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Abstract
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1 Introduction

In this paper we propose a method to nonparametrically estimate a class of models with

latent variables. We focus on linear factor models where the latent factors are mutually

independent. These models have a wide array of economic applications, including mea-

surement error models, fixed-effects models, and error components models. We review the

existing literature on these models in Section 2. In many empirical settings, it is appeal-

ing not to restrict the functional form of the distributions of latent variables and follow a

nonparametric approach.

While the estimation of independent factor models often relies on parametric assump-

tions, based on Gaussian mixtures or other parametric families, there is also a large litera-

ture on nonparametric estimation based on empirical characteristic functions (e.g., Carroll

and Hall, 1988, Stefanski and Carroll, 1990, Horowitz and Markatou, 1996, Li and Vuong,

1998, Bonhomme and Robin, 2010). However, those estimators tend to be highly sensitive

to the choice of regularization parameters, and they do not guarantee that the estimated

distribution functions be non-negative and integrate to one. The difficulties with existing

nonparametric estimators are well-documented, see for example Efron (2016) and Chapter

21 in Efron and Hastie (2016).

In this paper we propose a nonparametric estimation approach that differs from the

literature in two main aspects. First, we generate a sample of pseudo-observations from the

latent variables. Such pseudo-observations may be interpreted as the order statistics of the

latent variables. Moments, densities, or general functionals can then be estimated based

on them. In particular, estimated densities will be proper by construction. Means or other

features of the distribution of the latent variables conditional on the data, such as optimal

predictors, can also be directly estimated.

The second main feature of our approach is that it is based on matching. Specifically, we

generate the pseudo-observations from the latent variables so that the Euclidean distance

between the model’s predictions and their matched counterparts in the data is minimized.

This amounts to minimizing a quadratic Wasserstein distance between empirical distribution

functions. The model predictions are computed as independent combinations of the pseudo

latent observations. This “observation matching” estimation approach can be interpreted as

a nonparametric counterpart to moment matching estimators, which are commonly used in

parametric econometric models.
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Figure 1: Illustration of the estimation algorithm
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True versus estimated latent values
1st iteration 2nd iteration 5th iteration
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Notes: The graphs correspond to one simulation from a fixed-effects model with two observation

periods Y1 = X1 +X2, Y2 = X1 +X3, with X1, X2, X3 mutually independent (Kotlarski, 1967). In

the data generating process the X’s are standardized Beta(2,2), and N = 100. The top panel shows

the observations Y1, Y2 (crosses) and the predicted observations Y pred
1 , Y pred

2 (circles), with a link

between them when they are matched to each other. The bottom panel shows the estimates of X1

values sorted in ascending order on the y-axis against the population values on the x-axis (dashed),

and the 45 degree line (solid). Details on the algorithm are given in Section 3.

As an illustration, in Figure 1 we show the results of several iterations of our algorithm,

in a fixed-effects model with two observation periods and 100 individuals. We start the

algorithm from parameter values that are far from the true ones. As shown on the top

panel, the outcome observations in the data (in crosses) are first matched to model-based

predictions (in circles). Pseudo-observations of the latent variables are then updated based

on the matched outcome values. The objective function we aim to minimize is the sum of

squares of the segments shown on the top panel. The bottom panel shows the estimates of
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the latent individual-specific effect, sorted in ascending order (on the y-axis), against the

true values (on the x-axis). We see that within a few iterations the model’s predictions and

the empirical observations tend to agree with each other (on the top panel), and that the

distribution of the pseudo latent observations gets close to the population distribution (on

the bottom panel).

Our approach builds on and generalizes an important idea due to Colin Mallows (2007),

who proposed a “deconvolution by simulation” method based on iterating between sorts of

the data and random permutations of pseudo-observations of a latent variable. He focused

on the classical deconvolution model with scalar outcome and known error distribution. Our

main goal in this paper is to extend Mallows’ insight by proposing a framework to analyze

estimators based on matching predicted values from the model to data observations. This

allows us to derive a well-defined population version of the estimation problem and establish

consistency of our estimator. In addition, we show how the method can be generalized beyond

scalar deconvolution, to models with multivariate outcomes such as fixed-effects models and

other factor models.

A key step in our analysis is to relate the estimation problem to optimal transport theory.

Optimal transport is the subject of active research in mathematics, see for example Villani

(2003, 2008). Economic applications of optimal transport are many fold, as documented in

Galichon (2016). In our context, optimal transport provides a natural way to estimate models

with multivariate outcomes via “generalized sorting” algorithms (i.e., matching algorithms)

based on linear programming. We also use properties of Wasserstein distances established

in the optimal transport literature in our asymptotic analysis.

Our matching-based, minimum Wasserstein distance estimator is related to recent work

in machine learning and statistics on the estimation of parametric generative models (see

Bernton et al., 2017, Genevay et al., 2017, and Bousquet et al., 2017). In contrast with this

emerging literature, the models we consider here are nonparametric. An early theoretical

contribution to minimum Wasserstein distance estimation by Bassetti et al. (2006) is more

closely related to our consistency analysis. Our general estimation strategy is also related

to Galichon and Henry’s (2011) analysis of partially identified models. As we show at the

end of the paper, our matching approach can be generalized to nonparametric estimation of

other latent variables, such as nonparametric finite mixture models (Hall and Zhou, 2003).

We illustrate the performance of our estimator on simulated data. Under various spec-
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ifications of the scalar nonparametric deconvolution model and the fixed-effects model, we

find that our estimator recovers true underlying quantile functions and densities quite ac-

curately, even for samples with only 100 individual observations. In addition, in our Monte

Carlo designs we find our estimator outperforms characteristic-function based estimators,

particularly due to improved estimation of the tails of the distributions.

We then apply our method to two empirical illustrations. In the first one, we estimate

quantile functions and densities of permanent and transitory earnings shocks in the PSID.

We find strong evidence of non-Gaussianity in both types of shocks characterized by ex-

cess kurtosis, confirming results obtained by Horowitz and Markatou (1996), Geweke and

Keane (2000), and Bonhomme and Robin (2010). In the second illustration we estimate

the distribution of school fixed-effects, net of transitory fluctuations, in the Madrid region

in Spain. We find that there is substantial year-to-year variation in school outcomes, and

that controlling for it makes a larger difference at the bottom of the distribution of students’

performance than at the top.

The outline of the paper is as follows. In Section 2 we describe linear independent factor

models, and we briefly review applications and existing estimation approaches. In Section

3 we introduce our matching estimator. In Sections 4 and 5 we focus on computation

and consistency, respectively. In Sections 6 and 7 we present the simulation exercises and

empirical illustrations. In Section 8 we outline an extension to finite mixture models. Lastly,

we conclude in Section 9. Proofs and additional material are collected in the appendix.

2 Independent factor models

We focus on linear independent factor models of the form Y = AX, where Y = (Y1, ..., YT )′,

X = (X1, ..., XK)′, A is a known T ×K matrix, and the components X1, ..., XK are mutually

independent.1 In this section we review several examples of models and applications which

have such a structure. We focus on the case K > T , so the system is singular and the

latent variables themselves are not identifiable, although under suitable conditions their

distributions will be.

Nonparametric deconvolution. The classical nonparametric deconvolution model ob-

tains when T = 1 and Y = X1 +X2, under the assumption that X2 has a known distribution.

1The analysis is unchanged in case A is not known but a consistent estimator of it is available.
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This model has been extensively studied in statistics and econometrics. Nonparametric de-

convolution is often used to deal with the presence of measurement error. In such settings

Y is an error-ridden variable, X1 the true value of the variable, and X2 an independent,

classical measurement error.2

Another economic application of nonparametric deconvolution is to the estimation of the

heterogeneous effects of an exogenous binary treatment D ∈ {0, 1}. Under the assumption

that the potential outcome Y (0) in the absence of treatment is independent of the gains

from treatment Y (1)− Y (0), Heckman, Smith and Clements (1997) noted that:

Y (1)︸︷︷︸
level (D=1)

= Y (0)︸︷︷︸
level (D=0)

+ Y (1)− Y (0)︸ ︷︷ ︸
gain

is a classical deconvolution model, since the distributions of Y (1) and Y (0) are both con-

sistently estimable under exogeneity. Building on this observation they provide conditions

under which the joint distribution of potential outcomes (Y (0), Y (1)) can be consistently

estimated.3

The random coefficients panel data models studied in Arellano and Bonhomme (2012)

provide a third application. Consider a model with a time-varying binary treatment Dt and

time-invariant treatment effect, whose outcome is: Yt = α + βDt + εt, where εt are i.i.d.,

independent of (α, β,D1, ..., DT ), but the dependence of (α, β) on D1, ...., DT is unrestricted

(“fixed-effects endogeneity”). Consider as an example a sequence of three outcomes corre-

sponding to D1 = 0, D2 = 0, D3 = 1. Arellano and Bonhomme observed that the following

two equations:

Y2 − Y1 = ε2 − ε1︸ ︷︷ ︸
=X̃2

, Y3 − Y2 = β︸︷︷︸
=X1

+ ε3 − ε2︸ ︷︷ ︸
=X2

,

can be interpreted as a classical deconvolution model, since X2 and X̃2 have the same distri-

bution and X1, X2 are independent. They showed how to non-parametrically estimate the

distribution of treatment effects β.

The literature on nonparametric deconvolution provides conditions under which the dis-

tribution of X1 is nonparametrically identified in Y = X1 + X2. Approaches to estimation

are numerous.4

2Carroll, Ruppert, Stefanski and Crainiceanu (2006), Chen, Hong and Nekipelov (2011), and Schennach
(2013a) provide comprehensive reviews of the measurement error literature.

3Wu and Perloff (2006) propose an estimation method in this setup based on moment restrictions and
entropy maximization.

4Examples are kernel deconvolution estimators (Carroll and Hall, 1988, Delaigle and Gijbels, 2002, Fan,
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Nonparametric distribution of fixed effects. A leading example of a linear indepen-

dent factor model is the fixed-effects model:

Yt = α︸︷︷︸
=X1

+ εt︸︷︷︸
=Xt+1

, t = 1, ..., T, (1)

where Y1, ..., YT are observed outcomes and α, ε1, ..., εT are latent and mutually independent.

Working with T = 2, Kotlarski (1967) provided simple conditions under which the density

functions of the latent factors are nonparametrically identified in model (1).

