger than

unity and power gains in finite samples are to be expected. This is confirmed in the Monte

Carlo analysis in Section 4. �

The implementation of our bias-reduced IVX approach in the simple introductory setup

given by (1) and (2), is as follows:

1. Regress xt on xt−1 to obtain the residuals v̂t := vt − (ρ̂− ρ)xt−1, where ρ̂ := ρ +∑T
t=2 xt−1vt∑T
t=2 x

2
t−1

is the usual OLS estimator.

2. Regress yt on v̂t to obtain ỹt := yt − γ̂v̂t = εt + βxt−1 + γvt − γ̂v̂t, where γ̂ :=
∑T
t=2 v̂tyt∑T
t=2 v̂

2
t

is the usual OLS estimator.

3. Regress ỹt on xt−1 via IVX to obtain β̃ivx and the corresponding t-statistic, t̃ivx; simi-

larly to the original IVX, it helps in finite samples if the residuals are computed using

the OLS estimator, β̂, of this regression given its consistency and higher convergence

rates.
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Remark 2.4 Considering ỹt as the dependent variable provides a convenient way to think

about residual augmented predictive regressions. As discussed in Campbell and Yogo (2006),

the unobservable process [yt − E (ut|vt)] results from subtracting off the part of the innovation

to the predictor variable that is correlated with yt. This provides a less noisy dependent

variable in the regression analysis and, therefore, yields power advantages over conventional

predictive regressions that steam from a relative gain in statistical efficiency. In particular,

since E (ε2t ) = (1− ρ2uv)σ2
u, the larger the degree of endogenous correlation in the system,

the larger the amount of variability in the regressand not related to xt−1 that can be filtered

out – conversely, we can think of the standard predictive regression analysis as a particularly

inefficient tool to detect predictability when ρ is large. However, since [yt − E (ut|vt)] cannot

be directly observed, the feasible representation uses the OLS-based proxy ỹt in the equation.�

Remark 2.5 In practice, one may need to account for non-zero means of yt; this is accom-

plished by including an intercept in the regression in step 2 and by demeaning the regressor

xt in the IVX regression in step 3 (see Kostakis et al., 2015, for the justification of this

demeaning procedure in step 3). In the near-integrated case, including an intercept in the

autoregression in the first step is typically not needed for the kind of data one has in mind

with stock return predictability, where deterministic trends are in general not an empirical

issue. �

Thus, following the three steps above we obtain the bias-corrected IVX estimator, viz.,

β̃ivx :=

∑T
t=2 zt−1ỹt∑T

t=2 zt−1xt−1
= β̂ivx − γ̂

∑T
t=2 zt−1v̂t∑T

t=2 zt−1xt−1
(7)

and its corresponding standard error,

se
(
β̃ivx

)
:= qT

σ̂ε

√∑T
t=2 z

2
t−1∣∣∣∑T

t=2 zt−1xt−1

∣∣∣ (8)

where ỹt := yt − γ̂v̂t , σ̂ε is the estimate of the standard deviation of εt computed from the

residuals ε̃t := ỹt− β̂xt−1 and β̂ :=
∑T
t=2 xt−1ỹt∑T
t=2 x

2
t−1

. Note that the estimator of the standard error

in (8) includes a finite sample correction,

qT := 1 +

(
γ̂σ̂v

∑T
t=2 zt−1xt−1

)2
σ̂2
ε

∑T
t=2 z

2
t−1
∑T

t=2 x
2
t−1

. (9)

A detailed discussion of the importance of the correction factor qT will be presented in

the following section, but it may be noted that (9) is in principle only required when the

predictors used are stationary; see section 3 for details.
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Hence, considering (7) and (8) inference can be performed based on the IVX t-statistic,

t̃ivx := β̃ivx/se
(
β̃ivx

)
(10)

which turns out to remain standard normal irrespectively of the stationarity or near-integratedness

of the regressor.

2.4 Short-run dynamics and heterogeneity

This section looks into the properties of the residual-augmented IVX approach in the em-

pirical relevant cases where predictors may display short-run dynamics and heterogeneity.

Hence, in this section we lay out a fairly general setting, which is the framework we will use

to characterize the asymptotic properties of the procedures introduced in this paper.

The starting question is how to deal with short-run dynamics in the increments of xt,

since this has implications as to which residuals to use for augmentation in the IVX testing

procedure. Here, it is the innovations of vt (for which a finite-order AR process is a natural

choice) that should correlate with ut rather than vt itself, like in the case without short-run

dynamics. The augmentation approach (described in Section 2.2) relies on decomposing the

shocks to the predictive regression as the sum of two orthogonal components; should vt be

one of them, this induces serial correlation in ut, which is not a plausible feature of the null

hypothesis of no predictability. Hence, the general set up considered is formalized in the

following assumptions.

Assumption 1 The data is generated according to (1) - (2) with initial condition x1 bounded

in probability.

Assumption 2 Let (
εt

νt

)
:=

(
σεtξεt

σνtξνt

)
where (ξεt, ξνt)

′ is a heterogeneous independent sequence with unity covariance matrix and,

for some δ > 0, with uniformly bounded moments E
(∣∣ξ4+δεt

∣∣) and E
(∣∣ξ4+δνt

∣∣). Furthermore,

let σεt := σε (t/T) and σνt := σν (t/T), where σ· (·) are piecewise Lipschitz continuous functions

on (−∞, 1], bounded away from zero.

Assumption 3 The errors ut and vt are given as

vt = a1vt−1 + . . .+ ap−1vt−p+1 + νt

ut = εt + γνt, t ∈ Z,

where the innovations (εt, νt)
′ are contemporaneously orthogonal white noise as indicated in

Assumption 2.
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Assumption 4 The autoregressive parameter ρ is either i) fixed when |ρ| < 1, or ii) time-

varying near unity, ρ := 1− ct/T with ct := c (t/T) and c (·) is a piecewise Lipschitz function

on [0, 1].

Assumption 2 acknowledges that time series (and in particular financial series) may

exhibit permanent volatility changes, which is an important stylized fact of many financial

series; see, , i.a., Guidolin and Timmermann (2006); Teräsvirta and Zhao (2011); Amado

and Teräsvirta (2013) and Amado and Teräsvirta (2014). Such forms of nonstationarity

typically invalidate the usual standard errors,1 and we resort to heteroskedasticity robust

[HC] standard errors (also known as Eicker-White standard errors) to account for this feature.

The use of Eicker-White standard errors is moreover recommended by Kostakis et al. (2015)

to deal with conditional heteroskedasticity – albeit under strict stationarity of the error series

vt. In fact, examining the proofs in the appendix, it can be seen that one may relax the

independence assumption to allow for weakly dependent martingale difference sequences at

the cost of additional moment restrictions, however we do not pursue this topic here and

leave it for future work.

The AR(p − 1) structure of vt in Assumption 3 is taken as an approximation to more

general data generating processes [DGP]s. In theory, this would require letting p → ∞ at

suitable rates as T →∞; dealing with the asymptotics related to the order of augmentation

determination is beyond the scope of this paper, but relevant results can be found, for

instance, in Chang and Park (2002). Finally, Assumption 4 characterizes the persistence

properties of the predictor. The flexible near-integrated DGP resulting from Assumption

4 ii) is motivated by the high, yet uncertain persistence of typical predictor series. Since

persistence needs not always be constant in practice, in particular when close to the unit

root region, we allow for time variation in persistence in the near integrated case.

Hence, the implementation of our residual-augmented IVX approach in the general frame-

work described by Assumptions 1 through 4 consists of the following steps:

1. Compute the residuals ν̂t from an autoregressive model of order p for the predictor xt,

viz.,

ν̂t = xt −
p∑
j=1

φ̂jxt−j = νt −
p∑
j=1

(
φ̂j − φj

)
xt−j, t = p+ 1, . . . , T,

with φ̂j, j = 1, ..., p, the OLS autoregressive coefficient estimates. One may use some

information criteria in levels to determine the autoregressive order p (we use Akaike’s

information criteria [AIC] in sections 4 and 5); note that conducting model selection

in levels copes with both the stationary and the integrated cases.

1This is especially the case when dealing with (near-) integrated regressors; see, e.g., Cavaliere (2004)
and Cavaliere et al. (2010).
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2. Regress yt on ν̂t to obtain ỹt as regression residuals. From this regression step we also

obtain γ̂, the OLS estimate of γ.

3. Finally, regress ỹt on xt−1 via IVX and use the provided standard errors (see (12)

below) to compute the relevant IVX t-statistic.

From step 3) we thus obtain,

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1
, (11)

which, upon standardization, is used for inference.

Note that under Assumptions 1 to 4, the standard errors need to take into account two

specific features of the data. First, time varying variances bias the usual standard errors, even

asymptotically. Second, while the estimation error (v̂t − vt) has no asymptotic effect on the

limiting distribution of β̃ivx in the near-integrated context, it does so when xt is covariance

stationary. Yet treating the two cases in a different manner is inconvenient since exact

knowledge about which is actually the relevant case is typically not available. Consequently,

we derive heteroskedasticity-consistent standard errors for the stationary case and show that

these are also valid in the near integrated context. In this way, we are indeed able to use

the same statistic with the same limiting distribution to cover both cases without having to

decide which is which – analogously to the original IVX test of Kostakis et al. (2015).

In specific, we use

se
(
β̃ivx

)
:=

(∑T
t=p+1 z

2
t−1ε̃

2
t + γ̂2Q̂T

)1/2
∑T

t=p+1 zt−1xt−1
(12)

where the finite-sample correction Q̂T used in (12) is given by

Q̂T = HzxH−1xxHxxvH−1xxHzx

with Hxx =
∑T

t=p+1 xt−px
′
t−p, Hzx =

∑T
t=p+1 zt−1x

′
t−p, Hxxv =

∑T
t=p+1 xt−px

′
t−pν̂

2
t , and

xt−p := (xt−1, ..., xt−p)
′. To compute the Eicker-White-type standard errors in (12) we make

use of the OLS residuals computed from the residual-augmented predictive regression, ε̃t :=

ỹt− β̃olsxt−1 where β̃ols :=
∑T
t=2 xt−1ỹt∑T
t=2 x

2
t−1

, rather than IVX residuals due to the superconsistency

properties of the former in the near-integrated context.

Remark 2.6 One may resort to alternative HC variance estimators, e.g., with correction

for degrees of freedom (HC1). The HC1 version is obtained here by multiplying the estimated

variance by T
T−p−3 . �
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Remark 2.7 The standard errors in (12) are basically the Eicker-White standard errors that

would have been appropriate under stationarity of xt, where the estimation error of ν̂t does

not vanish asymptotically. We show that Q̂T in (12) is dominated under near-integration so

that the standard error in (12) is asymptotically equivalent to the one implied by the near-

integrated framework, which turns out to be simply
(
∑T
t=p+1 z

2
t−1ε̃

2
t)

1/2∑T
t=p+1 zt−1xt−1

as can be seen in Section

3. �

Remark 2.8 The near-unit root in xt allows us in principle to use the residuals without the

need to use the finite sample correction, but the statistics fare better in finite samples if the

correction is included (essentially because, in finite samples, any |ρ| < 1 is “caught between”

stationarity and integration). �

2.5 Extensions to Multiple Predictors

The discussion so far has side-stepped a couple of aspects relevant for empirical work which

we address in this section. They are in fact straightforward extensions of the baseline case

and we shall omit some of the technical details.

It is often the case that several predictors are simultaneously considered. Thus, the

resulting multiple predictive regression is

yt = β′xt−1 + ut

where xt−1 follows a K-dimensional vector autoregressive data generating process of order

p, such as,

xt = Rxt−1 + vt

vt =

p−1∑
j=1

Ajvt−j + νt

which is either stable or (near) integrated as before depending on the properties of the

autoregressive coefficient matrix R (vt is taken to be a stable autoregression in either case).

There is endogeneity, possibly in all regressors, expressed as a nonzero coefficient vector in

the decomposition

ut := γ ′νt + εt,

and the shocks νt and εt are heterogeneous, serially independent obeying a multivariate

version of Assumption 3.

The implementation of the IVX approach introduced in this paper in the multiple pre-

dictive regression case is as follows:

12



1. Get the vector of residuals ν̂t from a vector autoregression of order p,

ν̂t := xt −
p∑
j=1

Φ̂jxt−j, t = p+ 1, . . . , T,

with Φ̂j, j = 1, ..., p, the matrix of OLS coefficient estimates. Note that the use of

AIC (or some other information criteria) in levels, for determining the order p, is again

recommended.

2. Regress yt on ν̂t to obtain the adjusted ỹt as,

ỹt = yt − γ̂ ′ν̂t

with γ̂ the OLS estimate of the vector of parameters γ.

3. Regress ỹt on xt−1 via IVX with zt−1 := (1− %L)−1+ ∆xt−1 as instruments to obtain

β̃
ivx

and use the standard errors provided in Equation (13) below to conduct inference.

The estimated covariance matrix of β̃
ivx

in this context is given by the familiar “sandwich”

formula,
̂

Cov
(
β̃
ivx
)

= B−1T MT

(
B−1T

)′
(13)

where

BT =
T∑
t=2

zt−1x
′
t−1

and

MT =
∑T

t=2 zt−1z
′
t−1ε̃

2
t +

(
γ ′ ⊗

(
1
T

∑T
t=2 zt−1x

′
t−p,K

)(∑T
t=p+1 xt−p,Kx

′
t−p,K

)−1)
×

×
(∑T

t=p+1 νtν
′
t ⊗ xt−p,Kx′t−p,K

)(
γ ⊗

(∑T
t=p+1 xt−p,Kx

′
t−p,K

)−1 (
1
T

∑T
t=2 xt−p,Kz

′
t−1

))
with xt−p,K corresponding to the vector stacking all p lags of all K regressors, i.e., x′t−p,K :=

(xt−1,1, . . . , xt−1,K , xt−2,1, . . . , xt−2,K , . . . , xt−p,1, . . . , xt−p,K).

The limiting distribution of β̃
ivx

is normal in the stationary case and mixed normal

in the near-integrated context; the proofs are simple multivariate extensions of the results

from the single-regressor case (see the following section) so we do not spell them out. More

importantly, individual and joint significance tests have their usual standard normal and χ2

limiting distributions irrespective of the persistence and heterogeneity of the DGP as long

as the robust covariance matrix estimator in (13) is used.

