The Exact Distribution of the t-Ratio with Robust and Clustered Standard Errors

by

Bruce E. Hansen

Department of Economics
University of Wisconsin

June 2017

t-ratio

- Gosset (1908)
 - ▶ The t-ratio of the sample mean has the exact t_{n-1} distribution
 - A fundamental intellectual achievement
- Linear regression
 - Gosset's result extends to classical t-ratios (classical standard errors)
 - ▶ Classical t-ratios have t_{n-k} distribution

But...

- Classical standard errors are no longer used in economic research
- Papers use either
 - Heteroskedasticity-consistent (HC)
 - Cluster-robust (CR)
 - Heteroskedasticity-and-autocorrelation-consistent (HAC)
 - Justification is asymptotic
- Most assess significance (testing and confidence intervals) using finite sample distribution:
 - t_{n-k} distribution (HC)
 - t_{G-1} distribution (CR)
 - ► THIS IS WRONG!!!

"reg y x, cluster(id")

- Regression:
 - Uses HC1 variance estimator
 - ★ White estimator scaled by n/(n-k)
 - Uses t_{n-k} distribution for p-values and confidence intervals
 - **★** UNJUSTIFIED!
- Clustered:
 - Uses CR1 variance estimator
 - ★ Described later, ad hoc
 - ▶ Uses t_{G-1} distribution for p-values and confidence intervals
 - ★ No finite sample justification

This paper

- Provides an exact theory of inference
 - Linear regression with robust standard errors
 - ► Linear regression with clustered standard errors
- Exact distribution of HC and CR t-ratios under i.i.d. normality
 - Computable

Linear Regression with Heteroskedasticity

- $y_i = x_i'\beta + e_i$
- $E(e_i|x_i) = 0$
- $E\left(e_i^2|x_i\right) = \sigma_i^2$
- n observations
- k regressors
- Core model in applied econometrics

Heteroskedastic (HC) Variance Estimation: Some History

- Eicker (1963): HC0
- Horn, Horn and Duncan (1975): HC2
- Hinkley (1977): HC1
- White (1980): HC0 for econometrics
- MacKinnon and White (1985): HC3
- Chesher and Jewitt (1987): Bias can be large
- Bera, Suprayitno and Premaratne (2002): Unbiased estimator
- Bell-McCaffrey (2002): Distributional approximation
- Cribari-Neto (2004): HC4
- Cribari-Neto, Souza and Vasconcellos (2007): HC5
- Cattaneo, Jansson and Newey (2017): Many regressors

HC Variance Estimation

OLS:

$$\widehat{\beta} = (X'X)^{-1} X'Y$$

Residuals:

$$\widehat{e}_i = y_i - x_i' \widehat{\beta}$$

HC0

$$\widehat{V}_0 = \left(X'X\right)^{-1} \left(\sum_{i=1}^n x_i x_i' \widehat{\mathbf{e}}_i^2\right) \left(X'X\right)^{-1}$$

HC1

$$\widehat{V}_1 = \frac{n}{n-k} \left(X'X \right)^{-1} \left(\sum_{i=1}^n x_i x_i' \widehat{e}_i^2 \right) \left(X'X \right)^{-1}$$

robust covariance matrix in Stata

HC2:

$$\widehat{V}_{2} = (X'X)^{-1} \left(\sum_{i=1}^{n} x_{i} x_{i}' \widehat{e}_{i}^{2} (1 - h_{i})^{-1} \right) (X'X)^{-1}$$

- $h_i = x_i' (X'X)^{-1} x_i$
- Unbiased under homoskedasticity
- HC3:

$$\widehat{V}_3 = (X'X)^{-1} \left(\sum_{i=1}^n x_i x_i' \widehat{e}_i^2 (1 - h_i)^{-2} \right) (X'X)^{-1}$$

jackknife

HC3 (jackknife) is a conservative estimator

Theorem. In the linear regression model,

$$E(\widehat{V}_3 \mid X) \ge V = E(\widehat{\beta} - \beta)(\widehat{\beta} - \beta)' \mid X$$

(However, **inference** using HC3 is not necessarily conservative.)