This fixed-effects structure arises frequently in economic applications. As an example,

α can be a latent skill of an individual, measured with error (as in Cunha, Heckman and

Schennach, 2010). In other applications researchers may be interested in estimating the

distribution of worker, teacher, firm, or bank-specific fixed-effects, for example. Compared

to standard Gaussian specifications, a nonparametric estimator of the distribution of α in (1)

will be robust to functional form assumptions. Non-Gaussianity, such as skewness or fat tail

behavior for example, may be relevant in many empirical settings. The fixed-effects model

(1) and its generalizations are often estimated using flexible parametric specifications such

as finite Gaussian mixtures (e.g., Carneiro, Hansen and Heckman, 2003). Nonparametric

estimators based on empirical characteristic functions have been constructed by mimicking

and extending the original proof due to Kotlarski.5

Error components: generalized nonparametric deconvolution. A prominent error

component model is the permanent-transitory model for the dynamics of log-earnings: Yt =

ηt + εt, where ηt = ηt−1 + vt is a random walk with independent innovations, and all εt’s and

vt’s are independent over time and independent of each other (e.g., Hall and Mishkin, 1982,

Blundell, Pistaferri and Preston, 2008). This model is a special case of a linear independent

factor model Y = AX, where Y = (Y1, ..., YT )′ are observed outcomes, X = (X1, ..., XK)′

are mutually independent latent factors, and A is a known T ×K matrix. Identification of

such generalized deconvolution models was studied in Székely and Rao (2000). Bonhomme

and Robin (2010) proposed nonparametric characteristic-function based estimators of factor

densities.6 In such settings a nonparametric approach allows one to capture the skewness or

1991), wavelet methods (Pensky and Vidakovic, 1999, Fan and Koo, 2002), regularization techniques (Car-
rasco and Florens, 2011), and nonparametric maximum likelihood methods (e.g., Gu and Koenker, 2017).

5See Li and Vuong (1998) and Li (2002). See also Horowitz and Markatou (1996).
6Botosaru and Sasaki (2015) showed how to allow in addition for nonparametric heteroskedasticity.

Quantile-based estimation in linear and nonlinear factor models was introduced by Arellano and Bonhomme
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kurtosis of earnings shocks.

An important application of error components models is to relax independence in fixed-

effects models such as (1). This can be done provided T is large enough.7 Such specifications

can be estimated using the methods we introduce here.

3 Latent variable estimation by matching

In this section we start by describing our estimator in the classical nonparametric deconvo-

lution model, and then turn to linear multi-factor models with independent factors.

3.1 Nonparametric deconvolution

Let Y = X1+X2, where X1 and X2 are independent. X1 is unobserved to the econometrician

and its distribution is left unspecified. We assume that Y , X1 and X2 are continuously

distributed, and postpone more specific assumptions until Section 5.

Let FZ denote the cumulative distribution (c.d.f.) of any random variable Z. We assume

that two random samples, Y1, ..., YN and X12, ..., XN2, drawn from FY and FX2 , respectively,

are available.8 Our goal is to estimate a sample of pseudo-observations X̂11, ..., X̂N1, whose

empirical cdf is asymptotically distributed as FX1 as N tends to infinity. To do so, we

use a minimum-distance estimator based on a particular distance between the sample of

observed Y ’s and the sample of Y ’s predicted by the model. The distance we consider is the

Wasserstein distance (see, e.g., Chapter 7 in Villani, 2003), which is the minimum Euclidean

distance between observed Y ’s and predicted Y ’s with respect to all possible reorderings of

the observations.

Assume without loss of generality that Yi ≤ Yi+1 and Xi2 ≤ Xi+1,2 for all i. Let ΠN

denote the set of permutations π : {1, ..., N} → {1, ..., N}, such that
∑N

i=1 1{π(i) = j} = 1

for all j, and
∑N

j=1 1{π(i) = j} = 1 for all i. Moreover, let CN > 0, CN > 0 be two constants,

and let XN be the set of parameter vectors X1 = (X11, ..., XN1) ∈ RN such that |Xi1| ≤ CN

(2016) and applied by Arellano, Blundell and Bonhomme (2017) to document the dynamics of earnings in
the PSID.

7Modeling Xt in (1) as a finite-order moving average or autoregressive process with independent innova-
tions preserves the linear independent factor structure of the model (Arellano and Bonhomme, 2012). Ben
Moshe (2017) showed how to allow for arbitrary subsets of dependent factors, and proposed characteristic-
function based estimators. In addition, in model (1) Schennach (2013b) pointed out that full independence
between the factors is in fact not necessary, and that sub-independence suffices to establish identification.

8The sample size being the same for Y and X2 is not essential and could easily be relaxed. In fact, in
a setting where the c.d.f. FX2

is known one could alternatively work with an integral counterpart to our
estimator.
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and CN ≤ (N + 1)(Xi+1,1 − Xi1) ≤ CN for all i. The constants CN and CN play a role

in our consistency argument below. We will study the sensitivity of our estimator to those

constants in the simulation section.

We propose to compute:

X̂1 = argmin
X1∈XN

{
min
π∈ΠN

N∑
i=1

(
Yπ(i) −Xσ(i),1 −Xi,2

)2

}
, (2)

where σ is a random permutation in ΠN , independent of Y1, ..., YN , X12, ..., XN2.9

The estimator X̂1 minimizes the Wasserstein distance between the empirical distributions

of Zi = Xσ(i),1 +Xi2, i = 1, ...N , and Yi, i = 1, ..., N . The Wasserstein distance is defined as:

W2(F̂Y , F̂Z) =

{
min
π∈ΠN

N∑
i=1

(
Yπ(i) − Zi

)2

} 1
2

. (3)

The values Zi = Xσ(i),1 + Xi2, i = 1, ..., N , are draws from X1 + X2; that is, predicted

values from the model. Hence X̂1 minimizes the Wasserstein distance between the empirical

distribution of the data and the empirical distribution of model predictions.

Since Yi and Zi are scalar, by the Hardy Littlewood and Polya rearrangement inequality

the solution to (3) is to sort Yi’s and Zi’s in the same order. That is, letting π̂ denote the

minimum argument in (3), π̂(i) is the rank of Zi:

π̂(i) = Rank(Zi) ≡ NF̂Z(Zi).

Remark 1: averaging. The estimates X̂i1, i = 1, ..., N , depend on the permutation

σ. A simple way to reduce the dependence on this random draw is to compute X̂
(m)
i1 , for

i = 1, ..., N and m = 1, ...,M , where σ(1), ..., σ(m) are independent random permutations

drawn from ΠN , and to report the averages: X̂i1 = 1
M

∑M
m=1 X̂

(m)
i1 , for i = 1, ...,M . For fixed

M , such averages will be consistent as N tends to infinity under similar conditions as the

baseline estimator.

Remark 2: draws from the model. Given Xi1’s and Xi2’s, predicted values from the

model could be generated in other ways. For example, one could set Zi = Xi1 + X̃i2, where

X̃12, ..., X̃N2 is a random sample from X12, ..., XN2 drawn with replacement. Alternatively,

one could generate R > 1 predictions per observation i, Zi,r = Xσ(i,r),1 +Xi2, for r = 1, ..., R.

9Random permutations are uniform draws on ΠN . Simple algorithms exist to generate random permu-
tations (e.g., Knuth, 1997).
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In the latter case, π and σ would map {1, ..., NR} to {1, ..., N}, so increasing R is associated

with an increase in computational cost.

3.2 Nonparametric factor models

We now apply the same idea to a general linear independent multi-factor model Y = AX,

where A is a T ×K matrix with generic element atk, and X = (X1, ..., XK)′ with X1, ..., XK

mutually independent. For simplicity we assume that X and Y have zero mean.10 We

seek to compute pseudo-observations X̂11, ..., X̂N1, ..., X̂1K , ..., X̂NK , which minimize the

Wasserstein distance between the sample of observed Y ’s, which here are T × 1 vectors, and

the sample of Y ’s predicted by the factor model.

Let CN > 0, CN > 0 be two constants, and let XN be the set of (X1, ..., XN) ∈ RNK such

that |Xi,k| ≤ CN and CN ≤ (N + 1)(Xi+1,k −Xik) ≤ CN for all i and k, and
∑N

i=1Xik = 0

for all k. We define:

X̂ = argmin
X∈XN

min
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

K∑
k=1

atkXσk(i),k

)2
 , (4)

where σ1, ..., σK are independent random permutations in ΠN , independent of Y11, ..., YNT .

Note that Zit =
∑K

k=1 atkXσk(i),k, i = 1, ..., N , are predicted values from the factor

model. Hence, as before, the vector X̂ minimizes the Wasserstein distance between the

empirical distribution of the data (Yi1, ..., YiT ), and the one of model predictions (Zi1, ..., ZiT ).

A difference with the scalar deconvolution model is that, when Yi are multivariate, the

minimization with respect to π inside the brackets in (4) does not have an explicit form in

general. However, from optimal transport theory it is well-known that the solution can be

obtained as the solution to a linear program. We will take advantage of this in our estimation

algorithm.

3.3 Densities and expectations

In Section 5 we will provide conditions under which X̂ik, i = 1, ..., N , consistently estimate

the quantile function of Xk. More precisely, we will show that maxi=1,...,N |X̂ik − F−1
Xk

( i
N+1

)|

tends to zero in probability asymptotically. This provides uniformly consistent estimators

10The mean of X is non-identifiable when T < K. It is common in applications to assume that some of
the Xk’s have zero mean while leaving the remaining means unrestricted. For example, in the fixed-effects
model assuming that E(X1) = 0 suffices for identification. Our algorithm can easily be adapted to such
cases.
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of the quantile functions of the latent variables. These estimators can in turn be used for

density estimation, under a slight modification of the parameter space XN . To proceed, let us

restrict the parameter space to elements X = (X1, ..., XN) in XN which satisfy the following

additional restrictions on second-order differences: (N + 1)2 |Xi+2,k − 2Xi+1,k +Xi,k| ≤ CN ,

for all i and k. Let us then define, for a bandwidth parameter b > 0 and a kernel function

κ ≥ 0 that integrates to one:

f̂Xk
(x) =

1

Nb

N∑
i=1

κ

(
X̂ik − x

b

)
, x ∈ R. (5)

We will show that f̂Xk
is uniformly consistent for the density of Xk under standard conditions

on the kernel κ and bandwidth b.