13



3 Asymptotic results

In this section, we analyze the limiting distributional characteristics of the new reduced-bias

IVX tests considering the general framework described in Section 2.4, which also provides

us with the results for the simplest case in Section 2 as a particular case. We consider two

different theoretical frameworks that critically determine the stochastic properties of the

predictive variable. On the one hand, we consider stationary predictors, characterized by a

fixed coefficient |ρ| < 1 in (2), and on the other, we allow for near-integration by considering

ρ := 1−cT−1, with c ≥ 0 and fixed. The main objective of this setting is to acknowledge the

uncertainty that researchers face regarding the stochastic properties of the predictor, i.e.,

whether it is stationary or near-integrated when ρ̂ is close to, but strictly less than unity in

finite samples. This setting includes of course the extreme case of a unit-root when the local

parameter c equals zero (c = 0).

In the following, we maintain the predictive regression framework in (1) but allow for

significant departures from Gaussianity and the restrictive AR(1) structure for the regressor.

We also allow for heterogeneity in the form of time-varying variances, different shapes of the

distributions, and even changes in the persistence of the regressor. Financial variables often

exhibit time-varying variances in addition to GARCH effects; Kostakis et al. (2015) discuss

the GARCH case considering strict stationarity, whereas we relax the i.i.d. assumption by

replacing stationarity with smoothly varying volatility.

Note first that the time-varying properties of the DGP, as stated in Assumptions 1

through 4, imply different behavior in the limit compared to the Gaussian i.i.d. case. In this

case, the partial sums of νt converge weakly to

M (s) :=

ˆ s

0

σν (r) dWv (r) ,

and the partial sums of εt to
´ s
0
σε (r) dWε (r), with Wε and Wv independent standard Wiener

processes; the “classical” case is only recovered when σu and σv are constant. Moreover, the

suitably normalized regressor can be shown to converge weakly to an Ornstein-Uhlenbeck

type process driven by the diffusion M (s), i.e.,

T−1/2x[sT ] ⇒ ω

ˆ s

0

e−
´ s
r c(t)dtdM (r) := ωX (s) (14)

where ω =
(

1−
∑p−1

j=1 aj

)−1
; see, e.g., Cavaliere (2004) for the case with constant c.

In the case where xt is stationary, i.e., |ρ| < 1 and fixed, the following results can be

stated.
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Theorem 3.1 Under Assumptions 1, 2, 3 and 4i), we have, as T →∞, that

T 1/2
(
β̃ivx − β

)
d→ N

(
0, σ2

β

)
(15)

where

σ2
β :=

α0

´ 1
0
σ2
v (s)σ2

ε (s) ds+ γ2α′pΩ
−1αp

´ 1
0
σ4
v (s) ds[

α0

´ 1
0
σ2
v (s) ds

]2 (16)

with αp := (α0 . . . αp−1)
′ and Ω :=

{
α|i−j|

}
1≤i,j≤p, where αh :=

∑
bjbj+h with bj the moving

average coefficients of xt, (1− ρL)−1 (1− a1L− . . .− ap−1Lp−1) =
∑

j≥0 bjL
j. Furthermore,

T 1/2se
(
β̃ivx

)
p→ σβ

and, under the null hypothesis, H0 : β = 0,

t̃ivx
d→ N (0, 1) . (17)

The limit behavior changes under near-integration as shown in the following Theorem.

Theorem 3.2 Under Assumptions 1, 2, 3 and 4ii), we have, as T →∞, that

T
1/2+η/2

(
β̃ivx − β

)
⇒MN

0,
a
´ 1
0
σ2
ν (s)σ2

ε (s) ds

2ω2
(
X2 (1)−

´ 1
0
X (s) dM (s) +

´ 1
0
c (s)X2 (s) ds

)2

(18)

and

se
(
β̃ivx

)
⇒
( a

2ω2

)1/2 (´ 1
0
σ2
ν (s)σ2

ε (s) ds
)1/2

X2 (1)−
´ 1
0
X (s) dM (s) +

´ 1
0
c (s)X2 (s) ds

(19)

where a and η are fixed, ω2 plays the role of the long-run variance (and is defined in (14)),

X (s) =
´ s
0
e−
´ s
r c(t)dtσv (r) dWv (r) and, σ2

ν (s) and σ2
ε (s) are the variances of vt and εt,

respectively. Moreover, under the null hypothesis, H0 : β = 0,

t̃ivx ⇒ N (0, 1) . (20)

The proof of Theorem 3.2 establishes that QT = op (T 1+η) so that it is dominated in (12)

by
∑T

t=p+1 z
2
t−1ε̃

2
t which is of exact order Op (T 1+η) (see the Appendix for details), and the

residuals estimation effect is negligible in the near-integrated case. The near-integrated case

is also more interesting for an evaluation of the local power and for comparison with the

original IVX.2 The power function of the residual augmented IV X is provided next.

2The local power in the stationary case is easily derived and we omit the details.
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Theorem 3.3 Under Assumptions 1, 2, 3 and 4ii), we have for local alternatives β :=

bT−(1/2+η/2), as T →∞ that

t̃ivx ⇒ N

b(2ω2

a

)1/2 X2 (1)−
´ 1

0
X (s) dM (s) +

´ 1
0
c (s)X2 (s) ds(´ 1

0
σ2
ν (s)σ2

ε (s) ds
)1/2 , 1

 . (21)

Setting X = Bc, M = W , ω2 = 1, σv (s) = σv, σε (s) = σε and c (s) = c, and using

BcdWv − cBcds as shorthand for dBc, leads to the results for the particular case studied in

Section 2.

4 Finite sample performance

4.1 Monte Carlo Setup

This section compares the two versions of the IVX procedure, the original IVX test which we

denote as tivx and the residual augmented version t̃ivx, with extant procedures under several

heterogeneous DGPs. As benchmarks we use the tests of Campbell and Yogo (2006) and of

Amihud and Hurvich (2004) and Amihud et al. (2010).

Concretely, we generate yt and xt as in equations (1) and (2) but allow for an intercept

in the predictive regression, i.e.,

yt = µ+ βxt−1 + ut, t = 2, ..., T (22)

xt = ρxt−1 + vt (23)

and

vt = a1vt−1 + et (24)

with a1 ∈ {−0.5, 0.5} and et ∼ iidN (0, 1). We focus on local alternatives of the form

β = bT−1 for two sample sizes, T = 200 and T = 500. To study the empirical size of the

tests we let b = 0, and for the local power evaluation we consider b ∈ {5, 10, 15, 25}, and the

persistence of the predictor is controlled by ρ := 1 − cT−1, with c ∈ {0, 10, 20, 30, 40, 50}.
The correlation causing endogeneity is set to −0.95, which is not an uncommon value in

practice; see, e.g., Campbell and Yogo (2006).

The efficient tests of Campbell and Yogo (2006) (denoted as CY ) are analyzed, and the

residual augmented predictive regression based test of Amihud et al. (2010) (denoted as

AHW ) is computed for a fixed p = 2 to keep complexity under control. In comparison, tivx

does not require specifying the lag length, while for t̃ivx we chooses p via Akaike’s information

criteria (AIC). Both tivx and t̃ivx are computed by demeaning the dependent variable and the

regressor, but not the instrument (see Section 2.5 for details). Since all tests are invariant
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to the intercept µ, we set µ = 0 without loss of generality.

Also, we follow Kostakis et al. (2015) and choose a = 1 and η = 0.95 for the construction

of the instruments in both. We employ the proposed standard errors from (12) in the

computation of t̃ivx, while, for the classical tivx, we use Eicker-White standard errors as

recommended by Kostakis et al. (2015). Later on, we shall also consider a version of the

original IVX test without Eicker-White standard errors, denoted by t#ivx, to illustrate the

impact of neglected time-varying volatility on the performance of this approach.

The rejection frequencies are computed at the nominal 5% level based on 10000 Monte

Carlo replications, and all results for the tivx and t̃ivx tests are computed based on standard

normal critical values.

4.2 Empirical size and power performance

From Table 1, which presents the results obtained when vt follows an AR(1) with a1 = −0.5

(negative autocorrelation) in (24) we observe, when b = 0 and for the values of c considered,

that AHW and tivx are slightly oversized, but that this oversizing decreases as the sample

size increases. At the same time, we also observe that t̃ivx displays slightly conservative

behavior. In this experiment CY presents the largest size distortions as a consequence of

the negative short-run dynamics. This feature of the CY test has already been noted in the

literature; see,e.g., Jansson and Moreira (2006). Note also that for the unit root case (c = 0)

there are some significant size distortions also for the tivx and AHW tests. Regarding the

empirical power we observe that the t̃ivx test displays superior power when c > 0, relative to

the other procedures.

As a robustness check, we also provide in the appendix results for positive short-run

dynamics, i.e., when a1 = 0.5 (see Table B.1). We observe in general some size distortions

for all tests, with tivx displaying the most severe distortions when compared to the other

procedures, and AHW and t̃ivx displaying the smallest distortions.

4.3 Robustness against empirical features of the data

To evaluate the performance of the procedures under other empirically relevant features we

report results for the empirical size under DGPs with time-varying volatility and time-varying

persistence. In specific, we consider five common variance patterns, namely:

1. constant, σ2
ε (s) = σ2

ν (s) = 1;

2. an early upward break, σ2
ε (s) = σ2

ν (s) = 1 + 8I (s > 0.3);

3. a late upward break, σ2
ε (s) = σ2

ν (s) = 1 + 8I (s > 0.7);

4. an early downward break, σ2
ε (s) = σ2

ν (s) = 9− 8I (s > 0.3); and
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Table 1: Empirical rejection frequencies against local alternatives (negative short-run AR
parameter)

AHW CY tivx t̃ivx AHW CY tivx t̃ivx

b T = 200 T = 500

0 8.9 1.1 10.6 6.30 9.4 2.5 10.4 6.3
5 17.5 28.3 54.4 37.5 17.3 30.7 53.2 39.0

c = 0 10 67.8 94.7 93.5 86.1 65.9 97.4 93.0 87.9
15 98.2 99.4 98.9 97.3 97.8 99.8 98.7 98.1
25 100.0 99.95 100.0 99.9 100.0 100.0 100.0 99.9

T = 200 T = 500

0 6.6 0.0 5.4 5.0 6.8 0.4 4.6 4.6
5 8.1 0.2 13.8 14.5 7.2 2.8 12.4 14.4

c = 10 10 17.1 3.8 33.2 39.6 15.0 14.8 31.0 38.7
15 37.0 29.2 65.1 78.1 33.2 49.6 61.3 77.4
25 96.6 94.7 96.8 99.4 95.2 98.8 96.0 99.5

T = 200 T = 500

0 6.4 0.0 4.1 4.5 6.4 0.0 4.1 4.8
5 7.1 0.0 10.4 12.3 6.4 0.2 9.4 11.1

c = 20 10 13.3 0.0 21.9 26.5 11.3 1.6 20.6 25.4
15 24.5 0.3 40.5 50.3 19.4 7.9 37.2 47.2
25 68.8 22.6 84.2 93.9 60.4 54.3 80.1 93.2

T = 200 T = 500

0 6.0 0.0 4.3 4.9 5.8 0.0 4.0 4.9
5 6.4 0.0 9.1 10.5 6.0 0.0 8.5 10.3

c = 30 10 11.4 0.0 17.7 21.9 9.1 0.0 15.8 20.2
15 20.1 0.0 32.4 39.3 16.1 0.5 28.4 35.9
25 54.1 0.3 70.6 81.3 42.4 12.1 63.7 77.1

T = 200 T = 500

0 6.1 0.1 4.0 4.7 5.5 0.0 4.1 5.0
5 6.8 0.1 8.9 10.5 5.7 0.0 7.2 9.4

c = 40 10 10.5 0.1 16.8 20.0 9.1 0.0 14.3 18.3
15 18.5 0.1 28.1 34.1 13.5 0.0 24.3 30.2
25 45.1 0.1 60.8 71.4 34.9 0.8 52.5 65.2

T = 200 T = 500

0 5.9 0.1 3.6 4.4 5.5 0.0 3.7 5.0
5 6.5 0.1 7.8 9.7 6.2 0.0 7.1 9.5

c = 50 10 10.4 0.1 15.3 19.4 8.1 0.0 12.5 16.5
15 16.6 0.1 26.4 32.1 12.1 0.0 20.5 26.3
25 41.6 0.1 55.5 64.9 30.2 0.0 45.1 56.3

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2;
CY denotes the Campbell and Yogo test, tivx is IVX test computed following Kostakis et
al. (2015) and t̃ivx the residual-augmented IVX test procedure introduced in this paper, all
with maximal lag length p = [4(T/100)0.25]. The DGP is as in (1) and (2) with ρ = 1− cT−1
and β = bT−1. For further details see the text.
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5. a late downward break, σ2
ε (s) = σ2

ν (s) = 9− 8I (s > 0.7),

where I (·) is an indicator function; and to allow for time-varying persistence, we also consider

six patterns for the localization parameter c:

1. constant close to integration, c (s) = 5;

2. small break towards stationarity, c (s) = 5 + 5I (s > 0.5);

3. large break towards stationarity, c (s) = 5 + 20I (s > 0.5);

4. constant close to stationarity, c (s) = 25;

5. small break towards integration, c (s) = 25− 5I (s > 0.5);

6. large break towards integration, c (s) = 25− 20I (s > 0.5).

To gauge the necessity of a correction for time-varying variances, we now compute, in addi-

tion, the IVX test without Eicker-White heteroskedasticity correction and denote it by t#ivx;

tivx is computed with (the usual) Eicker-White standard errors, and t̃ivx is computed using

the heteroskedasticity-robust standard errors from (12) as before.

Table 2 confirms the conclusions obtained under the homogenous DGPs. The test based

on tivx exhibits practically the same behavior under the variance patterns employed here, but

can be oversized for constant small c (here, it is the closeness to the unit root that matters

and not the breaks in c). On the other hand, the size control of t̃ivx is overall quite good, for

all persistence patterns, and the Eicker-White-type standard errors account for time-varying

variances as well.3

IV X without robust standard errors can be seriously oversized, which, again, was ex-

pected; the worst effect is observed for late upward breaks in the variance. AHW exhibits a

similar pattern, to an even larger extent. We note that breaks in the persistence parameter

c tend to rather have a dampening effect, if any. CY is severely undersized, in line with the

previous experiments for negative short-run correlation.

