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t-ratio

o Gosset (1908)

» The t-ratio of the sample mean has the exact t,_1 distribution
» A fundamental intellectual achievement

@ Linear regression

> Gosset's result extends to classical t-ratios (classical standard errors)
» Classical t-ratios have t,_j distribution
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But...

o Classical standard errors are no longer used in economic research
@ Papers use either

> Heteroskedasticity-consistent (HC)

> Cluster-robust (CR)

> Heteroskedasticity-and-autocorrelation-consistent (HAC)
» Justification is asymptotic

@ Most assess significance (testing and confidence intervals) using finite
sample distribution:

> t,_y distribution (HC)
> tg_1 distribution (CR)
» THIS IS WRONG!!
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“reg y X, cluster(id")

@ Regression:
» Uses HC1 variance estimator
* White estimator scaled by n/(n— k)
> Uses t,_ distribution for p-values and confidence intervals
* UNJUSTIFIED!
o Clustered:
» Uses CR1 variance estimator
* Described later, ad hoc
> Uses t;_1 distribution for p-values and confidence intervals

* No finite sample justification
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This paper

@ Provides an exact theory of inference

> Linear regression with robust standard errors
> Linear regression with clustered standard errors

@ Exact distribution of HC and CR t-ratios under i.i.d. normality
» Computable
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Linear Regression with Heteroskedasticity

yi=xB+e
E (ei|xi) =0
E (ef|xi) = o7
n observations

k regressors

Core model in applied econometrics
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Heteroskedastic (HC) Variance Estimation: Some History

Eicker (1963): HCO

Horn, Horn and Duncan (1975): HC2

Hinkley (1977): HC1

White (1980): HCO for econometrics

MacKinnon and White (1985): HC3

Chesher and Jewitt (1987): Bias can be large

Bera, Suprayitno and Premaratne (2002): Unbiased estimator
Bell-McCaffrey (2002): Distributional approximation
Cribari-Neto (2004): HC4

Cribari-Neto, Souza and Vasconcellos (2007): HC5
Cattaneo, Jansson and Newey (2017): Many regressors
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HC Variance Estimation

e OLS: R
B=(X'X)"'XY

@ Residuals: R

& =yi—xiP
e HCO

Vo= (X'X)"" (Zx,x;@,?) (X'x)~*
=1

e HC1

n
Vi = nfk (X'x)"* <2x,-x;a,?> (X'X)7"
i=1

» robust covariance matrix in Stata
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e HC2:
~ —1 n o — -1
Vo = (X'X) (Ex,-x;e,? (1—h) ) (X'X)
i=1
> hj=x (X'X) "t x
» Unbiased under homoskedasticity

e HC3:

n
Va=(X'X)"" (Z xix[e? (1— h,-)_z) (x'x)™
i=1

> jackknife
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HC3 (jackknife) is a conservative estimator

Theorem. In the linear regression model,

e(va1x)=v—e((p-5) (B-p) Ix)

(However, inference using HC3 is not necessarily conservative.)

Bruce Hansen (University of Wisconsin) Exact Inference for Robust t ratio June 2017 10 / 54



HC t-ratios

e t-ratio for R'B:

@ Distribution theory

» Asymptotic: t —4 N(0,1)
» This is what we (typically) teach

@ Distribution used in practical applications

> Finite Sample: t ~ t,_x
» This is what most applied papers use
> Incorrect
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Clustered Samples

Observations are (yig, Xig)

» g =1,..., G indexes cluster (group)

» [ =1, ..., n, indexes observation within gth

cluster

Clusters are mutually independent

Observations within a cluster have unknown dependence

In panels, (yjg,Xig) could be demeaned observations

» Assumptions fully allow for this

Number of observations n, per cluster may vary across cluster

Total number of observations n = Zgzl Ng
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Cluster Regression

® Y, = (Vig: - Yngg)' is ng x 1 vector of dependent variables
® Xg = (X1g,....Xn,g)" is ng X K regressor matrix for g™ cluster.