Expectations. Our estimator delivers simple consistent estimators of unconditional expec-

tations. For example, for any Lipschitz function h, the expectation E(h(Xk)) can be consis-

tently estimated as 1
N

∑N
i=1 h

(
X̂ik

)
. Likewise, for all t, E(h(Xk, Yt)) is consistently estimated

as 1
N

∑N
i=1 h

(
X̂σk(i),k,

∑K
`=1 at`X̂σ`(i),`

)
, for independent random permutations σ1, ..., σK in

ΠN .

Conditional expectations are of particular interest in prediction problems. Given the

X̂ik’s and the f̂Xk
’s, a consistent estimator of the conditional expectation E (Xk |Y = y) is

readily constructed. To see this, suppose the matrix formed by all the columns of A except

the k-th one has rank T (which ensures that the conditional density of Y given Xk is not

degenerate). We can partition A into a T × (K−T ) submatrix Bk and a non-singular T ×T

submatrix Ck, where the k-th column of A is one of the columns of Bk. Denote as XBk (resp.,

X̂Bk

σ(i)) and XCk (resp., X̂Ck

σ(i)) the subvectors of X (resp., (X̂σ1(i), ..., X̂σK(i))
′) corresponding

to Bk and Ck. An estimator of E (Xk |Y = y) is then:

Ê (Xk |Y = y) =

∑N
i=1 f̂XBk

(
X̂Bk

σ(i)

)
f̂XCk

(
C−1
k

[
y −BkX̂

Bk

σ(i)

])
X̂σk(i),k∑N

i=1 f̂XBk

(
X̂Bk

σ(i)

)
f̂XCk

(
C−1
k

[
y −BkX̂

Bk

σ(i)

]) . (6)

As an example, in the fixed-effects model (1), a consistent estimator of E (X1 |Y = y) is,

for y = (y1, ..., yT ):

Ê (X1 |Y = y) =

∑N
i=1

∏T
t=1 f̂Xt+1

(
yt − X̂σ1(i),1

)
X̂σ1(i),1∑N

i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

) =

∑N
i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

)
X̂i1∑N

i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

) .

(7)
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More generally, the densities f̂XBk and f̂XCk in (6) are products of marginal densities of

individual latent factors.

Remark 3: constrained prediction. In the present setting, an alternative to the usual

prediction problem consists in minimizing expected square loss subject to the constraint that

the cross-sectional distribution of the predicted values coincide with the population distribu-

tion of the latent variable. The resulting constrained optimal predictor can be estimated as:

X̃ik = X̂π∗(i),k, i = 1, ..., N , where the X̃i’s are equal to the X̂j’s sorted in the same order as

the Ê(Xk |Y = Yi)’s; that is: π∗ = argminπ∈ΠN

∑N
i=1

(
Ê(Xk |Y = Yi)− X̂π(i)

)2

.11 We leave

the characterization of the properties of such constrained predictors to future work.

4 Computation

The optimization problems in (2) and (4) are mixed integer quadratic programs. The relaxed

problem obtained when π is not required to have {0, 1} elements is a convex quadratic

program. This facilitates the implementation of exact solution algorithms based on branch

and cuts and other efficient enumerative techniques. Yet, although the literature on mixed

integer programming has made substantial progress in the past decades (e.g., Bliek, Bonami

and Lodi, 2014), such exact algorithms are currently limited in the dimensions they can

allow for, making their use in empirical applications often impractical. Here we describe a

simple heuristic algorithm to minimize (2) and (4).

4.1 Algorithm

The algorithm we propose is based on the observation that, for given X1, ..., XN values,

problem (4) is a linear assignment (or discrete optimal transport) problem, hence it can be

solved by any linear programming routine. In turn, given π, problem (4) is a simple least

squares problem subject to linear restrictions. Our estimation algorithm is as follows. Here

we focus on the general form (4), since the estimator for the scalar deconvolution model (2)

is a special case of it.

11In a similar spirit, one can construct a matching-based alternative to Ê(Xk |Y = Yi) as:
1
M

∑N
j=1

∑M
m=1 1{π̂

(m)(j) = i}X̂
σ
(m)
k (j),k

, where σ
(m)
k , m = 1, ...,M , are independent random permutations

in ΠN , and π̂(m) = argminπ∈ΠN

∑N
i=1

∑T
t=1

(
Yπ(i),t −

∑K
k=1 atkXσk(i),k

)2

.
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Algorithm 1

• Start with initial values X̂
(1)
1 , ..., X̂

(1)
N in RK. Iterate the following two steps on s =

1, 2, ... until convergence.

• (Matching step) Given X̂
(s)
1 , ..., X̂

(s)
N , compute:12

π̂(s+1) = argmax
π∈ΠN

N∑
i=1

T∑
t=1

(
K∑
k=1

atkX̂
(s)
σk(i),k

)
Yπ(i),t. (8)

• (Update step) Compute:

X̂(s+1) = argmin
X∈XN

N∑
i=1

T∑
t=1

(
Yπ̂(s+1)(i),t −

K∑
k=1

atkXσk(i),k

)2

. (9)

Both steps in the algorithm are straightforward to implement. The matching step (8) can

be computed by a linear programming routine, due to the fact that the linear programming

relaxation of a discrete optimal transport problem has integer-valued solutions.13 Formally,

π̂(s+1) in (8) is a solution to the following linear program:

max
P∈PN

N∑
i=1

T∑
t=1

(
K∑
k=1

atkX̂
(s)
σk(i),k

)(
N∑
j=1

PijYjt

)
,

where PN denotes the set of bistochastic N ×N matrices with non-negative elements, whose

rows and columns all sum to one. In the scalar nonparametric deconvolution case (2), this

yields π̂(s+1)(i) = R̂ank
(
X̂

(s)
σ(i),1 +Xi2

)
for all i.

In fact, it is possible to write X̂ = (X̂1, ..., X̂N) in (4) as the solution to a quadratic

program:

(X̂, P̂ ) = argmin
X∈XN , P∈PN

N∑
i=1

T∑
t=1

{(
K∑
k=1

atkXσk(i),k

)2

− 2

(
K∑
k=1

atkXσk(i),k

)(
N∑
j=1

Pj`Yjt

)}
.

(10)

However, (10) is not convex in general. Our estimation algorithm may be interpreted as a

heuristic method to solve this non-convex quadratic program.

12Notice that, since π is a permutation, the quadratic term in
∑N
i=1

∑T
t=1 Y

2
π(i),t =

∑N
i=1

∑T
t=1 Y

2
it does

not depend on π.
13See for example Chapter 3 in Galichon (2016) for a survey of discrete Monge-Kantorovitch problems,

and Conforti, Cornuejols and Zambelli (2014) for an extensive discussion of integer programming problems
and perfect formulations.
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Once a solution to the algorithm has been reached it is possible to refine it using a local

search improvement. However, the algorithm is not guaranteed to reach a global minimum

in (4). Our implementation is based on starting the algorithm from multiple random values.

We will assess the impact of starting values on simulated data in Section 6.

4.2 Comparison to Mallows (2007)

Our algorithm may be seen as a generalization of Mallows’ (2007) “deconvolution by simula-

tion” method. To highlight the connection, consider the scalar nonparametric deconvolution

model. The two steps in our algorithm take the following form:

π̂(s+1)(i) = R̂ank
(
X̂

(s)
σ(i),1 +Xi2

)
, i = 1, ..., N,

X̂
(s+1)
1 = argmin

X1∈XN

N∑
i=1

(
Yπ̂(s+1)(i) −Xσ(i),1 −Xi2

)2

.

The Mallows (2007) algorithm is closely related to this algorithm. The main difference is

that, instead of minimizing an objective function for fixed values of the random permutation

σ, random permutations are re-drawn in each step of the algorithm. In addition, the ordering

of the Xi1 is not restricted, and neither are the values and increments of the Xi1. Formally,

the sub-steps of the Mallows algorithm are the following:

• Draw a random permutation σ(s) ∈ ΠN .

• Compute π̂(s+1)(i) = R̂ank
(
X̂

(s)

σ(s)(i),1
+Xi2

)
, i = 1, ..., N .

• Compute X̂
(s+1)

σ(s)(i),1
= Yπ̂(s+1)(i) −Xi2, i = 1, ..., N .14

In Section 6 we will compare the performance of our approach with Mallows’ stochas-

tic algorithm on simulated data. Note that the methods introduced in this paper naturally

deliver counterparts to the Mallows algorithm for other models beyond nonparametric decon-

volution, such as general linear independent factor models. However, consistency properties

of the Mallows estimator are currently unknown.

14Strictly speaking, Mallows (2007) redefined X̂
(s+1)
i1 ≡ X̂

(s+1)

σ(s)(i),1
for all i = 1, ..., N at the end of step

s, and then applied the random permutation σ(s+1) to the new X̂(s+1) values. This difference with the
algorithm outlined here turns out to be immaterial, since the composition of σ(s+1) and σ(s) is also a random
permutation of {1, ..., N}.
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5 Consistency analysis

In this section we provide conditions under which the estimators introduced in Section 3 are

consistent. We start with the scalar nonparametric deconvolution model.

5.1 Nonparametric deconvolution

Let us denote the quantile function of X as:

F−1
X (τ) = inf {x ∈ Supp(X) : FX(x) ≥ τ}, for all τ ∈ (0, 1).

Let us define the following two Sobolev sup-norms of a function H : (0, 1)→ R:

‖H‖∞ = sup
τ∈(0,1)

|H(τ)|, and ‖H‖ = max
k∈{0,1}

sup
τ∈(0,1)

|∇kH(τ)|,

where ∇kH denotes the k-th derivative of H (when it exists). We denote ∇ = ∇1 for the first

derivative. The parameter space H of H = F−1
X is taken to be the ‖ · ‖∞-closure of the set of

continuously differentiable functions H that belong to a ‖ · ‖-ball with derivatives bounded

from below by a positive constant; see Assumption 1 (ii) below for a formal definition.

To a solution X̂1 to (2)15 we will associate an interpolating function Ĥ in H such that

Ĥ
(

i
N+1

)
= X̂i1 for all i. We are then going to show that ‖Ĥ − F−1

X1
‖∞ = op(1). This result

will be obtained as an application of the consistency of sieve extremum estimators (e.g.,

Chen, 2007).