As second robustness check of the findings Table B.2 in the appendix shows that, for

positive short-run correlation, CY now controls size fairly well except for late upward and

early downward breaks in the variance; the other three tests do not appear to be sensitive

to the sign of the short-run serial correlation of the predictor. The effects are practically

the same for both sample sizes, indicating that the size distortions are not finite-sample in

nature.

3Unreported simulations show that not employing the Eicker-White-type standard errors for the t̃ivx test
under time-varying variances leads to size distortions similar to those of the t#ivx test.
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Table 2: Empirical rejection frequencies under breaks in variance and persistence, negative
short-run AR parameter

AHW CY t#ivx tivx t̃ivx AHW CY t#ivx tivx t̃ivx

c Var T = 200 T = 500

const 7.6 0.1 9 9.6 5.5 7.4 1.2 10.4 10.7 5.9
early up 11.5 0.1 13.2 9.8 6.4 11.2 1.6 13.5 9.9 6.6

const small late up 24.1 0.6 17.9 9.6 5.8 25.2 3.9 19.3 10 6.1
early down 21.5 0.4 15.1 8.8 5.5 22.1 3.0 16.4 9.4 5.9
late down 10.7 0.4 11.3 9.3 5.6 11.1 2.3 12.3 9.6 6.3

T = 200 T = 500

const 7.0 0.0 8.3 8.8 5.9 7.3 0.7 9.6 9.9 6.3
early up 11.7 0.0 12.1 9.3 5.9 11.5 1.5 12.9 9.6 6.6

up small late up 23.2 0.1 16.4 9.3 5.6 24.1 2.3 17.4 9.4 5.8
early down 22.2 0.2 14.9 8.2 6 22.2 2.8 17 9.3 6.9
late down 10.9 0.1 11 8.6 6.3 11.3 1.8 12.1 9.2 6.6

T = 200 T = 500

const 6.6 0.0 7.2 7.9 5.4 6.8 0.3 8.9 9 6.2
early up 10.9 0.0 10.3 8.1 5.5 11.5 0.3 11.5 8.7 5.9

up large late up 21.5 0.0 13.6 8.5 4.8 21.5 0.3 14.2 8.8 5.2
early down 22.3 0.2 14.7 7.8 6.9 22.8 2.7 17.1 8 6.9
late down 11.6 0.0 10.5 7.5 6.3 11.3 1.1 11.4 8.4 6.9

T = 200 T = 500

const 6.2 0.0 5.6 6.1 5.3 5.6 0.0 6.7 6.7 5.5
early up 10.6 0.0 10.2 7.8 6.1 10.4 0.0 11.3 8.1 6.2

const large late up 24.4 0.1 15.6 7.8 6.3 24.5 0.1 16.8 7.9 6.7
early down 24.0 0.0 11 5.5 5.5 23.2 0.0 13.4 6.4 6.4
late down 11.1 0.0 7.8 5.8 5.6 11.0 0.0 8.4 5.9 5.4

T = 200 T = 500

const 6.1 0.0 5.9 6.2 5.5 6.1 0.0 7.1 7.4 5.6
early up 10.9 0.0 10.4 8 6 11.1 0.1 11.1 7.9 6.1

down small late up 23.6 0.1 16.4 8.2 6.9 23.9 0.2 16.9 8.2 6.6
early down 23.4 0.0 10.7 5.4 5.6 23.2 0.1 12.5 6.2 5.8
late down 10.6 0.0 7.5 5.9 5.4 10.8 0.0 9.3 6.6 5.8

T = 200 T = 500

const 7.0 0.0 7.2 7.6 5.1 7.4 0.2 9.1 9.3 5.9
early up 11.2 0.1 12.4 9.4 6.2 11.4 1.3 13.6 9.4 6.6

down large late up 25.0 0.4 19.9 9.1 7.1 25.4 4.3 21.4 9 7.3
early down 21.3 0.0 10 6 4.3 21.3 0.2 11.8 6.8 4.5
late down 10.2 0.0 8.9 7.5 4.6 10.3 0.3 9.5 8.2 4.6

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2; CY denotes

the Campbell and Yogo test, t#ivx is IVX test computed following Kostakis et al. (2015) but without the
Eicker-White correction, and t̃ivx is the residual-augmented IVX test procedure introduced in this paper, all
with maximal lag length p = [4(T/100)0.25]. The DGP is as in (1) and (2) with ρ = 1− ctT−1 and β = bT−1

and exhibits time-varying variance. For further details see the text.
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5 Real estate returns and rent growth predictability

5.1 Background

The real estate market is of considerable economic importance; see, e.g., Englund et al.

(2002) and Case et al. (2005). As argued by Helbling and Terrones (2003) and Rapach

and Strauss (2006), changes in housing wealth can be more important in their effects on

the economy than changes in wealth caused by stock price movements. In effect, some of

the most severe systemic financial crises have been associated with boom-bust cycles in real

estate markets; see Bordo and Jeanne (2002), Reinhart and Rogoff (2013), and Crowe et al.

(2013). Hence, understanding the dynamics of house prices is quite of relevance, not only

from an academic perspective.

Price determination in housing markets implies that rents are a fundamental determinant

of the housing value and that the rent-to-price ratio (also known as ’cap rate’) summarizes

market expectations of future housing returns or rent growth (cf. Plazzi et al., 2010, Ghysels

et al., 2013 and Engsted and Pedersen, 2015 [EP]). Several recent studies have analyzed the

predictive power of the rent-to-price ratio for future housing returns and rent growth in the

US housing market (i.a., Gallin, 2008, Plazzi et al., 2010, Cochrane, 2011, and Ghysels et al.,

2013), but the European housing market (see, e.g., EP) and the housing market in other

countries have received less attention.

The analysis in this section contributes to this literature with further evidence for a

large set of OECD countries, the US and the Euro area 16 countries composition (EA16),

complementing and consolidating the findings in EP. The framework of analysis follows from

the log-linear approximation of one-period gross returns to a housing investment as proposed

by Campbell and Shiller (1988), which relates the current log rent-to-price ratio (rt − pt) to

the expected future rate of housing returns and expected future rent growth, such that, the

following present value relation is obtained,

rt − pt = − κ

1− ρ
+ Et

∞∑
j=0

ρj(ht+1+j −∆rt+1+j) (25)

where ht, rt and pt denote, respectively, the log housing return, the log rent, and the log house

price at time t, ρ is the discount factor and κ is a linearization constant; see Campbell et al.

(2009), Plazzi et al. (2010), Ghysels et al. (2013) and EP. Note that in (25) the transversality

condition (i.e., no-bubble), limj→∞ ρ
j(rt+j − pt+j) = 0, is imposed.

Hence, the model in (25) indicates that the rent-to-price ratio is a useful measure of

valuation if it can predict future housing returns or rent growth (see, e.g., EP and Gallin,

2008). The intuition behind (25) is that, holding expected housing returns constant, an

increase in expected future rents leads to an increase in today’s house price which originates

a decrease in the rent-to-price ratio. Similarly, holding the expected rent growth constant,
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an increase in expected future housing returns must imply a lower price today and thereby

an increase of the rent-to-price ratio.

The idea of using valuation ratios for prediction is not new. As noted in Ghysels et al.

(2013), several ratios have been used in the literature. In particular, for real estate the most

commonly used are the rent-to-price ratio (Hamilton and Schwab, 1985, Meese and Wallace,

1997, Geltner and Mei, 1995, Campbell et al., 2009, Himmelberg et al., 2005, Gallin, 2008,

Plazzi et al., 2010), the loan-to-value ratio (Lamont and Stein, 1999), and the price-to-income

ratio (see, e.g., Malpezzi, 1999).

If expected rent growth and expected housing returns are both stationary, then the rent-

to-price ratio should also be stationary, however empirical evidence suggests that this is not

necessarily always the case; see Kishor and Morley (2015). Most methods which use ratios as

predictors of future returns typically assume stationarity of the ratios, i.e., that the variables

used to form the ratios are cointegrated in logs (see, e.g., Campbell et al., 2009, and Plazzi

et al., 2010).

For instance, to test for return and rent growth predictability by the rent-to-price ratio

in the US housing market, Plazzi et al. (2010) apply a generalized method of moments ap-

proach in which they impose the present value restriction. EP on the other hand report the

probability of the upper (lower) one-sided alternative, if the estimated predictive coefficient

is positive (negative). To conduct inference, they simulate the p-values. If the predictive

coefficient is positive (negative) and the null hypothesis is rejected it is concluded that the

rent-to-price ratio has positive (negative) predictive power of either housing returns or rent

growth depending on the null hypothesis considered. EP’s argument for considering this re-

lation through these joint tests is to obtain statistics with better power performance than the

usual marginal tests (see also Cochrane, 2008). EP’s joint test directly exploits the connec-

tion between housing returns, rent growth and the rent-to-price ratio given in (25). In testing

the joint hypotheses, EP follow Cochrane (2008), and simulate data under the respective

nulls and test the hypotheses of interest using simulated small sample distributions.

In our analysis below we apply the new residual-augmented IVX predictive regression test

introduced in Section 2.3.2, and contrast the results obtained with those of the conventional

IV X predictive regression test proposed by Kostakis et al. (2015), and the conventional OLS

based t-ratio computed with and without Newey-West standard errors (the latter was also

used in EP and Ghysels et al., 2013).

5.2 Data

Our analysis focuses on housing returns and rent growth predictability for 19 OECD countries

(Australia (AUS), Belgium (BEL), Canada (CAN), Switzerland (CHE), Germany (DEU),

Denmark (DNK), Spain (ESP), Finland (FIN), France (FRA) the UK (GBR), Ireland (IRL),

Italy (ITA), Korea (KOR), Japan (JPN), the Netherlands (NLD), Norway (NOR), New
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Zealand (NZL), Portugal (PRT), Sweden (SWE)) and the US. We also look at overall in-

dexes for the OECD and the EA16. The data consists of seasonally adjusted quarterly real

and nominal house prices, and the rent-to-price ratio from 1970Q1 to 2016Q1 for all coun-

tries except Australia (begins 1972Q3), Belgium (begins 1976Q2), Korea (begins 1986Q1),

Portugal (begins 1988Q1), Spain (begins 1971Q1), Norway (begins 1979Q1), and Sweden

(begins 1980Q1). From the real and nominal house prices, inflation in each country is com-

puted, and from the house prices and the rent-to-price ratio real and nominal rent growth

as well as housing returns are computed. The latter is computed as Ht+1 = Pt+1+Rt+1

Pt
.

For a clearer understanding of the series under analysis, we computed the averages for

the total sample size of each series, as well as for four sub-periods (sub-period I: 1990Q1

- 1999Q4; sub-period II: 2000Q1-2007Q4; sub-period III: 2008Q1-2012Q4; sub-period IV:

2013Q1-2016Q1); see Table 3.

In terms of nominal housing returns, most countries obtained the highest average return

rates in sub-period II (2000Q1 - 2007Q4). In specific, in this sub-period the highest returns

where observed in Spain (3.1 %), Ireland (2.6%), the United Kingdom (2.5%) and France

(2.5%). Overall, during this period 16 countries had nominal average quarterly return rates

greater than 1.5%, although two countries displayed negative quarterly housing return rates

(Germany (DEU) -0.09% and Japan (JPN) -1.07%). In sub-period I and sub-period IV, most

countries present more moderate returns. In sub-periods I and IV only 3 (Ireland (IRL), the

Netherlands (NLD) and Portugal (PRT)) and 5 (Australia (AUS), Ireland (IRL), Newzealand

(NZL), Sweden (SWE) and the UK (GBR)) of the 20 countries considered displayed returns

larger than 1.5% and in both periods 3 countries displayed negative returns (Finland (FIN),

Japan (JPN) and Switzerland (CHE) in sub-period I and Finland (FIN), France (FRA) and

Italy (ITA) in sub-period IV). Sub-period III (2008Q1 - 2012Q4) registered overall the worst

performance (9 of the 20 countries considered as well as the OECD and the EA16 index

displayed negative returns over this period). Ireland (IRE) (-3.4%), Spain (ESP) (-1.95%),

Denmark (DNK) (-0.9%), Portugal (PRT) (-0.87%) and the Netherlands (NLD) (-0.85%)

displayed the lowest return rates. On the other hand, Norway (NOR) (1.2%), Switzerland

(CHE)(1%), Canada (CAN) (0.88%) and Germany (DEU) (0.85%) registered the highest

returns over this sub-period. The evolution of real returns is qualitatively very similar.
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Table 3: Average housing returns, rent growth and rent-to-price ratio.