@ Linear regression model

Y Yg = Xgﬁ-i-Eg
> E(eg|Xg) =0
> E (egefg|Xg) =Sg

Bruce Hansen (University of Wisconsin) Exact Inference for Robust t ratio June 2017 13 / 54



Cluster-Robust (CR) Variance Estimation

e OLS:
R G 1/
B=1{ ) XXs Y Xey,
g=1 g=1

€ =y, —XgP

@ Residual:

@ Variance estimator

R G 1/ G -1
Vo= Y X, X, Y Xiee X, | | Y XX,
g=1 g=1 g=1
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Adjustments

@ Chris Hansen (2007) adjustment

~ G ~
V= (_G_l) U

Justified in “Large homogenous clusters” framework

~ n—1 G ~
= (0= (62g) ®

@ Stata adjusment

No justification
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Other covariance matrix estimators

e CRV2
> Replace OLS residual €; with €5 = (1 — Hg)_l/2 €,
-1
> Hg = Xg (T51XpXg) X
» CRV2 is unbiased under i.i.d. dependence
» Recommended by Imbens-Kolesar (2016)

e CRV3:

> Replace €, with &5 = (1 —Hg) ' &,
» Theorem: CRV3 conservative under clustered dependence:

E(V3|X)2V
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Cluster-Robust (CR) Variance Estimation: Some History

e Methods: Moulton (1986, 1990), Arellano (1987)

o Popularization: Rogers (1993), Bertrand, Duflo and Mullainathan
(2004)

e Large G asymptotics: White (1984), C. Hansen (2007), Carter,
Schnepel and Steigerwald (2017)

e Fixed G asymptotics: C. Hansen (2007), Bester, Conley and C.
Hansen (2011), Conley and Taber (2011), Ibragimov and Mueller
(2010, 2016)

e Small Sample: Donald and Lang (2007), Imbens and Kolesar
(2016), Young (2017), Canay, Romano, and Shaikh (2017)

e Bootstrap: Cameron, Gelbach and Miller (2008), MacKinnon and
Webb (2017)
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[llustration: Heteroskedastic Dummy Variable Regression

@ Dummy variable model
> Angrist and Pinchke (2009)
> Imbens and Kolesar (2016)

oy =P, +pBxit+e

(] 7:1 X = 3

e ¢ ~ N(0,1)

o Coefficient of interest: B,

@ Simulation with 100,000 replications
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Large Size Distortion with HC Standard Errors

Rejection Probability of Nominal 5% Tests
Using t,_x Critical Values

n=30
HCO 0.18
HC1 0.17
HC2 0.14
HC3  0.10

Notice that even conservative HC3 t-ratio over-rejects.
That is because the t,_, distribution is incorrect.
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Distortion increases with Sample size!

Rejection Probability of Nominal 5% Tests
Using t,_x Critical Values

n=30 n=100 n =500
HCO 0.18 0.23 0.24
HC1  0.17 0.22 0.24
HC2 0.14 0.17 0.18
HC3  0.10 0.13 0.14

Reason: Highly Leveraged Design Matrix
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Simulation Results

All procedures over-reject

HC1 correction doesn't help

Unbiased estimator HC2 over-rejects
Conservative estimator HC3 over-rejects
ta—k vs N(0,1) ineffective

Conclusion: Distributional approximation needs improvement
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Exact Distribution of White t-ratio

Assumption: Observations are i.i.d., e|x; ~ N (0,0?)

@ Step 1: t-ratio is ratio of normal to weighted sum of chi-squares

where Z ~ N (0,1), Q1 ~ x3, ..., Qx ~ x3
@ Step 2: The exact distribution of @ is a chi-square mixture

@ Step 3: The exact distribution of t is a student t mixture
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R’ (B - ﬁ) = (U'ZR/ (X'X)"! R)l/2 Z where Z ~ N (0,1)

di =R (X’X)f1 xj, D =diag {d?, ... d?}, M =1 —X(X'X)"1X,
B = MDM, Q; iid x3

@ A1, ..., Ak are the non-zero eigenvalues of B.
@ Then p
RVR=Y d?&? =eDe=eBe=0") AiQ
=1 i=1
o Together
R’ (ﬁ - ﬁ) Z

t: — p—
vV R'VIR 1/2;;1 w; Q;

where w; = A;/R' (X'X)'R
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Ratio of normal to weighted sum of chi-squares

o Under normality

R (B-p) z

t: — =
VR'VIR 1/E’KZI w; Q;