We make the following assumptions.

Assumption 1

(i) (Continuity and support) Y , X1 and X2 have compact supports in R, and admit

absolutely continuous densities fY , fX1 , fX2 that are bounded away from zero and infinity.

Moreover, fY is differentiable.

(ii) (Parameter space) H is the closure of the set {H ∈ C1 : ∇H ≥ C, ‖H‖ ≤ C} under

the norm ‖ · ‖∞.

(iii) (Identification) The characteristic function of X2 does not vanish on the real line.

(iv) (Penalization) CN−1 ≤ CN < C − C/(N + 1) and CN−1 ≥ CN > C for all N .

Moreover, CN
p→ C and CN

p→ C as N →∞.

(v) (Sampling) Y1, ..., YN and X12, ..., XN2 are i.i.d.

15In fact, it is not necessary for X̂1 to be an exact minimizer of (2). As shown in the proof, it suffices that

the value of the objective function at X̂1 be in an εN -neighborhood of the global minimum, for εN tending
to zero as N tends to infinity.
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Though convenient for the derivations, the compact supports assumption (i) is strong,

and so is the sup-norm definition of the parameter space in (ii). In particular, both (i) and

(ii) restrict the tail behavior of F−1
X1

and its derivative. The conditions could be weakened

by working with weighted norms, at the cost of achieving a weaker consistency result. (ii)

ensures that H is compact with respect to ‖ ·‖∞. This type of construction was pioneered by

Gallant and Nychka (1987). Compactness can be preserved when sup norms are replaced by

weighted Sobolev sup-norms (e.g., using polynomial or exponential weights); see for example

Theorem 7 in Freyberger and Masten (2015). The simulation experiments reported below

suggest that the estimator continues to perform well when supports are unbounded.

(iii) is an identification condition which is commonly assumed in nonparametric decon-

volution. It can be relaxed to some extent by allowing for the presence of isolated zeros

(Evdokimov and White, 2012). The constants CN and CN appearing in (iv) ensure that the

X̂i1 values are bounded and of bounded variation. We will document the sensitivity of our

estimator to those constants in the simulation section.

Consistency is established in the following theorem. Proofs are in Appendix A.

Theorem 1 Let Assumption 1 hold. Then, as N tends to infinity:

max
i∈{1,...,N}

∣∣∣∣X̂i1 − F−1
X1

(
i

N + 1

)∣∣∣∣ = op(1).

5.2 Nonparametric factor models

Consider next the linear independent factor model Y = AX, where X = (X1, ..., XK)′, with

the Xk’s mutually independent, and A is a known T ×K matrix with generic element atk.

We make the following assumptions.

Assumption 2

(i) (Continuity and support) Y and X have compact supports in RT and RK, respec-

tively, and admit absolutely continuous densities fY , fX that are bounded away from zero

and infinity. Moreover, fY is differentiable.

(ii) (Parameter space)HK =
{

(H1, ..., HK) : Hk ∈ H and
∑N

i=1Hk

(
i

N+1

)
= 0 for all k

}
,

where H is defined in Assumption 1 (ii).

(iii) (Identification) The characteristic function of Xk does not vanish on the real line

for all k, and the vectors vecAkA
′
k, k = 1, ..., K, are linearly independent.
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(iv) (Penalization) As in Assumption 1 (iv).

(v) (Sampling) (Yi1, ..., YiT ) are i.i.d.

These conditions are similar to the scalar deconvolution case. (iii) is a sufficient condition

for the distributions of latent variables Xk to be nonparametrically identified (e.g., Székely

and Rao, 2000, Bonhomme and Robin, 2010). We have the following consistency result.

Theorem 2 Let Assumption 2 hold. Then, as N tends to infinity:

max
i∈{1,...,N}

∣∣∣∣X̂ik − F−1
Xk

(
i

N + 1

)∣∣∣∣ = op(1), for all k = 1, ..., K.

Densities and expectations. Under slightly stronger assumptions, Theorem 2 can be

strengthened to obtain consistent estimators of both F−1
Xk

and its derivative. This will deliver

a smoother estimator of F−1
Xk

. The estimators of F−1
Xk

and its derivative can then be used for

density estimation. To see this, let us denote as X (2)
N the set of X in XN which satisfy the

restrictions on second-order differences: (N+1)2 |Xi+2,k − 2Xi+1,k +Xik| ≤ CN , for all i and

k. Likewise, denote as H(2)
K the set of functions (H1, ..., HK) ∈ HK which additionally satisfy

|∇2Hk| ≤ C for all k. Modifying Assumption 2 to accommodate these two differences, and

modifying the proof of Theorem 2 accordingly, we obtain that:

max
i∈{1,...,N}

∣∣∣∣(N + 1)(X̂i+1,k − X̂ik)−∇
(
F−1
Xk

)( i

N + 1

)∣∣∣∣ = op(1), for all k = 1, ..., K.

We then have the following result.16,17

Corollary 1 Let b in (5) be such that b → 0 and Nb → ∞ as N tends to infinity. Let κ

be a Lipschitz kernel which integrates to one and has finite first moments. Then, under the

modifications of Assumption 2 described in the previous paragraph, we have:

sup
x∈R

∣∣∣f̂Xk
(x)− fXk

(x)
∣∣∣ = op(1), for all k = 1, ..., K. (11)

Given Corollary 1, it can readily be checked that conditional expectations estimators

given by (6) and (7) are consistent in sup norm for their population counterparts.

16Consistency also holds when a uniform kernel is used, although the proof is omitted for brevity.
17An alternative density estimator, which can be shown to be uniformly consistent for fXk

under the same

conditions, is: f̃Xk
(x) = 1/∇Ĥk(Ĥ−1

k (x)).
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6 Numerical experiments

In this section we illustrate the finite-sample performance of our estimator on simulated

data. We consider two models in turn: the scalar nonparametric deconvolution model, and

the fixed-effects model.

6.1 Nonparametric deconvolution

We start with the deconvolution model Y = X1 + X2, where X1 and X2 are scalar, in-

dependent, and follow identical distributions. We consider four specifications: Beta(2, 2),

Beta(5, 2), normal, and log-normal, all standardized so that X1 and X2 have mean zero

and variance one. To restrict the maximum values of X̂i1, its increments and its second-

differences, we consider two choices for the penalization constants: (CN , CN) = (.1, 10)

(“strong constraint”), and (CN , CN) = (0, 10000) (“weak constraint”). To minimize the

objective function in (2) we start with 10 randomly generated starting values, drawn from

widely dispersed mixtures of five Gaussian distributions, and keep the solution correspond-

ing to the minimum value of the objective. Lastly, we draw M = 10 independent random

permutations in ΠN , and average the resulting M sets of estimates X̂
(m)
i1 , for i = 1, ..., N .

The first two columns in Figure 2 show the estimates of the quantile functions X̂i1 =

F̂−1
X1

(
i

N+1

)
, for the four specifications and both penalization parameters. The solid and

dashed lines correspond to the mean, 10 and 90 percentiles across 100 simulations, respec-

tively, while the dashed-dotted line corresponds to the true quantile function. The sample

size is N = 100. Even for such a small sample size, our nonparametric estimator per-

forms well, although there is some evidence of bias when imposing a stronger constraint on

the parameters (first column). Estimates under weak constraint are virtually unbiased and

quite precise. On the last two columns of Figure 2 we show density estimates for the same

specifications. We take a Gaussian kernel and set the bandwidth based on Silverman’s rule.

Although there are larger biases in the strong constraint case the results reproduce the shape

of the unknown densities rather well.

In Figure 3 we report additional results for the Beta(2, 2) specification, for N = 100

(columns 1 and 3) and N = 500 (columns 2 and 4). In the first two rows we report the

results based on a single σ draw per estimate (i.e., M = 1), whereas in the next two rows

we show the results for the estimator averaged over M = 10 different σ draws. While we see

that averaging seems to slightly increase the precision of estimated quantile functions and
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Figure 2: Monte Carlo results, deconvolution model, N = 100
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Notes: Simulated data from the deconvolution model Y = X1 + X2. Solid is the mean across

simulations, dashed are 10 and 90 percent pointwise quantiles, and dashed-dotted is the true quantile

function or density of X1. 100 simulations. 10 averages over permutation draws.
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Figure 3: Monte Carlo results, deconvolution model, Beta(2,2), N = 100, 500
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Notes: Simulated data from the deconvolution model Y = X1 + X2. Solid is the mean across

simulations, dashed are 10 and 90 percent pointwise quantiles, and dashed-dotted is the true quantile

function or density of X1. 100 simulations.
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densities, the results based on one σ draw are comparable to the ones based on 10 draws.

In the last row of Figure 3 we show results when using a single starting parameter value in

our algorithm, instead of 10 values in our baseline estimates. We see that the results are

very little affected, suggesting that the impact of starting values on the performance of the

estimator is moderate.

In Table 1 we attempt to quantify the rate of convergence of our quantile function estima-

tor in a simulation experiment. We report the mean squared error at various quantiles (25%,

median, and 75%) for the four distributional specifications. We focus on the weak constraint

case, and rely on a single σ draw and single starting parameter value in each replication. We

report the results of 500 simulations. In the last column of Table 1 we report an “implied

rate” of convergence based on these results, which we compute by regressing the log-mean

squared error on the log-sample size. The results suggest the rate ranges between N−
3
10 and

N−
7
10 . From Theorem 3.7 in Hall and Lahiri (2008), when characteristic functions of X1

and X2 are converging at polynomial rates of order b and a, respectively, the optimal rate of

convergence for quantile estimation is N−
2b

2a+2b−1 . As an example, in the case of the Beta(2,2)

and Beta(5,2) distributions, characteristic functions converge at the quadratic rate, so the

corresponding optimal rate is N−
4
7 .

