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Abstract

We study the conditions under which it is possible to estimate regression quantiles by estimating

conditional means. The advantage of this approach is that it allows the use of methods that are only

valid in the estimation of conditional means, while still providing information on how the regressors

affect the entire conditional distribution. The methods we propose are not meant to replace the well-

established quantile regression estimator, but provide an additional tool that can allow the estimation of

regression quantiles in settings where otherwise that would be diffi cult or even impossible. We consider

two settings in which our approach can be particularly useful: panel data models with individual effects

and models with endogenous explanatory variables. Besides presenting the estimator and establishing

the regularity conditions needed for valid inference, we perform a small simulation experiment, present

two simple illustrative applications, and discuss possible extensions.
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1. INTRODUCTION

We study the conditions under which it is possible to estimate regression quantiles

by estimating conditional means. We focus on the conditional location-scale model con-

sidered, among others, by Koenker and Bassett (1982), Gutenbrunner and Jurečková

(1992), Koenker and Zhao (1994), He (1997), and Zhao (2000), and propose an esti-

mator of the conditional quantiles obtained by combining estimates of the location and

scale functions, both of which are identified by conditional expectations of appropriately

defined variables.

The advantage of our approach is that it allows the use of methods that are only

valid in the estimation of conditional means, such as differencing out individual effects

in panel data models, while providing information on how the regressors affect the entire

conditional distribution. These informational gains are perhaps the most attractive

feature of quantile regression (see, e.g., the influential papers by Chamberlain, 1994,

and Buchinsky, 1994) and were emphasized, for example, in the surveys by Koenker and

Hallock (2001), Cade and Noon (2003), and Bassett and Koenker (2018). Besides greatly

facilitating the estimation of complex models, our approach also leads to estimates of

the regression quantiles that do not cross, a crucial requisite often ignored in empirical

applications (see also He, 1997, and Chernozhukov, Fernández-Val, and Galichon, 2010).

Because our estimator is based on conditional means, it does not share some of the

robustness properties of the seminal quantile regression estimator of Koenker and Bas-

sett (1978), which is based on the check function. For example, our estimator requires

stronger assumptions on the existence of moments than those needed for the validity

of Koenker and Bassett’s (1978) estimator. However, under the appropriate conditions,

our estimator identifies the same conditional quantiles, the optimal predictors under the

usual asymmetric loss function, and these are inherently robust.
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The setup we consider is restrictive in that we need to assume that the covariates

only affect the distribution of interest through known location and scale functions.1

However, practitioners are often prepared to make even stronger assumptions,2 and we

will argue that in spite of its assumptions our approach can be useful in many empirical

applications. Importantly, although we do not develop such tests here, it is possible to

test the assumption that the covariates only affect the location and scale functions, and

therefore it is possible to check whether or not our approach is suitable in a particular

application.

The approach we propose is not meant to replace the well-established and very attrac-

tive estimation methods based on the check-function. Instead, we see our estimator as

an additional tool that can complement those techniques and allow the estimation of re-

gression quantiles in settings where otherwise that would be diffi cult or even impossible.

For example, our approach is attractive when panel data are available and the researcher

wants to estimate regression quantiles including individual effects.

Quantile regressions with individual effects suffer from the incidental parameters prob-

lem (see, e.g., Neyman and Scott, 1948, and Lancaster, 2000), and there is now a sub-

stantial literature dealing with the challenges posed by these models (see, e.g., Koenker,

2004, Lamarche, 2010, Canay, 2011, Galvão, 2011, Kato, Galvão and Montes-Rojas,

2012, Galvão and Wang, 2015, Galvão and Kato, 2016, and Powell, 2017). However,

none of these methods gained widespread popularity, either because of their computa-

tional complexity or because they rely on very restrictive assumptions on how the fixed

effects affect the quantiles. Albeit also based on a somewhat restrictive (but testable)

assumption, our approach has the advantage of being very easy to implement even in

very large problems and it allows the individual effects to affect the entire distribution,

1Notice that in a conditional location-scale model the regressors affect all higher-order moments

through the scale function. Indeed, for m > 1, the m-th conditional central moment is proportional to

the m-th power of the scale function.
2For example, the popular Tobit and sample selection models assume that the errors are normally

distributed and statistically independent of the regressors.
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rather than being just location shifters as in, e.g., Koenker (2004), Lamarche (2010),

and Canay (2011).3

Our approach can also be adapted to the estimation of cross-sectional models with

endogenous variables as, for example, in Abadie, Angrist, and Imbens (2002) and in

Chernozhukov and Hansen (2005, 2006, and 2008). Strictly speaking, in this context

our approach is not based on the estimation of conditional means, but on moment con-

ditions that under exogeneity identify conditional means. The proposed estimator is

closely related to that of Chernozhukov and Hansen (2008) in the sense that under suit-

able regularly conditions it identifies the same structural quantile function, but has the

advantage of being applicable to non-linear models and being computationally much

simpler, especially in models with multiple endogenous variables.

The remainder of the paper is organized as follows. Section 2 introduces our approach

to the estimation of regression quantiles in location-scale models. Section 3 considers

the application of our approach in the context of a panel data model with fixed effects.

In Section 4 we consider estimation with cross-sectional data when some of the variables

of the model are endogenous. Section 5 presents the results of a small simulation study

and Section 6 illustrates the application of the proposed methods with two empirical

examples. Section 7 concludes and an Appendix collects the more technical details.

2. THE BASIC IDEA

The rationale of the proposed estimator can be introduced in a simple setup. We

are interested in estimating the conditional quantiles of a random variable Y whose

distribution conditional on a k-vector of covariatesX belongs to the location-scale family

3For example, in an application that motivated this work, our colleagues needed to estimate quan-

tile regressions models with 14, 000 fixed effects and 70 other parameters using data on over 600, 000

individuals. Our estimator can easily deal with such large problems, but we are not aware of any other

approach that can be used to estimate such models without restricting the fixed effects to be location

shifters.
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and can be expressed as

Y = α +X ′β + σ(δ + Z ′γ)U, (1)

where:

• (α, β′, δ, γ′)
′ ∈ R2(k+1) are unknown parameters;4

• Z is a k-vector of known differentiable (with probability 1) transformations of the

components of X with element l given by

Zl = Zl(X), l = 1, . . . , k;

• σ (·) is a known C2 function such that

P{σ(δ + Z ′γ) > 0} = 1;

• U is an unobserved random variable, independent ofX, with density function fU (·)

bounded away from 0 and normalized to satisfy the moment conditions

E(U) = 0 E(|U |) = 1. (2)

A special case of (1) is, of course, the linear heteroskedasticity model in which σ(·) is

the identity function and Z = X. This model has been study by many authors and has

a long tradition in the quantile regression literature (see, e.g., Koenker and Basset, 1982,

Gutenbrunner and Jurečková, 1992, Koenker and Zhao, 1994, He, 1997, and Zhao, 2000).

Our formulation, however, is suffi ciently general to also encompass other specifications

such as models with multiplicative heteroskedasticity (Harvey, 1976), which have recently

been advocated by Romano and Wolf (2017).

The specification in (1) differs from the standard formulation Y = x′β(U), U ∼

Uniform (0, 1), which can be viewed as representing a linear data generating process

where all unobserved heterogeneity comes from random parameter variation and each

4For simplicity, we assume that X and Z have the same dimension.
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parameter is allowed to be a different function of U . The model in (1) imposes that there

is a single source of unobserved heterogeneity, but our formulation allows for nonlinear

quantile effects and, thus, it cannot be considered a restricted version of Y = x′β(U),

except when σ(·) is the identity function. In this case (1) is also a linear model where all

unobserved heterogeneity comes from random parameter variation, but the distributions

of the coeffi cients are assumed to differ only in their location and scale.

Model (1) implies that

QY (τ |X) = α +X ′β + σ (δ + Z ′γ) q (τ) (3)

with q (τ) = F−1
U (τ), and therefore Pr (U < q (τ)) = τ . In the case where σ (·) is the

identity function and Z = X, the quantiles simplify to

QY (τ |X) = (α + δq (τ)) +X ′ (β + γq (τ)) .

In general, the marginal effect of the regressor Xl on the τ -th quantile of Y (the

“regression quantile coeffi cient”) is

βl(τ ,X) = βl + q (τ)Dσ
Xl

(4)

with Dσ
Xl

= ∂σ (δ + Z ′γ) /∂Xl.

Using (2), and the exogeneity of the regressors, the vector of parameters of interest,

(α, β′, δ, γ′, q(τ))
′, can be identified from the following set of moment conditions (for

ease of exposition we assume here i.i.d. data):

E[RX] = 0

E[R] = 0

E
[
(|R| − σ (δ + Z ′γ))Dσ

γ

]
= 0 (MC1)

E [(|R| − σ (δ + Z ′γ))Dσ
δ ] = 0

E[I(R ≤ q (τ)σ(δ + Z ′γ))− τ ] = 0

whereR = Y−(α+X ′β) = σ (δ + Z ′γ)U ,Dσ
γ = ∂σ (δ + Z ′γ) /∂γ,Dσ

δ = ∂σ (δ + Z ′σ) /∂δ.
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Given that the location-scale model specifies the scale function σ(·), we can explore

that information and base the identification on the alternative set of moment conditions

E[UX] = 0

E[U ] = 0

E
[
(|U | − 1)Dσ

γ

]
= 0 (MC2)

E [(|U | − 1)Dσ
δ ] = 0

E [I (U < q (τ))− τ ] = 0

where U = (Y − (α +X ′β)) /σ (δ + Z ′γ).5

These conditions form the basis of the estimation procedure (Method of Moments-

Quantile Regression, MM-QR) discussed in further detail in the next sections. Conditions

(MC1) bear resemblance to those of the Restricted Quantile Regression of He (1997) and

Zhao (2000) but we explore different moment conditions. In He (1997) and Zhao (2000)

the moment conditions corresponding to (2) are that U has median at zero and that |U |

has median at 1. Thus, the implied orthogonality condition corresponding to (MC1) are

those defining least absolute deviation estimators rather than least squares estimators.

Our choice is, admittedly, weaker from a robustness point of view, but we believe that

our approach is useful in that it makes it very easy to implement quantile regression in a

wider class of models.6 In particular, we will explore the use of (MC1) in the estimation of

panel data models with fixed effects, and (MC2) in the estimation of structural quantile

functions as defined by Chernozhukov and Hansen (2006, 2008).
5Although we do not pursue that here, it is easy to see that the validity of the location-scale model

can be tested, for example, by testing the overidentifying restrictions resulting from augmenting (MC1)

and (MC2) with conditions imposing the orthogonality between suitable functions of U and functions

of the regressors. See, e.g., Hansen (1982) and Newey (1985).
6Notice that, due to the normalization in (2), we estimate the scale function rather than the skedastic

function. There are two reasons for this. First, in the leading case where the scale is a linear function

of the regressors and the quantiles are linear, the scale function can be estimated by ordinary least

squares, whereas estimation of the skedastic function would involve non-linear estimation. Additionally,

as noted by Koenker and Zhao (1996), the scale function is a more robust measure of dispersion.
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3. PANEL DATA WITH FIXED EFFECTS

3.1. Linear models

The estimation of linear regression quantiles for longitudinal data was seminally con-

sidered by Koenker (2004). To mitigate the effects of the incidental parameters problem,

Koenker considers a model where the individual effects only cause parallel (location)

shifts of the distribution of the response variable (see also Lamarche, 2010, Canay, 2011,

and Galvão, 2011). We also start by considering a linear specification, but allow the

individual effects to affect the entire distribution, as in Kato, Galvão and Montes-Rojas

(2012), Galvão and Wang (2015), and Galvão and Kato (2016).

Given data {(Yit, X ′it)′} from a panel of n individuals i = 1, . . . , n over T time periods,

t = 1, . . . , T , we consider the estimation of the conditional quantiles QY (τ |X) for a

location-scale model of the form

Yit = αi +X ′itβ + (δi + Z ′itγ)Uit, (5)

with P{δi +Z ′itγ > 0} = 1. The parameters (αi, δi), i = 1, . . . , n, capture the individual

i fixed effects and Z is defined as before. The sequence {Xit} is i.i.d. for any fixed i and

independent across t. Uit are i.i.d. (across i and t), statistically independent of Xit, and

normalized to satisfy the moment conditions (2).7

Model (5) implies that

QY (τ |Xit) = (αi + δiq (τ)) +X ′itβ + Z ′itγq (τ) . (6)

We will call the scalar coeffi cient αi(τ) ≡ αi + δiq (τ) the quantile-τ fixed effect for

individual i, or the distributional effect at τ . The distributional effect differs from the

usual fixed effect in that it is not, in general, a location shift. That is, the distributional

effect represents the effect of time-invariant individual characteristics which, like other

variables, are allowed to have different impacts on different regions of the conditional

7Notice that these conditions do not imply strict exogeneity.
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distribution of Y . The fact that
∫ 1

0
q (τ) dτ = 0 implies that αi can be interpreted as the

average effect for individual i.