HC t-ratios

• t-ratio for $R'\beta$:

$$t = \frac{R'\left(\widehat{\beta} - \beta\right)}{\sqrt{R'\widehat{V}R}}$$

- Distribution theory
 - Asymptotic: $t \rightarrow_d N(0, 1)$
 - ► This is what we (typically) teach
- Distribution used in practical applications
 - Finite Sample: $t \sim t_{n-k}$
 - This is what most applied papers use
 - Incorrect

Clustered Samples

- Observations are $(y_{ig}, \mathbf{x}_{ig})$
 - g = 1, ..., G indexes cluster (group)
 - $i = 1, ..., n_n$ indexes observation within g^{th} cluster
- Clusters are mutually independent
- Observations within a cluster have unknown dependence
- In panels, $(y_{ig}, \mathbf{x}_{ig})$ could be demeaned observations
 - Assumptions fully allow for this
- ullet Number of observations n_g per cluster may vary across cluster
- ullet Total number of observations $n=\sum_{g=1}^{\mathcal{G}}n_g$

Cluster Regression

- $oldsymbol{\circ}$ $oldsymbol{y}_g = (y_{1g},...,y_{n_gg})'$ is $n_g imes 1$ vector of dependent variables
- $oldsymbol{\mathsf{X}}_{oldsymbol{g}} = (\mathbf{x}_{1oldsymbol{g}},...,\mathbf{x}_{n_{oldsymbol{g}}oldsymbol{g}})'$ is $n_{oldsymbol{g}} imes K$ regressor matrix for $oldsymbol{g}^{th}$ cluster.
- Linear regression model

$$\mathbf{y}_g = \mathbf{X}_g \boldsymbol{\beta} + \mathbf{e}_g$$

$$E(\mathbf{e}_g|\mathbf{X}_g) = 0$$

$$E\left(\mathbf{e}_{g}\mathbf{e}_{g}'|\mathbf{X}_{g}\right)=\mathbf{S}_{g}$$

Cluster-Robust (CR) Variance Estimation

OLS:

$$\widehat{oldsymbol{eta}} = \left(\sum_{g=1}^G \mathbf{X}_g' \mathbf{X}_g
ight)^{-1} \left(\sum_{g=1}^G \mathbf{X}_g' \mathbf{y}_g
ight)$$

Residual:

$$\widehat{f e}_{g} = {f y}_{g} - {f X}_{g} \widehat{m eta}$$

Variance estimator

$$\widehat{V}_0 = \left(\sum_{g=1}^G \mathbf{X}_g' \mathbf{X}_g
ight)^{-1} \left(\sum_{g=1}^G \mathbf{X}_g' \widehat{\mathbf{e}}_g \widehat{\mathbf{e}}_g' \mathbf{X}_g
ight) \left(\sum_{g=1}^G \mathbf{X}_g' \mathbf{X}_g
ight)^{-1}$$

Adjustments

• Chris Hansen (2007) adjustment

$$\widehat{V} = \left(\frac{G}{G-1}\right)\widehat{V}_0$$

Justified in "Large homogenous clusters" framework

Stata adjusment

$$\widehat{V}_1 = \left(\frac{n-1}{n-k}\right) \left(\frac{G}{G-1}\right) \widehat{V}_0$$

No justification

Other covariance matrix estimators

CRV2

- Replace OLS residual $\widehat{\mathbf{e}}_g$ with $\overline{\mathbf{e}}_g = \left(\mathbf{I} \mathbf{H}_g\right)^{-1/2} \widehat{\mathbf{e}}_g$
- $ightharpoonup \mathbf{H}_g = \mathbf{X}_g \left(\sum_{g=1}^G \mathbf{X}_g' \mathbf{X}_g \right)^{-1} \mathbf{X}_g'$
- CRV2 is unbiased under i.i.d. dependence
- Recommended by Imbens-Kolesar (2016)

CRV3:

- $lackbox{\mathsf{Replace}}\ \widehat{\mathbf{e}}_{g}\ \mathrm{with}\ \widetilde{\mathbf{e}}_{g}=\left(\mathbf{I}-\mathbf{H}_{g}
 ight)^{-1}\widehat{\mathbf{e}}_{g}$
- ► **Theorem**: CRV3 conservative under clustered dependence:

$$E\left(\widehat{V}_3\mid X\right)\geq V$$

Cluster-Robust (CR) Variance Estimation: Some History

- Methods: Moulton (1986, 1990), Arellano (1987)
- **Popularization**: Rogers (1993), Bertrand, Duflo and Mullainathan (2004)
- Large G asymptotics: White (1984), C. Hansen (2007), Carter, Schnepel and Steigerwald (2017)
- Fixed G asymptotics: C. Hansen (2007), Bester, Conley and C. Hansen (2011), Conley and Taber (2011), Ibragimov and Mueller (2010, 2016)
- Small Sample: Donald and Lang (2007), Imbens and Kolesar (2016), Young (2017), Canay, Romano, and Shaikh (2017)
- Bootstrap: Cameron, Gelbach and Miller (2008), MacKinnon and Webb (2017)