AUS BEL CAN DNK FIN FRA DEU IRL ITA JPN KOR NLD NZL NOR PRT ESP SWE CHE GBR USA OECD EA16
Nominal Returns
1990-2000 0.875 1.248 0.163 1.244 -0.020 0.261 0.529 2.325 0.750 -0.232 0.093 2.266 1.090 1.337 1.570 1.183 0.632 -0.702 0.832 0.793 0.611 0.793
2000-2007 2.452 1.864 2.014 2.073 1.233 2.524 -0.093 2.594 1.928 -1.069 1.515 1.527 2.433 2.012 0.514 3.122 2.206 0.568 2.537 1.501 1.333 1.570
2008-2012 0.623 0.563 0.882 -0.906 0.612 0.042 0.846 -3.418 -0.467 -0.229 0.652 -0.852 0.175 1.206 -0.867 -1.953 0.744 1.042 -0.160 -0.720 -0.161 -0.189
2012-2016 1.930 0.272 1.216 1.244 -0.003 -0.312 1.272 2.318 -0.865 0.524 0.419 0.267 2.215 0.997 0.745 0.151 2.443 0.577 1.862 1.474 1.091 0.291
Total 2.028 1.396 1.613 1.452 1.462 1.487 0.699 2.022 1.904 0.666 0.841 1.307 2.202 1.745 0.904 2.230 1.695 0.824 2.209 1.228 1.357 1.431
Real Returns
1990-2000 0.314 0.744 -0.330 0.770 -0.618 -0.057 0.041 1.662 -0.326 -0.415 -1.626 1.694 0.691 0.727 0.203 0.138 -0.210 -1.165 0.092 0.235 0.026 0.120
2000-2007 1.746 1.256 1.594 1.617 0.830 2.026 -0.454 1.776 1.285 -0.877 0.776 0.912 1.958 1.577 -0.341 2.273 1.864 0.333 2.158 0.927 0.860 1.003
2008-2012 -0.017 0.118 0.557 -1.431 0.010 -0.189 0.529 -3.156 -0.925 0.074 -0.093 -1.153 -0.339 0.704 -1.123 -2.416 0.324 1.070 -0.767 -1.135 -0.566 -0.545
2012-2016 1.513 0.091 0.851 1.107 -0.326 -0.336 1.103 1.945 -0.909 0.392 0.240 0.080 2.035 0.397 0.603 0.317 2.200 0.702 1.551 1.250 0.835 0.213
Total 0.740 0.502 0.649 0.401 0.289 0.467 0.073 0.646 0.257 0.119 -0.224 0.502 0.790 0.632 -0.075 0.588 0.498 0.242 0.892 0.352 0.379 0.330
Nominal Rents
1990-2000 0.568 0.754 0.465 0.687 0.194 0.750 1.132 -0.051 1.433 0.374 1.032 1.048 0.810 0.688 2.011 1.601 1.611 0.785 1.529 0.843 0.907 1.143
2000-2007 0.784 0.532 0.338 0.621 0.714 0.593 0.271 2.924 0.600 -0.056 0.564 0.636 0.215 0.746 0.657 1.037 0.479 0.388 0.701 0.788 0.600 0.628
2008-2012 1.279 0.382 0.343 0.694 0.338 0.404 0.292 -1.202 0.568 -0.094 0.704 0.540 0.495 0.660 0.519 0.425 0.606 0.357 0.616 0.319 0.410 0.395
2012-2016 0.504 0.343 0.311 0.453 0.707 0.219 0.327 0.206 0.055 -0.082 0.628 0.908 0.545 0.664 0.511 -0.124 0.395 0.194 0.621 0.710 0.490 0.230
Total 1.397 0.896 0.714 1.188 1.129 1.219 0.782 1.279 1.578 0.659 0.832 1.124 1.543 1.017 1.273 1.550 1.262 0.774 1.773 1.157 1.148 1.195
Real Rents
1990-2000 0.007 0.250 -0.028 0.214 -0.404 0.432 0.644 -0.714 0.358 0.191 -0.687 0.477 0.411 0.079 0.644 0.555 0.770 0.321 0.789 0.284 0.321 0.470
2000-2007 0.078 -0.076 -0.082 0.165 0.311 0.095 -0.090 2.105 -0.043 0.136 -0.175 0.021 -0.261 0.310 -0.197 0.188 0.137 0.153 0.321 0.213 0.128 0.061
2008-2012 0.639 -0.063 0.019 0.169 -0.264 0.173 -0.024 -0.939 0.110 0.209 -0.041 0.240 -0.018 0.157 0.262 -0.038 0.185 0.384 0.009 -0.096 0.005 0.040
2012-2016 0.086 0.162 -0.053 0.316 0.385 0.195 0.158 -0.167 0.010 -0.215 0.449 0.721 0.365 0.063 0.369 0.041 0.152 0.319 0.309 0.485 0.234 0.151
Total 0.122 0.166 -0.250 0.136 -0.044 0.199 0.156 -0.097 -0.069 0.112 -0.234 0.318 0.132 0.092 0.294 -0.093 0.362 0.193 0.455 0.282 0.170 0.094
Rent_to_price
1990-2000 1.706 1.512 1.344 1.701 1.414 1.587 0.799 2.888 1.173 0.648 1.015 1.813 1.898 1.731 1.020 1.632 1.502 0.899 1.795 1.365 1.214 1.213
2000-2007 1.125 1.110 1.101 1.099 1.107 1.191 0.966 1.195 1.118 0.918 1.027 1.028 1.248 1.041 0.986 1.236 1.074 1.021 1.154 1.119 1.074 1.080
2008-2012 0.971 0.863 0.771 1.039 0.954 0.943 0.986 1.726 1.031 1.066 0.837 1.067 0.942 0.808 1.209 1.099 0.796 0.939 1.003 1.239 1.063 1.008
2012-2016 0.924 0.856 0.683 1.089 0.985 1.001 0.843 1.893 1.238 1.023 0.888 1.361 0.818 0.722 1.395 1.450 0.693 0.843 0.959 1.207 1.048 1.067
Total 1.587 1.344 1.468 1.381 1.401 1.362 0.789 2.923 1.267 0.806 0.959 1.547 1.652 1.341 1.076 2.081 1.118 0.873 1.452 1.249 1.166 1.186
Rent_to_price (real)
1990-2000 1.708 1.716 1.505 1.884 1.583 1.697 0.905 2.608 1.282 0.705 1.207 1.979 2.168 1.914 1.114 1.748 1.693 0.961 2.008 1.536 1.350 1.327
2000-2007 1.126 1.260 1.233 1.217 1.240 1.273 1.094 1.079 1.222 0.999 1.223 1.123 1.426 1.151 1.076 1.324 1.210 1.092 1.291 1.259 1.195 1.182
2008-2012 0.972 0.979 0.863 1.150 1.069 1.009 1.117 1.558 1.127 1.160 0.996 1.165 1.076 0.894 1.320 1.177 0.897 1.004 1.123 1.395 1.183 1.104
2012-2016 0.925 0.971 0.765 1.206 1.103 1.071 0.955 1.710 1.353 1.113 1.057 1.486 0.935 0.799 1.523 1.553 0.781 0.901 1.073 1.358 1.165 1.168
Total 1.589 1.525 1.644 1.530 1.569 1.456 0.893 2.640 1.384 0.877 1.141 1.689 1.887 1.483 1.175 2.229 1.260 0.934 1.624 1.406 1.296 1.298
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Regarding the nominal rent growth, the number of countries with negative average nom-

inal rent growth is relatively small (only Ireland (IRL) in sub-period I, Japan (JPN) in

sub-period II, Ireland (IRL) and Japan (JPN) in sub-period III, and Japan (JPN) and Spain

(ESP) in sub-period IV, display average negative rent growth). Taking the OECD average

rent growth as benchmark we observe that the average rent growth in EA16 in sub-periods

I and II was higher than in the OECD, but lower in sub-periods III and IV. Overall, in sub-

periods I, II, III and IV, 8, 10, 12 and 9 of the 20 countries considered, respectively, displayed

larger average rent growth than the OECD. The highest values in sub-period I are observed

for Portugal (PRT) (2%), Sweden (SWE)(1.6%), Spain (ESP)(1.6%) and the United King-

dom (GBR)(1.5%); in sub-period II, for Ireland (IRE)(2.9%), Spain (ESP)(1%), the US

(0.8%), and Australia (AUS)(0.8%); in sub-period III for Australia (AUS)(1.3%), Korea

(KOR)(0.7%), Denmark (DNK)(0.7%) and Norway (NOR)(0.7%); and finally in sub-period

IV for the Netherlands (NLD)(0.9%), the US (0.7%), Finland (FIN)(0.7%) and Norway

(NOR)(0.7%). The evolution of real rents is qualitatively similar.

Hence, given the heterogeneous evolution of rents and house price dynamics across coun-

tries in the next section we analyze the predictive power of the rent-to-price ratio to predict

these series.

5.3 Testing for predictability

5.3.1 Complete sample analysis

Table 4 presents the findings for nominal housing returns, nominal rent growth and inflation

predictability by the rent-to-price ratio. The present value relation in (25) suggests that

the rent-to-price ratio should predict returns with a positive sign and rent growth with a

negative sign. However, regardless of the test used, the results suggest that this is not always

the case (this was also noted by EP).

Regarding nominal housing return predictability the marginal t-tests, tOLS and tNW ,

suggest that the rent-to-price ratio is a significant predictor in 17 of the 22 countries and

economic areas under analysis, whereas the residual-augmented IVX and IVX only find

predictability in 12 and 16 of the 22 countries and economic areas considered, respectively.

For instance, tNW finds predictability for Italy (ITA), the Netherlands (NLD), OECD and

EA16, which is not confirmed by both the residual-augmented IVX and the IVX. On the

other hand, the residual-augmented IVX and IVX find predictability for nominal housing

returns in Japan (JPN), and Switzerland (CHE) which was not detected by tNW .
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Table 4: Predictability of nominal returns, nominal rent growth and inflation. Sample: 1970 - 2016.

returns rent growth Inflation
t̃IV X tIV X tOLS tNW t̃IV X tIV X tOLS tNW t̃IV X tIV X tOLS tNW

AUS 3.9277*** 3.2302*** 5.6628*** 4.4544*** 5.3643*** 4.2232*** 7.5065*** 6.5025*** 1.0505 0.6146 1.0609 0.8071
BEL 4.0463 *** 3.4893*** 4.2513*** 4.3315*** 10.464*** 6.1540*** 5.6817*** 6.9821*** 1.5256 1.8714* 1.6533* 1.0249
CAN 2.0477** 1.7801* 6.1063*** 5.2854*** 1.4555 0.9278 7.1563*** 4.5841*** 0.6043 0.2527 4.2003*** 2.8877***
DNK 1.4534 1.9480* 3.2563*** 2.2019** 2.8002*** 2.1076** 4.0075*** 3.5159*** 1.2366 0.8328 1.6395 1.1044
FIN 1.867* 2.1114** 4.6749*** 4.5125*** 1.4283 0.9602 2.9298*** 2.4397** 1.3421 1.0936 3.1299*** 2.2653**
FRA 1.3778 1.6908* 5.0813*** 3.5692*** 0.8868 0.6342 3.9175*** 3.6501*** -0.5826 -0.7248 1.1151 0.8097
DEU -3.9911*** -3.0917*** -2.7055** -1.9690** -6.8974*** -4.9888*** -7.4356*** -10.4520*** -6.1334*** -5.4224*** -7.2386*** -5.5412***
IRL 2.0808** 2.5885*** 7.9874*** 6.9395*** -0.2296 -0.5224 0.1716 0.1397 -0.7814 -1.0963 0.8580 0.5982
ITA -0.6061 -0.6073 3.2715*** 1.9693** -2.2646** -3.1020*** -1.6117 -1.7397* -3.8721*** -4.1515*** -7.0302*** -7.2114***
JPN -3.0279*** -2.8805*** -0.8188 -0.8236 -9.569 *** -7.6329*** -5.3873*** -6.1726*** -8.0175*** -8.2329*** -6.1746*** -5.7231***
KOR -1.2629 -1.6044 -1.0539 -0.7484 -4.6463*** -6.1721*** -6.7180*** -3.7339*** 1.5949 1.7069* 1.2997 0.9205
NLD 1.5339 2.3149** 4.0122*** 4.4249*** 1.7738* 1.0922 1.8160** 2.2335** -2.3900** -2.4186** -1.7329* -1.3064
NZL 3.8034 *** 3.0548*** 5.3499*** 4.5357*** 4.4515*** 3.0720*** 5.5373*** 7.2056*** 3.0944*** 2.2087** 3.5074*** 2.8420***
NOR 2.5964*** 1.8511* 3.1292*** 2.9667*** 5.2489*** 2.8476*** 4.8848*** 3.5437*** 1.0594 0.9428 1.8842* 1.7282*
PRT -1.6618* -1.7741* -3.6626*** -2.4250** -4.9672*** -2.9261*** -6.1860*** -3.6955*** -4.9640*** -5.9560*** -11.4406*** -9.7824***
ESP 2.5417** 2.7177*** 10.1658*** 7.4108*** 2.2766** 2.2639** 11.9506*** 10.0029*** -1.4792 -1.8243* -0.8312 -0.6426
SWE -0.2771 -0.3886 0.2132 0.1881 1.9098* 1.5422 -0.5011 -0.7642 2.3352** 2.1294** 0.0077 -0.1064
CHE -2.7634*** -2.1911** -1.4933 -1.2536 -8.8303*** -9.6615*** -10.0321*** -7.4992*** -9.1415*** -8.7407*** -9.4543*** -7.1974***
GBR 1.566 1.8527* 4.1801*** 3.7540*** 1.4713 0.7984 2.8170*** 3.4401*** 0.2001 -0.1449 0.4287 0.2704
USA -1.3772 -0.7907 -0.0779 -0.0426 -1.4280 -2.8236*** -2.7984*** -1.9670** -3.5993*** -3.4562*** -3.8353*** -4.1383***

OECD -0.5785 -0.1029 5.4989*** 4.0903*** -1.2246 -1.5299 3.4218*** 3.9040*** -2.2683** -2.8253*** -1.7533* -1.6592*
EA16 -0.1993 0.1106 5.7127*** 4.0081*** -1.4208 -1.7441* 3.0531*** 3.0407*** -2.5242** -3.1315*** -2.1571** -1.8423*

Note:***, ** and * denote significance at the 1%, 5% and 10% significance level, respectively.
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Moreover, considering the results of the residual-augmented IVX which is based on a

bias corrected estimator we observe that 12 (55%) of the parameter estimates for the 22

returns series considered present, as suggested by the present value relation in (25) a positive

parameter estimate (β̂h > 0), of which however only eight are statistically significant. From

the results of the residual-augmented IVX we also observe that of the 12 countries and regions

for which the rent-to-price ratio has statistically significant predictive power, 4 display a

negative β̂h. From Table 4 it can further be observed that there seems to be stronger

nominal rent growth predictability than nominal housing return predictability which was

also noted in EP. Note that based on tNW the only cases for which the rent-to-price ratio is

not a statistically significant predictor are Ireland (IRL) and Sweden (SWE). The residual

IVX detects predictability in nominal rent growth for 14 of the series of which six display

significant negative parameter estimates (β̂r < 0).

Overall, the number of significant statistics is greater for the tNW (and tOLS) statistics

than for the IVX and residual-augmented IVX procedures when nominal housing returns and

rent growth are considered. We note that, in contrast to the tNW , the residual-augmented

IVX based test does not find significant results for Denmark (DNK), France (FRA), Italy

(ITA), the Netherlands (NLD), the UK (GBR), OECD and EA16 when housing returns are

considered and for Canada (CAN), Finland (FIN), France (FRA), the UK (GBR), the US,

OECD and EA16 when the rent growth is analyzed. However, the residual-augmented IVX

finds significant results for JPN and CHE for housing returns, and for Sweden (SWE) for

rent growth, whereas tNW (and tOLS) does not.

Table 5 suggests that the evidence of predictability when real housing returns and real

rent growth are considered is considerably weaker than when nominal data is used (Table 4).