Consider now the MM-QR estimator of (6) implied by (MC1). For this model, the

moment conditions have a convenient triangular structure with respect to the model

parameters that allows the one-step GMM estimator (Hansen, 1982) to be calculated

sequentially:

1. Regress (Yit −
∑

t Yit/T ) on (Xit −
∑

tXit/T ) by least squares to obtain β̂;

2. Estimate α̂i = 1
T

∑
t(Yit −X ′itβ̂) and obtain the residuals R̂it = Yit − α̂i −X ′itβ̂;

3. Regress (|R̂it| −
∑

t |R̂it|/T ) on (Zit −
∑

t Zit/T ) by least squares to obtain γ̂;

4. Estimate δ̂i = 1
T

∑
t(|R̂it| − Z ′itγ̂);

5. Estimate q (τ) by q̂, the solution to

min
q

∑
i

∑
t

ρτ

(
R̂it −

(
δ̂i + Z ′itγ̂

)
q
)

where ρτ (A) = (τ − 1)AI{A ≤ 0} + τAI{A > 0} is the check-function. (Equiva-

lently, order the standardized residuals Û = R̂it/
(
δ̂i + Z ′itγ̂

)
and estimate the τ -th

sample quantile.)

The regression in Step 3 is reminiscent of the one used to compute Glejser’s (1969)

test for heteroskedasticity, and the insights in Machado and Santos Silva (2000) and

Im (2000) suggest that the MM-QR estimator is greatly simplified if |R| in (MC1) is

replaced by

2R(I{R ≥ 0} − P{R ≥ 0}).

Indeed, because |R| = 2R(I{R ≥ 0}−1/2), the two transformations differ only in the way

the residuals R are weighted: with mean zero in one case and with mean P{R ≥ 0}−1/2

in the other. Using the assumption that E[R|Z] = 0, it is clear that the (population)

moment condition

E[Z (|R| − δi − Z ′γ)] = 0
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identifies δi and γ iff

E[Z (2R(I{R ≥ 0} − η)− δi − Z ′γ)] = 0, η = P (R ≥ 0) = P (U ≥ 0).

Therefore, in Steps 3 and 4, instead of using |R̂| one may use

2R̂it[I{R̂it ≥ 0} − η̂]

with

η̂ =
1

nT

∑
i

∑
t

I{R̂it ≥ 0}.

The advantage of using this alternative transformation in Steps 3 and 4 of the algo-

rithm is that it makes asymptotic inference on γ independent of the first step estimator.

Besides simplifying the treatment of the asymptotic properties of the estimator, this

allows the practitioner to make inference about the parameters of the scale function di-

rectly from the least squares results in the modified Step 3, without having to take into

account the fist-step estimation.

Below we present the main results on the asymptotic properties of the MM-QR esti-

mator as a set of theorems whose proofs are provided in the Appendix. The following

results could be obtained using a standard GMM framework for the exactly identified

case and the results of, say, Newey and McFadden, (1994, Theorem 7.2). Our approach

however, mimics the sequence of steps above and is similar to Zhao’s (2000). Throughout

we use the following notation: for any sequence of random variables Ait, Bit for which

the limits exist,

QAB = lim
n→∞

1

n

∑
i

E[(Ai1 − µAi)(Bi1 − µBi)
′]

with µAi = E[Ait],

PAB = lim
n→∞

1

n

∑
i

E[σ2
i1(Ai1 − µAi)(Bi1 − µBi)

′]

with σit = (δi + Z ′itγ), and

PA = lim
n→∞

1

n

∑
i

E[σ2
i1(Ai1 − µAi)].

Our first theorem establishes the consistency of the MM-QR estimators.
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Theorem 1 (Consistency) Consider model (5) satisfying conditions (P) in the Ap-

pendix. Assume further that the sequences {Xit, Zit, Uit} satisfy the conditions (U) and

(XZ) in the Appendix. Then, as (n, T )→∞

β̂ − β P−→ 0

γ̂ − γ P−→ 0

q̂(τ)− q(τ)
P−→ 0.

�
It is easy to establish that the estimators of the intercepts αi and δi are also consistent

provided that T → ∞. Furthermore, Lemmata 1 and 4 in the Appendix prove that if

n/T → 0 as (n, T )→∞, then

max
1≤i≤n

|α̂i − αi| = oP (1)

and

max
1≤i≤n

|δ̂i − δi| = oP (1).

Next we establish the asymptotic distribution of β̂ and γ̂.

Theorem 2 (Asymptotic distribution) Consider model (5) satisfying conditions (P)

in the Appendix. Assume further that the sequences {Xit, Zit, Uit} satisfy the conditions

(U) and (XZ) in the Appendix. Then, as (n, T )→∞
√
nT (β̂ − β)

D−→ Q−1
XXN (0, E(U2)PXX)

and if (n, T )→∞ with n = o(T ),

√
nT (γ̂ − γ)

D−→ Q−1
ZZN (0, E(V 2)PZZ)

with V = 2U(I{U ≥ 0} − P{U ≥ 0}). �

Notice that, as is well known, the results for the least squares estimator β̂ also hold

when n→∞ for fixed T , or T →∞ for fixed n.8 Also, as mentioned before, the limiting

distribution of γ̂ does not depend on the first-step estimation.
8This would not be the case if the estimator was based on (MC2).
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It is not diffi cult to establish that the MM-QR estimators of the fixed effects coeffi cients

αi, δi converge at rate root-T to a Gaussian distribution. Owing to the faster rates of

convergence of the slope estimators, this asymptotic distribution of the fixed effects

coeffi cients is the same as if the slopes were known.

The quantile-τ fixed effect, αi(τ) = αi + δiq (τ), can be estimated by

α̂i(τ) =
1

T

T∑
t=1

(Yit −X ′itβ̂) + q̂
1

T

T∑
t=1

(|R̂it| − Z ′itγ̂).

Likewise, the τ -th quantile regression coeffi cient of the regressor Xl, which is given by

(4) and is the main parameter of interest, can be estimated by β̂l(τ ,X) = β̂l + q̂γ̂.

The consistency of β̂l(τ ,X) follows directly from Theorem 1, and Theorem 3 estab-

lishes the asymptotic distribution of β̂l(τ ,X) for the leading case where Z = X and

β̂l(τ ,X) = β̂l(τ); the more general case is equally straightforward.9

Theorem 3 (Asymptotic distribution of the QR coeffi cients) Consider model (5)

satisfying conditions (P) in the Appendix and assume that Z = X. Assume further that

the sequences {Xit, Zit, Uit} satisfy the conditions in (U) and (XZ) in the Appendix.

Then, as (n, T )→∞ with n = o(T )

√
nT (β̂(τ)− β(τ))

D−→ ΞN (0,Ω)

with

Ξ =
(
Q−1
XX q (τ)Q−1

ZZ (1/µσ)γ
)
,

being a k × (2k + 1) matrix with blocks Q−1
XX , q (τ)Q−1

ZZ, and (1/µσ)γ, and

Ω =

E[U2]PXX E[UV ]PXZ E[UW ]PX

E[V 2]PZZ E[VW ]PZ

µσ2E[W 2]

 ,

with µσa = 1
n

∑
i(δi + γE[Zi1])a, a = 1, 2 and W = 1

fU (q(τ))
ψτ (U − q (τ)) − U − q (τ)V ,

where ψτ (A) = (τ − I{A ≤ 0}). �
9With Z = X, QZZ = QXX , and PZZ = PZX = PXX ; if Z 6= X, Ξ has to be adjusted in a

straightforward way.
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As with other quantile regression estimators for models with fixed effects (see, Galvão

and Kato, 2018, and the references therein), the asymptotic distribution of β̂(τ) has

mean zero only when (n, T ) → ∞ with n = o(T ). If these conditions do not hold, the

asymptotic distribution will be biased because, for fixed T , the variance of the estimator

vanishes with n but the bias does not. Hence, as noted by Hahn and Newey (2004),

confidence intervals may have poor coverage in applications where n/T is large. Because

β̂ is consistent even when T is fixed, the bias in the asymptotic distribution of β̂(τ)

comes from the fixed-T biases of γ̂ and q̂(τ). The next result sheds light on the nature of

these biases by calculating the probability limits of γ̂ and q̂(τ) as n grows with T fixed.

Theorem 4 (Fixed T asymptotic biases) Consider model (5) satisfying conditions

(P) in the Appendix. Assume that Z = X and that the sequences {Xit, Zit, Uit} satisfy

the conditions in (U) and (XZ) in the Appendix. Assume further that the conditions in

Lemma 5 in the Appendix are satisfied. Then, as n→∞ with T fixed

γ̂
P−→ γT

with

γT = γ +
1

T
Bγ
nT +O(1/T 2),

and

q̂(τ)
P−→ qT (τ)

with

qT (τ) = q(τ) +
1

T
Bq
nT +O(1/T 2),

where both Bγ
nT and B

q
nT are OP (1) as n→∞ and Bγ

nT = 0 when γ = 0. �

This result shows that it is possible to use jackknife bias corrections to eliminate the

O (T−1) term in the biases of γ̂ and q̂ (τ) (see Hahn and Newey, 2004, Dhaene and

Jochmans, 2015, and Fernández-Val and Weidner, 2016). The bias-corrected estimates

of γ and q(τ) can then be used to eliminate the leading term in the bias of β̂(τ), thereby
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substantially attenuating the inference problems identified by Hahn and Newey (2004).

In Section 5 we present simulation results for a range of values of n, T , and n/T and

find that, as expected, the confidence intervals have poor coverage when n/T is large

(above 10). However, our results also show that the coverage of the confidence intervals

is much improved by using the simple split-panel jackknife bias correction of Dhaene and

Jochmans (2015).

In summary, the proposed estimator suffers from the incidental parameters problem

and, in that sense, it has no advantage over alternative approaches. However, because

we can partial out the fixed effects in the estimation of β and γ, our estimator is com-

putationally much easier to implement than any other estimator for quantile regression

models with fixed effects. Indeed, our estimator is as easy to implement as the popular

“within”estimator and remains practical even for models with many regressors estimated

with samples where n is very large. Moreover, with the easy to implement jackknife bias

correction, it allows reasonably reliable inference to be performed for moderate values of

T , even when n/T is large.

We conclude this sub-section by noting that the estimates of the conditional quantiles

obtained from (MC1) do not cross (see also He, 1997); this follows directly from the

unidimensional nature of the quantile estimator implied by the last moment condition

of (MC1). The following proposition formally establishes this result for the estimator

consider here, and similar results can be straightforwardly obtained for the quantiles of

other location-scale models evaluated at estimates obtained from (MC1) or (MC2).

Proposition 1 (No Quantile-Crossing: He, 1997) Let Z = X and consider the

regression quantile QY (τ |X) given by (6) and its estimate Q̂Y (τ |X) = α̂i + X ′itβ̂ +(
δ̂i +X ′itγ̂

)
q̂ (τ). Then, for any design point with (δ̂i +X ′itγ̂) > 0,

τ ≤ τ ′ ⇔ Q̂Y (τ |X) ≤ Q̂Y (τ ′|X) .

�
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3.2. Non-linear models

The linear heteroskedasticity model considered so far is particularly attractive for

its long history and for its simplicity, but estimation with other specifications of the

location and scale functions is also possible. However, in specifications with fixed effects,

estimating non-linear models will generally be impractical.

The exception to this are specifications based on the exponential function because

in this case, just like in the linear model, there is a transformation that eliminates the

fixed effects. Indeed, Wooldridge (1999) shows that the so-called fixed effects Poisson

regression with an exponential conditional mean, which conditions-out the individual

effects, is valid under very general conditions and is easy to implement (notice that this

estimator is valid even if the data are not counts).

The possibility of estimating models with σ (·) = exp (·) is particularly interesting

because this specification ensures that σ (·) > 0. Moreover, models with multiplicative

heteroskedasticity also have a long history and are popular in many contexts (see, e.g.,

Harvey, 1976, Wooldridge, 2010, and Romano and Wolf, 2017).10

Therefore, when either the conditional mean, the conditional variance, or both, are

given by exponential functions, all that is needed is to replace the corresponding least

squares steps in the algorithm described before with suitable Poisson regressions; natu-

rally, the subsequent computation of the fixed effects needs to be modified accordingly,

but that is trivial.

Using the delta-method and our earlier results, it is possible to derive the asymptotic

distribution of the estimators in these non-linear models. Notice, however, that in non-

linear models the regression quantile coeffi cients will depend on the estimates of the

fixed effects; for example, in a linear model with multiplicative heteroskedasticity, the

regression quantile coeffi cients for individual i will depend on δ̂i. In practice, we can

10For example, the latest release of Stata (StataCorp., 2017) includes the command hetregress which

estimates linear regression models with multiplicative heteroskedasticity.
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either take this into account when applying the delta method, or we may obtain results

conditioning on a given value of the fixed effect, such as the sample average of δ̂i.