Illustration: Heteroskedastic Dummy Variable Regression

- Dummy variable model
 - Angrist and Pinchke (2009)
 - ► Imbens and Kolesar (2016)

$$\bullet \ y_i = \beta_0 + \beta_1 x_i + e_i$$

- $\sum_{i=1}^{n} x_i = 3$
- $e_i \sim N(0, 1)$
- ullet Coefficient of interest: eta_1
- Simulation with 100,000 replications

Large Size Distortion with HC Standard Errors

Rejection Probability of Nominal 5% Tests Using t_{n-k} Critical Values

$$n = 30$$
HC0 0.18
HC1 0.17
HC2 0.14
HC3 0.10

Notice that even conservative HC3 t-ratio over-rejects. That is because the t_{n-k} distribution is incorrect.

Distortion increases with Sample size!

Rejection Probability of Nominal 5% Tests Using t_{n-k} Critical Values

	n = 30	n = 100	n = 500
HC0	0.18	0.23	0.24
HC1	0.17	0.22	0.24
HC2	0.14	0.17	0.18
HC3	0.10	0.13	0.14

Reason: Highly Leveraged Design Matrix

Simulation Results

- All procedures over-reject
- HC1 correction doesn't help
- Unbiased estimator HC2 over-rejects
- Conservative estimator HC3 over-rejects
- t_{n-k} vs N(0,1) ineffective
- Conclusion: Distributional approximation needs improvement

Exact Distribution of White t-ratio

Assumption: Observations are i.i.d., $e_i|x_i \sim N\left(0, \sigma^2\right)$

• Step 1: t-ratio is ratio of normal to weighted sum of chi-squares

$$t \sim \frac{Z}{\sqrt{Q}}$$
 $Q = \sum_{i=1}^{K} w_i Q_i$

where $Z \sim \textit{N}\left(0,1
ight)$, $\textit{Q}_{1} \sim \chi_{1}^{2}$, ..., $\textit{Q}_{\textit{K}} \sim \chi_{1}^{2}$

- ullet Step 2: The exact distribution of Q is a chi-square mixture
- Step 3: The exact distribution of t is a student t mixture

Step 1

- $R'\left(\widehat{\beta} \beta\right) = \left(\sigma^2 R'\left(X'X\right)^{-1} R\right)^{1/2} Z$ where $Z \sim N\left(0, 1\right)$
- $d_i = R'(X'X)^{-1} x_i$, $D = \text{diag}\{d_1^2, ..., d_n^2\}$, $M = I X(X'X)^{-1}X'$, B = MDM, $Q_i \text{ iid } \chi_1^2$
- $\lambda_1, ..., \lambda_K$ are the non-zero eigenvalues of B.
- Then

$$R'\widehat{V}R = \sum_{i=1}^{n} d_i^2 \widehat{e}_i^2 = \widehat{e}'D\widehat{e} = e'Be = \sigma^2 \sum_{i=1}^{K} \lambda_i Q_i$$

Together

$$t = \frac{R'\left(\widehat{\beta} - \beta\right)}{\sqrt{R'\widehat{V}_1 R}} = \frac{Z}{\sqrt{\sum_{i=1}^{K} w_i Q_i}}$$

where $w_i = \lambda_i / R' (X'X)^{-1} R$

Ratio of normal to weighted sum of chi-squares

Under normality

$$t = \frac{R'\left(\widehat{\beta} - \beta\right)}{\sqrt{R'\widehat{V}_1 R}} = \frac{Z}{\sqrt{\sum_{i=1}^{K} w_i Q_i}}$$

- This representation holds for HC0, HC1, HC2, HC3, HC4 heteroskedasticity-robust t-ratios
 - ▶ The weights w_i depend on the specific estimator
- This representation holds for CRV0, CRV1, CRV2, CRV3 cluster-robust t-ratios
 - ▶ The weights w_i depend on the specific estimator