Next, we assess the impact of the penalization parameters CN and CN on the mean

squared error of quantile estimates, at the median and 25% and 75% percentiles. In Figure

4 we show the results for the four specifications, when varying the logarithm of CN between

0 and 150 and setting CN = C
−1

N , for two sample sizes: N = 100 (top panel) and N = 500

(bottom panel). Two features emerge. First, setting CN to a very large number, which

essentially fully relaxes the constraints, still results in a well-behaved estimator. This is in

contrast with usual regularization methods for ill-posed inverse problems such as Tikhonov

regularization or spectral cut-off (e.g., Carrasco, Florens and Renault, 2007), for which

decreasing the amount of penalization typically causes large increases in variance. The

high sensitivity of characteristic-function based estimators to the choice of regularization

parameters is also well documented. We interpret this feature of our estimator as reflecting

the fact that the matching-based procedure induces an implicit regularization, even in the

absence of additional constraints on parameters. Second, the results show that fully removing

the penalization may not be optimal in terms of mean squared error. This raises the question

of optimal choice of the penalization parameters, which would be very interesting to study
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Figure 4: Monte Carlo simulation, mean squared error of estimated quantiles of X1 as a
function of the penalization parameter

N = 100
Beta(2, 2) Beta(5, 2) N (0, 1) exp[N (0, 1)]

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N = 500
Beta(2, 2) Beta(5, 2) N (0, 1) exp[N (0, 1)]

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Notes: Simulated data from the deconvolution model Y = X1 +X2. Log of penalization CN (x-axis)

against mean squared error (y-axis). CN is set to C
−1
N . Solid corresponds to the median, dashed

to the 25% quantile, dotted to the 75% quantile. No average, single starting value, weak constraint.

N = 100 (top panel) and N = 500 (bottom panel), 500 simulations.

in future work.

We next consider a data generating process (DGP) which has been previously used to

assess the finite-sample behavior of several estimators in the nonparametric deconvolution

model. This DGP was used in Koenker (2016), and it is a slight variation of a DGP intro-

duced by Efron (2016). Let Y = X1 + X2, where X2 is distributed as a standard normal,

and X1 is distributed as a mixture of two distributions: a normal
(
0, 1

2

)
with probability 6

7
,

and a uniform on the [0, 6] interval with probability 1
7
. Koenker reports that the Stefanski

and Carroll (1990) characteristic-function based estimator does quite poorly on this DGP,

distribution functions estimated on a sample of 1000 observations showing wide oscillations.

In Figure 5 we apply our estimator to this DGP, and report the results of 100 simulations.

On the left graph we show quantile function estimates averaged 10 times, whereas on the

right the results correspond to a single σ draw per estimation. We see that nonparametric

estimates are very close to the true quantile function. This performance stands in sharp con-

trast with that of characteristic-function based estimates, and is similar to the performance
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Figure 5: Monte Carlo results, deconvolution model, Efron-Koenker specification, N = 1000
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Notes: Simulated data from the specification of the deconvolution model Y = X1 + X2 used in

Koenker (2016), which is a slight variation on a DGP used in Efron (2016). Solid is the mean

across simulations, dashed are 10 and 90 percent pointwise quantiles, and dashed-dotted is the true

quantile function of X1. Weak constraint. 100 simulations.

Figure 6: Monte Carlo results, deconvolution model, Beta(2,2), Mallows’ (2007) algorithm
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Notes: Simulated data from the deconvolution model. Solid is the mean across simulations, dashed

are 10 and 90 percent pointwise quantiles, and dashed-dotted is the true density. Mallows’ (2007)

algorithm. 100 simulations.
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Table 2: Monte Carlo simulation, mean integrated squared and absolute errors of density
estimators in the fixed-effects model, results for X1

MISE MIAE MISE MIAE MISE MIAE
(X1, X2, X3) ∼ Beta(2,2)

Strong constraint Weak constraint Fourier
0.0036 0.0654 0.0035 0.0631 0.0123 0.2274

(X1, X2, X3) ∼ Beta(5,2)

Strong constraint Weak constraint Fourier
0.0050 0.0750 0.0042 0.0677 0.0249 0.2979

(X1, X2, X3) ∼ N (0, 1)

Strong constraint Weak constraint Fourier
0.0056 0.0796 0.0040 0.0674 0.0122 0.2372

(X1, X2, X3) ∼ exp[N (0, 1)]

Strong constraint Weak constraint Fourier
0.1003 0.2415 0.0536 0.1492 0.3344 0.8613

Notes: Mean integrated squared and absolute errors across 100 simulations from the fixed-
effects model. N = 100, T = 2. “Fourier” is the characteristic-function based estimator of
Bonhomme and Robin (2010). Results for the first factor X1.

of the parametric estimator analyzed in Efron (2016).

Lastly, in Figure 6 we report simulation results for Mallows’ (2007) stochastic estimator,

in the case of the Beta(2, 2) specification. As we pointed out in Section 4, this algorithm is

closely related to ours but it differs from it since new random permutations are re-drawn in

every step. We draw 100 such permutations, and keep the results corresponding to the last

50. The results are similar to the ones obtained using our estimator under weak constraint,

as can be seen by comparing with Figure 3.

6.2 Fixed-effects model

We next turn to the fixed-effects model Y1 = X1 + X2, Y2 = X1 + X3, where X1, X2, X3

are independent of each other and have identical distributions. As before we consider four

specifications for the distribution of Xk. In Figure 7 we report the estimates of the quantile

function and density of the first factor X1. Results corresponding to X2 and X3 are similar,

and can be found in Appendix B. The sample size is N = 100. The estimates are comparable

to the ones in Figure 2.

In Table 2 we report the mean integrated squared and absolute errors (MISE and MIAE,
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Figure 7: Monte Carlo results for X1 in the fixed-effects model, N = 100, T = 2
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Notes: Simulated data from the fixed-effects model, results for the first factor X1. Solid is the mean

across simulations, dashed are 10 and 90 percent pointwise quantiles, and dashed-dotted is the true

quantile function or density. 100 simulations. 10 averages over permutation draws.
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respectively) of our density estimators, for the four distributional specifications and N = 100.

We see that the version of the estimator under weak constraint performs better. More-

over, interestingly, as shown by the last two columns of Table 2 our estimator outperforms

characteristic-function based density estimators.18 Inspection of the estimates suggests that

the differences are mainly driven by estimates of the tails of the densities. Unlike our es-

timator, characteristic-function based ones do not guarantee that estimated densities be

non-negative, and their values tend to oscillate in the left and right tails.

7 Empirical illustrations

In this section we present two illustrations of our method. We first estimate distributions

of earnings shocks, based on a subsample from the PSID for the years 1978 to 1987 taken

from Bonhomme and Robin (2010). We then estimate distributions of school quality, based

on data from Madrid for 2005-2015.

7.1 Permanent-transitory earnings dynamics

Following Bonhomme and Robin (2010) we estimate a simple permanent-transitory model

where log-earnings, net of the effect of some covariates, is the sum of a random walk ηit and

an independent innovation εit. In first differences we have, denoting log-earnings growth as

∆Yit = Yit − Yi,t−1:

∆Yit = vit + εit − εi,t−1, t = 1, ..., T,

which is a linear factor model with 2T − 1 independent factors.19

We use the same sample selection as in Bonhomme and Robin, focusing on a balanced

panel of 624 employed male workers. Log-earnings growth ∆Yit is net of education, race,

18The results in the “Fourier” column are based on the characteristic-function based generalized deconvo-
lution estimator of Bonhomme and Robin (2010). We use their recommended choice to set the regularization
parameter in each replication.

19Indeed we have:


∆Y1

∆Y2

∆Y3

...
∆YT


︸ ︷︷ ︸

=Y

=


1 0 ... 0 1 0 ... 0
0 1 ... 0 −1 1 ... 0
0 0 ... 0 0 −1 ... 0
... ... ... ... ... ... ... ...
0 0 ... 1 0 0 ... −1


︸ ︷︷ ︸

=A



v1 − ε0

v2

...
vT + εT
ε1

ε2

...
εT−1


︸ ︷︷ ︸

=X

.
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geographic and year dummies, and a quadratic polynomial in age. We estimate the quantile

functions of permanent shocks vit and transitory shocks εit for different years t using our

matching estimator.

In Figures 8 and 9 we show the estimated quantile functions of permanent and transitory

shocks, respectively. We report average estimates based on M = 10 σ draws, and use

10 different starting values in the algorithm. The estimates in the graphs are based on

(CN , CN) = (.1, 10) (strong constraint). The dotted line shows a fitted Gaussian quantile

function. In dotted lines we show 10%-90% bootstrap confidence bands.20 In Figures B3

and B4 in Appendix B we compare the estimated quantile functions under strong and weak

constraints. We see that both permanent and transitory shocks are far from being normally

distributed. This confirms the findings of strong non-Gaussianity found in Horowitz and

Markatou (1996), Geweke and Keane (2000), and Bonhomme and Robin (2010), among

others.

Next, in Figures 10 and 11 we show density estimates for permanent and transitory

shocks. The results obtained under a stronger penalization (strong constraint) are shown

in solid lines, whereas the results under a weaker penalization are in dashed lines. Density

estimates confirm the evidence of non-Gaussianity and suggest the presence of excess kurtosis

in permanent and transitory shocks. Moreover, while the effect of the penalization on the

density estimates is stronger in the tails, it does not affect much their central parts.

Lastly, in Figures B5 and B6 in Appendix B we show how the model fits distributions

of log-earnings growth Yit − Yi,t−s at various horizons s, and the distribution of year-to-year

growth Yit − Yi,t−1 for different years. We simulate the model 200 times for every individual

in the sample and report the resulting measures of fit. We see that the model produces a

good fit both at different horizons and over time.

7.2 School effects in the Spanish region of Madrid

In this second illustration we focus on a standardized exam administered each year in all

primary schools from the Madrid area to sixth-grade students. This exam, called the CDI

(“prueba de Conocimientos y Destrezas Indispensables”) is compulsory for all schools. It

has no academic consequences for students (Anghel, Cabrales and Carro, 2016). We focus

on average maths test scores in every school in Madrid capital, which represents 481 schools

20Note that our theory does not provide asymptotic guarantees on the validity of the bootstrap.
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Figure 8: Estimated quantile functions of permanent shocks in different years
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Notes: PSID, 1978-1987. Permanent shock in every year (note: the first and last years are a

combination of permanent and transitory shocks). Sample selection and construction of log-earnings

growth residuals as in Bonhomme and Robin (2010). Model estimation: strong constraint, 10

averages over permutation draws. Point estimates in solid, 10 and 90 pointwise bootstrap confidence

bands in dashed (100 replications), normal quantile function in dotted.