4. ENDOGENOUS REGRESSORS

We explore now the application of the MM-QR estimator to cross-sectional models

with endogenous explanatory variables. Consider a scalar random variable Y that is

related to an unobserved scalar random variable U satisfying (2) and to a vector of

observed random variables (D′, C ′1, C
′
2)′ (with dimensions kD, k1, k2, respectively, and

k2 ≥ kD), by the following structural relationship

Y = D′βD + C ′1β1 + σ (D′γD + C ′1γ1)U

Dl = Dl (C1, C2, U
?) for l = 1, . . . , kD (7)

C1, C2 statistically independent of U,

where Dl(·) : Rk1+k2+1 → R, σ(·) is as defined in Section 2, and U? is an unobserved

random variable that may not be independent of U . The parameters (β, γ) ∈ Ω2, satisfy

assumption (P1) in the Appendix. Put X ′ = (D′, C ′1) (the regressors), C ′ = (C ′1, C
′
2)

(the instruments), β′ = (β′D, β
′
1), and γ′ = (γ′D, γ

′
1).11

The most relevant feature of this model is that the endogenous regressor impacts both

the location and scale of Y . Although similar, (7) is neither more nor less restrictive than

the structural random coeffi cients model considered by Chernozhukov and Hansen (2006,

2008). As noted before, in the linear case we impose that, up to location and scale, all

coeffi cients have the same distribution, whereas Chernozhukov and Hansen (2006, 2008)

allow each coeffi cient to have different distributions. However, unlike them, we allow for

non-linear quantile effects.

As in Chernozhukov and Hansen (2006, 2008), we are not interested in estimating

QY (τ |X), but the parameters of a function SY (τ |X) such that

P{Y ≤ SY (τ |X)} = P{Y ≤ SY (τ |X)|C} = τ .

11Notice that if the location and scale have intercepts, C1 will have a column of 1s.
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Therefore, SY (τ |X), the “structural quantile function”in Chernozhukov and Hansen’s

(2008) terminology, can be interpreted as QY (τ |C) and can be written as

SY (τ |X) = X ′β + σ(X ′γ)q(τ).

Given the model, if (β, γ) were known, the moment condition

E

[
ψτ

(
Y −X ′β
σ(X ′γ)

− q
)]

= 0

would identify the marginal quantile of U , that is q(τ) such that P{U ≤ q(τ)} = P{U ≤

q(τ)|C} = τ . This procedure is not feasible since β and γ are not known but, given the

data {(Yi, X ′i, C ′i)′}, these parameters can be consistently estimated under very general

conditions by applying GMM to the sample analogues of the moment conditions in

(MC2),

1√
n

n∑
1

Ci

(
Yi −X ′iβ̂
σ(X ′iγ̂)

)
= 0,

1√
n

n∑
1

Ci


∣∣∣Yi −X ′iβ̂∣∣∣
σ(X ′iγ̂)

− 1

 = 0.

Notice that this MM-QR estimator cannot be solved sequentially, and therefore in this

case there is no practical benefit in replacing |Ui| with 2Ui (I {Ui > 0} − P {U > 0}).

Given the estimates of β and γ, q(τ) may be estimated by the condition

1√
n

n∑
1

ψτ

(
Yi −X ′iβ̂
σ(X ′iγ̂)

− q
)

= oP (1)

or, alternatively, by ranking the standardized residuals.

The next theorem formalizes this estimator for the exactly identified case (kD = k2);

the over-identified case could be handled similarly.12

Theorem 5 (Structural quantile function coeffi cients) Consider a sample of n i.i.d..

observations of (Y,X,C) from the structure defined by (7) with dim (X) = dim (C).

12In the Appendix, we present a generalization of this result for the case where multiple quantiles are

estimated. A similar generalization of the results in Theorem 3 is also straightforward.

17



Then, under assumptions (P), (U), and (DC) in the Appendix, as n→∞
√
n(β̂ − β)
√
n(γ̂ − γ)

√
n(q̂ − q(τ))

 D−→ G−1N (0,Ω),

where,

Ω =


E[U2]E[CC ′] E[UV ]E[CC ′] E[Uψτ (U−q(τ))

fU (q(τ))
E[C]

E[V 2]E[CC ′] E[V ψτ (U−q(τ))
fU (q(τ))

E[C]
1

f2U (q(τ))
τ(1− τ)

 ,

with V = |U | − 1 and

G =

 E[(1/σ)CX ′] E[(σ′/σ)UCX ′] 0k×1

E[(1/σ) sign(U)CX ′] E[(σ′/σ) |U |CX ′] 0k×1

E[(1/σ)X ′] E[(σ′/σ)UX ′] 1

 ,

with k = k1 + k2, σ = σ(X ′γ), and σ′ = dσ(z)/dz at z = X ′γ. �

Inference about β(τ ,X) = ∂SY (τ |X)/∂X, the ultimate parameter of interest, can

be performed using the standard delta-method. For example, in the linear case where

β(τ ,X) = β(τ) = β + γq (τ) we have that

√
n(β̂(τ)− β(τ))

D−→ AG−1N (0,Ω),

where

A =
(
Ik×k q (τ) Ik×k γ

)
is a k × (2k + 1) matrix with blocks Ik×k, q (τ) Ik×k, and γ, where Ik×k denotes a k × k

identity matrix.

Our approach to the estimation of the structural quantile function can be seen as

a contribution to the growing literature addressing the computational challenges faced

in the implementation of the Chernozhukov and Hansen (2008) estimator. Although

several promising approaches to this problem have been developed, as far as we know,

all of them have unappealing features such as requiring the tuning of the optimization

algorithm (Chernozhukov and Hong, 2003), the selection of tolerance parameters (Xu
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and Burer, 2017), the choice of a smoothing parameter (Kaplan and Sun, 2017), the

specification of the parameter space (Chen and Lee, 2017), or being limited to models

with binary treatments (Wüthrich, 2015). In contrast, our estimator is extremely simple

to implement, even if the model is non-linear and has multiple endogenous explanatory

variables, and it ensures that the estimated structural quantile functions do not cross.

Therefore, at the very least, the proposed estimator can be useful to provide starting

values for other methods and to guide in the definition of the parameter space. In the

next sections we present simulation results and an empirical example illustrating the

performance and application of this estimator.

5. SIMULATION EVIDENCE

This section presents the results of two small simulation exercises illustrating the

performance of the methods proposed in Sections 3 and 4.

5.1. Panel data models with fixed effects

The first set of experiments is designed to study the performance of the estimator in a

panel-data model with fixed effects. For this experiment, 10, 000 independent data sets

were generated as

Yit = αi +Xit + (1 +Xit + καi)Uit i = 1, . . . , N, t = 1, . . . , T, (8)

where αi ∼ χ2
(1) andXit = 0.5 (αi + χit), with χit ∼ χ2

(1), and three different distributions

of Uit are considered: N (0, 1), χ2
(5), and t(5); in all cases Uit is standardized to have

zero mean and unit variance.13 We performed simulations for T ∈ {10, 20, 50}, n ∈

{50, 500, 100T}, τ ∈ {0.25, 0.75}, and κ ∈ {0, 1}. For κ = 0 the fixed effects are pure

location shifts as assumed by Koenker (2004) and Canay (2011); otherwise the fixed

effects affect the entire distribution.
13Using this normalization rather than E |Uit| = 1 is immaterial and facilitates the data generation.
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The MM-QR estimator described in Section 3 was used to estimate linear quantile

regressions for these data and Tables 1 and 2 report the bias, standard error (SE), and

mean squared error (MSE) for all the cases with τ = 0.25; we do not report the results

obtained with τ = 0.75 because they lead to similar conclusions. The tables also report

the results obtained with the bias-corrected version of the estimator based on the split-

panel jackknife of Dhaene and Jochmans (2015), these results are labeled JKBC.14

The results in Tables 1 and 2 confirm that the bias of the MM-QR estimator drops as

T grows, being essentially proportional to 1/T . A notable feature of the results in Tables

1 and 2 is that the jackknife bias correction is extremely effective.15 Indeed, even for the

smallest values of n and T considered, the jackknife correction essentially eliminates the

bias without a significant loss of precision.

Our results also confirm that the precision of the estimators increases with nT and this

is reflected in the values of SE and MSE. As noted before, the fact that the bias decreases

with T while the variance decreases with nT may lead the asymptotic distribution of the

estimator to be biased when n/T is large (see Hahn and Newey, 2004).

To investigate the extent of this problem, we used an estimator of the covariance

matrix presented in Theorem 3 to compute 95% confidence intervals centred at the MM-

QR estimates and at their bias-corrected counterparts; Table 3 displays the coverage

rates of these intervals. These results suggest that for n/T up to 10 the coverage of

the confidence intervals centered at the MM-QR estimates is reasonable,16 but for larger

14We also estimated the model using Canay’s (2011) estimator; for brevity we do not present these

results in detail but briefly discuss them now. When κ = 0, Canay’s estimator imposes the valid

restriction that the fixed effects are pure location shifters and consequently has lower SE than the MM-

QR estimator and often has somewhat smaller bias; the performance of the two estimators is, however,

comparable even for non-normal data. Naturally, the performance of Canay’s estimator deteriorates

sharply when κ = 1, which reflects the sensitivity of the estimator to departures from its key assumption.
15Because the estimator of β is unbiased, we implement the estimator by adding to β̂ the product of

bias-corrected estimates of γ and q.
16Following Cochran (1952), we consider departures from the nominal 95% coverage to be unimportant

if the estimated coverage is between 0.9354 and 0.9638.
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values of n/T the coverage rates can drop dramatically; this is especially clear in Case

2. However, centering the intervals at the bias-corrected estimates greatly alleviates the

problem, generally leading to intervals with good coverage. We note, however, that in

some cases these intervals can be too wide, with coverage of about 99%.

Table 1: Bias, SE, and MSE results for τ = 0.25 and κ = 0

n = 50 n = 500 n = 100× T
T MMQR JKBC MMQR JKBC MMQR JKBC

Case 1: N (0, 1)

10 bias 0.099 0.008 0.079 −0.006 0.079 −0.006

se 0.316 0.343 0.103 0.110 0.073 0.077

mse 0.109 0.118 0.017 0.012 0.011 0.006

20 bias 0.047 0.000 0.038 −0.002 0.036 −0.002

se 0.231 0.243 0.073 0.076 0.037 0.038

mse 0.056 0.059 0.007 0.006 0.003 0.001

50 bias 0.016 −0.001 0.014 −0.000 0.014 −0.000

se 0.148 0.151 0.047 0.047 0.015 0.015

mse 0.022 0.023 0.002 0.002 0.000 0.000

Case 2: χ2
(5)

10 bias 0.149 0.013 0.131 0.003 0.130 0.002

se 0.225 0.241 0.071 0.075 0.050 0.053

mse 0.073 0.058 0.022 0.006 0.019 0.003

20 bias 0.075 0.002 0.066 0.001 0.065 −0.000

se 0.160 0.168 0.049 0.051 0.025 0.026

mse 0.031 0.028 0.007 0.003 0.005 0.001

50 bias 0.031 0.001 0.027 0.000 0.026 0.000

se 0.099 0.102 0.031 0.032 0.010 0.010

mse 0.011 0.010 0.002 0.001 0.001 0.000

Case 3: t(5)

10 bias 0.062 −0.000 0.047 −0.010 0.046 −0.010

se 0.333 0.362 0.105 0.112 0.073 0.078

mse 0.115 0.131 0.013 0.013 0.008 0.006

20 bias 0.026 −0.003 0.020 −0.004 0.019 −0.004

se 0.228 0.236 0.074 0.076 0.037 0.038

mse 0.052 0.056 0.006 0.006 0.002 0.001

50 bias 0.009 −0.000 0.008 0.000 0.007 −0.001

se 0.147 0.150 0.047 0.047 0.015 0.015

mse 0.022 0.022 0.002 0.002 0.000 0.000
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Table 2: Bias, SE, and MSE results for τ = 0.25 and κ = 1

n = 50 n = 500 n = 100× T
T MMQR JKBC MMQR JKBC MMQR JKBC

Case 1: N (0, 1)

10 bias 0.101 0.008 0.080 −0.005 0.080 −0.004

se 0.416 0.452 0.134 0.144 0.094 0.101

mse 0.183 0.205 0.024 0.021 0.015 0.010

20 bias 0.048 −0.000 0.038 −0.002 0.037 −0.002

se 0.301 0.315 0.095 0.098 0.048 0.049

mse 0.093 0.099 0.010 0.010 0.004 0.002

50 bias 0.016 −0.002 0.015 −0.000 0.015 0.000

se 0.190 0.194 0.060 0.061 0.019 0.019

mse 0.036 0.038 0.004 0.004 0.001 0.000

Case 2: χ2
(5)