Step 2: Exact Distribution of Q

• Weighted sum of chi-square random variables For $Q_1 \sim \chi^2_{k_1}$, ..., $Q_N \sim \chi^2_{k_N}$ mutually independent, $w_i > 0$, $k_i > 0$

$$Q = \sum_{i=1}^{N} w_i Q_i$$

We write its distribution as

$$G(u|w_1,...,w_N;k_1,...k_N) = P(Q \le u).$$

- Conventional chi-square when $w_1 = \cdots = w_N$
- Distribution function G unknown
- Classic problem in statistical theory
- Approximation methods dominate
- We now provide the exact distribution

Theorem 1: Distribution of Q

$$G(u|w_1,...,w_N;k_1,...k_N) = \sum_{m=0}^{\infty} b_m G_{K+2m} \left(\frac{u}{\delta}\right)$$

where $G_r(u)$ is the χ_r^2 distribution,

$$K = \sum_{i=1}^{N} k_i$$
 $\delta = \min_{m} w_m$
 $b_0 = \prod_{i=1}^{N} \left(\frac{\delta}{w_i}\right)^{k_i/2}$
 $b_m = \frac{1}{m} \sum_{\ell=1}^{m} b_{m-\ell} a_{\ell}, \qquad m \ge 1$
 $a_m = \sum_{i=1}^{N} \frac{k_i}{2} \left(1 - \frac{\delta}{w_i}\right)^m$

Comments

- ullet Theorem 1 shows that the distribution of Q can be written as an infinite mixture of chi-square distributions
- The weights are non-negative, sum to one
- Weights are determined by a simple recursion in known parameters
- Theorem 1 is a refinement of Castano and Lopez (2005).
 - Obtained by inversion of transformed MGF
 - Uses theory of MVUE of Gamma distributions
 - Written in terms of Laguerre polynomials
 - ▶ Their result is written as a function of two tuning parameters.
 - ▶ Theorem 1 is obtained as a limiting case (taking the limit as one tuning parameter limits to zero and the other is set at its boundary).
 - ▶ Theorem 1 is a simpler, more convenient, and numerically accurate.

Step 3: Exact Distribution of t-ratio

Generalized T distribution

For $Z \sim N(0,1)$, $Q_1 \sim \chi^2_{k_1}$, ..., $Q_N \sim \chi^2_{k_N}$, mutually independent, $w_i > 0$, $k_i > 0$

$$T = \frac{Z}{\sqrt{\sum_{i=1}^{N} w_i Q_i}}$$

We write its distribution as

$$F(u|w_1,...,w_N;k_1,...k_N) = P(T \le u)$$

- If $k_1 = \cdots = k_N = 1$ we write the distribution as $F(u|w_1,...,w_N)$.
- Conventional student t when $w_1 = \cdots = w_N$
- Step 1 showed that HC t-ratios are distributed generalized T

Derivation

The distribution of T is

$$P(T \le u) = P(Z \le \sqrt{Q}u) = E(\Phi(\sqrt{Q}u))$$

Its density is

$$E\left(\phi\left(\sqrt{Q}u\right)\sqrt{Q}\right) = \int_{0}^{\infty}\phi\left(\sqrt{q}u\right)\sqrt{q}g\left(q\right)dq$$

where g is the density of Q

Applying Theorem 1, this equals

$$\sum_{m=0}^{\infty} \frac{b_{m}}{\delta} \int_{0}^{\infty} \phi\left(\sqrt{q}u\right) \sqrt{q} g_{K+2m}\left(q/\delta\right) dq$$

$$= \sum_{m=0}^{\infty} b_{m} \left(\delta\left(K+2m\right)\right)^{1/2} f_{K+2m} \left(u\sqrt{\delta\left(K+2m\right)}\right)$$

where f_{K+2m} is the student t density

Theorem 3: Distribution of T

$$F(u|w_1,...,w_N;k_1,...k_N) = \sum_{m=0}^{\infty} b_m F_{K+2m} \left(u \sqrt{(K+2m) \delta} \right)$$

where F_r is the student distribution

Comments:

- Exact distribution is an infinite mixture of student t distributions
- Specializes to conventional student t when w_i are all equal

Theorem 4: Alternative expression

$$F(u|w_{1},...,w_{N};k_{1},...k_{N})$$

$$=F_{K}\left(u\sqrt{K\delta}\right)+u\sqrt{\delta}\sum_{m=1}^{\infty}b_{m}^{*}\frac{f_{K+2m-2}\left(u\sqrt{(K+2m-2)\delta}\right)}{\sqrt{K+2m-2}}$$

where

$$b_m^* = 1 - \sum_{j=0}^{m-1} b_j$$

Comments:

- Obtained by applying sequential integration by parts
- Preferable computational form
 - Only one distribution evaluation

Theorem 5: Exact Distribution of White t-ratio

$$t \sim F(u|w_1,...,w_N)$$

where

- $w_i = \lambda_i / R' (X'X)^{-1} R$
- ullet $\lambda_1,...,\lambda_K$ are the non-zero eigenvalues of $B=D^{1/2}MD^{1/2}$
- $\bullet \ d_i = R' \left(X' X \right)^{-1} x_i$
- $D = \text{diag} \{d_1^2, ..., d_n^2\}$
- $M = I X(X'X)^{-1}X'$

Finite Sample Distribution

- This is the exact finite sample distribution of the White HC t-ratio under normality.
- The distribution is determined by the design matrix X'X
- This is entirely new
- The exact distribution is not student t. It is a mixture of student t distributions.
- The difference can be large when the design matrix is highly leveraged.

Computation Issue 1

- Computation of eigenvalues of $B = D^{1/2}MD^{1/2}$
 - ▶ n × n matrix
 - ightharpoonup Unreasonable to compute B for very large n
 - ▶ Eigenvalue calculation reasonable for $n \le 1000$.
 - ★ Unreasonable for $n \ge 5000$
- Solution for n > 1000:
 - Use algorithm which uses function a(x) = Bx instead of matrix B itself
 - ▶ Only calculate largest, say L = 10, eigenvalues
 - ▶ Matlab "eigs" function very fast, even for n = 1,000,000
- When only L eigenvalues calculated

 - $\lambda_{L+1}^* = \sum_{i=L+1}^{N} w_i = \text{tr}(B) \sum_{i=1}^{L} w_i$
 - $w_{l+1}^* = \lambda_{L+1}^* / (n-k-L)$
 - Approximate $\sum_{i=1}^{N} w_i Q_i \simeq \sum_{i=1}^{L} w_i Q_i + w_{L+1}^* \chi_{n-k-L}^2$

Computation Issue 2

- Coefficient recursion $b_m = rac{1}{m} \sum_{\ell=1}^m b_{m-\ell} a_\ell$
- Fast for $m \leq 1000$. Slow for large m
- Convergence when $\sum_{m=0}^{M} b_m \simeq 1$
 - ► Requires large *M* when weights are highly unbalanced
- In such cases, we may need to make a computational approximation
 - Under investigation

Computation Issue 3

- Distribution function evaluation
- $F_K\left(u\sqrt{K\delta}\right) + u\sqrt{\delta}\sum_{m=1}^{\infty}b_m^*\frac{f_{K+2m-2}\left(u\sqrt{(K+2m-2)\delta}\right)}{\sqrt{K+2m-2}}$
- Computation using this formula is fast

Exact Distribution

- Advantages
 - Computatable exact distribution under normality
 - ▶ Improved accuracy when regressor matrix is highly leveraged
- Disadvantages
 - Increased computation cost relative to classical methods
 - ▶ Reliable algorithm in development
- Limitations
 - Assumes homoskedasticity
 - Assumes normality
 - Linear parameters

Alternative

- Bell-McCaffrey (2002)
 - ▶ Satterthwaite (1946) approximation for Q is $\alpha \chi_K^2$ where α and K match first two moments of Q
 - Approximate distribution of t by t_K
- Endorsed by Imbens-Kolesar (2016)
- An "approximation" but no formal theory

Simulation Experiement

- Dummy variable model
 - Angrist and Pinchke (2009)
 - ► Imbens and Kolesar (2016)

$$\bullet \ y_i = \beta_0 + \beta_1 x_i + e_i$$

- $\sum_{i=1}^{n} x_i = 3$
- ullet Coefficient of interest: eta_1
- n = 50, 100, 500
- Compare:
 - ► HC1, HC2, HC3
 - $ightharpoonup t_{n-k}$, Bell-McCaffrey, and T distributions
- Size and median length of confidence regions
- $e_i \sim N(0,1)$, Heteroskedastic, and student-t errors
- 100,000 replications