When real housing returns are used, the residual-augmented IVX test only finds evidence of

predictability for Belgium (BEL) and Korea (KOR) (whereas when nominal housing returns

where used evidence was found for 12 countries), and when real rent growth is considered

for Belgium (BEL), Canada (CAN), Finland (FIN), Korea (KOR), the Netherlands (NLD),

Spain (ESP) and the UK (GBR) (whereas for nominal rent growth 14 countries displayed

evidence of predictability). According to EP, the present value relation in (25) shows that if

the rent-to-price ratio does not predict future housing returns, then it must predict future

rent growth. In other words, since the rent-to-price ratio varies over time then either expected

housing returns or expected rent growth, or both, must also vary over time, i.e., the null

hypothesis cannot consist of having unpredictable housing returns and unpredictable rent

growth.

Following EP, we define the log inflation from t to t+ 1 as πt+1, and rewrite (25) as,

rt − pt = Et

∞∑
j=0

ρj [(ht+1+j − πt+1+j)− (∆rt+1+j − πt+1+j)]−
κ

1− ρ
. (26)
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Table 5: Predictability of real returns and real rent growth. Sample: 1970 - 2016.

returns rent growth
t̃IV X tIV X tOLS tNW t̃IV X tIV X tOLS tNW

AUS 0.7911 0.9513 1.5821 1.2546 -1.561 -1.4470 -2.6721*** -2.2998**
BEL 1.7735* 2.0288 2.8593 2.9338*** 2.8056*** 2.7458*** 2.6576*** 2.2002**
CAN 0.5747 1.2510 3.2879*** 2.9627*** -1.6606* -1.8218 -6.9834*** -5.3039***
DNK 0.6780 1.6221 2.3002** 1.7023* 0.9597 0.8664 0.4741 0.6414
FIN -0.2343 0.2671 1.0822 1.0481 -2.0634** -2.2739** -3.1675*** -2.9397***
FRA 1.1579 1.7585 3.4674*** 2.6664*** 0.5434 0.1995 -0.1390 -0.1500
DEU 1.2653 1.2358 3.2327*** 2.5844*** 0.4760 -0.0979 -0.7236 0.7376
IRL 0.9648 1.6866* 4.7997*** 4.7689*** -0.5763 -1.2168 -2.2951** -1.8346**
ITA 0.0833 0.6962 3.0703*** 1.8902* -0.1787 -0.7660 -3.4858*** -2.9067***
JPN 0.1097 0.7145 1.8381* 1.4868 0.6352 0.9974 0.4911 0.3814
KOR -1.8803* -1.2095 -0.4742 -0.3485 -4.2956*** -4.9650*** -4.8700 -3.4732***
NLD 1.2947 2.5492** 3.9431*** 4.6140*** 2.3185** 1.2580 1.2099 1.6394
NZL 1.2225 1.0919 1.7428* 1.5582 0.5131 0.2618 0.4133 0.5771
NOR 0.6207 0.9665 1.6055 1.5288 -0.2195 -0.3641 -0.5465 -0.8595
PRT 0.0222 0.2859 0.4312 0.0811 -0.0424 -0.7013 -1.8154* -1.2596
ESP 0.7196 1.4404 5.2743*** 4.2027*** -2.4588** -2.3168** -5.7807*** -5.0957***
SWE -1.4855 -1.0309 0.6229 0.5793 0.8705 0.4172 -0.2738 -0.5994
CHE -1.2272 0.6277 1.3494 1.0314 -1.1354 -1.4908 -1.7135 -1.3937
GBR 1.2671 1.8526* 2.9444*** 2.9649*** 1.9019* 1.0496 1.4450 2.0741**
USA -0.3000 1.2267 1.9475* 1.2960 0.7087 -0.4773 -0.4653 -0.3911
OECD 0.6953 1.5722 4.2769*** 3.1460*** 0.8471 0.6648 0.4995 0.6320
EA16 0.7073 1.3910 4.0927*** 3.3997*** 0.4153 -0.0883 -2.1022** -1.4812

Note: ***, ** and * denote significance at the 1%, 5% and 10% significance level,
respectively.

The representation in (26) suggests that if the rent-to-price ratio predicts nominal and real

housing returns or rent growth differently, then it must be due to the rent-to-price ratio

having predictive power for future inflation. For example, if nominal housing returns are

predictable but inflation is not, then the result must be that real housing returns are pre-

dictable. From Table 5 we note that the evidence of predictability found with the nominal

returns for Germany (DEU), Japan (JPN), the Netherlands (NZL), Portugal (PRT) and

Switzerland (CHE) is not observed when real returns are used, but significant results are

observed when analyzing predictability of inflation for these countries. As also indicated

in EP from the present value relation in (25) it is clear that a negative return coefficient

using nominal data can only turn positive if the inflation coefficient is negative and numer-

ically larger than the return coefficient. Note that the rent-to-price ratio predicts inflation

with a negative sign for Germany (DEU), Japan (JPN), Portugal (PRT) and Switzerland

(CHE), which displayed negative return coefficients when nominal data was used but are not

significant for real housing returns.
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Table 6: Predictability of nominal returns, nominal rent growth and inflation. Sub-period 1970 - 2007.

Returns Rents Inflation
t̃IV X tIV X tOLS tNW t̃IV X tIV X tOLS tNW t̃IV X tIV X tOLS tNW

AUS 2.4384** 1.9566* 3.2466*** 2.8141*** 4.5257*** 4.0785*** 7.0468*** 6.7236*** 0.7427 0.5966 1.2713 1.0822
BEL 0.4928 -0.0622 0.3357 0.2555 5.1867*** 3.5230*** 2.1108** 2.2614** 1.9685** 1.5817 1.6306 1.4154
CAN 1.1114 1.1531 4.9224*** 4.1091*** -0.6238 -0.7294 3.4496*** 2.1917** 2.2029** 2.2614** 10.4784*** 7.3114***
DNK 0.0038 0.1914 0.6554 0.3172 1.1621 1.0955 2.1902** 1.8392* 0.4278 0.4168 1.5175 1.1581
FIN 0.8772 1.2433 2.6934*** 2.2328** 0.8537 0.3356 1.7369* 1.4696 3.9933*** 3.5757*** 5.3996*** 4.4630***
FRA -2.9666*** -2.6505*** -1.8165* -1.5912 -1.9308* -2.0666** -0.6955 -0.7270 5.6488*** 3.3326*** 5.9388*** 6.7835***
DEU -8.8727*** -5.5330*** -5.9832*** -4.8704*** -9.5014*** -5.0172*** -5.9061*** -10.6130*** -4.8153*** -3.3362*** -3.6887*** -2.8935***
IRL 3.0601*** 2.9215*** 6.3611*** 7.5837*** -0.5824 -0.6287 -0.8457 -0.6866 3.4425*** 4.7432*** 8.6092*** 5.2424***
ITA -0.4019 -0.3026 2.1538** 1.4524 -2.1832** -2.9655*** -2.5542** -2.7908*** -0.1329 -0.2336 4.3495*** 3.3610***
JPN -2.9458*** -2.5845*** 0.5232 0.4175 -4.8269*** -4.0811*** -0.6669 -0.3870 -2.0087** -1.6024 2.2316** 1.8960*
KOR -1.9792** -2.3536** -1.7973* -1.2205 -6.1556*** -7.3703*** -8.9731*** -5.6375*** -1.1315 -1.1318 -2.0313** -1.5855
NLD 0.8091 1.0725 1.8862* 1.8949* 0.8671 0.6778 0.9075 1.0555 4.3727*** 5.2745*** 5.9511*** 4.1685***
NZL 0.6743 0.5759 1.9251* 1.8672* 1.9062* 1.4107 3.5214*** 6.1470*** 2.2909** 1.6307 3.8395*** 5.3995***
NOR 0.1984 0.4168 0.9589 0.8196 2.5583** 1.4842 2.8576*** 2.2234** -0.0499 0.0871 0.0603 0.3521
PRT -2.6493*** -2.6229*** -5.5354*** -4.1292*** -4.1219*** -3.3788*** -7.7343*** -5.3630*** 4.9534*** 3.3149*** 2.6359*** 2.7662***
ESP 2.8871*** 2.4682** 6.4131*** 5.0254*** 2.9774*** 2.1097** 7.5457 5.4946*** 3.6399*** 4.0415*** 9.3903*** 6.5672***
SWE -1.7019* -1.4978 -0.6891 -0.8601 -0.3252 -0.4229 -3.8652*** -3.4293*** 0.7631 0.5142 -2.0401** -1.9807**
CHE -2.7980*** -2.4074** -1.5221 -1.4053 -9.0914*** -9.4067*** -9.1105*** -7.3020*** -4.6785*** -5.1967*** -4.5029*** -2.9179***
GBR -0.6064 -0.1397 1.0196 0.9397 -0.2935 -0.7744 0.2079 0.0858 -0.4012 -0.2234 1.3095 0.8659
USA -2.0437** -2.6004*** -2.0517** -1.4489 -2.0177** -3.1518*** -3.3645*** -2.1559** 1.3462 1.2713 2.3056** 2.0630**

OECD -1.5313 -1.1592 2.7791*** 2.3366** -1.9731** -2.4928** 0.4871 0.2770 0.9914 1.0775 7.0549*** 5.5041***
EA16 -0.8979 -0.6702 2.3133** 1.7552* -2.2271** -2.6926*** -0.2803 -0.4003 2.6773*** 2.5643** 9.6049*** 7.9521***

29



5.3.2 Sub-period analysis (1970 - 2007)

Considering the strong impact of the financial crisis of 2008 on the real estate market, we

repeat the previous analysis considering only the period before the crisis (1970 - 2007).

The first observation we can make from the results in Table 6 is that in comparison to

the full sample, the tNW statistic detects less evidence of nominal housing return and rent-

growth predictability than when the complete sample was considered, i.e., only 11 statistics

display significant results for the former and 14 for the latter, which are in line with the total

number of significant statistics put forward by the residual-augmented IVX test.

Although the number of significant statistics based on the residual augmented IVX and

tNW is very similar, the residual-augmented IVX in contrast to tNW does not find significant

results for Canada (CAN), Finland (FIN), the Netherlands (NLD), New Zealand (NZL),

OECD and EA16 when housing returns are considered and for Canada (CAN), Finland

(FIN) and Sweden (SWE) when rent growth is analyzed. On the other hand, the residual-

augmented IVX finds significant results for France (FRA), Japan (JPN), Korea (KOR),

Sweden (SWE), Switzerland (CHE) and the US for housing returns, and for France (FRA),

Japan (JPN), OECD and EA16 for rent growth whereas tNW (and tOLS) does not.

Table 7: Predictability of real returns and real rent growth. Sub-period 1970 - 2007.

Returns Rents
t̃IV X tIV X tOLS tNW t̃IV X tIV X tOLS tNW

AUS -0.1648 0.0646 -0.1155 -0.0353 -0.3454 -0.3201 -0.8419 -0.6171
BEL -0.3413 -0.4619 0.3288 0.2109 2.2845** 2.2364** 1.9961** 1.5627
CAN 0.4576 1.1383 2.9726*** 2.7215*** -1.1039 -1.0246 -6.0812*** -4.3530***
DNK -0.3698 0.3620 0.4770 0.1916 1.4994 1.5787 1.4596 1.7050*
FIN -0.9877 -0.3764 -0.1881 -0.2140 -2.4519** -2.4456** -3.0393*** -3.1143***
FRA -1.8994* -1.3011 -1.5917 -1.4276 0.4515 0.0118 -0.5969 -1.2831
DEU 0.3333 0.0803 0.0319 0.1076 0.4121 0.3801 -0.1261 -0.0127
IRL 1.3691 1.8366* 3.3144*** 4.3291*** -0.8742 -1.3416 -2.9628*** -2.3736**
ITA 0.2411 0.9340 2.3574** 1.6846* -0.0927 -0.7123 -3.0159*** -2.8121***
JPN -1.0191 -0.3752 1.5750 1.2277 0.8227 1.4813 1.2419 1.2566
KOR -1.8152* -1.3650 -0.3335 -0.2104 -3.0210*** -3.7473*** -3.5332*** -2.8331***
NLD 0.7700 1.4804 2.2131** 2.3571** 1.9049* 1.3150 1.4055 1.9273*
NZL -0.5105 -0.3574 -0.5248 -0.9812 0.2294 0.0015 0.0912 0.0005
NOR -0.9665 -0.0959 -0.0662 -0.3237 -0.3346 -0.4867 -0.8177 -1.2210
PRT -1.0108 -0.6515 -1.4601 -1.1480 -0.7704 -1.4571 -3.8569*** -2.5731**
ESP 0.6779 1.1517 2.4872** 2.0923** -2.5764** -2.5808*** -6.4541*** -6.1274***
SWE -1.6640* -1.0824 1.4656 1.0425 0.0000 -0.3560 -1.4641 -1.6336
CHE -1.0098 0.2809 0.8878 0.7650 -1.2002 -1.4405 -2.0173** -1.7267*
GBR 0.0970 0.8205 1.1417 1.2194 1.4868 0.5646 0.4226 0.5342
USA -0.4992 0.2975 0.8867 0.2145 0.1602 -0.4547 -0.6641 -0.7987

OECD 0.4735 1.2329 2.8696*** 2.2966** 0.8879 0.6737 -0.4660 -0.8132
EA16 0.4565 1.0240 1.8370* 1.5263 0.4911 -0.0043 -2.4985** -2.2401**

A considerable decrease in the number of significant statistics is also observed when real

housing returns and real rent growth is considered (see Table 7). Note that the residual-
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augmented IVX only detects predictability for France (FRA), Korea (KOR) and Sweden

(SWE), whereas tNW finds predictability for Canada (CAN), Ireland (IRL), the Netherlands

(NLD), Spain (ESP) and OECD. For rent-growth there is a small increase in the number

of significant statistics, the residual-augmented IVX finds predictability for Belgium (BEL),

Finland (FIN), Korea (KOR), and Spain (ESP), whereas tNW finds evidence for Canada

(CAN), Finland (FIN), Ireland (IRL), Italy (ITA), Korea (KOR), Portugal (PRT), Spain

(ESP), Switzerland (CHE) and EA16.

