Discussion of "Monetary Policy and the Predictability of Nominal Exchange Rates" by Martin Eichenbaum, Benjamin Johannsen and Sergio Rebelo

Adrien Auclert

Bank of Portugal 12 June 2017

This paper

- 1. Presents a new empirical fact:
 - Current level of the RER predicts NER in the long run
- Shows that this is consistent with most New Open Economy Macro models:
 - Transitory shocks move the RER between two countries
 - Both central banks target inflation
 - So the adjustment happens mostly via the NER
- ► This could be a hugely influential paper!
 - For theory, applied work in academia, and policy
 - Two possible pitfalls with the empirics: intercept problem and small-sample bias
 - Both can easily be solved

Overview of the paper

▶ Real exchange rate or RER of (say) Australia vs. US:

$$Q_t \equiv \mathcal{E}_t \frac{P_t^*}{P_t}$$

- price of Australian basket relative to US basket, in same currency
- \triangleright \mathcal{E}_t is nominal exchange rate, USD per AUD
- \triangleright P_t^* is Australian CPI, P_t is US CPI
- $\mathcal{E}_t \uparrow$ is nominal USD depreciation, $Q_t \uparrow$ is real USD depreciation
- ► In logs,

$$q_t = e_t + p_t^* - p_t$$

► A widely studied topic in intal finance

- ► EJR combine two widely-agreed upon observations:
- 1. $Q_t \rightsquigarrow 1$ (PPP) in the long-run, though very slow [Rogoff 1996]
- 2. $\frac{P_t^*}{P_t}$ stable in inflation-targeting ('Taylor rule') countries
- ▶ \Rightarrow Nominal exchange rate at t + k:

$$\mathcal{E}_{t+k} = \mathcal{E}_t \frac{P_{t+k}^*}{P_{t+k}} \frac{P_t}{P_t^*} \frac{Q_{t+k}}{Q_t}$$

- ► EJR combine two widely-agreed upon observations:
- 1. $Q_t \rightsquigarrow 1$ (PPP) in the long-run, though very slow [Rogoff 1996]
- 2. $\frac{P_t^*}{P_t}$ stable in inflation-targeting ('Taylor rule') countries
- ▶ \Rightarrow Nominal exchange rate at t + k:

$$\mathcal{E}_{t+k} = \mathcal{E}_t \frac{P_{t+k}^*}{P_{t+k}} \frac{P_t}{P_t^*} \frac{1}{Q_t}$$

- ► EJR combine two widely-agreed upon observations:
- 1. $Q_t \rightsquigarrow 1$ (PPP) in the long-run, though very slow [Rogoff 1996]
- 2. $\frac{P_t^*}{P_t}$ stable in inflation-targeting ('Taylor rule') countries
- ▶ \Rightarrow Nominal exchange rate at t + k:

$$\mathcal{E}_{t+k} = \mathcal{E}_t \frac{\mathbf{1}}{Q_t}$$

► Can this beat the random walk model? [Meese-Rogoff 1983]

- ► EJR combine two widely-agreed upon observations:
- 1. $Q_t \rightsquigarrow 1$ (PPP) in the long-run, though very slow [Rogoff 1996]
- 2. $\frac{P_t^*}{P_t}$ stable in inflation-targeting ('Taylor rule') countries
- ▶ \Rightarrow Nominal exchange rate at t + k:

$$\mathcal{E}_{t+k} = \mathcal{E}_t \frac{P_{t+k}^*}{P_{t+k}} \frac{P_t}{P_t^*} \frac{Q_{t+k}}{Q_t}$$

- ► Can this beat the random walk model? [Meese-Rogoff 1983]
 - ▶ With log RER mean-reversion coefficient of ρ , suggests forecast

$$e_{t+k}^{f} = e_{t} + k (\pi^{*} - \pi) + (\rho^{k} - 1) q_{t}$$

where π^* , π are inflation targets abroad and at home

Seems promising

Seems promising

Works like a charm

Works like a charm

Intercept problem

- Previous graphs drawn under the normalization $q_T = 0$
- Real exchange rates always require a normalization
 - NER known, but price indices are computed relative to a base year
 - ightharpoonup Difficult to know in real time what the level of Q_t is
- ▶ Not important for in-sample results, which focus on slope
 - but relevant for out-of-sample forecasts
 - and more generally for empirical exchange rate forecasting literature
- Current data uses only national price indices
 - ▶ Uses past inflation to estimate the level of Q_t
 - ▶ **Instead**: could try to get Q_t from intal goods price comparisons