@ This representation holds for HCO, HC1, HC2, HC3, HC4
heteroskedasticity-robust t-ratios

» The weights w; depend on the specific estimator

@ This representation holds for CRV0, CRV1, CRV2, CRV3
cluster-robust t-ratios

» The weights w; depend on the specific estimator
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Step 2: Exact Distribution of Q

o Weighted sum of chi-square random variables
For @1 ~ Xil, v Qu o~ )(iN mutually independent, w; > 0, k; >0

N
Q=) wQ
i=1

We write its distribution as

G (ulm,...,wn; ki, ..kny) = P(Q < u).

Conventional chi-square when wy = - - - = wy
Distribution function G unknown
Classic problem in statistical theory

Approximation methods dominate

We now provide the exact distribution
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Theorem 1: Distribution of Q

G(ulwy, ..., wy; ki, ...ky) = E bm Gk om (g)

m=0
where G, (u) is the x? distribution,
N
K=Y k
i=1
0 = min wy,
m
N ) ki/2
b =11(2)
i=1 \Wi
1 m
bm = E Z bm—vay, m2>1
(=1
am = - - —
= Wi
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Comments

@ Theorem 1 shows that the distribution of Q can be written as an
infinite mixture of chi-square distributions

@ The weights are non-negative, sum to one
o Weights are determined by a simple recursion in known parameters
@ Theorem 1 is a refinement of Castano and Lopez (2005).

Obtained by inversion of transformed MGF

Uses theory of MVUE of Gamma distributions

Written in terms of Laguerre polynomials

Their result is written as a function of two tuning parameters.
Theorem 1 is obtained as a limiting case (taking the limit as one tuning
parameter limits to zero and the other is set at its boundary).

» Theorem 1 is a simpler, more convenient, and numerically accurate.

vV vy VY VvV Vv
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Step 3: Exact Distribution of t-ratio

Generalized T distribution
For Z~N(0,1), @ ~ x4, - Qn ~ X%, mutually independent,
w; >0, k>0

Z

VI wiQ;

F(u]wl, oo Wh, kl, kN) = P(T S u)

T =

@ We write its distribution as

o If ki = -+ = ky = 1 we write the distribution as F (u|wy, ..., wy) .
@ Conventional student t when wy = - -+ = wy
@ Step 1 showed that HC t-ratios are distributed generalized T
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Derivation
The distribution of T is

P(Tgu):P<Z§\/_u):E(<I><\/5u>>
Its density is
E(¢(vaQu) Va) =/0°°¢(\/EU)\/?Ig(q)dq

where g is the density of Q
Applying Theorem 1, this equals

agk
sq|3°"

3
Il
o

|0 (V) Vagean (a/6) da

I
e

bm (6 (K +2m))*? f i om (u S (K+ 2m)>

3
Il
o

where fx o is the student t density
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Theorem 3: Distribution of T

F(ulwa, ..., wy; ki, ...ky) = Z bmFiiom (u (K +2m) (5)

m=0
where F, is the student distribution
Comments:

@ Exact distribution is an infinite mixture of student t distributions

@ Specializes to conventional student t when w; are all equal
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Theorem 4: Alternative expression

F (U|W1, o Wy, kl, kN)

ficom—2 (u\/(K +2m—2) 5)

= Fg (uM) +uVé 21 b, RT3

where
m—1
by, =1—Y b
j=0
Comments:

@ Obtained by applying sequential integration by parts
@ Preferable computational form

» Only one distribution evaluation
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Theorem 5: Exact Distribution of White t-ratio

t~ F (ulwi, ..., wy)
where
o w=A/R(XX)"'R
@ A1, ..., Ak are the non-zero eigenvalues of B = D'/2MD1/2
o d =R (X'X)x
o D =diag{d?, ..., d?}
o M=1—X(X'X)"1X
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Finite Sample Distribution

@ This is the exact finite sample distribution of the White HC t-ratio
under normality.

