Why are Banks Exposed to Monetary Policy?

Sebastian Di Tella and Pablo Kurlat

Stanford University

Bank of Portugal, June 2017

Banks are exposed to monetary policy shocks

Assets	Liabilities
Loans (long term)	Deposits (short term)
	Net Worth

- \blacktriangleright Maturity mismatch \rightarrow interest rate risk
- ▶ Transmission channel of monetary policy
- Begenau, Piazzesi & Schneider (2014): banks use derivatives (interest rate swaps) to *increase* exposure to interest rate risk

Why do banks choose this exposure?

▶ Focus on banks as providers of liquidity

 Banks' exposure to interest-rate risk is part of dynamic hedging strategy

- ▶ deposit spreads co-move with interest rate (Drechsler et al. 2015)
- capital gains offset flow returns
- implement with maturity-mismatched balance sheet

▶ Fits level, time series, and cross-section of maturity mismatch

Technology and Preferences

- Fixed capital stock k produces constant output flow y = ak
- ▶ "Households" and "bankers" with the same preferences:

$$f(x, U) = \rho(1 - \gamma) U\left(\log(x) - \frac{1}{1 - \gamma}\log\left((1 - \gamma) U\right)\right)$$

Epstein-Zin with EIS=1 and RRA γ

- Currency-and-deposits in the utility function:
 - x: Cobb-Douglas aggregator of c (consumption) and m (money)

$$x\left(c,m\right) = c^{\beta}m^{1-\beta}$$

▶ m: CES aggregator of h (real currency) and d (real deposits). Elasticity ϵ

$$m(h,d) = \left(\alpha^{\frac{1}{\epsilon}}h^{\frac{\epsilon-1}{\epsilon}} + (1-\alpha)^{\frac{1}{\epsilon}}d^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$

Monetary Policy

- ▶ Currency supplied via (stochastic) lump-sum transfers
- ▶ Flexible prices
- Reverse-engineered to produce stochastic process for interest rates:

$$di_{t} = \mu\left(i_{t}\right)dt + \sigma\left(i_{t}\right)dB_{t}$$

- \blacktriangleright *B* is standard Brownian Motion
- Friedman rule is optimal $i_t = 0$
- ▶ In quantitative section, Cox-Ingersoll-Ross process:

$$\mu(i) = -\lambda (i - \overline{i})$$

$$\sigma(i) = \sigma \sqrt{i}$$

Deposits

Bankers can issue deposits up to leverage limit

$$d^S \leq \phi n$$

- regulatory constraint/economic condition for deposits to be liquid
- prevents infinite supply of deposits
- makes bankers' net worth an important state variable

▶ In equilibrium deposits pay (endogenous) nominal rate $i_t^d < i_t$. Spread:

$$s_t = i_t - i_t^d > 0$$

Markets

- ▶ Complete markets
 - ▶ real interest rate: $r_t = i_t \mu_{p,t}$
 - trade exposure to B at price π_t

▶ Capital and lump-sum transfers priced by arbitrage

▶ No assumptions on what assets banks hold

Household and Banker's Problems

▶ Household

$$\max_{w,x,c,m,h,d,\sigma_w} U(x)$$
s.t.
$$\frac{dw_t}{w_t} = \left(r_t + \sigma_{w,t}\pi_t - \hat{c}_t - \hat{h}_t i_t - \hat{d}_t \underbrace{(i_t - i_t^d)}_{\equiv s_t}\right) dt + \sigma_{w,t} dB_t$$

$$x_t = c_t^\beta m_t^{1-\beta}$$

$$m_t = \left(\alpha^{\frac{1}{\epsilon}} h_t^{\frac{\epsilon-1}{\epsilon}} + (1-\alpha)^{\frac{1}{\epsilon}} d_t^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$

$$w_t \ge 0$$

▶ Banker: same except bankers earn spread on deposits issued:

$$\frac{dn_t}{n_t} = \left(r_t + \sigma_{n,t}\pi_t - \hat{c}_t - \hat{h}_t i_t - \hat{d}_t s_t + \hat{d}_t^S s_t\right) dt + \sigma_{n,t} dB_t$$
$$\hat{d}_t^S \le \phi$$

Equilibrium Definition

- State variables:
 - ▶ *i*: current level of interest rates
 - ▶ $z = \frac{n}{n+w}$: fraction of total wealth held by bankers
- Equilibrium
 - 1. Value functions and policy functions
 - 2. Prices
 - 3. Law of motion for z

such that

- 1. Value and policy functions solve household & banker's problem
- 2. Markets clear
 - 2.1 goods
 - 2.2 currency
 - 2.3 deposits
 - 2.4 capital
- 3. Law of motion for z is consistent with policy functions