Small sample bias problem

Main estimates are for forecasting regression

$$e_{t+k} - e_t = \alpha + \beta_k \left(e_t + p_t^* - p_t \right) + \epsilon_t \tag{1}$$

- ▶ Main finding is $\widehat{\beta}_k < 0$, with $|\widehat{\beta}_k|$ and R^2 increasing in k
- Really nice: model generates same sign and magnitudes
- Potential problem: small sample bias.
- lacktriangle Consider a null in which e_t a random walk + no price diff

$$e_{t+1} = e_t + \eta_t$$
$$p_t^* - p_t = 0$$

What does the following small sample regression predict?

$$e_{t+k} - e_t \mapsto e_t$$

▶ Application: sample size T = 136 quarters, k = 40 quarters

Small sample bias

Forecasting regression

$$e_{t+k} - e_t = \alpha + \beta_k e_t + \epsilon_t \tag{2}$$

	k =	1 year	3 years	5 years	7 years	10 years
MC Simulations	$\widehat{\beta_k}$	-0.14	-0.40	-0.59	-0.74	-0.89
	R^2	0.08	0.22	0.33	0.41	0.49
EJR—for AUD	$\widehat{\beta_k}$	-0.20	-0.70	-1.06	-1.12	-1.60
EJR—for AUD	R^2	0.10	0.39	0.59	0.60	0.75

- ▶ With T = 34 years, bias is large ($\simeq 50\%$ of result)
- ▶ Paper compares empirical $\widehat{\beta_k}$ with plim from theory
 - (in simplest case, theory says $\mathbb{E}\left[e_{t+k}\right] = \rho^k e_t$, so $\mathrm{plim}\widehat{\beta_k} = \rho^k 1$)
 - ▶ Solution: run regression in artificially generated model data
 - ► This nets out the small sample bias

Monte-Carlo simulation: sample path

Monte-Carlo simulations

Conclusion on empirics

- Conclusion: in-sample results suffer from a bias
 - Could try to do direct bias correction to data, or (simpler) compare model and data with identical bias
- ► Hence, out-of-sample results deserve more emphasis!
 - especially since they do not require ex-post information on Q_t
- ▶ Note: the empirical literature on exchange rate forecasting runs

$$e_{t+k} - e_t = \alpha + \beta f_t + \epsilon_t$$

on 'fundamental' (f_t) determinants. Did not seem to focus much on PPP. Why not?

Adrien Auclert Discussion of EJR 12 June 2017 14 / 18

Review of the theory

- ▶ New open economy macro model where:
 - ► Fundamental shocks affect the flexible-price RER in a transitory way
 - ▶ Home productivity \downarrow or govtt spending $\uparrow \rightarrow \mathsf{ToT} \downarrow \rightarrow \mathsf{RER} \downarrow$
 - Monetary policy follows a Taylor rule, so stabilizes inflation
 - Most of the adjustment to shocks happens via NER
- Argument is extremely general. Suggestion:
 - Under flex prices, consider a benchmark Taylor rules where both countries track their natural rate
 - ▶ Then, $\pi_t = \pi_t^* = 0$ always \Rightarrow All adjustment is through NER!
 - ▶ More generally, there is exchange rate pass through to inflation
 - ightharpoonup \Rightarrow more than 100% of adjustment has to go through nominal

Added bells and whistles

- ► Want the model to be consistent with empirically volatile and persistent exchange rates, and unconditional UIP failure
- Get this from slow-moving real shocks and spread shocks
- ▶ Main intuition clearly remains. Why these added bells and whistles?
- ▶ What about other targets? Despite incomplete markets, the model is likely inconsistent with consumption-ReR correlation, for example (Backus-Smith puzzle)

Conclusion

- Really nice and thought-provoking paper!
 - Proposes a coherent, intuitive story of RER adjustment, relevant for most floats today
 - Works both in theory and in practice
 - ► Connection can be made even tighter

Thank you!