Design Matrix is Highly Leveraged

- n = 50
 - ► HC1 weights $w_i = \{0.33, 0.33, 0.0013, 0.0013, ...\}$
 - ► HC2 weights $w_i = \{0.47, 0.47, 0.0013, 0.0013, ...\}$
 - ► HC3 weights $w_i = \{0.70, 0.70, 0.0013, 0.0013, ...\}$
- n = 100
 - ► HC1 weights $w_i = \{0.33, 0.33, 0.0003, 0.0003, ...\}$
 - ► HC2 weights $w_i = \{0.48, 0.48, 0.0003, 0.0003, ...\}$
 - ► HC3 weights $w_i = \{0.73, 0.73, 0.0003, 0.0003, ...\}$
- Highly unequal, contrast increases with sample size
- Due to high leverage

Rejection Probability of Nominal 5% Tests Median Length of 95% Confidence Intervals Normal Homoskedastic Errors

		t_{n-k}	Bell-M	Bell-McCaffrey		ct T
			size	Length	size	Length
n = 50	HC1	0.174	0.032	3.5	0.053	3.0
	HC2	0.139	0.033	3.7	0.052	3.2
	HC3	0.101	0.035	3.9	0.052	3.3
n = 100	HC1	0.224	0.036	3.9	0.052	3.4
	HC2	0.173	0.040	4.0	0.051	3.6
	HC3	0.126	0.042	4.0	0.051	3.7
n = 500	HC1	0.240	0.046	4.1	0.051	3.9
	HC2	0.183	0.047	4.1	0.051	3.9
	HC3	0.137	0.049	4.1	0.051	4.0

Rejection Probability of Nominal 5% Tests Median Length of 95% Confidence Intervals Normal Heteroskedastic Errors $\sigma^2(x) = 1(x=1) + 0.5(x=0)$

		t_{n-k}	Bell-McCaffrey		T	
			size	Length	size	Length
n = 50	HC1	0.201	0.053	3.3	0.079	2.8
	HC2	0.158	0.049	3.6	0.072	3.0
	HC3	0.115	0.046	3.8	0.065	3.3
n = 100	HC1	0.228	0.051	3.8	0.065	3.4
	HC2	0.175	0.050	4.0	0.061	3.6
	HC3	0.128	0.049	4.0	0.058	3.7
n = 500	HC1	0.259	0.052	4.0	0.057	3.8
	HC2	0.197	0.052	4.0	0.055	3.9
	HC3	0.144	0.052	4.0	0.054	3.9

Rejection Probability of Nominal 5% Tests Median Length of 95% Confidence Intervals Normal Heteroskedastic Errors $\sigma^2(x) = 1(x=1) + 2(x=0)$

		t_{n-k}	Bell-McCaffrey		T	
			size	Length	size	Length
n = 50	HC1	0.112	0.003	4.5	0.017	3.8
	HC2	0.093	0.009	4.5	0.021	3.8
	HC3	0.068	0.013	4.5	0.024	3.8
n = 100	HC1	0.182	0.012	4.3	0.021	3.8
	HC2	0.140	0.017	4.3	0.027	3.9
	HC3	0.106	0.025	4.3	0.033	3.9
n = 500	HC1	0.231	0.034	4.2	0.039	4.0
	HC2	0.177	0.039	4.2	0.042	4.0
	HC3	0.132	0.042	4.2	0.044	4.1

Rejection Probability of Nominal 5% Tests Median Length of 95% Confidence Intervals t_5 Errors

		t_{n-k}	Bell-McCaffrey		T	
			size	Length	size	Length
n = 50	HC1	0.153	0.022	4.2	0.039	3.6
	HC2	0.122	0.023	4.4	0.039	3.7
	HC3	0.086	0.024	4.5	0.039	3.9
n = 100	HC1	0.182	0.012	4.6	0.038	4.0
	HC2	0.140	0.017	4.6	0.039	4.2
	HC3	0.106	0.025	4.7	0.040	4.3
n = 500	HC1	0.226	0.035	4.7	0.038	4.5
	HC2	0.166	0.036	4.7	0.039	4.5
	HC3	0.119	0.037	4.7	0.040	4.6

Expanded Dummy Variable Design

$$X = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- k = 5
- Each dummy variable only equals 1 for 3 observations
- Each dummy variable overlaps with first regressor