10 bias 0.149 0.010 0.129 0.000 0.128 0.000

se 0.296 0.321 0.093 0.100 0.065 0.070

mse 0.110 0.103 0.025 0.010 0.021 0.005

20 bias 0.074 0.001 0.065 −0.000 0.063 −0.001

se 0.208 0.220 0.064 0.067 0.032 0.034

mse 0.049 0.048 0.008 0.005 0.005 0.001

50 bias 0.030 0.001 0.026 −0.000 0.026 0.000

se 0.128 0.131 0.040 0.041 0.013 0.013

mse 0.017 0.017 0.002 0.002 0.001 0.000

Case 3: t(5)

10 bias 0.064 0.001 0.049 −0.008 0.048 −0.007

se 0.437 0.473 0.136 0.145 0.094 0.101

mse 0.195 0.223 0.021 0.021 0.011 0.010

20 bias 0.026 −0.003 0.021 −0.004 0.021 −0.003

se 0.295 0.306 0.095 0.097 0.048 0.049

mse 0.088 0.093 0.009 0.010 0.003 0.002

50 bias 0.009 −0.001 0.009 0.000 0.008 −0.000

se 0.190 0.193 0.061 0.061 0.019 0.019

mse 0.036 0.037 0.004 0.004 0.000 0.000

Overall these simulation results are encouraging in that they suggest that the MM-

QR estimator of the quantile regression model with fixed effects may be reasonably well

behaved in many empirical applications, especially when its bias-corrected version is

used.
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Table 3: Coverage rates of 95% confidence intervals with τ = 0.25

n = 50 n = 500 n = 100× T
T MMQR JKBC MMQR JKBC MMQR JKBC

Case 1: N (0, 1)

κ = 0 10 0.9445 0.9473 0.9180 0.9615 0.8757 0.9680

20 0.9563 0.9566 0.9413 0.9624 0.8725 0.9595

50 0.9633 0.9620 0.9610 0.9675 0.8835 0.9665

Case 2: χ2
(5)

10 0.9505 0.9727 0.7984 0.9842 0.6192 0.9902

20 0.9661 0.9782 0.8825 0.9861 0.4783 0.9850

50 0.9818 0.9856 0.9541 0.9876 0.4512 0.9866

Case 3: t(5)

10 0.9454 0.9443 0.9400 0.9583 0.9309 0.9628

20 0.9545 0.9539 0.9495 0.9522 0.9308 0.9535

50 0.9610 0.9584 0.9558 0.9566 0.9359 0.9586

Case 1: N (0, 1)

κ = 1 10 0.9543 0.9530 0.9360 0.9620 0.9125 0.9672

20 0.9594 0.9583 0.9541 0.9654 0.9123 0.9619

50 0.9650 0.9648 0.9649 0.9678 0.9176 0.9684

Case 2: χ2
(5)

10 0.9674 0.9748 0.8895 0.9836 0.7826 0.9881

20 0.9776 0.9819 0.9403 0.9864 0.7199 0.9862

50 0.9860 0.9869 0.9723 0.9886 0.7108 0.9885

Case 3: t(5)

10 0.9527 0.9469 0.9488 0.9585 0.9441 0.9600

20 0.9610 0.9599 0.9565 0.9554 0.9422 0.9564

50 0.9635 0.9606 0.9584 0.9588 0.9453 0.9601

5.2. Cross-sectional model with endogeneity

The second set of experiments was designed to study the behavior of the MM-QR

estimator for a cross-sectional model with an endogenous explanatory variable. In this

case, 10, 000 independent cross-sectional data sets were simulated from

Yi = 1 +Di + (1 +Di)Ui, i = 1, . . . , N, (9)

with Di = ((1− λ)Ci + λ |Ui|), where 0 < λ < 1 is a parameter, Ci = |ξi|, ξi has the

same distribution as Ui and is independent of it, and again we consider three different
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distributions for the error: N (0, 1), χ2
(5), and t(5); in all cases Ui is standardized to

have zero mean and unit variance. In this design Di is endogenous and Ci is a valid

instrument for it. Because of the endogeneity, the distribution of Di necessarily varies

with the distribution of Ui; we also let the distribution of Ci vary with the distribution

of Ui so that the strength of the instrument depends only on the parameter λ. We

performed simulations for n ∈ {200, 1000, 5000}, τ ∈ {0.25, 0.75}, and λ ∈ {0.50, 0.25}.

We estimate structural quantile functions for (9) using the MM-QR estimator de-

scribed in Section 4 and, for comparison, we also estimate the models using the IVQR

estimator of Chernozhukov and Hansen (2008).17 Table 4 reports the bias, standard

error (SE), and mean squared error (MSE) for all the cases in this set of experiments

for which τ = 0.25; as before, we do not report the results with τ = 0.75 which lead

essentially to the same conclusions.

Because both estimators are valid in all cases, there is little to choose between them.

The IVQR always has smaller bias than the MM-QR, but often has larger SE. As a result,

the MM-QR generally has smaller MSE than the IVQR, but in general the performance of

the estimators is very evenly matched. From a robustness point of view, it is reassuring to

verify that the MM-QR estimator performs well even when the errors have high skewness

and kurtosis.

To investigate the quality of the inference based on an estimator the covariance matrix

implied by Theorem 5, we used it to computed the coverage of 95% confidence intervals

centered at the MM-QR estimates; these results are presented in Table 5. Overall, the

estimated coverage is close to the nominal level, except for τ = 0.75 in Case 2 where the

coverage drops to about 90%.

17This estimator was implemented using a grid search with 20 equally-spaced points between

±
(

60/
√
N
)
× 100% of the true parameter.
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Table 4: Bias and MSE results with τ = 0.25

n = 200 n = 1000 n = 5000

λ ivqr mm-qr ivqr mm-qr ivqr mm-qr
Case 1: N (0, 1)

0.50 bias 0.093 0.118 0.017 0.023 0.002 0.004

se 0.612 0.629 0.271 0.253 0.124 0.111

mse 0.384 0.409 0.074 0.064 0.015 0.012

0.25 bias 0.040 0.044 0.007 0.008 0.000 0.001

se 0.455 0.400 0.200 0.174 0.090 0.077

mse 0.209 0.162 0.040 0.030 0.008 0.006

Case 2: χ2
(5)

0.50 bias 0.071 0.079 0.014 0.019 0.002 0.004

se 0.440 0.393 0.195 0.159 0.089 0.071

mse 0.199 0.161 0.038 0.026 0.008 0.005

0.25 bias 0.033 0.040 0.007 0.008 0.001 0.002

se 0.322 0.268 0.142 0.117 0.065 0.053

mse 0.105 0.074 0.020 0.014 0.004 0.003

Case 3: t(5)

0.50 bias 0.057 0.071 0.015 0.020 0.004 0.005

se 0.566 0.594 0.252 0.258 0.111 0.113

mse 0.323 0.358 0.064 0.067 0.012 0.013

0.25 bias 0.021 0.033 0.005 0.006 0.001 0.002

se 0.414 0.408 0.186 0.182 0.082 0.081

mse 0.172 0.167 0.034 0.033 0.007 0.007

Table 5: Coverage rates of 95% confidence intervals
n = 200 n = 1000 n = 5000

λ = 0.50 λ = 0.25 λ = 0.50 λ = 0.25 λ = 0.50 λ = 0.25

Case 1: N (0, 1)

τ = .25 0.9423 0.9337 0.9406 0.9397 0.9413 0.9423

τ = .75 0.9434 0.9367 0.9430 0.9400 0.9429 0.9420

Case 2: χ2
(5)

τ = .25 0.9628 0.9485 0.9634 0.9532 0.9620 0.9522

τ = .75 0.9151 0.9160 0.9211 0.9187 0.9020 0.9162

Case 3: t(5)

τ = .25 0.9386 0.9351 0.9378 0.9358 0.9404 0.9405

τ = .75 0.9415 0.9375 0.9428 0.9394 0.9341 0.9346
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6. ILLUSTRATIVE APPLICATIONS

In this section we present two examples illustrating that the proposed methods lead to

results that are comparable to those obtained with approaches that are computationally

much more demanding. To facilitate the comparison of our results with those in the

extant literature, we only consider linear specifications of the conditional quantiles.

6.1. The determinants of government surpluses

Persson and Tabellini (2003) study the economic effects of constitutional reforms by

looking at the relation between measures of economic performance and countries’eco-

nomic, social, cultural, and political characteristics. For this illustration we focus on the

determinants of the budget surplus (see Persson and Tabellini, 2003, Ch. 3).

Persson and Tabellini (2003) use data from 1960 to 1998 for 58 countries to estimate

the relation between the surplus of the central government in percent of GDP (denoted

SPL) and the following set of country characteristics: POLITY, the measure of the

quality of democracy developed by Eckstein and Gurr (1975);18 LYP, the log of real per

capita income; TRADE, the sum of exports and imports of goods and services in percent

of GDP; P1564, the percentage of the population between 15 and 64 years of age; P65,

the percentage of the population over the age of 65; LSPL, one-year lag of SPL; OILIM,

oil prices in US dollars times a dummy variable equal to 1 if the country is a net importer

of oil; OILEX, oil prices in US dollars times a dummy variable equal to 1 if the country

is a net exporter of oil; and YGAP, the output gap.19 See Persson and Tabellini (2003)

for full details on the sources and definition of variables used.
18Higher values of the index indicate worse democracies.
19The assumption that the regressors are not serially correlated is likely to be violated in this dynamic

model; other assumptions are also likely to be violated (e.g., the linearity of all quantiles). The purpose

of these applications, however, is essentially to illustrate that the proposed methods deliver results that

are comparable to those obtained will less restrictive, but much more demanding, approaches.
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The first two rows in Table 6 display the estimates of the parameters in the location

and scale functions, together with analytical standard errors in parenthesis and clustered

standard errors (estimated by bootstrap resampling countries) in square brackets.20 As

noted above, we assumed that the scale function is linear so as to preserve the linearity

of the quantiles and facilitate the comparison with the estimates obtained with other

methods. The results in rows 1 and 2 show that POLITY has effects with opposite signs

on the location and scale,21 suggesting that increasing the quality of the democracies

reduces de average surplus, but also increases the dispersion of observed surpluses.

Rows 3 to 5 of Table 6 report the quantile regression estimates obtained with the MM-

QR estimator presented in Section 3, and rows 6 to 8 display the jackknife-corrected

MM-QR estimates, which in this case are very similar to the original ones. Again,

we report in parenthesis the analytical standard errors based on an estimator of the

covariance matrix given by Theorem 3, and in square brackets standard errors obtained

by bootstrap (resampling by country), and note that in this example both sets of standard

errors are very similar.

For comparison, rows 9 to 11 display quantile regression estimates of the same model

using the method proposed by Canay (2011), which treats the fixed effects as location

shifts. Because the model contains a lagged dependent variable, we also estimated the

model using the method proposed by Galvão (2011).22 To allow the fixed effects to differ

across quantiles, Galvão’s (2011) estimator was applied to each quantile at the time;

these results are presented in rows 12 to 14. For the Canay (2011) and Galvão (2011)

estimators we report only bootstrap (resampling by country) standard errors.