5.4 Discussion

From the results of the predictability tests performed in the previous section we conclude,

using the four competing estimators as well as a sample split, that five countries actually

emerge for which the rent-to-price ratio is relentless in predicting housing returns and rent

growth in nominal terms. In specific one can summarize the results as follows:

a) The findings reveal that the rent-to-price ratio (in nominal terms) is a dominant and

stable predictor for both future housing returns and rent growth for Australia, Ger-

many, Portugal, Spain and Japan. For these countries, the predictive ability of the

rent-to-price ratio consistently predicts regardless of the estimator employed and, ex-

cept for Japan, is robust to the sub-sample split considered.

b) Of these five countries where the rent-to-price ratio is found to be stable in terms of

predictive power and the sign of the coefficient, three countries (Germany, Japan and

Portugal) are shown to have a negative predictive relationship with future housing

returns. That is, using robust inference methods, the pattern that stands out is that

rent-to-price ratios negatively predict housing returns: a divergence from the dynamic

Gordon Growth model, as stated by EP (2015).

c) Interestingly, rent growth in Belgium turns out to be the most predictable variable of

all. All four competing estimators predict future rent in both nominal and real terms

and this result holds in the sub-sample analysis. Rent growth is also consistently

predictable in Spain and Korea, but the predictive coefficient of rent growth in Spain

changes signs when shifting the analysis from nominal to real terms.

6 Concluding remarks

This paper introduced a new IVX-based statistic computed from a residual augmented pre-

dictive regression motivated by Amihud and Hurvich (2004), and reexamined the empirical

evidence on returns and rent growth predictability using these new robust methods.

The residual-augmented IVX variant allows practitioners to distinguish more reliably

between the null of no predictability and the alternative. The method is asymptotically
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correct under near-integration as well as under stationarity of the regressor, has improved

local power under high regressor persistence, and allows, e.g., for heterogeneity of the data

in the form of time-varying variances.

The results derived here on bias correction can be generalized for other types of instru-

mental variable estimation than just IVX. The IV framework of Breitung and Demetrescu

(2015), who distinguish between type-I instruments that are less persistent than the initial

regressor (the IVX instrument is actually of type I; see Breitung and Demetrescu, 2015),

and type-II instruments that are (stochastically) trending, yet exogenous, allows for a quick

discussion: a careful examination of the arguments presented here shows that they are eas-

ily extended for type-I instruments, but type-II instruments behave like the OLS estimator

where residual-augmentation is not improving on the test procedure asymptotically.

The provided Monte Carlo evidence shows that the asymptotic improvements are a good

indicative of the finite-sample performance, also in the presence of time-varying volatility or

time varying persistence.

Finally, the analysis of OECD housing price data showed that the bias-adjusted IVX

procedure detected predictability more often than the original IVX procedure, but less often

than non-robust procedures. Overall, this analysis reveals, among other things, that the rent-

to-price ratio (in nominal terms) is a useful predictor for both future housing returns and

rent growth for Australia, Germany, Portugal, Spain and Japan. We leave to further work

the check of whether adding other putative predictors (such as, among others, disposable

income, mortgage rates, unemployment, investment in housing and short-term interest rates)

strengthens the evidence on predictability.
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A Technical Appendix

A.1 Preliminary Results

Throughout the proofs, we consider that
∑t−1

j=0 %
kj = 1−%kt

1−%k = T η

a

(
1−%kt

1+%+...+%k−1

)
≤ 1

kaT
η for large

enough T and fixed k, where % := 1− a
T η with η ∈ (0, 1) and a > 0 and fixed. Furthermore, let C

denote a generic constant whose value may change from occurrence to occurrence.

Lemma A.1 Under the assumptions of Theorem 3.1, as T →∞, it follows that

1. 1
T

∑T
t=p+1 xt−1xt−p

p→ α′p
´ 1
0 σ

2
v (s) ds, where αp := (α0, . . . , αp−1), xt−p := (xt−1, ..., xt−p)

′

and αh is as defined in Theorem 3.1;

2. 1
T

∑T
t=p+1 xt−px

′
t−p

p→ Ω
´ 1
0 σ

2
v (s) ds, where Ω is a p× p matrix with generic element aij =

α|i−j|;

3. 1
T

∑T
t=p+1 xt−px

′
t−pν

2
t

p→ Ω
´ 1
0 σ

4
v (s) ds;

4. 1
T

∑T
t=p+1 z

2
t−1ε

2
t

p→ α0

´ 1
0 σ

2
v (s)σ2ε (s) ds.

Proof of Lemma A.1

Phillips and Xu (2006) show in their Lemma 1 that T−1
∑T

t=h+1 xtxt−h
p→ αh

´ 1
0 σ

2
v (s) ds, h =

0, 1, . . . , p − 1; this suffices to establish the results in the first two items. The result in item 3
also follows directly from Lemma 1 of Phillips and Xu (2006), and the proof can be adapted in a
straightforward manner to establish the result in item 4. �

Lemma A.2 Under the assumptions of Theorem 3.2, as T →∞, it follows that∑T
t=2 z̃t−1εt(∑T
t=2 z̃

2
t−1ε

2
t

) 1
2

d→ N (0, 1)

where z̃t :=
∑t−1

j=0 %
jνt−j.

Proof of Lemma A.2

Consider s2T := 1
T 1+η

∑T
t=2

∑t−2
j=0 %

2jσ2ν,t−1−jσ
2
ε,t and note that s2T is bounded and bounded away

from zero, since

min1≤t≤T σ
2
ν,t min1≤t≤T σ

2
ε,t

T 1+η

T∑
t=2

t−2∑
j=0

%2j ≤ s2T ≤
max1≤t≤T σ

2
ν,t max1≤t≤T σ

2
ε,t

T 1+η

T∑
t=2

t−2∑
j=0

%2j

where
∑T

t=2

∑t−2
j=0 %

2j ∼ CT 1+η.
Since,

∑T
t=2 z̃t−1εt(∑T
t=2 z̃

2
t−1ε

2
t

) 1
2

=
1

T 1/2+η/2

T∑
t=2

z̃t−1εt
sT

(∑T
t=2

∑t−2
j=0 %

2jσ2ν,t−1−jσ
2
ε,t∑T

t=2 z̃
2
t−1ε

2
t

) 1
2

, (A.1)

we show next that 1
T 1/2+η/2

∑T
t=2

z̃t−1εt
sT

follows a limiting standard normal distribution by resorting
to a central limit theorem for martingale difference [md] arrays (Davidson, 1994, Theorem 24.3).
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However, to apply it, we need to show that, i) maxt
1

T 1/2+η/2

∣∣∣ z̃t−1εt
sT

∣∣∣ p→ 0 and ii) 1
T 1+η

∑T
t=2

z̃2t−1ε
2
t

s2T

p→
1.

Given that the result in ii) also implies(∑T
t=2

∑t−2
j=0 %

2jσ2ν,t−1−jσ
2
ε,t∑T

t=2 z̃
2
t−1ε

2
t

) 1
2

p→ 1, (A.2)

hence the result in (A.1) will follow.
To verify i), note that uniform boundedness of moments of order 2 + δ∗ for some δ∗ > 0 of

T−η/2z̃t−1εt suffices to establish this condition. An application of Hölder’s inequality shows that
uniformly bounded 4th order moments of T−η/2z̃t−1 and uniform L4+δ∗-boundedness of εt suffices,
since δ∗ may be chosen arbitrarily close to zero, so we check the uniform boundedness of

E

(
z̃4t−1
T 2η

)
=

1

T 2η

t−2∑
j=0

t−2∑
k=0

t−2∑
l=0

t−2∑
m=0

%j%k%l%m E (νt−jνt−kνt−lνt−m) . (A.3)

Due to the serial independence of νt, the expectation E (νt−jνt−kνt−lνt−m) is nonzero only if the
indices are pairwise equal, thus we can simplify (A.3) as,

E

(
z̃4t−1
T 2η

)
=

1

T 2η

t−2∑
j=0

t−2∑
k=0

%2j%2k E
(
ν2t−jν

2
t−k
)
.

Since νt is uniformly L4-bounded, the expectations on the r.h.s. are uniformly bounded for any t,
k and j, therefore,

0 ≤ E
(
z̃4t−1
T 2η

)
≤ C 1

T 2η

t−2∑
j=0

t−2∑
k=0

%2j%2k = C
1

T 2η

 t−2∑
j=0

%2j

2

≤ C 1

T 2η

T−2∑
j=0

%2j

2

≤ C

which suffices for the required uniform L4-boundedness.
To check condition ii), it suffices to show that

1

T 1+η

T∑
t=2

z̃2t−1ε
2
t − s2T

p→ 0 (A.4)

because s2T is bounded and bounded away from zero (we learn from Lemma A.4 below that s2T →
1
2a

´ 1
0 σ

2
ν (s)σ2u (s) ds, but the exact limit does not matter here). To prove (A.4), write

T∑
t=2

z̃2t−1ε
2
t =

T∑
t=2

t−2∑
j=0

t−2∑
k=0

%j%kνt−1−jνt−1−k
(
ε2t − σ2ε,t

)
+

T∑
t=2

t−2∑
j=0

t−2∑
k=0

%j%kνt−1−jνt−1−kσ
2
ε,t

=: AT +BT .

Note that
∑t−2

j=0

∑t−2
k=0 %

j%kνt−1−jνt−1−k
(
ε2t − σ2ε,t

)
builds an md array and as such, is uncorrelated

in t. Hence, showing 1
T 1+ηAT to vanish is not difficult, given that from the uncorrelatedness of the
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summands we can write that,

Var

(
1

T 1+η
AT

)
=

1

T 2+2η

T∑
t=2

Var

 t−2∑
j=0

t−2∑
k=0

%j%kνt−1−jνt−1−k
(
ε2t − σ2ε,t

)
=

1

T 2+2η

T∑
t=2

E

 t−2∑
j=0

t−2∑
k=0

%j%kνt−1−jνt−1−k

2E
((
ε2t − σ2ε,t

)2)
.

Now, εt is uniformly L4-bounded and

E

 t−2∑
j=0

t−2∑
k=0

%j%kνt−1−jνt−1−k

2 =
t−2∑
j=0

t−2∑
k=0

t−2∑
l=0

t−2∑
m=0

%j%k%l%m E (νt−1−jνt−1−kνt−1−lνt−1−m)

where the expectation on the r.h.s. is, as before, uniformly bounded and nonzero only if the indices
are pairwise equal. Hence,

0 ≤ E

 t−2∑
j=0

t−2∑
k=0

%j%kνt−1−jνt−1−k

2 ≤ C t−2∑
j=0

t−2∑
k=0

%2j%2k ≤ CT 2η

leading to Var
(

1
T 1+ηAT

)
→ 0 and thus AT = op

(
T 1+η

)
.

Regarding BT , note that,

BT = T 1+ηs2T +
T∑
t=2

t−2∑
j=0

%2j
(
ν2t−1−j − σ2ν,t−1−j

)
σ2ε,t +

T∑
t=2

t−2∑
j=0

t−2∑
k=0

j 6=k

%j%kνt−1−jνt−1−kσ
2
ε,t

= T 1+ηs2T +BT1 +BT2.

For BT1 we have from the serial independence and L4-boundedness of νt that

E

 t−2∑
j=0

%2j
(
ν2t−1−j − σ2ν,t−1−j

)
σ2ε,t

2 = σ4ε,t

t−2∑
j=0

%4j E
((
ν2t−1−j − σ2ν,t−1−j

)2)
≤ CT η

and thus E
(∣∣∣∑t−2

j=0 %
2j
(
ν2t−1−j − σ2ν,t−1−j

)
σ2ε,t

∣∣∣) ≤ CT η/2. Hence,

E

(∣∣∣∣ 1

T 1+η
BT1

∣∣∣∣) ≤ C

T 1+η

T∑
t=2

T η/2 → 0

and Markov’s inequality indicates that BT1 = op
(
T 1+η

)
.
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For BT2 we proceed similarly,

E


 T∑
t=2

t−2∑
j=0

t−2∑
k=0

j 6=k

%j%kνt−1−jνt−1−kσ
2
ε,t


2

=

T∑
t=2

T∑
s=2

t−2∑
j=0

t−2∑
k=0

j 6=k

s−2∑
l=0

s−2∑
m=0

l 6=m

%j%k%l%mσ2ε,tσ
2
ε,s E (νt−1−jνt−1−kνs−1−lνs−1−m) ,

where the expectations on the r.h.s. are nonzero if t− j = s− l and t−k = s−m or if t− j = s−m
and t − k = s − l (with t − j = t − k and s − l = s −m being excluded by the requirement that
j 6= k and l 6= m). Note that, for any t, s, j, k, l,m with j 6= k and l 6= m,

σ2ε,tσ
2
ε,s E (νt−1−jνt−1−kνs−1−lνs−1−m) ≤

(
max
t
σ2ε,t

)2 (
max
t
σ2ν,t

)2
≤ C.

Let us now focus on the terms for which t − s = j − l = k −m. Thus, for t = s, t = 2, . . . , T , we
obtain

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m =
t−2∑
j=0

t−2∑
k=0

j 6=k

%2j%2k ≤

 t−2∑
j=0

%2j

2

;

and for s = t− 1, t = 3, . . . , T , we have analogously that,

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤ %2
 t−3∑
j=0

%2j

2

while, for s = t+ 1, t = 2, . . . , T − 1 (or equivalently t = s− 1, s = 3, . . . , T ), it follows that,

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤ %2
(
s−3∑
l=0

%2l

)2

.

Repeating the discussion for s = t± r for r = 2, . . . , T − 2, we have

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤ 2%2r

t−r−2∑
j=0

%2j

2

,

leading to

T∑
t=2

T∑
s=2

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤
T∑
t=2

 t−2∑
j=0

%2j

2

+ 2

T−2∑
r=1

%2r
T∑

t=2+r

t−r−2∑
j=0

%2j

2

.

The same holds when imposing t− s = j −m = k− l, such that, with
∑t−r−2

j=0 %2j ≤
∑T−1

j=0 %
2j and

39



∑T
t=2+r C ≤ CT , thus, we ultimately have

E


 T∑
t=2

t−2∑
j=0

t−2∑
k=0

j 6=k

%j%kνt−1−jνt−1−kσ
2
ε,t


2 ≤ CT 1+3η

and consequently BT2 = op
(
T 1+η

)
when η < 1, as required to complete the proof. �

Lemma A.3 Under the assumptions of Theorem 3.2, it follows, as T →∞, that

i)
∑T
t=2 zt−1εt

(
∑T
t=2 z

2
t−1ε

2
t )

1/2

d→ N (0, 1) ; and

ii)
∑T
t=2 zt−1ut√∑T
t=2 z

2
t−1u

2
t

d→ N (0, 1).