28



Figure 9: Estimated quantile functions of transitory shocks in different years
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Notes: PSID, 1978-1987. Transitory shock in every year. Sample selection and construction of

log-earnings growth residuals as in Bonhomme and Robin (2010). Model estimation: strong con-

straint, 10 averages over permutation draws. Point estimates in solid, 10 and 90 pointwise bootstrap

confidence bands in dashed (100 replications), normal quantile function in dotted.
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Figure 10: Estimated density functions of permanent shocks in different years, weak con-
straints (dashed) and strong constraints (solid)
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Notes: PSID, 1978-1987. Permanent shock in every year (note: the first and last years are a

combination of permanent and transitory shocks). Sample selection and construction of log-earnings

growth residuals as in Bonhomme and Robin (2010). Model estimation: strong (solid line) and weak

(dashed line) constraint, 10 averages over permutation draws.
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Figure 11: Estimated density functions of transitory shocks in different years, weak con-
straints (dashed) and strong constraints (solid)
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Notes: PSID, 1978-1987. Transitory shock in every year. Sample selection and construction of

log-earnings growth residuals as in Bonhomme and Robin (2010). Model estimation: strong (solid

line) and weak (dashed line) constraint, 10 averages over permutation draws.
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Figure 12: Quantile functions of school effects
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Notes: Administrative data from the Spanish region of Madrid. Solid is the quantile function of

time-averaged test scores Y i, dashed is the estimated quantile function of ηi.

from 2005 to 2015. Here we focus on overall school performance, without attempting to

separate student composition from the causal effect of the school.

The covariance structure of school averages of test scores (given in Table B1 in Appendix

B) suggests that a fixed-effects model with uncorrelated additive errors provides a good ap-

proximation. We find there is substantial year-to-year fluctuations in test scores. Estimating

a simple stationary covariance structure on school averages gives a variance of the fixed effect

of .166, and a variance of the transitory shock of .141. In other words, close to half of the

variation in test scores across schools is of a transitory nature.

We then estimate the fixed-effects model:

Yit = ηi + εit,

where Yit is the average CDI test score in mathematics in school i in year t, and ηi, εi1, ..., εiT

are modeled as independent of each other with unspecified distributional forms. By estimat-

ing the distribution of ηi we aim to provide a “nonparametric shrinkage” of the time averages

Y i = (1/T )
∑T

t=1 Yit, so as to document the distribution of permanent school quality, net of

transitory fluctuations.

We estimate the fixed-effects model on three pairs of years: 2005−2007, 2009−2011, and

2013− 2015. In Figures 12 and 13 we report the estimated quantile functions and densities

of ηi (in dashed lines) together with the quantile functions and densities of school test scores

averaged over each of the three periods Y i (in solid lines).21 We see that, compared to

21In Figure B7 in Appendix B we show the fit of the model for marginal quantile functions of school-
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Figure 13: Densities of school effects
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Notes: Administrative data from the Spanish region of Madrid. Solid is the density of time-averaged

test scores Y i, dashed is the estimated density of ηi.

the distributions of Y i, the distributions of permanent school quality ηi are less dispersed,

consistently with the idea that ηi’s are net of transitory variation. At the same time, the

noise correction is asymmetric, making a larger difference at the bottom of the distribution

than at the top. Such asymmetric effects could not be captured using conventional Gaussian

empirical Bayes methods.

8 Extension: finite mixture models

In this section we outline an extension of our matching approach to the following finite

mixture model with G groups, for a T -dimensional outcome Y :

Yt =
K∑
g=1

ZgXgt, g = 1, ..., G, (12)

where Z1, ..., ZG and X11, ..., XGT are unobserved, Zg ∈ {0, 1} with
∑G

g=1 Zg = 1, and

(Z1, ..., ZG) and all X11, ..., XGT are all mutually independent. The nonparametric ver-

sion of model (12) has been extensively analyzed in the literature (e.g., Hall and Zhou, 2003,

Hu, 2008, Allmann, Matias and Rhodes, 2009, Bonhomme, Jochmans and Robin, 2016a,

2016b).

To construct a matching estimator in model (12) we first note that, by the threshold

crossing representation, there exist a parameter vector µ = (µ1, ..., µG−1) and a standard

averaged test scores for 2005, 2009 and 2013. The model produces an excellent fit in this dimension.
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Figure 14: Monte Carlo results, finite mixture model, G = 2
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Notes: Simulated data from a finite mixture model with G = 2 components. Solid is the mean across

simulations, dashed are 10 and 90 percent pointwise quantiles, and dashed-dotted is the true density.

The two components have means −1 and 1 and unitary variances. Gaussian (top panel) and log-

Gaussian (bottom panel) components. N = 100, T = 3, 100 simulations. R = 10 simulations per

observation.

uniform random variable V such that Zg = Zg(V, µ), where Z1(V, µ) = 1 if and only if

V ≤ µ1, Zg(V, µ) = 1 if and only if µg−1 < V ≤ µg for g = 2, ..., G − 1, and ZG(V, µ) = 1

if and only if µG−1 < V . We denote as MG−1 the set of vectors µ ∈ RG−1 such that

0 ≤ µ1 ≤ µ2 ≤ ... ≤ µG−1 ≤ 1.

We then define the following estimator:

(X̂, µ̂) = argmin
X∈XN , µ∈MG−1

{
min
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

G∑
g=1

Zg(Vi, µ)Xσgt(i),gt

)2}
, (13)

where V1, ..., VN are standard uniform draws, and σgt are random permutations in ΠN for all

g = 1, ..., G, t = 1, ..., T .

For given µ, we propose to use an algorithm analogous to the one described in Section

4 to compute X̂. The outer minimization with respect to µ can be done using simulated

annealing or other methods to minimize non-differentiable objective functions. When G is
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small (as in the simulation exercise below) grid search is a viable option. Consistency of the

estimator can be studied using the same techniques as in Section 5.

In Figure 14 we report the results of 100 simulations, for two DGPs, both of which are

finite mixture models with G = 2 components with independent measurements. We consider

a normal DGP and a log-normal DGP. To fix the labeling across simulations the components

are ordered by increasing means.22 The results are encouraging, and suggest that matching

estimators can perform well in nonparametric finite mixture models too.

9 Conclusion

In this paper we have proposed an approach to nonparametrically estimate models with

latent variables. The method is based on matching predicted values from the model to the

empirical observations. We have provided a simple algorithm for computation, and estab-

lished consistency. We have also documented excellent performance of our nonparametric

estimator in small samples, in particular compared to characteristic-function based estima-

tors. Substantial progress on computation might be possible by leveraging recent advances

on regularized optimal transport (e.g., Cuturi, 2013). An important question for future work

will be to characterize rates of convergence and asymptotically valid confidence sets for our

estimator.

Lastly, although we have focused on linear independent factor models, our approach could

be generalized to other nonparametric or semiparametric models with latent variables such

as finite mixture models, which we have briefly analyzed, and more generally finite mixtures

of linear independent factor models (or “mixtures of factor analyzers”); see Ghahramani and

Hinton (1997) and McLachlan, Peel and Bean (2003). Our approach can also be extended

to estimate linear random coefficients models, such as:

Y = X1 +
K∑
k=2

WkXk, (14)

where (W2, ...,WK) is independent of (X1, ..., XK), the scalar outcome Y and the covariates

W2, ...,WK are observed, and X1, ..., XK are latent.23 To construct a matching estimator

22We use a version of (13) with multiple draws σgt(i, r) for all i, with R = 10 simulations by observation.
We use 3 starting values in every inner loop, and perform an outer loop for 10 equidistant values of the first
group’s probability.

23Model (14) has been extensively studied. See for example Beran and Hall (1992), Beran and Millar
(1994), Beran, Feuerverger and Hall (1996), and Hoderlein, Klemela and Mammen (2010).
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in this case, we augment (14) with: Wk = Vk, k = 2, ..., K, where the Vk’s are auxiliary

latent variables independent of the Xk’s. In this augmented model, the parameters (that

is, the joint distributions of (X1, ..., XK) and (V2, ..., VK)) are estimated by minimizing the

Euclidean distance between the model’s predictions of Y,W observations, and their matched

values in the data. A similar approach could be used in binary choice models with random

coefficients.24

24See Ichimura and Thompson (1998) and Gautier and Kitamura (2013).
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[24] Conforti, M., G. Cornuéjols, and G. Zambelli (2014): Integer programming. Vol. 271.
Berlin: Springer.
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APPENDIX

A Proofs

A.1 Proof of Theorem 1

Define the empirical objective function, for any function H, as:

Q̂(H) = min
π∈ΠN

1

N

N∑
i=1

(
Yπ(i) −H

(
σ(i)

N + 1

)
−Xi2

)2

=
1

N

N∑
i=1

(
F̂−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

,

where F̂−1
Y (τ) = inf {y ∈ Supp(Y ) : F̂Y (y) ≥ τ}, and R̂ank(Zi) = NF̂Z(Zi). The second

equality follows from Hardy, Littlewood and Polya’s rearrangement inequality. For all X ∈

RN we will denote Q̂(X) = Q̂(H) for any function H such that H
(

i
N+1

)
= Xi for all i.

Define the population counterpart to Q̂, for any H ∈ H, as:

Q(H) = E

((
F−1
Y

(∫ 1

0

FX2 (H(V ) +X2 −H(τ)) dτ

)
−H(V )−X2

)2
)
,

where the expectation is taken with respect to pairs (V,X2) of independent random variables,

where V is standard uniform and X2 ∼ FX2 .

Sieve construction. For any N , let us define the sieve space:

HN =

{
H ∈ H :

∣∣∣∣H ( i

N + 1

)∣∣∣∣ ≤ CN , CN ≤ (N + 1)

(
H

(
i+ 1

N + 1

)
−H

(
i

N + 1

))
≤ CN

}
.

Consider a sieve estimator Ĥ such that:

Q̂(Ĥ) ≤ min
H∈HN

Q̂(H) + εN ,

where εN tends to zero as N tends to infinity. Let X̃i = Ĥ
(

i
N+1

)
for all i. We have:

Q̂(X̃) ≤ min
X∈XN

Q̂(X) + εN . (A1)

To see that (A1) holds, note that X̃ ∈ XN (by the definition of HN), and that, for all

X ∈ XN , there exists an H ∈ H such that H
(

i
N+1

)
= Xi for all i.25

Let H0 = F−1
X1

. To show Theorem 1 it is thus sufficient to show that ‖Ĥ−H0‖∞ = op(1).