20The estimates in the first row match those reported by Persson and Tabellini (2003) in col-

umn 4 of their Table 3.4. Notice, however, that the original data used in the book contained

some mistakes; the correct results and the data are available at Guido Tabellini’s web-page:

http://faculty.unibocconi.eu/guidotabellini/.
21Similar effects are observed for LSPL and OILIM
22We implemented the estimator using a grid search between 0.30 and 0.95 in steps of 0.01, and using

the lag of LSPL as an instrument for it.
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Table 6: The determinants of government surpluses

POLITY LYP TRADE P1564 PP65 LSPL OILIM OILEX YGAP

OLS

Location
0.12
(0.05)
[0.05]

−0.72
(0.47)
[0.50]

0.03
(0.01)
[0.01]

0.12
(0.03)
[0.03]

0.03
(0.07)
[0.08]

0.69
(0.03)
[0.04]

−0.05
(0.01)
[0.01]

−0.01
(0.02)
[0.02]

0.01
(0.02)
[0.02]

Scale
−0.10

(0.05)
[0.05]

−0.62
(0.81)
[0.76]

0.00
(0.01)
[0.01]

0.04
(0.03)
[0.03]

0.09
(0.07)
[0.07]

−0.08
(0.03)
[0.03]

0.01
(0.00)
[0.00]

0.02
(0.01)
[0.01]

−0.00
(0.01)
[0.01]

MM-QR

τ= .25
0.19
(0.06)
[0.07]

−0.24
(0.74)
[0.74]

0.03
(0.01)
[0.01]

0.09
(0.05)
[0.04]

−0.04
(0.10)
[0.11]

0.76
(0.05)
[0.03]

−0.06
(0.01)
[0.01]

−0.02
(0.03)
[0.03]

0.01
(0.04)
[0.03]

τ= .50
0.11
(0.05)
[0.05]

−0.76
(0.53)
[0.51]

0.03
(0.01)
[0.01]

0.12
(0.03)
[0.03]

0.03
(0.07)
[0.08]

0.68
(0.03)
[0.04]

−0.05
(0.01)
[0.01]

−0.00
(0.02)
[0.02]

0.01
(0.03)
[0.02]

τ= .75
0.03
(0.06)
[0.04]

−1.26
(0.65)
[0.87]

0.03
(0.01)
[0.01]

0.15
(0.04)
[0.04]

0.10
(0.08)
[0.08]

0.62
(0.04)
[0.05]

−0.04
(0.01)
[0.01]

0.01
(0.03)
[0.03]

0.01
(0.03)
[0.02]

MM-QR with jackknife bias correction

τ= .25
0.20
(0.06)
[0.07]

0.10
(0.74)
[0.74]

0.03
(0.01)
[0.01]

0.09
(0.05)
[0.04]

−0.06
(0.10)
[0.11]

0.76
(0.05)
[0.03]

−0.06
(0.01)
[0.01]

−0.02
(0.03)
[0.03]

0.01
(0.04)
[0.03]

τ= .50
0.11
(0.05)
[0.05]

−0.79
(0.53)
[0.51]

0.03
(0.01)
[0.01]

0.12
(0.03)
[0.03]

0.04
(0.07)
[0.08]

0.68
(0.03)
[0.04]

−0.05
(0.01)
[0.01]

−0.00
(0.02)
[0.02]

0.01
(0.03)
[0.02]

τ= .75
0.02
(0.06)
[0.04]

−1.65
(0.65)
[0.87]

0.04
(0.01)
[0.01]

0.16
(0.04)
[0.04]

0.13
(0.08)
[0.08]

0.61
(0.04)
[0.05]

−0.03
(0.01)
[0.01]

0.01
(0.03)
[0.03]

0.01
(0.03)
[0.02]

Canay

τ= .25 0.13
[0.06]

−0.84
[0.51]

0.03
[0.01]

0.15
[0.03]

0.05
[0.08]

0.74
[0.02]

−0.06
[0.01]

−0.02
[0.03]

0.05
[0.02]

τ= .50 0.10
[0.05]

−0.67
[0.49]

0.03
[0.01]

0.11
[0.03]

0.04
[0.08]

0.70
[0.03]

−0.05
[0.01]

−0.01
[0.03]

0.03
[0.03]

τ= .75 0.11
[0.05]

−0.76
[0.51]

0.03
[0.01]

0.10
[0.03]

0.04
[0.08]

0.65
[0.04]

−0.03
[0.01]

0.03
[0.03]

0.01
[0.02]

Galvão

τ= .25 0.15
[0.07]

−0.50
[0.61]

0.03
[0.01]

0.12
[0.05]

0.02
[0.08]

0.76
[0.05]

−0.06
[0.01]

−0.01
[0.04]

0.04
[0.03]

τ= .50 0.05
[0.04]

0.01
[0.32]

0.02
[0.01]

0.08
[0.02]

−0.01
[0.05]

0.71
[0.04]

−0.05
[0.01]

−0.00
[0.03]

0.01
[0.03]

τ= .75 0.06
[0.05]

−0.30
[0.59]

0.02
[0.01]

0.10
[0.04]

0.05
[0.08]

0.65
[0.06]

−0.03
[0.01]

0.00
[0.04]

0.01
[0.03]

The dependent variable is SPL; all regressions include country fixed effects. Unbalanced panel with 58

countries and 1659 observations. Analytical standard errors are in parenthesis and clustered standard

errors (estimated by bootstrap resampling countries) are in square brackets.
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For most variables, all quantile regression estimators lead to similar conclusions in

terms of the magnitude and significance of the estimates. For example, all methods

lead to very similar estimates of the coeffi cient on LSPL, the lagged dependent variable.

However, there are also some very important differences between the results obtained

with the different methods, especially between the results obtained with Canay’s (2011)

estimator and the results of less restrictive Galvão (2011) and MM-QR estimators.

Indeed, the results obtained with the Galvão and MM-QR estimators suggest that the

effect of the quality of the democracy is very heterogeneous, being large for countries

whose budget surplus is low relatively to that of countries with similar characteristics,

and negligible for countries with high budget surpluses relatively to that of countries

with similar characteristics. This pattern is in line with what could be expected from

the estimates of the location and scale functions, and it is particularly clear in the results

of the MM-QR estimator, for which the difference between the estimates for τ = 0.25

and τ = 0.75 is statistically significant at the 5% level. This finding contrasts sharply

with the results obtained with Canay’s (2011) estimator, which suggest that the effect of

the quality of the democracy is essentially the same across the three quartiles, a result

that does not accord with the estimates of the parameters in the scale function.

The time-series in this panel vary in length from 2 to 38 observations and therefore it

is proper to be concerned with the validity of estimators that require large T . To check

the robustness of the results, the estimations were repeated using only data for the 55

countries for which there are at least 10 observations; this reduces the total sample

size to 1640. The results obtained with all estimators were remarkably insensitive to

dropping the shorter series, and essentially the same estimates were obtained with the

two samples.

This data set is reasonably small and therefore all estimators are somewhat imprecise.

An example of the challenges posed by these data is that the three quartiles estimated

using Galvão’s method cross in 14 occasions. In these cases, if valid, the additional

structure imposed by the MM-QR estimator can be helpful. Overall, however, we find
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that in this particular application, the results obtained with Galvão’s (2011) method are

qualitatively similar to those obtained with the much simpler MM-QR estimator.

6.2. Returns to training

Chernozhukov and Hansen (2008) use the data studied by Abadie, Angrist, and Imbens

(2002) to illustrate the application of their instrumental variable quantile regression

(IVQR) estimator. Here we use the same data to illustrate the application of the MM-

QR estimator in a situation where one of the explanatory variables of the model is

endogenous.

Briefly, these data were obtained from a randomized experiment performed under the

Job Training Partnership Act in which individuals were randomly assigned the offer of

training, but had the option to reject it. Because only 60% of those offered training

accepted the offer, the actual training is self-selected but the randomly assigned offer

provides a credible instrument for it.

The data used by Chernozhukov and Hansen (2008) contains information on 5102

adult males. Besides details on training assignment and actual training status, the data

contains information on earnings and on a number of individual characteristics such as

age, education, and ethnic background. Further details on the data are provided in

Abadie, Angrist, and Imbens (2002) and Chernozhukov and Hansen (2008).

Table 7 reports different estimates of the returns to training at a range of conditional

quantiles, and the corresponding analytical standard errors obtained from suitable esti-

mates of the covariance matrix. As in Chernozhukov and Hansen (2008), for brevity we

do not report the estimates of the parameters associated with the controls.

The first row of Table 7 reports the estimates of the returns to training obtained with

Koenker and Bassett’s (1978) estimator that ignores the possible endogeneity of the

treatment status; these estimates are all positive and statistically and economically sig-

nificant, suggesting that the training had a strong positive impact across the conditional

distribution, especially in its center and upper tail.
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Table 7: Returns to training at different quantiles

τ = .15 τ = .25 τ = .50 τ = .75 τ = .85

QR 1187
(209)

2510
(360)

4420
(596)

4678
(901)

4807
(991)

IVQR −200
(630)

500
(708)

300
(964)

2700
(1510)

3200
(1616)

MM-QR 211
(810)

389
(782)

1008
(855)

1972
(1327)

2575
(1713)

5102 observations; analytical standard errors in square brackets.

This contrasts with the results obtained using Chernozhukov and Hansen’s (2008)

estimator, where actual training status is instrumented with the assignment indicator.23

Indeed, the results in the second row of Table 7 suggest that the training only had

an economically and statistically significant impact on the extreme upper tail of the

conditional distribution.

The results obtained with the MM-QR, in which the actual training status is again

instrumented with the assignment indicator, paint a similar picture. Indeed, the effect

of the treatment status variable is positive but not statistically significant at the 10%

level both in the location and in the scale functions, suggesting that the training is

unlikely to have had a significant impact on the lower tail of the distribution and, at

best, may have had some impact on the upper tail.24 The third row of Table 7 reports the

MM-QR estimates of returns to training at a range of quantiles, and the corresponding

standard errors obtained from an estimator of the covariance matrix implied by Theorem

5. These results confirm that the effect of the training in the lower tail of the conditional

distribution was neither statistically nor economically significant. This is in line with

the IVQR results and contrasts with the results that ignore the endogeneity of the

treatment indicator. The MM-QR estimates for the impact of the training in the upper

23The estimator was implemented as in Chernozhukov and Hansen (2008); the reported standard

errors are obtained from the same article.
24The estimates of the training parameter in the location and scale functions are, respectively, 1331 (p-

value: 0.11) and 956 (p-value: 0.12). Notice that if the location-scale model is adequate, the conditional

mean will be a conditional quantile and the slope parameters will be smaller than 1331 in the quantiles

below the mean, and lager for the quantiles above.
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tail are sizable, but never statistically significant, even at the 10% level. Considering the

precision of the estimates, however, the MM-QR and IVQR results are reasonably close

and effectively lead to the same conclusion:25 allowing for the possible endogeneity of

the treatment status we find that, if anything, the training only had an impact on the

upper tail of the conditional distribution.

In these linear models, the validity of the MM-QR depends on assumptions that are

stronger than those required by the IVQR but, when these assumptions are valid, the

MM-QR has some potential advantages. For example, in this sample, the five structural

quantile functions estimated by IVQR cross more than 200 times, whereas the MM-

QR estimator leads to estimates of these functions that do not cross.26 Imposing this

restriction, which is necessarily true, may result in effi ciency gains and improved small-

sample behavior, as documented by Zhao (2000).

7. CONCLUSIONS

In a conditional location-scale model, the information provided by the conditional

mean and the conditional scale function is equivalent to the information provided by

regression quantiles in the sense that these functions completely characterize how the

regressors affect the conditional distribution. This is the result we use to estimate quan-

tiles from estimates of the conditional mean and of the conditional scale function. Our

approach is more restrictive than the traditional quantile regression, but we believe that

the additional structure we impose can be useful in many applied settings. In particular,

our approach provides an easy way to estimate regression quantiles in situations where

using the traditional approach that is diffi cult or impossible.

25We note that our estimates are even closer to the ones obtained using the fully automated plug-in

estimator of Kaplan and Sun (2017).
26It is possible to combine the IVQR with the method proposed by Chernozhukov, Fernández-Val,

and Galichon (2010) to obtain structural quantile functions that do not cross.
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The two very different applications we present illustrate that our method leads essen-

tially to the same conclusions that are obtained with methods that are computationally

much more demanding. This suggests that the proposed estimator can, at least, be

useful in an exploratory phase, for example to provide starting values for other methods

and to guide in the choice of the limits of the gird searches used in the Chernozhukov

and Hansen (2008) and Galvão (2011) estimators.

Even when the effects of the regressors on the distribution of interest are not limited

to their effects on the location and scale functions, i.e., when the location-scale model

is inadequate, making a serious effort to model the heteroskedasticity can still be useful

in applied work. Heteroskedasticity is often viewed as a nuisance, or interesting only

inasmuch as knowledge of it can be used to improve the estimation of the conditional

mean (see, e.g., Leamer, 2010, and Romano andWolf, 2017).27 However, the specification

and estimation of the scale function is a simple and convenient way of gaining information

on how the regressors affect features of the conditional distribution of interest other than

its central tendency. When the location-scale model not appropriate, the information

that can be obtained from the location and scale functions is not as rich as that provided

by conditional quantiles, but may be interesting in itself, especially when estimation of

conditional quantiles is not practical.

There are a number of aspects of the proposed approach that would be interesting to

investigate. In the present paper we do not develop tests for the assumption that the

location-scale model is adequate in the sense that the effects of the regressors on the

distribution of interest are limited to their effects on the location and scale functions.

In Section 2 we suggested that such tests can be constructed as tests for overidentifying

restrictions, but it may be possible to develop simpler regression-based procedures. Also,

following Hahn and Newey (2004) and most of the ensuing literature (e.g., Galvão and

Kato, 2018), we assumed that the data are independent across i and t, and it would be

27Of course, heteroskedasticity can also be of interest in itself; the literature on ARCH/GARCH

models is a leading example of that (see, e.g., Engle, 2001).
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interesting to study the conditions under which it is possible to relax this assumption.

Additionally, it would be interesting to extend our results to the case where the mod-

els have both individual and time effects; we are not aware of any quantile regression

estimator that allows the inclusion of two sets of fixed effects but this problem should

be tractable using our approach. Finally, it would naturally be interesting to see if in

other applications the results obtained with the proposed method are also similar to

those obtained with computationally more demanding estimators, as was the case in the

applications we considered.

APPENDIX

A1: Assumptions

The results in the paper were derived under the following assumptions.