@ The distribution is determined by the design matrix X’'X
@ This is entirely new

@ The exact distribution is not student t. It is a mixture of student t
distributions.

@ The difference can be large when the design matrix is highly leveraged.
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Computation Issue 1

o Computation of eigenvalues of B = D/2MD/?

> n X n matrix
» Unreasonable to compute B for very large n
» Eigenvalue calculation reasonable for n < 1000.

* Unreasonable for n > 5000

@ Solution for n > 1000:

» Use algorithm which uses function a(x) = Bx instead of matrix B itself
> Only calculate largest, say L = 10, eigenvalues
» Matlab “eigs” function very fast, even for n = 1,000, 000

@ When only L eigenvalues calculated
> Ly w = tr(B) = Td?— tr ((X'X)"L(X'DX))

N L
> /VL;H = Zi:L+1 w; =tr(B) — Yy wi
Wi =Ala/(n—k—1L)

: N L
> Approximate ) ;= w;Q; ~ Y i wiQ; + WZ+1X%_k_L
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Computation Issue 2

o Coefficient recursion b,, = % Yot bm—ray
@ Fast for m < 1000. Slow for large m
o Convergence when Zf‘nﬂzo by, =~

» Requires large M when weights are highly unbalanced

@ In such cases, we may need to make a computational approximation

» Under investigation
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Computation Issue 3

@ Distribution function evaluation
(u (K+2m—2)15)

o o Tktam—2
4] FK (U\/ K(S) + U\/SZm:I bm VK+2m—2

@ Computation using this formula is fast
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Exact Distribution

@ Advantages

» Computatable exact distribution under normality
» Improved accuracy when regressor matrix is highly leveraged

@ Disadvantages

> Increased computation cost relative to classical methods
> Reliable algorithm in development

@ Limitations

» Assumes homoskedasticity
> Assumes normality
> Linear parameters

Bruce Hansen (University of Wisconsin) Exact Inference for Robust t ratio June 2017 37 / 54



Alternative

e Bell-McCaffrey (2002)

» Satterthwaite (1946) approximation for Q is oc)(%< where & and K
match first two moments of Q
» Approximate distribution of t by )

e Endorsed by Imbens-Kolesar (2016)

@ An "approximation” but no formal theory
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Simulation Experiement

@ Dummy variable model
> Angrist and Pinchke (2009)
> Imbens and Kolesar (2016)
yi = By + Byxi t+ e
—1xi =3
Coefficient of interest: B,
n =50, 100, 500
Compare:

» HC1, HC2, HC3
> t,_, Bell-McCaffrey, and T distributions

Size and median length of confidence regions

ei ~ N(0,1), Heteroskedastic, and student-t errors
100,000 replications
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Design Matrix is Highly Leveraged

n =50
» HC1 weights w; =
» HC2 weights w; =
» HC3 weights w; =
e n=100

» HC1 weights w; =

Due to high leverage

Bruce Hansen (University of Wisconsin)

{0.33, 0.33, 0.0013, 0.0013, ...
{0.47, 0.47, 0.0013, 0.0013, ...
{0.70, 0.70, 0.0013, 0.0013, ...

{0.33, 0.33, 0.0003, 0.0003, ...
» HC2 weights w; = {0.48, 0.48, 0.0003, 0.0003, ...
» HC3 weights w; = {0.73, 0.73, 0.0003, 0.0003, ...

Exact Inference for Robust t ratio

N

}
}
}

Highly unequal, contrast increases with sample size
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Rejection Probability of Nominal 5% Tests
Median Length of 95% Confidence Intervals
Normal Homoskedastic Errors