Lemma A.3 suggests the use of Eicker-White standard errors in the heteroskedastic near-

integrated case, W.s.e :=
(
∑T
t=2 z

2
t−1ε̂

2
t )

1/2∑T
t=2 z

2
t−1

with ε̂t the OLS residuals guaranteeing sup2≤t≤T |ε̂t − εt|
p→

0 both in cases with and without intercept, and also better finite-sample behavior; see Kostakis
et al. (2015). For the stable case, Eicker-White standard errors are “mandatory” under time het-
eroskedasticity (Phillips and Xu, 2006).

Proof of Lemma A.3

We first resort to the Phillips-Solo decomposition of vt and write vt = ωνt+∆ṽt where ṽt is a linear
process in νt with exponentially decaying coefficients. Let also z̄t := (1− %L)−1+ vt. Thus, denoting

z̃t :=
∑t−1

j=0 %
jνt−j like in Lemma A.2, it follows that,

z̄t = ω
t−1∑
j=0

%jνt−j +

ṽt + (%− 1)
t−1∑
j=1

%j−1ṽt−j − %t−1ṽ1


= ωz̃t + dt,

and it can then easily be shown that Var
(∑t−1

j=1 %
j−1ṽt−j

)
≤ CT η such that dt is uniformly L2-

bounded given that % − 1 = −aT−η. Similarly, T−η/2z̃t is uniformly L2-bounded itself. We now
show that

1

T 1+η

T∑
t=2

z̄2t−1ε
2
t =

ω2

T 1+η

T∑
t=2

z̃2t−1ε
2
t + op (1) (A.5)

and

1

T 1/2+η/2

T∑
t=2

z̄t−1εt =
ω

T 1/2+η/2

T∑
t=2

z̃t−1εt + op (1) . (A.6)

Let us consider first (A.5). Note that,

1

T 1+η

T∑
t=2

z̄2t−1ε
2
t =

ω2

T 1+η

T∑
t=2

z̃2t−1ε
2
t +

2ω

T 1+η

T∑
t=2

z̃t−1dt−1ε
2
t +

1

T 1+η

T∑
t=2

d2t−1ε
2
t .

Since,
E
(∣∣d2t−1ε2t ∣∣) = E

(
d2t−1

)
E
(
ε2t
)
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and
E
(∣∣z̃t−1dt−1ε2t ∣∣) ≤ (E (z̃2t−1)E

(
d2t−1

))1/2
E
(
ε2t
)

due to the independence of εt and dt−1 and of εt and zt−1. With E
(
d2t−1

)
, E
(
ε2t
)

and T−η E
(
z̃2t−1

)
being uniformly bounded, (A.5) then follows. To establish (A.6), write

1

T 1/2+η/2

T∑
t=2

z̄t−1εt =
ω

T 1/2+η/2

T∑
t=2

z̃t−1εt +
1

T 1/2+η/2

T∑
t=2

dt−1εt

and note that dt−1εt has the md property. Hence,
∑T

t=2 dt−1εt = Op
(
T 1/2

)
due to the uniform

L2-boundedness and independence of εt and dt−1. Thus, from (A.5) and (A.6) we obtain that∑T
t=2 z̄t−1εt(∑T

t=2 z̄
2
t−1ε

2
t

)1/2 −
∑T

t=2 z̃t−1εt(∑T
t=2 z̃

2
t−1ε

2
t

)1/2 p→ 0. (A.7)

In a second step we use the same reasoning to show that∑T
t=2 z̄t−1εt(∑T

t=2 z̄
2
t−1ε

2
t

)1/2 −
∑T

t=2 zt−1εt(∑T
t=2 z

2
t−1ε

2
t

)1/2 p→ 0. (A.8)

Write to this end zt := z̄t + rt where rt := − (1− %L)−1+
ct
T xt−1 with

Var

(
1√
T
xt

)
=

1

T

t∑
j=1

t∑
k=1

(
1− ct−j

T

)j (
1− ct−k

T

)k
E (vt−jvt−k) ≤

1

T

t∑
j=1

t∑
k=1

|E (vt−jvt−k)| .

Given the uniform L2-boundedness of the innovations νt and the exponential decay of the Wold
coefficients of vt, |E (vt−jvt−k)| ≤ Ce|j−k| ∀t and 1√

T
xt is easily shown to be uniformly L2-bounded.

The key in establishing (A.8) is to note that rt−1 is independent of εt and uniformly L2-
bounded, and that T−η E

(
z2t−1

)
is uniformly bounded too whenever T−η E

(
z̄2t−1

)
and E

(
r2t
)

are.
The arguments employed to show (A.7) thus apply for zt and z̄t as well, and (A.8) holds.

Summing up,
∑T
t=2 zt−1εt

(
∑T
t=2 z

2
t−1ε

2
t )

1/2 and
∑T
t=2 z̃t−1εt

(
∑T
t=2 z̃

2
t−1ε

2
t )

1/2 are asymptotically equivalent and the result

follows from Lemma A.2.
The proof of the result in ii) follows along the same lines and we omit the details.�

Lemma A.4 Under the assumptions of Theorem 3.2, it holds, as T →∞, that

1. 1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t

p→ ω2

2a

´ 1
0 σ

2
ν (s)σ2ε (s) ds;

2. 1
T 1+η

∑T
t=p+1 z

2
t−1u

2
t

p→ ω2

2a

´ 1
0 σ

2
ν (s)σ2u (s) ds where σ2u (s) = σ2ε (s) + γ2σ2ν (s);

3. 1
T 1+η

∑T
t=p+1 zt−1xt−1 ⇒

ω2

a

(
X2 (1)−

´ 1
0 X (s) dX (s)

)
where X (r) is an Ornstein-Uhlenbeck process as defined in (14).

Proof of Lemma A.4

1. To obtain the limit of 1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t , we use from the proof of Lemma A.3 (see (A.2)) the

fact that

1

T 1+η

T∑
t=p+1

z2t−1ε
2
t = ω2 1

T 1+η

T∑
t=2

t−2∑
j=0

%2jσ2ν,t−1−jσ
2
ε,t + op (1) .

41



The Lipschitz property implies that
∣∣∣σ2ν,t−1−j − σ2ν,t∣∣∣ ≤ C j

T such that

0 ≤ 1

T 1+η

∣∣∣∣∣∣
T∑
t=2

t−2∑
j=0

%2jσ2ν,t−1−jσ
2
ε,t −

T∑
t=2

σ2ν,tσ
2
ε,t

t−2∑
j=0

%2j

∣∣∣∣∣∣ ≤ C 1

T 2+η

T∑
t=2

t−2∑
j=0

j%2j .

On the r.h.s. we have immediately, as T→∞, that

1

T 2+η

T∑
t=2

t−2∑
j=0

j%2j → 0

given that
∑t−2

j=0 j%
2j =

t%2(t−3)(%−1)−(%2(t−2)−1)
(%2−1)2 , where

∣∣∣ t%2(t−3)(%−1)
(%2−1)2

∣∣∣ ≤ CT 1+η%2(t−3) and
∣∣∣%2(t−2)−1

(%2−1)2

∣∣∣ ≤
CT 2η. We also observe that,

1

T 1+η

T∑
t=2

σ2ν,tσ
2
ε,t

t−2∑
j=0

%2j =
1

T 1+η

T∑
t=2

σ2ν,tσ
2
ε,t

T η

a

(
1− %2(t−1)

1 + %

)

=
1

T 1+η

T∑
t=2

σ2ν,tσ
2
ε,t

T η

a (1 + %)
− 1

T 1+η

T∑
t=2

σ2ν,tσ
2
ε,t

T η

a

(
%2(t−1)

1 + %

)
.

The first summand on the r.h.s. is easily seen to converge to 1
2a

´ 1
0 σ

2
ν (s)σ2ε (s) ds, while, for the

second, we have

1

T 1+η

T∑
t=2

σ2ν,tσ
2
ε,t

T η

a

(
%2(t−1)

1 + %

)
≤ C

aT

T∑
t=2

%2(t−1) = O
(
T η−1

)
= o (1)

as required to complete the proof.

2. The proof of 2 is analogous to the proof of 1 and is therefore omitted.

3. Let St :=
∑t

j=2 zt. We first follow Breitung and Demetrescu (2015, Proof of Corollary 1.2)
and show that

1

T 1/2+η
St =

1

a
√
T
xt +Rt,T

where

√
E
(
|Rt,T |2

)
→ 0 as T → ∞ uniformly in t = 1, . . . , T . The arguments are essentially the

same as there; the only difference is having to show that

√
E
(
|xt − xt−j |2

)
≤ C
√
j for all t and j,

which is obvious in their strictly stationary setup, but marginally more difficult here. To this end,
recall that ∆xt := vt − ct−1

T xt−1 and use Minkowski’s inequality to conclude that,

√
E
(

(xt − xt−j)2
)

=

√√√√√E

(j−1∑
k=0

vt−j −
1

T

j−1∑
k=0

ct−k−1xt−k−1

)2


≤

√√√√√E

(j−1∑
k=0

vt−j

)2
+

1√
T

j−1∑
k=0

|ct−k−1|

√√√√E

((
xt−k−1√

T

)2
)

;

and therefore using the uniform boundedness of the variance of
xt−k−1√

T
, it follows indeed that
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√
E
(
|xt − xt−j |2

)
≤ C
√
j as required.

We then follow Breitung and Demetrescu (2015, Proof of Theorem 2) and obtain via partial
summation that,

1

T 1+η

T∑
t=p+1

zt−1xt−1 =
1

T 1+η

T∑
t=p+1

(St−1 − St−2)xt−1

=
1

T 1+η
(ST−1xT−1 − Sp−1xp)−

1

T 1+η

T∑
t=p+1

St−2∆xt−1.

Now, since Sp−1xp = Op (1) it is negligible in the limit; furthermore note that,

1

T 1+η

T∑
t=p+1

St−2∆xt−1 =
1

T 1+η

T∑
t=p+1

St−2vt−1 −
1

T 2+η

T∑
t=p+1

ct−2St−2xt−2.

For the first summand on the r.h.s., we have using the Phillips-Solo device for the AR process vt−1
that,

1

T 1+η

T∑
t=p+1

St−2vt−1 =
ω

T 1+η

T∑
t=p+1

St−2νt−1 +
1

T 1+η

T∑
t=p+1

St−2∆ṽt−1

=: AT +BT ,

where ṽt is a linear process with exponentially decaying coefficients.
Then,

AT =
ω

aT

T∑
t=p+1

xt−2νt−1 +
ω√
T

T∑
t=p+1

Rt−2,T νt−1.

It is furthermore seen from the expression of Rt,T (Breitung and Demetrescu, 2015, Proof of The-
orem 2) that Rt,T is independent of ut+j , vt+j ∀1 ≤ j ≤ T − t whenever (ut, vt)

′ is serially inde-
pendent, such that Rt−2,T νt−1 are the elements of a martingale difference array with uniformly

vanishing variance, so Var
(∑T

t=p+1Rt−2,T νt−1

)
= op (T ) as required for the summand involving

Rt,T to vanish. Since νt−1 is independent of xt−2 and the conditions of Hansen (1992) are fulfilled,

T−1
∑T

t=p+1 xt−2νt−1 converges weakly, and we obtain

AT ⇒
ω2

a

ˆ 1

0
X (s) dM (s) .

Using the partial summation formula on BT , it follows that,

BT =
1

T 1+η
(ṽT−1ST−2 − ṽp−1Sp−1)−

1

T 1+η

T∑
t=p+1

ṽt−2∆St−2.

Since sup1≤t≤T |St| = T η sup1≤t≤T |xt| + op
(
T 1/2+η

)
= Op

(
T 1/2+η

)
and ṽp−1Sp−1 = Op (1), it

follows that the first summand on the r.h.s. of the above equation is negligible; for the second, we
have

1

T 1+η

T∑
t=p+1

ṽt−2∆St−2 =
1

T 1+η

T∑
t=p+1

ṽt−2zt−2.

Clearly, ṽt−2 is uniformly L2-bounded, and it is easily shown that T−η/2zt is uniformly L2-bounded
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as well. Then, the Cauchy-Schwarz inequality indicates that E (|ṽt−2zt−2|) < CT η/2 such that

E

∣∣∣∣∣∣ 1

T 1+η

T∑
t=p+1

ṽt−2∆St−2

∣∣∣∣∣∣
 ≤ CT−η/2

and 1
T 1+η

∑T
t=p+1 ṽt−2∆St−2 vanishes in probability.

Hence

1

T 1+η

T∑
t=p+1

zt−1xt−1 =
1

a

x2T−1
T
− 1

a

 aω

T 1+η

T∑
t=p+1

St−2νt−1 −
1

T 2

T∑
t=p+1

ct−2x
2
t−2

+ op (1) .

Using the weak convergence of St and xt we obtain

1

T 1+η

T∑
t=p+1

zt−1xt−1 ⇒ ω2

a

(
X2 (1)−

(ˆ 1

0
X (s) dM (s)−

ˆ 1

0
c (s)X2 (s) ds

))

as required. Note that, interestingly, 1
T 1+η

∑T
t=p+1 St−2vt−1 converges to an Itô-type integral with-

out bias term, unlike 1
T 1

∑T
t=p+1 xt−2vt−1 under serial correlation. This is because St and xt require

different normalizations, which is essentially the expression of the same mechanism ensuring mixed
Gaussianity of the unadjusted IVX estimator. �

Proof of Theorem 3.1

Consider

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1
. (A.9)

Since ỹt := yt − γ̂ν̂t = βxt−1 + γνt − γ̂ν̂t + εt it follows that we can express β̃ivx as,

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1
= β +

∑T
t=p+1 zt−1(γνt − γ̂ν̂t + εt)∑T

t=p+1 zt−1xt−1
. (A.10)

Write for the stable autoregression case

ν̂t := νt − (â− a)′ xt−p

with xt−p stacking the p lags of xt and a the corresponding coefficients (of (1− ρL) A (L)), i.e. the
pure autoregressive representation of xt.

Then, analyze

zt−1 =
t−3∑
j=0

%j∆xt−1−j

= xt−1 − %t−3x1 + (%− 1)

t−4∑
j=0

%jxt−2−j .