(P): On the parameter space

(1) (αi, δi)
n
i=1 ∈ Θ1, (β, γ) ∈ Θ2, where Θ1 and Θ2 are compact subsets of R2n and

R2k, respectively.

(2) The true parameter values are interior points of Θ1 and Θ2.

(3) Let FU be the c.d.f. of U satisfying (U1) below and F−1
U its inverse. τ ∈ T =

(ε, 1− ε), for some ε > 0. The interval (limτ↘ε q(τ) ; limτ↗(1−ε) q(τ)) is bounded.

(U): On the error term

(1) The random variables Uit are i.i.d. (across i and t) and independent of Xit and Zit.

(2) The random variables Uit have a continuous density function fU and fU(u) > ζ >

0, ∀u ∈ supp(U).28

28Assumption (U2) implies that the c.d.f. FU is strictly monotone and therefore that the quantiles

q(τ), τ ∈ T are unique.
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(3) E|U |2+ν <∞ for some ν > 0.29

(XZ): On the regressors

(1) The sequence of random k-vectors {Xit} is i.i.d. for any fixed i and independent

across t.

(2) Zit is a random k-vector defined by Zitl = Zl(Xit), for l = 1, . . . , k, where Zl : R→

R is a known function of class C1 for a.e.-X. (Zitl denotes the l-th coordinate of

the vector Zit.)

(3) There exists a ξ > 0 such that P{infi,t(δi + Z ′itγ) > ξ} = 1.

(4) maxi≤nE|Xi1l|2+ν < K <∞ for some K and ν > 0, for l = 1, . . . , k1. (Xi1l denotes

the l-th coordinate of the vector Xi1.)

(5) maxi≤nE|Zi1l|4+ν < K <∞ for some K and ν > 0, for l = 1, . . . , k2.

(6) (1/n)
∑

iE[(Xi1− X̄i)(Xi1− X̄i)
′] is uniformly p.d. and has a constant limit QXX .

(7) (1/n)
∑

iE[(Zi1 − Z̄i)(Zi1 − Z̄i)′] is uniformly p.d. and has a constant limit QZZ .

(8) maxi≤nE|Zi1aZi1bXi1c|2+ν < K <∞ and maxi≤nE|Zi1aXi1cXi1d|2+ν < K <∞ for

some K and ν > 0, for a, b = 1, . . . , k2 and c, d = 1, . . . , k1.
30

(9) The matrices (1/n)
∑

iE[σ2
i1(Xi1−X̄i)(Xi1−X̄i)

′] and (1/n)
∑

iE[σ2
i1(Zi1−Z̄i)(Xi1−

X̄i)
′] have constant limits denoted by PXX and PXZ , respectively.

(DC): On the regressors and instruments

(1) E[|Dl|2+ν ] < K < ∞ for some K and ν > 0, for l = 1, . . . , kD. (Dl denotes the

l-th coordinate of the vector D.)

29Assumption (U3) implies that E|V |2+ν , V = 2U [I{U ≥ 0} − P{U ≥ 0}]− 1, is also finite.
30Applying Minkovski’s inequality it easy to see that this assumption implies that the (2 + ν)-th

absolute moments of σitZitX ′it and σitXitX
′
it exist and are uniformly bounded.
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(2) E[|C1l |4+ν ] < K < ∞ (l = 1, . . . , k1) and E[|C2l |2+ν ] < K < ∞ (l = 1, . . . , k2) for

some K and ν > 0.

(3) E[|σ′(X ′γ)|2+ν ] < K <∞ and E[1/(|σ(X ′γ)|2+ν)] < K <∞.

(4) E[CC ′] is non-singular.

(5) E[(σ′/σ)|U |CX ′] − (E[(1/σ) sign(U)CX ′])(E[(1/σ)CX ′])−1(E[(σ′/σ)UCX ′]) and

E[(1/σ)CX ′] are non-singular.

A2. Proofs

Proof (Theorem 1):

Part I: Consistency of β̂. The result is well know. For future reference write, which

is possible under assumption (XZ6) for n and T large,

β̂ − β =

(
1

nT

∑
it

X̃itX̃
′
it

)−1
1

nT

∑
it

X̃itRit,

where
∑

it is used as shorthand for
∑

i

∑
t, X̃it = Xit − X̄i, X̄i = (1/T )

∑
tXit, and X̃it

converges to 0 in L2. It is also well know that under our assumptions the consistency

also holds when n→∞ for fixed T , or T →∞ for fixed n.

Part II: Consistency of γ̂. To simplify notation put θ̂it = θit(R̂it, η̂) = 2R̂it(I{R̂it >

0} − η̂) and θit = θit(R̂it, η). Now notice that

δ̂i − δi =
1

T

∑
t

(θ̂it − σit)− Z̄i′(γ̂ − γ)

and

R̂it = Rit − R̄i,T − X̃ ′it(β̂ − β),
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where R̄i,T = (1/T )
∑

tRit, i = 1, . . . , n. Consequently, defining Z̃it = Zit − Z̄i, Z̄i =

(1/T )
∑

t Zit, the concentrated estimation equation for γ can be written as(
1

nT

∑
it

Z̃itZ̃
′
it

)
(γ̂ − γ) =

1

nT

∑
it

Zit

[
(θ̂it − σit)−

1

T

∑
t

(θ̂it − σit)
]

=
1

nT

∑
it

Z̃it(θ̂it − σit)

=
1

nT

∑
it

Z̃it(θit − σit) + oP (1).

The oP (1), (n, T ) → ∞, remainder is justified by the fact that (letting || · || denote the

L2-norm), ∥∥∥∥∥(η̂ − η)
1

nT

∑
it

Z̃itR̂it

∥∥∥∥∥ ≤ 2||β̂ − β|| ||QXZ ||

+ 2

∥∥∥∥∥ 1

nT

∑
it

Z̃it(Rit − R̄i,T )

∥∥∥∥∥
≤ o(1) + 2

∥∥∥∥∥ 1

nT

∑
it

Z̃itRit

∥∥∥∥∥ ,
and the second term on the right-hand side is also o(1) (actually O(1/nT )).

For what follows we need to introduce extra notation. Rewrite θit as

θit = 2(Rit − R̄i,T − X̃ ′it(β̂ − β))[I{Rit − R̄i,T − X̃ ′it(β̂ − β) > 0} − η]

= θit(R̄i,T , β̂ − β),

and let,

Mit = Mit(R̄i,T , β̂ − β) = Z̃it[θit(R̄i,T , β̂ − β)− σit],

Mn,t = Mn,t(R̄i,T , β̂ − β) =
1

n

∑
i

Mit, M0
t = E[Mn,t(R̄i,T , 0)].

Using this notation one may write,(
1

nT

∑
it

Z̃itZ̃
′
it

)
(γ̂ − γ) =

1

T

∑
t

Mn,t.
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The proof proceeds by establishing two claims:

Claim 1: (1/T )
∑

t(Mn,t −M0
t )

P−→ 0 as (n, T )→∞;

Claim 2: (1/T )
∑

tM
0
t = o(1) as T →∞.

These claims prove that (1/T )
∑

tMn,t and, thus, (γ̂ − γ) is oP (1) as (n, T )→∞.

Proof of Claim 1:

||Mn,t −M0
t || ≤ ||Mn,t(R̄i,T , β̂ − β)−Mn,t(R̄i,T , 0)||+ ||Mn,t(R̄i,T , 0)−M0

t ||

Since f(v) = vI{v > 0} is Lipschitz, (||f(v − m) − f(v)|| ≤ 2||m||), the first term is

bounded by ∥∥∥∥2
1

n

∑
i

Z̃it [(Rit − R̄i,T − X̃ ′it(β̂ − β)) I{Rit − R̄i,T > X̃ ′it(β̂ − β)}

− (Rit − R̄i,T ) I{Rit − R̄i,T > 0}]
∥∥∥∥

≤ 4||(β̂ − β)|| 1
n

∑
i

||Z̃it|| ||X̃it||.

This term is o(1) uniformly in t because β̂ is consistent in L2 and Zit and Xit have, by

assumption, uniformly bounded second moments. Also, (1/T )
∑

t ||Mn,t(R̄i,T , 0)−M0
t ||

converges to 0 in L2 since it has mean 0 and a variance that, owing to the independence

over i of Uit, is of order O(1/n1/2).

Proof of Claim 2: A Taylor series expansion around R̄i,T = 0 yields,

1

T

∑
t

M0
t =

1

T

∑
t

E[Mn,t(0, 0)] + ξn,T .

The leading term is 0 since

E [Mit(0, 0)] = E{σitZ̃it[2Uit(I{Uit > 0} − η)− 1]}

and E [U ] = 0 and E [|U |] = 1 imply that E[Uit(I{Uit > 0} − η)] = E[Uit(I{Uit > 0}] =

1/2.

The remainder is

ξn,T =
1

nT

∑
it

µit(R̄
?
i,T )R̄i,T ,
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where ||R̄?
i,T || ≤ ||R̄i,T || and

µit(R̄
?
i,T ) =

∂E [Mit(y, 0)]

∂y

∣∣∣∣
y=R̄?i,T

= −2Z̃it{(Rit − R̄?
i,T )fRit(R̄

?
i,T ) + E[I{Rit − R̄?

i,T ) > 0} − η]},

where fRit(·) is the density of Rit, that is fU/σit, and all expectations are conditional

on the regressors. Under our assumptions on the parameter space and on the moments

of U and Zit, there exists a K < ∞ such that, ||Rit|| ≤ [‖δi‖+ ‖γ‖ ‖Zit‖] × ‖Uit‖ ≤

K. That is, Rit, and hence R̄i,T and R̄?
i,T , are uniformly L2-bounded. Since fU/σit is

continuous and σit is uniformly bounded away from 0, fRit(R̄
?
i,T ) is uniformly bounded

and, consequently, so is µit(R̄
?
i,T ). Therefore, for some finite K ′

||ξn,T || ≤ K ′

∥∥∥∥∥ 1

nT

∑
it

R̄i,T

∥∥∥∥∥
≤ K ′

1

n

∑
i

||R̄i,T ||

≤ K ′
1

n

∑
i

{
(1/T 2)E[U2

i1]
∑
t

σ2
it

}1/2

≤ T−1/2K ′′,

for some K ′′ ≤ ∞. This completes the proof of Part II.

Part III: Consistency of q̂(τ)

Let q̂ solve minq Sn,T (q) = (1/nT )
∑

it ρτ (R̂it−qσ̂it), with σ̂it = δ̂i+Z ′itγ̂. By well-known

arguments, it suffi ces to show that

Sn,T (q)
P−→ E[ρτ (Uit − q)].

The compactness of the parameter space (or the convexity of ρτ ) implies that the con-

vergence is uniform in q.

The sample objective function can be written as,

Sn,T (q) = (1/nT )
∑
it

ρτ (Rit − qσit − hit,T ),
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with

hit,T = R̄i,T + X̃ ′it(β̂ − β) + q
1

T

∑
t

(θ̂it − σit) + qZ̃ ′it(γ̂ − γ).

Since ||ρτ (v − h)− ρτ (v)|| ≤ ||h||,∥∥∥∥∥(1/nT )
∑
it

ρτ (Rit − qσit − hit,T )− (1/nT )
∑
it

ρτ (Rit − qσit)
∥∥∥∥∥ ≤ (1/nT )

∑
it

||hit,T ||,

and previous results show that the right-hand side is o(1). The proof is completed by

noting that the LLN implies that

(1/nT )
∑
it

ρτ (Rit − qσit)
P−→ E[ρτ (Uit − q)]. �

For simplicity, the proofs of the other theorems will be decomposed into a series of

partial results (lemmata). Some are merely instrumental, others may be of interest on

their own. For economy of space we will not refer to any of the assumption above in the

statement of these results. In rest of the appendix we will use the following notation

∆1i = ∆1in,T =
√
T (α̂i − αi),

∆2 = ∆2n,T =
√
nT (β̂ − β),

∆3i = ∆3in,T =
√
T (δ̂i − δi),

∆4 = ∆4n,T =
√
nT (γ̂ − γ),

∆5 = ∆5n,T =
√
nT (q̂ − q(τ)).

Lemma 1 If n/T → 0 as (n, T )→∞,

max
1≤i≤n

|α̂i − αi| = oP (1).

Proof: Standard least squares results show that

∆2n,T = Q−1
XX

1√
nT

∑
it

σit(Xit − X̄i)Uit + oP (1)

where, as before, X̄i = (1/T )
∑

tXit, and

∆1in,T = − 1√
n
X̄ ′i∆2n,T +

1√
T

∑
t

σitUit =
1√
T

∑
t

σitUit + oP (1).
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For any n and T , E[α̂i − αi] = 0, V (β̂ − β) = O(1/nT ), and

V (α̂i − αi) = X̄ ′iV (β̂ − β)X̄i +
E [U2]

T 2

∑
t

σ2
it = O(1/nT ) +O(1/T ) = O(1/T ).