th—x | Bell-McCaffrey Exact T
size  Length | size Length
n=50 | HC1 | 0.174 | 0.032 3.5 0.053 3.0
HC2 | 0.139 | 0.033 3.7 0.052 3.2
HC3 | 0.101 | 0.035 3.9 0.052 3.3
n =100 | HC1 | 0.224 | 0.036 3.9 0.052 3.4
HC2 | 0.173 | 0.040 4.0 0.051 3.6
HC3 | 0.126 | 0.042 4.0 0.051 3.7
n =500 | HC1 | 0.240 | 0.046 4.1 0.051 3.9
HC2 | 0.183 | 0.047 4.1 0.051 3.9
HC3 | 0.137 | 0.049 4.1 0.051 4.0
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Rejection Probability of Nominal 5% Tests
Median Length of 95% Confidence Intervals
Normal Heteroskedastic Errors
0?(x) =1(x=1) +0.5(x = 0)

th—x | Bell-McCaffrey T
size  Length | size Length
n=50 | HC1 | 0.201 | 0.053 3.3 0.079 2.8
HC2 | 0.158 | 0.049 3.6 0.072 3.0
HC3 | 0.115 | 0.046 3.8 0.065 3.3
n =100 | HC1 | 0.228 | 0.051 3.8 0.065 3.4
HC2 | 0.175 | 0.050 4.0 0.061 3.6
HC3 | 0.128 | 0.049 4.0 0.058 3.7
n =500 | HC1 | 0.259 | 0.052 4.0 0.057 3.8
HC2 | 0.197 | 0.052 4.0 0.055 3.9
HC3 | 0.144 | 0.052 4.0 0.054 3.9
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Rejection Probability of Nominal 5% Tests
Median Length of 95% Confidence Intervals
Normal Heteroskedastic Errors

?(x) =1(x=1)+2(x =0)

th—x | Bell-McCaffrey T
size  Length | size Length
n=50 | HC1 | 0.112 | 0.003 4.5 0.017 3.8
HC2 | 0.093 | 0.009 4.5 0.021 3.8
HC3 | 0.068 | 0.013 4.5 0.024 3.8
n =100 | HC1 | 0.182 | 0.012 4.3 0.021 3.8
HC2 | 0.140 | 0.017 4.3 0.027 3.9
HC3 | 0.106 | 0.025 4.3 0.033 3.9
n =500 | HC1 | 0.231 | 0.034 4.2 0.039 4.0
HC2 | 0.177 | 0.039 4.2 0.042 4.0
HC3 | 0.132 | 0.042 4.2 0.044 4.1
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Rejection Probability of Nominal 5% Tests
Median Length of 95% Confidence Intervals

ts Errors
th—k | Bell-McCaffrey T
size  Length | size Length
n=>50 | HC1 | 0.153 | 0.022 4.2 0.039 3.6
HC2 | 0.122 | 0.023 4.4 0.039 3.7
HC3 | 0.086 | 0.024 4.5 0.039 3.9
n=100 | HC1 | 0.182 | 0.012 4.6 0.038 4.0
HC2 | 0.140 | 0.017 4.6 0.039 4.2
HC3 | 0.106 | 0.025 4.7 0.040 4.3
n =500 | HC1 | 0.226 | 0.035 4.7 0.038 4.5
HC2 | 0.166 | 0.036 4.7 0.039 4.5
HC3 | 0.119 | 0.037 4.7 0.040 4.6
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Expanded Dummy Variable Design

O OO HEFEFOOORFEO
[ = T o S S S e e

OO OO OO0 FH
OO O OO, OO

e k=5
@ Each dummy variable only equals 1 for 3 observations

@ Each dummy variable overlaps with first regressor

Bruce Hansen (University of Wisconsin) Exact Inference for Robust t ratio June 2017 45 / 54



Normal Homoskedastic Errors

th—k | Bell-McCaffrey Exact T
size  Length | size Length
n=>50 | HC1 | 0.188 | 0.044 3.6 0.052 3.5
HC2 | 0.113 | 0.042 3.7 0.051 3.5
HC3 | 0.047 | 0.039 3.9 0.051 3.6
n =100 | HC1 | 0.219 | 0.044 3.6 0.051 3.5
HC2 | 0.118 | 0.042 3.7 0.050 3.5
HC3 | 0.151 | 0.040 3.9 0.050 3.5
n =500 | HC1 | 0.234 | 0.044 3.6 0.050 3.5
HC2 | 0.125 | 0.042 3.8 0.050 3.5
HC3 | 0.053 | 0.040 3.9 0.051 3.6
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Normal Heteroskedastic Errors
0?(x) = 1(x =1) +0.5(x = 0)