We have that

(%− 1)
t−4∑
j=0

%jxt−2−j = − a

T η

t−4∑
j=0

%jxt−2−j = − a

T η
dt−2

44



where dt−2 is here, with xt a stable autoregression, a mildly integrated process which is known to
be Op

(
T η/2

)
. Furthermore, %t−3 → 0 when t goes to infinity at suitable rates; in the derivations

below, the effect will be quantified precisely whenever needed, but it is important to keep in mind
that zt−1 ≈ xt−1 which is a stable autoregression.

We thus have for the numerator of β̃ivx − β in (A.10) that,

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t) =
T∑

t=p+1

zt−1εt − γ
T∑

t=p+1

zt−1 (ν̂t − νt)− (γ̂ − γ)
T∑

t=p+1

zt−1ν̂t. (A.11)

The first two summands in (A.11) deliver a normal distribution. This is because

1

T 1/2

T∑
t=p+1

zt−1εt =
1

T 1/2

T∑
t=p+1

xt−1εt −
a

T 1/2+η

T∑
t=p+1

dt−2εt +
x1

T 1/2

T∑
t=p+1

%t−3εt

=
1

T 1/2

T∑
t=p+1

xt−1εt + op (1)

with
∑T

t=p+1 dt−2εt = Op
(
T 1/2+η/2

)
given the results in the proofs of Lemmas A.2 and A.3, and∑T

t=p+1 %
t−3εt = Op

(
T η/2

)
given that Var

(∑T
t=p+1 %

t−3εt

)
= Op

(∑T
t=p+1 %

2t
)

= Op (T η). Fur-

thermore,

1

T 1/2

T∑
t=p+1

zt−1 (ν̂t − νt) = −

 1

T

T∑
t=p+1

zt−1x
′
t−p

√T (â− a) ,

where the OLS autoregressive estimators,

√
T (â− a) =

 1

T

T∑
t=p+1

xt−px
′
t−p

−1 1√
T

T∑
t=p+1

xt−pνt,

following standard arguments can be shown to have a limiting multivariate normal distribution.
We now show that 1

T

∑T
t=2 zt−1xt−p does not converge to a vector of zeros, such that the limiting

distribution of 1
T 1/2

∑T
t=p+1 zt−1 (ν̂t − νt) is driven by 1√

T

∑T
t=p+1 xt−pνt. Given that

1

T

T∑
t=p+1

zt−1xt−p =
1

T

T∑
t=p+1

xt−1xt−p −
1

T

T∑
t=p+1

%t−3x1xt−p −
a

T 1+η

T∑
t=p+1

dt−2xt−p,

the first summand on the r.h.s. gives the desired limit (see Lemma A.1). The second is easily
seen to vanish since E (x1xt) vanishes at exponential rate (in t). For the third, we show that∑T

t=p+1 dt−2xt−p = Op (T ) as follows. By resorting to the Phillips-Solo device, it is tedious, yet
straightforward to show that

1

T

T∑
t=p+1

dt−2xt−p = Op

 1

T

T∑
t=p+1

d̃t−2νt−p

 where d̃t−2 :=

t−3∑
j=0

%jνt−2−j .

Then,

1

T

T∑
t=p+1

d̃t−2νt−p =
1

T

T∑
t=p+1

d̃t−p−1νt−p +Op (1) ,
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and the proofs of Lemmas A.2 and A.3 provide the arguments leading to 1
T

∑T
t=p+2 d̃t−p−1νt−p =

Op

(
T 1/2+η/2

T

)
= Op (1) as required.

The third summand in (A.11) is

γ̂ − γ√
T

T∑
t=p+1

zt−1ν̂t = (γ̂ − γ)

 1√
T

T∑
t=p+1

zt−1νt +
1√
T

T∑
t=p+1

zt−1 (ν̂t − νt)


= op (1)

since γ̂ is easily shown to be consistent for γ, 1√
T

∑T
t=p+1 zt−1νt = Op (1) like in the case of

1√
T

∑T
t=p+1 zt−1εt, and 1√

T

∑T
t=p+1 zt−1 (ν̂t − νt) = Op (1) as above. Hence,

1√
T

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t)

=
1√
T

T∑
t=p+1

zt−1εt + γ

 1

T

T∑
t=p+1

zt−1x
′
t−p

 1

T

T∑
t=p+1

xt−px
′
t−p

−1 1√
T

T∑
t=p+1

xt−pνt + op (1) .

Furthermore, it is shown along the lines of the discussion of T−1
∑T

p+1 zt−1xt−p that

1√
T

T∑
t=p+1

zt−1εt =
1√
T

T∑
t=p+1

xt−1εt + op (1) .

For both 1√
T

∑T
t=p+1 zt−1εt and 1√

T

∑T
t=p+1 xt−pνt, Theorem 24.3 in Davidson (1994) is easily

checked to apply (see Lemma A.1 for the convergence of the sample covariance matrices); since
xt−pνt and zt−1εt are orthogonal thanks to the uncorrelatedness of νt and εt, it follows that the term
1√
T

∑T
t=p+1 zt−1 (εt + γνt − γ̂ν̂t) is asymptotically normal with mean zero and asymptotic variance

α0

ˆ 1

0
σ2v (s)σ2ε (s) ds+ γ2 (α0 . . . αp−1) Ω−1 (α0 . . . αp−1)

′
ˆ 1

0
σ4v (s) ds.

Checking that

1

T

T∑
t=p+1

z2t−1ε̂
2
t +

1

T
γ̂2Q̂T

estimates the above asymptotic variance consistently is straightforward and we omit the details. �

Proof of Theorem 3.2

Standard OLS algebra shows that the residuals ν̂t are numerically the same as in the autoregressive
representation of xt if resorting to the error-correction representation, which is more convenient
with near-integration. We may thus write

ν̂t := νt −
(
φ̂− φ

)
xt−1 − (α̂−α)′∆xt−p+1

with ∆xt−p+1 stacking the first p− 1 lags of ∆xt and φ := 1
ω (ρ− 1) (the vector α depends on all

autoregressive coefficients of xt, but its exact value is irrelevant here).
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We have the same representation as in (A.11), i.e.,

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t) =

T∑
t=p+1

zt−1εt − γ
T∑

t=p+1

zt−1 (ν̂t − νt)− (γ̂ − γ)

T∑
t=p+1

zt−1ν̂t,

yet zt is now a mildly integrated variable. Still, Lemmas A.3 and A.4 show that 1
T 1/2+η/2

∑T
t=p+1 zt−1εt

is asymptotically normal with variance ω2
´ 1
0 σ

2
v (s)σ2ε (s) ds, and we may re-write

1

T 1/2+η/2

T∑
t=p+1

zt−1 (ν̂t − νt) = − 1

T 1/2+η/2

T∑
t=p+1

zt−1xt−1

(
φ̂− φ

)
− 1

T 1/2+η/2

T∑
t=p+1

zt−1∆x
′
t−p+1 (α̂−α) .

In the limit, this vanishes because
(
φ̂− φ

)
is Op

(
T−1

)
and (α̂−α) = Op

(
T−1/2

)
as standard

analysis of near-unit root autoregressions shows, while, at the same time,

T∑
t=p+1

zt−1xt−1 = Op
(
T 1+η

)
(see Lemma A.4.3) and we only need to show that

T∑
t=p+1

zt−1∆x
′
t−p+1 = Op (T ) .

This is known to be the case when zt−1 is a near-integrated or stationary variable; we discuss here
the case where zt is an IVX instrument. Examining

∑T
t=p+2 zt−1∆xt−1 as a representative for the

whole vector,

1

T

T∑
t=p+1

zt−1∆xt−1 =
1

T

T∑
t=p+1

zt−1vt−1 +
1

T 2

T∑
t=p+1

ctzt−1xt−2,

it is easily shown that both zt√
T

and xt√
T

are uniformly L2-bounded, hence E
(

1
T 2

∑T
t=p+1 ctzt−1xt−2

)
=

O (1). Moreover, 1
T

∑T
t=p+1 zt−1vt−1 is itself Op (1), which can be shown along the lines of the dis-

cussion for 1
T

∑
qt−2xt−p in the proof of Theorem 3.1. �

Proof of Theorem 3.3

Since the residual effect of εt and νt is easily checked to be negligible, the correction QT is negligible
under the local alternative as well and we have for the residual-augmented IVX t-statistic that,

t̃ivxβ1 =

∑T
t=p+1 zt−1 (εt + β1xt−1)√∑T

t=p+1 z
2
t−1ε

2
t

+ op (1)

=

∑T
t=p+1 zt−1εt√∑T
t=p+1 z

2
t−1ε

2
t

+ b
1

T 1+η

∑T
t=p+1 zt−1xt−1√

1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t

+ op (1) .

The first summand on the r.h.s. converges to a standard normal distribution, Z; note that Z would
indeed be independent of the limit process of the regressor xt since zt−1εt and νt are orthogonal.
Thus, the result follows with Lemma A.4, items 1 and 3. �
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B Additional Tables

Table B.1: Size and power against local alternatives, positive short-run AR parameter

AHW CY tivx t̃ivx AHW CY tivx t̃ivx

b T = 200 T = 500

0 6.5 4.6 11.1 6.6 6.3 4.1 10.6 6.3
5 94.7 100.0 98.4 96.1 95.7 100.0 98.5 97.6

c = 0 10 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.3 4.1 8.7 5.7 6.5 3.7 8.6 6.2
5 26.5 64.4 79.0 72.9 27.3 66.0 79.9 74.9

c = 10 10 99.5 100.0 100.0 99.7 99.6 100.0 100.0 99.9
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 5.7 3.1 7.2 5.6 5.9 3.1 7.5 5.9
5 16.4 28.6 48.7 43.9 16.4 31.6 49.2 44.5

c = 20 10 70.2 94.4 98.8 97.7 74.9 96.7 99.3 98.7
15 100.0 100.0 100.0 100.0 96.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.0 2.2 7.2 5.9 5.8 2.5 7.1 5.6
5 13.3 16.1 35.6 32.3 13.2 18.7 37.2 34.1

c = 30 10 47.6 63.2 86.8 85.4 50.5 72.9 89.8 89.2
15 94.1 98.2 100.0 99.9 97.0 99.6 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 5.5 1.6 6.7 5.5 5.2 1.8 6.5 5.5
5 10.2 10.4 28.4 26.5 11.0 12.2 29.7 27.4

c = 40 10 35.7 40.2 71.9 70.2 38.5 50.3 76.3 75.0
15 79.5 82.8 98.4 98.3 84.4 91.8 99.2 99.2
25 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.1 1.3 6.6 5.7 5.3 1.4 6.7 5.7
5 9.7 7.2 24.7 22.9 9.5 8.7 25.9 24.5

c = 50 10 28.1 26.8 61.0 59.0 30.4 33.8 64.9 63.3
15 64.3 62.3 93.0 92.7 71.2 75.7 95.9 95.7
25 99.9 99.1 100.0 100.0 100.0 100.0 100.0 100.0

Note: See Table 1.
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Table B.2: Size under breaks in variance and persistence, positive short-run AR parameter

AHW CY t#ivx tivx t̃ivx AHW CY t#ivx tivx t̃ivx

c Var T = 200 T = 500

const 6.6 4.5 10.3 10.7 6.1 6.3 4.2 10.5 10.7 6
early up 10.0 6.8 14.6 11.2 6.8 10.0 6.6 13.9 10 6.5

const small late up 22.6 10.4 19.5 11.5 6.7 23.4 9.6 20.4 10.9 6.4
early down 19.9 9.0 17.1 10.7 6 19.9 8.4 18 10.5 6.2
late down 9.8 6.7 12.5 10.6 6.2 9.5 6.1 12.8 10.3 6.4

T = 200 T = 500

const 5.8 4.3 10.2 10.9 5.9 6.4 4.2 10.3 10.5 6.1
early up 10.2 6.4 14 11.1 6.3 10.1 6.1 13.5 10.1 6.8

up small late up 21.7 8.7 17.3 10.7 6.4 21.9 8.4 18.5 10.6 6.1
early down 19.9 9.3 17.7 10.7 7 19.7 9.4 18.3 10.1 7
late down 9.7 7.1 13.1 10.3 6.6 9.7 6.6 13.5 10.3 7.2

T = 200 T = 500

const 5.9 4.1 9.3 9.7 5.8 5.9 3.7 9.8 10.2 6.4
early up 9.9 5.7 12.3 10.1 5.9 10.4 5.2 11.7 9.1 6

up large late up 20.5 6.1 14.1 9.9 5.5 20.7 5.9 14.6 9.7 5.5
early down 20.9 9.7 18.6 10.2 7.6 20.6 10.4 19.5 9.6 7.7
late down 10.1 7.1 12.3 9.4 6.9 10.4 6.7 12.6 8.8 6.6

T = 200 T = 500

const 5.8 2.6 8.4 9 6.3 5.6 2.8 8 8.2 6.1
early up 10.9 5.3 10.8 8.4 5.9 10.5 5.4 11.6 8 6.2

const large late up 22.7 8.0 17.2 8.8 7 24.1 9.1 18.8 9.4 7.4
early down 23.1 4.5 14.1 7.8 6.6 22.3 5.6 15.4 7.7 6.3
late down 10.7 3.8 10.2 7.9 6.4 10.1 4.1 10.3 7.5 5.7

T = 200 T = 500

const 5.9 2.9 8.5 8.9 5.9 6.0 3.0 8.4 8.5 5.9
early up 10.5 5.5 11.8 8.8 5.9 10.7 5.6 11.8 8.6 6.3

down small late up 23.3 8.8 18.5 9.5 7.3 24.2 9.7 19.2 9.1 7.2
early down 22.2 4.7 15.1 8.7 7 21.8 5.6 15.9 8.4 6.8
late down 10.1 3.9 10.6 8.5 6.9 10.3 4.3 10.5 7.8 5.8

T = 200 T = 500

const 6.3 3.9 9.5 10 5.8 6.2 3.6 9.4 9.5 5.5
early up 10.3 7.1 13.5 9.9 6.8 11.0 6.7 14.4 9.7 6.9

down large late up 25.0 12.8 21.7 10.4 7.9 24.8 12.7 22.9 9.6 7.4
early down 20.6 4.4 12.6 9 5.3 19.8 4.5 13.7 9 5.3
late down 9.7 4.7 10.6 10.3 5.6 9.6 4.2 10.5 9.4 4.9

Note: See Table 2.
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