Consider now max1≤i≤n |α̂i − αi|.

P{max
1≤i≤n

|α̂i − αi| > ε} ≤
∑
i

P{|α̂i − αi| > ε}

≤ 1

ε2

∑
i

V (α̂i − αi)

≤ 1

Tε2

(
1

n

∑
i

X̄ ′iV (∆2n,T )X̄i

)
+
E [U2]

ε2
n

T

(
1

nT

∑
it

σ2
it

)
≤ O(1/T ) +

n

T
O(1) = o(1) if n/T → 0. �

Lemma 2 Let R̂it = Yit − α̂i −Xitβ̂ and η = E(I{U > 0}). Then, as (n, T )→∞ with

n = o(T ),

1√
T

∑
t

[2R̂it(I{R̂it > 0}−η)−σit]−
1√
T

∑
t

σit[2Uit(I{Uit > 0}−η)−1] = oP (1) (i = 1, . . . , n),

and

1√
nT

∑
it

Zit[2R̂it(I{R̂it > 0}−η)−σit]−
1√
nT

∑
it

Zitσit[2Uit(I{Uit > 0}−η)−1] = oP (1).

Proof: Put,

Ln,T (Xit,∆) = (1/
√
T )∆1i + (1/

√
nT )X ′it∆2,

and

M2n,T (∆) =
1√
nT

∑
it

Zit[2R̂it(I{R̂it > 0} − η)− σit]

=
1√
nT

∑
it

Zit[(2σitUit − Ln,T (Xit,∆))

× (I{σitUit − Ln,T (Xit,∆) > 0} − η)− σit]

(∆ = ((∆1i)
n
1 ,∆2)), and

M̃2n,T (∆) = M2n,T (∆)− E[M2n,T (∆)].

41



We will first prove the stochastic equicontinuity of the empirical process M̃2n,T (·). The

proof will follow Andrews (1994). The function

m(U,Z,X, δi, γ,∆) = [2σitUit − Ln,T (Xit,∆)][I{σitUit − Ln,T (Xit,∆) > 0} − η]

is of CV-type I with envelope

sup
δi,γ,∆

m(U,Z,X, δi, γ,∆) = c1 + c2|U |+ c3‖Z‖|U |+ c4‖X‖

for some constants ci. Pollard’s entropy condition (Andrews, 1994, section 4.2) is satisfied

if

lim
n→∞

(1/n)
∑
i

(E[‖Zi1‖2+ν + 1) sup
δi,γ,∆

‖m(U,Z,X, δi, γ,∆)‖2+ν <∞.

It suffi ces that,

lim
n→∞

{
E|U |2+ν +

1

n

∑
i

[E‖Zi1‖4+ν + E|U |2+νE‖Xi1‖2+ν + E|U |2+νE‖Zi1‖2+ν

+ E|U |2+νE‖Xi1Zi1‖2+ν + E‖Xi1‖2+ν ]

}
<∞.

Assumptions (U2) and (XZ 4, 5, and 8) yield the desired result and prove the stochastic

equicontinuity of M̃2n,T (·).

Stochastic equicontinuity and the fact thatmaxi |(1/
√
T )∆1i| = oP (1) and (1/

√
nT )∆2 =

oP (1) imply (Andrews, 1994, p. 2265) that

M̃2n,T (∆)− M̃n,T (0) = oP (1).

Consequently,

M2n,T (∆) = E[M2n,T (∆)] + M̃2n,T (0) + [M̃2n,T (∆)− M̃2n,T (0)]

= E[M2n,T (∆)] + M̃2n,T (0) + oP (1)

= E[M2n,T (∆)] +M2n,T (0),

since E[M2n,T (0)] = 0.
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The lemma is proved as a first-order Taylor series expansion of E[Mn,T (∆)] around

∆ = 0 yields

E[M2n,T (∆)] = −E[I{Uit > 0} − η]
1√
nT

∑
it

E[Ln,T (Xit,∆)] = 0.

Now put

M1n,T (∆) =
1√
T

∑
t

[2R̂it(I{R̂it > 0} − η)− σit].

The same arguments yield

M1n,T (∆) = M1n,T (0) + oP (1). �

Lemma 3 Let,

η̂ =
1

nT

∑
it

I{R̂it > 0}.

Then,
√
nT (η̂ − η) = OP (1) as (n, T )→∞ with n = o(T ).

Proof: Using the notation of lemma 2, let,

R̃n,T (U,X,∆) =
1

nT

∑
it

I{σitUit−Ln,T (Xit,∆) > 0}− 1

nT

∑
it

E[I{σitUit−Ln,T (Xit,∆) > 0}].

The process R̃n,T (·) satisfies trivially Pollard’s entropy condition and so it is equicontin-

uous (see Andrews, 1994, p. 2273). Since maxi |(1/
√
T )∆1i| = oP (1) and (1/

√
nT )∆2 =

oP (1),

R̃n,T (·,∆) = R̃n,T (·, 0) = oP (1)

since R̃n,T (·, 0) = oP (1) by the law of large numbers. Now, a Taylor series expansion

yields,
√
nT (η̂ − η) = −fU(0)√

nT

∑
it

1

σit

[
1√
T

∆1i +
1√
nT

X ′it∆2

]
+ oP (1),
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which establishes the result for (1/nT )
∑

it(1/σit)Xit = OP (1) and

1√
nT

∑
it

1

σit

1√
T

∆1i =
1√
nT

∑
it

1

σit

1√
T

[
− 1√

n
X̄ ′i∆2n,T +

1√
T

∑
t

σitUit

]
= OP (1) +

1√
nT

∑
it

πi,TσitUit

= OP (1),

where the last equality follows from applying the central limit theorem (with πi,T =

(1/T )
∑

t(1/σit)). �

Proof (Theorem 2): The moment conditions defining the estimators of δi (i = 1, . . . , n)

and γ are,

1√
T

∑
t

{
[2R̂it(I{R̂it > 0} − η̂)− σit]−

1√
T

∆3i −
1√
nT

Z ′it∆4

}
= 0

1√
nT

∑
it

Zit

{
[2R̂it(I{R̂it > 0} − η̂)− σit]−

1√
T

∆3i −
1√
nT

Z ′it∆4

}
= 0,

which can be written as

Gn

(
∆3i

∆4

)
=

(
M1n,T (0)

M2n,T (0)

)
+ (η̂ − η)

(
0

1√
nT

∑
it Zit[2σitUit − Ln,T (Xit,∆1i,∆2)]

)
with

Gn =

(
1 (1/

√
n)Z̄ ′i

(1/
√
n)
∑

i Z̄i (1/nT )
∑

it ZitZ
′
it

)
.

where, as before, Z̄i = (1/T )
∑

t Zit. Lemma 3 implies that the second term on the

right-hand side is oP (1). Solving the system for ∆4 gives,

QZZ∆4 =
1√
nT

∑
it

σit(Zit − Z̄i)[2Uit(I{Uit > 0} − η)− 1].

The central limit theorem establishes the desired result. �

Lemma 4 If n/T → 0 as (n, T )→∞,

max
1≤i≤n

|δ̂i − δi| = oP (1).
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Proof: The first equation of the system in the proof of Theorem 2 implies that (adopting

the same notation)
1√
T

∆3i =
1√
T
M1n,T (0)− 1√

nT
Z̄ ′i∆4.

For any ε > 0,

P

{
max
1≤i≤n

∣∣∣∣ 1√
T

∆3i

∣∣∣∣ > ε

}
≤
∑
i

P

{∣∣∣∣ 1√
T
M1n,T (0)

∣∣∣∣ > ε

2

}
+
∑
i

P

{∣∣∣∣ 1√
nT

Z̄ ′i∆4

∣∣∣∣ > ε

2

}

≤ 2E[V 2]

ε2
n

T

(
1

nT

∑
it

E[σ2
it]

)

+
1

T

(
1

n

∑
i

E[Z̄ ′iE[∆4∆′4]Z̄i]

)
=
n

T
O(1) +O(T−1). �

Proof (Theorem 3): Let ψτ (A) = −(I{A ≤ 0}−τ), ∆ = ((∆1i)
n
1 , ∆2, (∆3i)

n
1 , ∆4,∆5),

Ψn,T (U,X,Z,∆) =
1√
nT

∑
it

σ̂itψτ

[
R̂it − q̂σ̂it

]
=

1√
nT

∑
it

{
[σit + LnT (Zit, (∆3i)

n
1 , ∆4)]ψτ (σitUit − LnT (Xit, (∆1i)

n
1 , ∆2))

−
(
q(τ)− 1√

nT
∆5

)
(σit + LnT (Zit, (∆3i)

n
1 , ∆4))

}
= oP (1)

and

Ψ̃n,T (U,X,Z,∆) = Ψn,T (U,X,Z,∆)− E[Ψn,T (U,X,Z,∆)].

The boundedness of ψτ (·) and the moment conditions suffi ce to yield the stochastic

equicontinuity of Ψ̃n,T (U,X,Z,∆). As,maxi |(1/
√
T )∆1i|, (1/

√
nT )∆2,maxi |(1/

√
T )∆3i|,

(1/
√
nT )∆4, and (1/

√
nT )∆5 are all oP (1) as (n, T )→∞ with n/T → 0,

Ψ̃n,T (U,X,Z,∆)− Ψ̃n,T (U,X,Z, 0) = oP (1).
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Consequently (note that E[Ψn,T (U,X,Z, 0)] = 0),

Ψn,T (U,X,Z,∆) = E[Ψn,T (U,X,Z,∆)] + Ψn,T (U,X,Z, 0) + oP (1).

The first term on the right-hand side can be approximated to the first order around

∆ = 0 by

E[Ψn,T (U,X,Z,∆)] = −fU(q(τ))

{
1√
nT

∑
it

LnT (Xit, (∆1i)
n
1 , ∆2)

+ q(τ)LnT (Zit, (∆3i)
n
1 , ∆4) +

1

nT

∑
it

σit∆5

}
.

The second term

Ψn,T (U,X,Z, 0) =
1√
nT

∑
it

σitψτ (Uit − q(τ))

is an asymptotically normal sequence. Putting the two terms together,

√
n∆̄1 + ¯̄X ′∆2 + q(τ)[

√
n∆̄3 + ¯̄Z ′∆4] =

1

fU(q(τ))

1√
nT

∑
it

σitψτ (Uit − q(τ)) + oP (1),

with ∆̄1 = (1/n)
∑

i ∆1i and ¯̄X = (1/nT )
∑

itXit (and likewise for ∆̄3 and ¯̄Z). Note

that,
√
n∆̄1 + ¯̄X ′∆2 =

1√
nT

∑
it

σitUit

and
√
n∆̄3 + ¯̄Z ′∆4 =

1√
nT

∑
it

σitVit.

Consequently,

µσ∆5 =
1√
nT

∑
it

σit

[
1

fU(q(τ))
ψτ (Uit − q(τ)) + Uit + q(τ))Vit

]
.

Combining this result with the representation of ∆4 in the proof of Theorem 2 and

with the usual representation of the least squares estimator ∆2 gives,QXX O O
O QZZ O
0′ 0′ µσ


∆2

∆4

∆5

 =


1√
nT

∑
it σit(Xit − X̄i)Uit

1√
nT

∑
it σit(Zit − Z̄i)Vit

1√
nT

∑
it σitWit

 .
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where O and 0 denote a k × k matrix and k-vector of 0s, respectively. The result then

follows from the central limit theorem and the delta-method. �

Lemma 5 (Quantiles with Measurement error) Consider three unobserved random

variables (U,W1,W2) with joint density fUW1W2(·) bounded away from zero and of class

C2. Assume further that (W1,W2) have moments of order 3. The measurement error

contaminated observations of U are given by

U∗ =
U +W2

1 +W1

.

Then, letting q0 = q0(τ) = F−1
U (τ) denote the τ -th marginal quantile of U ,

P{U∗ ≤ q0} = τ + fU |W (q0|0)E[q0W1 −W2]

+
(
q0f 1

U |W (q0|0) + (1/2)(q0)2fuU |W (q0|0)
)
E
(
W 2

1

)
+
(
(1/2)fuU |W (q0|0)− f 2

U |W (q0|0)
)
E
(
W 2

2

)
−
(
q0fuU |W (q0|0) + f 1

U |W (q0|0)− q0f 2
U |W (q0|0)

)
E (W1W2) +O(||W ||3)

where fU |W is the conditional density of U given W = (W1,W2), fuU |W = ∂fU |W (u|w)/∂u

and f jU |W = ∂fU |W (u|w)/∂wj (cf. Chesher, 2017).

Proof: The data identifies q1(τ) = F−1
U∗ (τ) and we want to approximate q0(τ) = F−1

U (τ).

Due to the contamination E[I(U∗ ≤ q0)] 6= τ , implying that,

EU |W [I(U ≤ q0(1 + w1)− w2)|W1 = w1,W2 = w2] = FU |W (q0(1 + w1)− w2) 6= τ .