th—x | Bell-McCaffrey Exact T
size  Length | size Length
n=50 | HC1 | 0.255 | 0.085 2.6 0.092 2.5
HC2 | 0.166 | 0.076 2.8 0.088 2.6
HC3 | 0.079 | 0.069 3.0 0.084 2.7
n =100 | HC1 | 0.288 | 0.082 2.6 0.091 2.5
HC2 | 0.174 | 0.074 2.8 0.087 2.6
HC3 | 0.084 | 0.068 3.0 0.082 2.8
n =500 | HC1 | 0.312 | 0.087 2.6 0.098 2.5
HC2 | 0.187 | 0.080 2.8 0.092 2.6
HC3 | 0.092 | 0.073 3.0 0.089 2.7
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Normal Heteroskedastic Errors
?(x) =1(x=1)+2(x =0)

th—x | Bell-McCaffrey Exact T
size  Length | size Length
n=>50 | HC1 | 0.126 | 0.023 6.0 0.027 5.8
HC2 | 0.072 | 0.023 6.1 0.028 5.7
HC3 | 0.026 | 0.021 6.3 0.029 5.8
n =100 | HC1 | 0.152 | 0.024 6.1 0.027 5.8
HC2 | 0.077 | 0.023 6.2 0.028 5.8
HC3 | 0.030 | 0.022 6.3 0.030 5.8
n =500 | HC1 | 0.172 | 0.022 6.0 0.026 5.8
HC2 | 0.079 | 0.021 6.2 0.028 5.8
HC3 | 0.030 | 0.021 6.3 0.028 5.8
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ts Errors

th_k | Bell-McCaffrey Exact T
size  Length | size Length
n=250 | HC1 | 0.172 | 0.037 4.4 0.043 4.2
HC2 | 0.099 | 0.035 4.6 0.042 4.3
HC3 | 0.039 | 0.032 4.7 0.042 4.3
n =100 | HC1 | 0.226 | 0.040 4.4 0.046 4.2
HC2 | 0.115 | 0.037 4.6 0.045 43
HC3 | 0.046 | 0.035 4.8 0.045 4.4
n =500 | HC1 | 0.227 | 0.038 4.4 0.044 4.2
HC2 | 0.115 | 0.035 4.5 0.043 4.3
HC3 | 0.046 | 0.033 4.7 0.044 4.3

Bruce Hansen (University of Wisconsin)

Exact Inference for Robust t ratio

June 2017

49 / 54



Continuous Design

@ X ~ log Normal, otherwise similar

> Also creates highly leveraged samples

@ Results very similar
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Simulation Summary

t,_k criticals inappropriate
Bell-McCaffrey can be quite conservative
T is precise under homoskedastic normality (as expected)

Both Bell-McCaffrey and T sensitive to heteroskedasticity and
non-normality

HC3 appears least sensitive
HC3 with T distribution reasonably reliable
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Clustered Samples

Same analysis applies to clustered regression and CR standard errors
Under i.i.d. normality, clustered t-ratios have exact T distributions

Weights are determined by regressor matrix

Distortions from normality when design matrix is highly leveraged

» When clusters are heterogeneous
» When only a few clusters are “treated”

Accuracy of conventional distribution theory depends on the number
of clusters G and degree of leverage

» Conventional asymptotics requires a large G, not large n
» Many applied papers don't even report G
> G should be reported, along with sample size!
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Conclusion

@ In 1908, Gosset revolutionized statistical inference by providing the
exact distribution of the classical t-ratio

Applied econometrics relies on heteroskedasticity-robust and
cluster-robust standard errors

There is no finite sample theory for HC and CR t-ratios

This paper provides the first exact distribution theory
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Findings

HC and CR t-ratios are NOT student t,_x
The deviation from t,_, can be very substantial
The exact distribution (under iid normality) is generalized T

Exact distribution depends on regressor matrix X

Correct finite sample p-values and confidence intervals can be reported
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