This will follow from verifying conditions (3.1”), (3.2), (3.4), and (3.5(i)) in Chen (2007).

25Take a smooth interpolating function of the Xi’s, arbitrarily close in sup norm to the piecewise-linear
interpolant of the Xi’s extended to have slope C on the intervals [0, 1/(N + 1)] and [N/(N + 1), 1]. This is
always possible since CN < C − C/(N + 1) and CN > C.
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H is compact under ‖ · ‖∞ and Q(H) is upper semicontinuous onH. Compactness

holds as indicated in the text. (3.4) follows since HN is a closed subset of H. To show that

Q(H) is continuous on H under ‖ · ‖∞, let H1, H2 in H. By Assumption 1 (i), F−1
Y and FX2

are Lipschitz. It follows that, for some constant C̃, |Q(H2)−Q(H1)| ≤ C̃‖H2−H1‖∞. This

implies continuity of Q. This shows (3.1”) in Chen (2007).

HN ⊂ HN+1 ⊂ H for all N , and there exists a sequence HN ∈ HN such that

‖HN −H0‖∞ = op(1). If H0 is linear with slope C, take HN linear too, with slope CN .

Assume from now on that H0 is not linear with slope C. Then there is an ε > 0 such that

H0(1) − H0(0) > C + ε. Let G0 be linear with G0(0) = H0(0) + δ and G0(1) = H0(1) − δ,

for 0 < δ < (H0(1) − H0(0) − (C + ε))/2. For an increasing sequence λN which tends to

one as N tends to infinity, let HN = λNH0 + (1− λN)G0. Taking λN such that (1− λN) ≥

max
{
C−CN

δ
,
C−CN

ε

}
, we have |HN | ≤ CN and CN ≤ ∇HN ≤ CN , hence HN ∈ HN .26

Moreover:

‖HN −H0‖∞ ≤ (1− λN)‖H0‖∞ + (1− λN)‖G0‖∞ = op(1).

This shows (3.2) in Chen (2007).

Q(H) is uniquely minimized at H0 on H, and Q(H0) <∞. We have Q(H) ≥

Q(H0) = 0 for all H ∈ H. Suppose that Q(H) = 0. Then, (V,X2)-almost surely we have:

F−1
Y

(∫ 1

0

FX2 (H(V ) +X2 −H(τ)) dτ

)
= H(V ) +X2.

Since the left-hand side in this equation is distributed as FY , it thus follows that, almost

surely:

FH(V )+X2 (H(V ) +X2) = FY (H(V ) +X2) .

It follows that FH(V )+X2 = FY almost everywhere on the real line. Since Y and X2 have

densities fY and fX2 , this also implies that, y-almost everywhere:

fY (y) =

∫ 1

0

fX2(y −H(τ))dτ .

26Note that, by the mean value theorem we have, for all continuously differentiable H and all i:

inf
τ∈[i/(N+1),(i+1)/(N+1)]

∇H(τ) ≤ (N + 1)

(
H

(
i+ 1

N + 1

)
−H

(
i

N + 1

))
≤ sup
τ∈[i/(N+1),(i+1)/(N+1)]

∇H(τ).
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Now, since H ∈ H, the function fX̃(x) ≡ 1/∇H(H−1(x)) is well-defined, continuous and

bounded. We then have by a change of variables:

fY (y) =

∫ 1

0

fX2(y − x)fX̃(x)dx.

Taking Fourier transforms in this equation yields, denoting as ΨZ the characteristic function

of any random variable Z:

ΨY (s) = ΨX1(s)ΨX2(s) = ΨX̃(s)ΨX2(s), for all s ∈ R.

As ΨX2 is non-vanishing we thus have ΨX1 = ΨX̃ . It follows that fX1 = fX̃ , hence that

H = H0. This shows (3.1”(ii)) in Chen (2007).

plimN→∞ supH∈H |Q̂(H)−Q(H)| = 0. First, notice that since H consists of Lips-

chitz functions its ε-bracketing entropy is finite for any ε > 0 (e.g., Corollary 2.7.2 in van

der Vaart and Wellner, 1996). Hence H is Glivenko Cantelli for the ‖ · ‖∞ norm.

Let:

GH(V,X2) =

(
F−1
Y

(∫ 1

0

FX2 (H(V ) +X2 −H(τ)) dτ

)
−H(V )−X2

)2

.

Notice that, for all H ∈ H:27

1

N

N∑
i=1

GH

(
σ(i)

N + 1
, Xi2

)
=

1

N

N∑
i=1

GH

(
i

N + 1
, Xσ−1(i),2

)
=

∫ 1

0

E (GH (τ ,X2)) dτ + op(1) = Q(H) + op(1). (A2)

Moreover, since H 7→ GH is Lipschitz onH,28, andH is Glivenko Cantelli, the set of functions

{GH : H ∈ H} is also Glivenko Cantelli. Hence:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

GH

(
σ(i)

N + 1
, Xi2

)
−Q(H)

∣∣∣∣∣ = op(1).

Next, we are going to show that:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

)
−
∫ 1

0

FX2

(
H

(
σ(i)

N + 1

)
+Xi2 −H(τ)

)
dτ

∣∣∣∣∣
= op(1). (A3)

27Recall that σ is a random permutation of {1, ..., N}. σ is thus a shorthand for σN .
28This follows from the fact that fY is bounded away from zero and fX2

is bounded away from infinity.
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From (A3) and the fact that F−1
Y is Lipschitz we will then have:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

(
F−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

−Q(H)

∣∣∣∣∣
= op(1).

To show (A3) we are going to show that:

sup
H∈H, a∈R

∣∣∣∣∣ 1

N

N∑
i=1

1

{
H

(
σ(i)

N + 1

)
+Xi2 ≤ a

}
−
∫ 1

0

FX2 (a−H(τ)) dτ

∣∣∣∣∣ = op(1). (A4)

Pointwise convergence in (A4) is readily verified (similarly as in (A2)). Uniform convergence

follows provided we can show that G = {gH,a : H ∈ H, a ∈ R} is Glivenko Cantelli, where

gH,a(v, u) = 1{H(v) + u ≤ a}. We are going to show this using a bracketing technique

from empirical process theory. Fix an ε > 0. Since H has finite ε-bracketing entropy there

exists a set of functions Hj, j = 1, ..., J , such that for all H ∈ H there is a j such that

Hj(τ) ≤ H(τ) ≤ Hj+1(τ) for all τ , and ‖Hj − Hj−1‖∞ < ε for all j. Moreover, there

exists a set of scalars ak, k = 1, ..., K, such that the real line is covered by the intervals

[ak, ak+1], and FX2(ak+1) − FX2(ak) < ε for all k. Since X2 has bounded support we can

assume without loss of generality that ak+1 − ak < ε. Hence for all H and a there exist j

and k such that 1{Hj+1(v) + u ≤ ak} ≤ gH,a(v, u) ≤ 1{Hj(v) + u ≤ ak+1} for all (u, v).

Since
∫ 1

0
FX2(ak+1 −Hj(τ))dτ −

∫ 1

0
FX2(ak −Hj+1(τ))dτ < C̃ε, where C̃ > 0 is finite as fX2

is bounded away from infinity, G is Glivenko Cantelli and (A4) has been shown.

Lastly, since fY is bounded away from zero and infinity and differentiable, the empirical

quantile function of Y is such that (e.g., Corollary 1.4.1 in Csörgö, 1983):

sup
τ∈(0,1)

∣∣∣F̂−1
Y (τ)− F−1

Y (τ)
∣∣∣ = op(1).

Hence:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

(
F̂−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

−Q(H)

∣∣∣∣∣
= op(1).

This shows (3.5(i)) in Chen (2007) and ends the proof of Theorem 1.
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A.2 Proof of Theorem 2

Define the empirical objective function as, for any H = (H1, ..., HK):

Q̂(H) = min
π∈ΠN

1

N

N∑
i=1

∥∥∥∥∥Yπ(i) −
K∑
k=1

AkHk

(
σk(i)

N + 1

)∥∥∥∥∥
2

,

where Yi = (Yi1, ..., YiT )′ is a T × 1 vector for all i, A = (A1, ..., AK) with Ak a T × 1

vector for all k, and ‖ · ‖ is the Euclidean norm on RT . Denote as µ̂Y the empirical measure

of Yi, i = 1, ..., N , with population counterpart µY , and as µ̃AH the empirical measure

of
∑K

k=1AkHk

(
σk(i)
N+1

)
, i = 1, ..., N , with population counterpart µAH . Then Q̂(H)

1
2 =

W2 (µ̂Y , µ̃AH) is the quadratic Wasserstein distance between µ̂Y and µ̃AH . See Chapter 7 in

Villani (2003) for an analysis of some of the main properties of Wasserstein distances.

Likewise, let us define the population counterpart to Q̂, for any H ∈ HK , as:

Q(H) = inf
π∈M(µY , µAH)

Eπ

∥∥∥∥∥Y −
K∑
k=1

AkHk (Vk)

∥∥∥∥∥
2
 ,

where the infimum is taken over all possible joint distributions, or couplings, of the ran-

dom vectors Y and
∑K

k=1AkHk (Vk), with marginals µY and µAH . In this case Q(H)
1
2 =

W2 (µY , µAH) is the Wasserstein distance between the two population marginals.

The proof follows the steps of the proof of Theorem 1. The differences are as follows.

Q(H) is continuous on HK. Let H1 and H2 in HK . Since Y has bounded support, and

H1k and H2k are bounded for all k, we have:

|Q(H2)−Q(H1)| ≤ C̃|Q(H2)
1
2 −Q(H1)

1
2 | = C̃|W2

(
µY , µAH2

)
−W2

(
µY , µAH1

)
|,

for some constant C̃ > 0. Hence, since W2 satisfies the triangular inequality (see Theorem

7.3 in Villani, 2003):

|Q(H2)−Q(H1)| ≤ C̃W2

(
µAH1

, µAH2

)
.