Normal Homoskedastic Errors

		t_{n-k}	Bell-M	Bell-McCaffrey		ict T
			size	Length	size	Length
n = 50	HC1	0.188	0.044	3.6	0.052	3.5
	HC2	0.113	0.042	3.7	0.051	3.5
	HC3	0.047	0.039	3.9	0.051	3.6
n = 100	HC1	0.219	0.044	3.6	0.051	3.5
	HC2	0.118	0.042	3.7	0.050	3.5
	HC3	0.151	0.040	3.9	0.050	3.5
n = 500	HC1	0.234	0.044	3.6	0.050	3.5
	HC2	0.125	0.042	3.8	0.050	3.5
	HC3	0.053	0.040	3.9	0.051	3.6

Normal Heteroskedastic Errors $\sigma^2(x) = 1(x = 1) + 0.5(x = 0)$

		t_{n-k}	Bell-M	cCaffrey	Exact <i>T</i>	
			size	Length	size	Length
n = 50	HC1	0.255	0.085	2.6	0.092	2.5
	HC2	0.166	0.076	2.8	0.088	2.6
	HC3	0.079	0.069	3.0	0.084	2.7
n = 100	HC1	0.288	0.082	2.6	0.091	2.5
	HC2	0.174	0.074	2.8	0.087	2.6
	HC3	0.084	0.068	3.0	0.082	2.8
n = 500	HC1	0.312	0.087	2.6	0.098	2.5
	HC2	0.187	0.080	2.8	0.092	2.6
	HC3	0.092	0.073	3.0	0.089	2.7

Normal Heteroskedastic Errors $\sigma^2(x) = 1(x = 1) + 2(x = 0)$

		t_{n-k}	Bell-M	Bell-McCaffrey		ct T
			size	Length	size	Length
n = 50	HC1	0.126	0.023	6.0	0.027	5.8
	HC2	0.072	0.023	6.1	0.028	5.7
	HC3	0.026	0.021	6.3	0.029	5.8
n = 100	HC1	0.152	0.024	6.1	0.027	5.8
	HC2	0.077	0.023	6.2	0.028	5.8
	HC3	0.030	0.022	6.3	0.030	5.8
n = 500	HC1	0.172	0.022	6.0	0.026	5.8
	HC2	0.079	0.021	6.2	0.028	5.8
	HC3	0.030	0.021	6.3	0.028	5.8

t₅ Errors

15 11013								
		t_{n-k}	Bell-M	Bell-McCaffrey		ct T		
			size	Length	size	Length		
n = 50	HC1	0.172	0.037	4.4	0.043	4.2		
	HC2	0.099	0.035	4.6	0.042	4.3		
	HC3	0.039	0.032	4.7	0.042	4.3		
n = 100	HC1	0.226	0.040	4.4	0.046	4.2		
	HC2	0.115	0.037	4.6	0.045	4.3		
	HC3	0.046	0.035	4.8	0.045	4.4		
n = 500	HC1	0.227	0.038	4.4	0.044	4.2		
	HC2	0.115	0.035	4.5	0.043	4.3		
	HC3	0.046	0.033	4.7	0.044	4.3		

Continuous Design

- $X \sim \log Normal$, otherwise similar
 - Also creates highly leveraged samples
- Results very similar

Simulation Summary

- t_{n-k} criticals inappropriate
- Bell-McCaffrey can be quite conservative
- T is precise under homoskedastic normality (as expected)
- Both Bell-McCaffrey and T sensitive to heteroskedasticity and non-normality
- HC3 appears least sensitive
- HC3 with T distribution reasonably reliable

Clustered Samples

- Same analysis applies to clustered regression and CR standard errors
- ullet Under i.i.d. normality, clustered t-ratios have exact ${\mathcal T}$ distributions
- Weights are determined by regressor matrix
- Distortions from normality when design matrix is highly leveraged
 - When clusters are heterogeneous
 - When only a few clusters are "treated"
- Accuracy of conventional distribution theory depends on the number of clusters G and degree of leverage
 - ightharpoonup Conventional asymptotics requires a large G, not large n
 - Many applied papers don't even report G
 - G should be reported, along with sample size!

Conclusion

- In 1908, Gosset revolutionized statistical inference by providing the exact distribution of the classical t-ratio
- Applied econometrics relies on heteroskedasticity-robust and cluster-robust standard errors
- There is no finite sample theory for HC and CR t-ratios
- This paper provides the first exact distribution theory

Findings

- HC and CR t-ratios are NOT student t_{n-k}
- The deviation from t_{n-k} can be very substantial
- ullet The exact distribution (under iid normality) is generalized T
- Exact distribution depends on regressor matrix X
- Correct finite sample p-values and confidence intervals can be reported