Regard FU |W (q0(1 + w1) − w2) as a function of q (say, h(q)) and expand it around q0

given W = (w1, w2),

h(q) = EU |W I(U ≤ q0) + fU |W (q0|w)(q − q0) + (1/2)fuU |W (q0|w)(q − q0)2 +O(|q − q0|3)

with q− q0 = q0W1−W2. We now expand this partial derivative around W = 0. Notice

that

fU |W (q0|w) = fU |W (q0|0) +
2∑
j=1

f jU |W (q0|0)Wj +O(||W ||2)
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and that,

fuU |W (q0|w) = fuU |W (q0|0) +O(||W ||).

Plugging back in the expansion for h(q) and taking expectations with respect to W =

(W1,W2) one gets,

EW [FU |W (q)] = τ + fU |W (q0|0)E[q0W1 −W2]

+
(
q0f 1

U |W (q0|0) + (1/2)(q0)2fuU |W (0|0)
)
E
(
W 2

1

)
+
(
(1/2)fuU |W (0|0)− f 2

U |W (q0|0)
)
E
(
W 2

2

)
−
(
q0fuU |W (q0|0) + f 1

U |W (q0|0)− q0f 2
U |W (q0|0)

)
E (W1W2) . �

Proof (Theorem 4): The linear representation of the quantile estimator yields (q ≡

q(τ)) as n approaches ∞,

1

nT

∑
it

fU∗it(q)(q̂ − q) =
1

nT

∑
it

(τ − E[I{U∗it ≤ q}]) + oP (1). (10)

We will use lemma 5 with

W1 = W1it = (1/σit)S̄i − (1/σit)Z̃
′
itγT

and

W2 = W2it = −R̄i/σit,

to approximate E[I{U∗it ≤ q}]. Under our assumptions W1 and W2 are independent over

the i dimension and i.i.d. over t. To compute the (approximated) moments of W1 and

W2 it is useful to establish some notation and basic results:

S̄i,T =
1

T

∑
a

[2(Ria − R̄i,T )I{Ria − R̄i,T > 0} − σia]

:=
1

T

∑
a

s(Ria, R̄i,T )

:=
1

T

∑
a

sia
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γT = γ̂ − γ = Q−1
ZZ

1

T

T∑
a

1

n

n∑
j

Z̃jasja.

For a (integrable) function g(Uit, R̄i) let EU |W [g(Uit, R̄i)] =
∫
g(u, r)fU |W (u|r)du de-

note the conditional expectation given R̄. A power expansion yields,

E[sia] = EWEU |W s(Ria, R̄i,T )

=
fU |W (0|0)

σia
E[R̄2

i ] +O(E[|R̄i|3])

=
E[U2]fU |W (0|0)

T

σ2
i

σia
+O(1/T 2),

where σ2
i = (1/T )

∑T
a σ

2
ia.
31 A similar expansion argument in powers of R̄i yields,

E[s(Ria, R̄i)s(Rib, R̄i)] = 4σ2
iaE[(UI(U > 0)− 1)2]

+ 4E[I(Uia > 0)I(Uib > 0)]E[R̄2
i ] +O(|R̄i|3).

Furthermore, for i 6= j

E[s(Ria, R̄i)s(Rjb, R̄j)] = E[s(Ria, R̄i)]E[s(Rjb, R̄j)]

=
(E[U2])2f 2

U |W (0|0)

T 2

σ2
iσ

2
j

σiaσja

= O(1/T 2).

31It is possible to compute explicitly the marginal expectation with respect to U . Making Dia,T =

(1/T )
∑T
t6=a σitUit,

E[sia] = σiaE

[
2
T − 1

T
(Uit −Dia,T )I{Uia > Dia,T } − 1

]
= −σia

T
+
σia(T − 1)fU (0)

T

E
(
U2
)

(T − 1)σ2ia
σ2i,(−a)

= −σia
T

+
fU (0)E(U2)

T

σ2i,(−a)

σia

with σ2i,(−a) := 1
T−1

∑T
a 6=t σ

2
ia.
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From the expression for E[sia] it follows directly that,

E[γT ] =
E[U2]fU |W (0|0)

T

1

nT

∑
it

Q−1
ZZZ̃it

σ2
i

σit
+O(1/T 2)

:=
E[U2]fU |W (0|0)

T
Γ +O(1/T 2),

which gives the expression for the O(1/T ) term in the bias of γ̂, that is, Bγ
T .

It is now easy to establish that,

E[W2it ] = E[−R̄i/σit] = 0, (11)

E[W1it ] =
E (U2) fU |W (0|0)

T

(
πi σ2

i

σit
− Z̃ ′itΓ

)
, (12)

with πi = (1/T )
∑T

a (1/σia).

Let us now turn to the second moments of W :

E[W 2
2it

] =
E[R̄2

i ]

σ2
it

=
E[U2]

T

σ2
i

σ2
it

, (13)

and

E[W 2
1it

] =
E[S̄2

i ]

σ2
it

+ o(1)

=
1

T 2

T∑
a

T∑
b

E[s(Ria, R̄i)s(Rib, R̄i)]

=
4

T

{
E[(UI(U > 0)− 1)2] + E

(
U2
)

(1− FU |W (0|0))2
} σ2

i

σ2
it

+ o(1/T ), (14)

where FU |W (0|0) =
∫ 0

−∞ fU |W (u|0) du. The o(1/T ) as n→∞ remainder results from the

fact that

E[γTγ
′
T ] = Q−1

ZZ

(
1

n2T 2

n∑
j

n∑
l

T∑
a

T∑
b

Z̃jaZ̃
′
lbE [sjaslb]

)
Q−1
ZZ

=
4E[U2](1− FU |W (0|0))2

nT 2
Q−1
ZZ

(
1

nT

n∑
j

T∑
a

σ2
j Z̃jaZ̃

′
ja

)
Q−1
ZZ

= o(1/T 2),

50



and

E[S̄iγT ] = Q−1
ZZ

1

nT 2

n∑
j

T∑
a

T∑
b

Z̃jbE[siasjb] = Q−1
ZZ

1

nT 2

T∑
a

T∑
b

Z̃ibE[siasib]

= Q−1
ZZ

4E[(UI(U > 0)− 1)2]

nT

1

T

T∑
a

σiaZ̃ia = o(1/T ).

Finally, noticing that

E[R̄iγT ] = Q−1
ZZ

1

nT

n∑
j

T∑
a

Z̃jaE[s(Rja, R̄j)R̄i] = Q−1
ZZ

1

nT

T∑
a

Z̃iaE[s(Ria, R̄i)R̄i]

=
−E[U2](1− FU |W (0|0))

nT
σ2
iQ
−1
ZZ

1

T

T∑
a

Z̃ia = 0,

one has

E[W1itW2it ] =
−1

σ2
it

E[R̄iS̄i] +
1

σ2
it

E[R̄iγT ] =
−1

σ2
it

1

T

T∑
a

E[s(Ria, R̄i)R̄i] + 0

=
E[U2](1− FU |W (0|0))

T

σ2
i

σ2
it

+O(1/T 2). (15)

Lemma 5 and (10) imply that

1

nT

∑
it

fU∗it(q)(q̂ − q) =
1

nT

∑
it

(τ − E[I{U∗it ≤ q}]) + oP (1)

= fU |W (q|0)q
1

nT

∑
it

E[W1it ]

+ (qf 1
U |W (q|0) + (1/2)q2fuU |W (q|0))

1

nT

∑
it

E[W 2
1it

]

+ ((1/2)fuU |W (q|0)− f 2
U |W (q|0))

1

nT

∑
it

E[W 2
2it

]

− (q0fuU |W (q0|0) + f 1
U |W (q0|0)− q0f 2

U |W (q0|0))
1

nT

∑
it

E[W1itW2it ].

(16)

Note that (1/nT )
∑

i,tE[Wait ] and (1/nT )
∑

i,tE[WaitWbit ], a, b = 1, 2, are all O(1/T );

see (11)-(15).
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It remains to approximate (1/nT )
∑

it fU∗it(q) in the left-hand side of (10) around

(1/nT )
∑

it fUit(q).

(1/nT )
∑
it

fU∗it(q) = (1/nT )
∑
it

fU (q(1 +W1it)) (1 +W1it)

= fU |W (q) +O(
∑
it

E[W1it ]/nT )

= fU |W (q) +O(1/T ). (17)

Together, (16) and (17) imply that the bias of (q̂ − q) has an expansion in powers of

1/T as required. �

Proof (Theorem 5): Put ∆1 =
√
n(β̂ − β),∆2 =

√
n(γ̂ − γ),∆3 =

√
n(q̂ − q(τ)).

Standard GMM arguments (Newey and McFadden, 1994) or, for q̂, arguments as in

Theorem 1, prove the consistency of (β̂, γ̂, q̂).

Let us start with the linear representation of ∆3 conditional on root-n consistent

estimators of β and γ,

Y −X ′β̂
σ(X ′γ̂)

− q̂ = (U − q(τ))− Ln(U,X,∆1,∆2)− 1√
n

∆3 −Kn(U,X, ,∆1,∆2),

where

Ln(U,X,∆1,∆2) =
1

σ

1√
n
X ′∆1 +

σ′

σ

1√
n
UX ′∆2,

and

Kn(U,X,∆1,∆2) =
σ′

σ

1

n
(X ′∆1)(X ′∆2).

The moments conditions (DC) ensure that

1√
n

∑
i

Kn(Ui, Xi,∆1,∆2) =
1√
n

∆′1

(
1

n

∑
i

σ′i
σi
XiX

′
i

)
∆2 = oP (1).

Using the stochastic equicontinuity arguments in the proof of lemma 2, ψτ [(U − q(τ))−

Ln(U,X,∆1,∆2)− 1/
√
n∆3] can by expanded around ∆ = 0 to yield,

∆3+

(
1

n

∑
i

1

σi
X ′i

)
∆1+

(
1

n

∑
i

σ′i
σi
UiX

′
i

)
∆2 = − 1

fU(q(τ))

1√
n

∑
i

ψτ (Ui−q(τ))+oP (1).
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Consider now ∆1 and ∆2. The moment conditions can be written as,

M1n(U,X,∆) =
1√
n

∑
i

Ci(R̂i/σ̂)

=
1√
n

∑
i

Ci(Ui − Ln(Ui, Xi,∆1,∆2)

= oP (1),

and

M2n(U,X,∆) =
1√
n

∑
i

Ci(|R̂i|/σ̂)

=
1√
n

∑
i

2Ci[Ui − Ln(Ui, Xi,∆1,∆2)]

×
[
1/2− I

{
Ui ≤

1√
n

1

σi
X ′i∆1

}]
= oP (1).

As in the proof of lemma 2, the moment conditions ensure the stochastic equicontinuity

of {M2n(U,X,∆)− E[M2n(U,X,∆)]}. Together with the consistency of ∆ and the fact

that E[M2n(U,X, 0)] = 0, this allows us to write,

M2n(U,X,∆) = E[M2n(U,X,∆)] +M2n(U,X, 0).

The linear representation is completed by noting the first-order Taylor series expansion

of E[M2n(U,X,∆)] around ∆ = 0,

E[M2n(U,X,∆)] = E[(1/σ) sign(U)CX ′]∆1 + E[(σ′/σ) |U |CX ′]∆2 + o(1).

A final remark about the non-sigularity of G. It suffi ces to show that(
E[(1/σ)CX ′] E[(σ′/σ)UCX ′]

E[(1/σ) sign(U)CX ′] E[(σ′/σ) |U |CX ′]

)

is non-singular which is ensured by (DC5). �
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It is easy to generalize the results of Theorem 5 for multiple quantiles. For 0 < τ 1 <

τ 2 < . . . < τm, 

√
n(β̂ − β)
√
n(γ̂ − γ)

√
n(q̂1 − q(τ 1))

...
√
n(q̂m − q(τm))


D−→ G−1N (0,H),

where,

H =

E[U2]E[CC ′] E[UV ]E[CC ′] E[C]E[UΨ(U)′]

E[V 2]E[CC ′] E[C]E[VΨ(U)′]

J

 ,

where

Ψ(U) =

(
ψτ1(U − q (τ 1))

fU (q (τ 1))
· · ·

ψτm(U − q (τm))

fU (q (τm))

)′
,

J = E [Ψ(U)Ψ(U)′] is a m×m matrix with entries Jij =
min{τ i,τ j}−τ iτ j
fU (q(τ i))fU (q(τ j))

, and

G =

 E[(1/σ)CX ′] E[(σ′/σ)UCX ′] 0k×m

E[(1/σ) sign(U)CX ′] E[(σ′/σ) |U |CX ′] 0k×m

1mE[(1/σ)X ′] 1mE[(σ′/σ)UX ′] Im×m

 ,

where 1m is a vector of 1s of dimension m and Im×m is an identity matrix of order m.
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