Next, we use that, since supports are bounded, W2

(
µAH1

, µAH2

)
is bounded (up to a

multiplicative constant) by the Kantorovich Rubinstein distance:

W1(µAH1
, µAH2

) = inf
π∈M(µAH1

, µAH2
)
Eπ

(∥∥∥∥∥
K∑
k=1

AkH1k (V1k)−
K∑
k=1

AkH2k (V2k)

∥∥∥∥∥
)
.
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Now, using the dual representation the Kantorovich-Rubinstein distance, W1 can be

equivalently written as (see Theorem 1.14 in Villani, 2003):

W1(µAH1
, µAH2

) = sup
ϕ1-Lipschitz

E

(
ϕ

(
K∑
k=1

AkH1k (V1k)

))
− E

(
ϕ

(
K∑
k=1

AkH2k (V2k)

))
,

where ϕ are 1-Lipschitz functions on RT ; that is, such that |ϕ(y2) − ϕ(y1)| ≤ ‖y2 − y1‖ for

all (y1, y2) ∈ RT × RT .

Hence:

W1(µAH1
, µAH2

) ≤ sup
ϕ1-Lipschitz

E

(∥∥∥∥∥
K∑
k=1

AkH1k (V1k)

))
− E

(
ϕ

(
K∑
k=1

AkH2k (V2k)

))

= sup
ϕ1-Lipschitz

∫
...

∫
ϕ

(
K∑
k=1

AkH1k (τ k)

)
− ϕ

(
K∑
k=1

AkH2k (τ k)

)
dτ 1...dτK

≤
∫
...

∫ ∥∥∥∥∥
K∑
k=1

AkH1k (τ k)−
K∑
k=1

AkH2k (τ k)

∥∥∥∥∥ dτ 1...dτK

≤
K∑
k=1

‖Ak‖ ‖H1k −H2k‖∞.

This implies that H 7→ Q(H) is continuous on HK .

Q(H) is uniquely minimized at H0 on HK. Let H be such that Q(H) = 0. Then

W2 (µY , µAH) = 0. By Theorem 7.3 in Villani (2003) this implies that µY = µAH . Hence

the cdfs of Y =
∑K

k=1AkH0k (Vk) and
∑K

k=1AkHk (Vk) are equal. By Assumption 2 (iii), it

follows from the identification result in Bonhomme and Robin (2010) that Hk = H0k for all

k.

plimN→∞ supH∈HK
|Q̂(H)−Q(H)| = 0. Using similar arguments as for the continu-

ity of Q(H), we have:

sup
H∈HK

|Q̂(H)−Q(H)| ≤ C̃ sup
H∈HK

|W2 (µ̂Y , µ̃AH)−W2 (µY , µAH) |

≤ C̃ sup
H∈HK

(W2 (µY , µ̂Y ) +W2 (µAH , µ̃AH)) ,

where we have used again the triangular inequality.

Now, there is a positive constant C̃ such that:

W2 (µY , µ̂Y ) ≤ C̃W1 (µY , µ̂Y ) = sup
ϕ1-Lipschitz

E (ϕ (Y ))− 1

N

N∑
i=1

ϕ (Yi) = op(1),
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where the last equality follows from the set of 1-Lipschitz functions ϕ being Glivenko-

Cantelli.29

Next, we have:

sup
H∈HK

W2 (µAH , µ̃AH) ≤ C̃ sup
H∈HK

W1 (µAH , µ̃AH)

= sup
H∈HK

sup
ϕ1-Lipschitz

E

(
ϕ

(
K∑
k=1

AkHk (Vk)

))
− 1

N

N∑
i=1

ϕ

(
K∑
k=1

AkHk

(
σk(i)

N + 1

))
= op(1),

where the last equality follows from the fact that the following set is Glivenko-Cantelli:{
ϕ ◦

(
K∑
k=1

AkHk

)
: ϕ is 1-Lipschitz, H = (H1, ..., HK) ∈ HK

}
.

This concludes the proof of Theorem 2.

A.3 Proof of Corollary 1

Let k ∈ {1, ..., K}. Let Ĥk ∈ H(2)
N be such that Ĥk

(
i

N+1

)
= X̂ik for all i, where H(2)

N is the

set of functions in H(2) such that
{
Hk

(
i

N+1

)
: i = 1, ..., N

}
belongs to X (2)

N . We have:∣∣∣∣∣ 1

Nb

N∑
i=1

κ

(
Ĥk

(
i

N+1

)
− x

b

)
− 1

b

∫ 1

0

κ

(
Ĥk (u)− x

b

)
du

∣∣∣∣∣
=

∣∣∣∣∣ 1

Nb

N∑
i=1

∫ i
N

i−1
N

[
κ

(
Ĥk

(
i

N+1

)
− x

b

)
− κ

(
Ĥk (u)− x

b

)]
du

∣∣∣∣∣
≤ C

Nb2

N∑
i=1

∫ i
N

i−1
N

∣∣∣∣Ĥk

(
i

N + 1

)
− Ĥk (u)

∣∣∣∣ du
≤ C̃

Nb2

N∑
i=1

∫ i
N

i−1
N

∣∣∣∣ i

N + 1
− u
∣∣∣∣ du = O(N−2b−2) = o(1),

where C > 0, C̃ > 0 are constants, and we have used that κ is Lipschitz, ∇Ĥk is uniformly

bounded, and Nb→∞.

Now, using the change of variables ω = Ĥk(u)−x
b

, we obtain:

1

b

∫ 1

0

κ

(
Ĥk (u)− x

b

)
du =

∫ +∞

−∞
κ(ω)

1

∇Ĥk

(
Ĥ−1
k (x+ bω)

)dω =
1

∇Ĥk

(
Ĥ−1
k (x)

) + o(1),

where we have used that x 7→ 1/∇Ĥk(Ĥ
−1
k (x)) is differentiable with uniformly bounded

derivative and κ has finite first moments, b→ 0, and κ integrates to one.

29Non-asymptotic bounds and asymptotic rates results are available for W2 (µY , µ̂Y ) in the literature (e.g.,
Fournier and Guillin, 2015).
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Lastly, note that fXk
(x) = 1/∇H0k(H

−1
0k (x)), with ‖Ĥk − H0k‖∞ = op(1), ‖Ĥ−1

k −

H−1
0k ‖∞ = op(1), and ‖∇Ĥk −∇H0k‖∞ = op(1).

This shows Corollary 1.
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B Additional results

Figure B1: Monte Carlo results for X2 in the fixed-effects model, N = 100, T = 2
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Notes: Simulated data from the fixed-effects model, results for the second factor X2. Solid is the

mean across simulations, dashed are 10 and 90 percent pointwise quantiles, and dashed-dotted is

the true quantile function or density. 100 simulations. 10 averages over permutation draws.
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Figure B2: Monte Carlo results for X3 in the fixed-effects model, N = 100, T = 2

Quantile functions Densities
Strong constraint Weak constraint Strong constraint Weak constraint

(X1, X2, X3) ∼ Beta(2,2)
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Notes: Simulated data from the fixed-effects model, results for the third factor X3. Solid is the mean

across simulations, dashed are 10 and 90 percent pointwise quantiles, and dashed-dotted is the true

quantile function or density. 100 simulations. 10 averages over permutation draws.
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Figure B3: Estimated quantile functions of permanent shocks in different years, weak con-
straints (dashed) and strong constraints (solid)

1979 1980 1981

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

q
u
a

n
til

e
 f
u

n
ct

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

q
u
a

n
til

e
 f
u

n
ct

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

q
u
a

n
til

e
 f
u

n
ct

io
n

1982 1983 1984

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

q
u
a
n
til

e
 f
u
n
ct

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

q
u
a
n
til

e
 f
u
n
ct

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.2

-0.1

0

0.1

0.2

0.3

0.4

q
u
a
n
til

e
 f
u
n
ct

io
n

1985 1986 1987

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

q
u
a
n
til

e
 f
u
n
ct

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.2

-0.1

0

0.1

0.2

0.3

0.4

q
u
a
n
til

e
 f
u
n
ct

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank permanent shock

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

q
u
a
n
til

e
 f
u
n
ct

io
n

Notes: PSID, 1978-1987. Permanent shock in every year (note: the first and last years are a

combination of permanent and transitory shocks). Sample selection and construction of log-earnings

growth residuals as in Bonhomme and Robin (2010). Model estimation: strong (solid line) and weak

(dashed line) constraint, 10 averages over permutation draws.
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Figure B4: Estimated quantile functions of transitory shocks in different years, weak con-
straints (dashed) and strong constraints (solid)
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Notes: PSID, 1978-1987. Transitory shock in every year. Sample selection and construction of

log-earnings growth residuals as in Bonhomme and Robin (2010). Model estimation: strong (solid

line) and weak (dashed line) constraint, 10 averages over permutation draws.
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Figure B5: Densities of earnings growth residuals at various horizons, data (solid) and model
(dashed)
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Notes: PSID, 1978-1987. Results pooled over all years. Sample selection and construction of log-

earnings growth residuals as in Bonhomme and Robin (2010). Model estimation: strong constraint,

10 averages over permutation draws. Model simulations: 200 simulations per individual observation.
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Figure B6: Densities of earnings growth residuals in different years, data (solid) and model
(dashed)
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Notes: PSID, 1978-1987. Log-earnings t/t+1 growth residuals in every year. Sample selection and

construction of log-earnings growth residuals as in Bonhomme and Robin (2010). Model estimation:

strong constraint, 10 averages over permutation draws. Model simulations: 200 simulations per

individual observation.
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Table B1: Covariance matrix of school averages of test scores

2005 2006 2007 2008 2009 2010 2011 2013 2015
2005 .2955
2006 .1408 .2986
2007 .1639 .1877 .3289
2008 .1467 .1920 .2030 .3055
2009 .1707 .1692 .2016 .1911 .3070
2010 .1441 .165 .1878 .1961 .2130 .3054
2011 .1435 .1611 .1972 .1712 .2078 .2014 .3099
2013 .1316 .1370 .1683 .1447 .1794 .1750 .1969 .3051
2015 .0960 .1291 .1387 .1286 .1606 .1602 .1820 .1731 .3286

Notes: Administrative data from the Spanish region of Madrid. The test was not administered in

2012 and 2014.

Figure B7: Model fit to quantile functions of school averages of test scores
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Notes: Administrative data from the Spanish region of Madrid. Quantile function of Yit in year t.

Data in solid, model in dashed. Model simulations, 200 simulations per observation.
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