Deposit Spread

▶ From the FOCs and market clearing for deposits we get a static equation for the deposit spread:

$$\underbrace{(1-\alpha)\left(\frac{\iota\left(i,s\right)}{s}\right)^{\epsilon}}_{\frac{d}{m}}\underbrace{(1-\beta)\frac{\chi(i,s)}{\iota\left(i,s\right)}}_{\frac{m}{x}}\underbrace{\frac{\rho}{\chi(i,s)}}_{\frac{x}{\omega}} = \underbrace{\phi}_{\frac{d}{n}}\underbrace{z}_{z\equiv\frac{n}{\omega}}$$

where ι and χ are CES and Cobb-Douglas price indices

$$\iota(i,s) = \left(\alpha i^{1-\epsilon} + (1-\alpha)s^{1-\epsilon}\right)^{\frac{1}{1-\epsilon}}$$
$$\chi(i,s) = (\beta)^{-\beta} \left(\frac{\iota(i,s)}{1-\beta}\right)^{1-\beta}$$

- Solve for spread s(i, z)
 - decreasing in z
 - increasing in i if $\epsilon > 1$

Deposit Spread s(i, z)

• OLS regression of spread (Drechsler et al. [2014]) on i (Libor 6m) and z (Flow of Funds):

Exposure of z to monetary shocks B

▶ Value function has form

$$V_t^h(w) = \frac{(\zeta_t w)^{1-\gamma}}{1-\gamma} \qquad \text{for household}$$
$$V_t^b(n) = \frac{(\xi_t n)^{1-\gamma}}{1-\gamma} \qquad \text{for banker}$$

the endogenous ζ_t and ξ_t capture forward-looking investment opportunities

► FOCs for risk exposure:

$$\underbrace{\sigma_w = \frac{\pi}{\gamma} + \frac{1 - \gamma}{\gamma} \sigma_{\zeta}}_{\text{household}} \qquad \underbrace{\sigma_n = \frac{\pi}{\gamma} + \frac{1 - \gamma}{\gamma} \sigma_{\xi}}_{\text{banker}}$$

Premium + dynamic hedging

▶ Income vs. substitution. If $\gamma > 1$, income effect dominates

Exposure of z to monetary shocks B

• Therefore, exposure of
$$z \equiv \frac{n}{n+w}$$
:

$$\sigma_z = (1-z)(\sigma_n - \sigma_w)$$

$$\implies \sigma_z = (1-z) \frac{1-\gamma}{\gamma} \left(\sigma_{\xi} - \sigma_{\zeta} \right)$$

- How banks share of wealth z reacts to an increase in interest rates depends on:
 - how relative investment opportunities ξ/ζ react: $\sigma_{\xi} \sigma_{\zeta} > 0$
 - income vs substitution effects: $\frac{1-\gamma}{\gamma} < 0$
- Dynamic hedge: banks are willing to take a loss when interest rates rise because they expect large spreads looking forward

Parameter Values

	Meaning	Value	Remarks	
γ	Risk aversion	10	\sim Bansal & Yaron (2004)	
\overline{i}	Mean interest rate	3.5%	6m LIBOR	
σ	Volatility of i	0.044	om LIDOR	
λ	Mean reversion of i	0.056	Volatility of 10-year rates	
ρ	Discount rate	0.055	$\frac{\text{consumption}}{\text{wealth}}$	
ϕ	Leverage	8.77	$\frac{\text{Checking} + \text{Savings}}{\text{Net Worth}}$	
α	CES weight on currency	0.95	Time series of $s(i, z)$	
β	CD consumption share	0.93	(Drechsler et. al. 2014)	
ϵ	Elasticity currency / deposits	6.6		
$\tilde{\sigma}_a$	Volatility of TFP	0.073	Risk free rate	
au	Tax on bank equity	0.195	Average z	

Deposit Spread s(i, z)

Banks' exposure to movements in interest rates: σ_n/σ_i

Maturity Mismatch ${\cal T}$

• Implement σ_n with "traditional" balance sheet:

- \blacktriangleright assets: zero coupon nominal bond of maturity T
- ▶ liabilities: short-term nominal liabilities (e.g. deposits)

- ▶ Compute maturity mismatch:
 - Price bonds of every maturity $p^B(i, z; T)$
 - Compute exposure of each bond to interest rates $\sigma_{p^B(i,z;T)}$
 - Find maturity T such that

$$\sigma_n = (1+\phi) \,\sigma_{p^B(i,z;T)}$$

Maturity Mismatch

• Higher maturity mismatch when i and z are low: reflects larger sensitivity of s(i, z) to changes in i in that region. OLS:

Quantitative evaluation: time series

▶ Construct banks' maturity mismatch using Call Reports (English et al. (2012))

 record contractual or repricing maturity of assets and liabilities, and substract

asset-weighted median across banks

 \blacktriangleright compare with model predictions based on time series for i and z

Maturity mismatch time series

Levels: avg. maturity mismatch data: 4.4 yrs; model: 3.9 yrs
Time pattern: maturity mismatch high when *i* low; correlation: 0.77

Cross sectional evidence

- Model: banks with more deposits should have a larger maturity mismatch
- ▶ Re-solve banker's problem with different $\phi = d/n$; for each ϕ compute the whole time series of maturity mismatch, and take average
- ▶ Regress maturity mismatch on ϕ : $\beta = 0.42$
- ▶ Same regression in the data

	Median	OLS
Constant	2.6	3.6
	(0.0023)	(0.063)
ϕ	0.43	0.26
	(0.0004)	(0.013)
N	10,351	10,351

Real shocks under inflation targeting

• Shocks to expected growth rate $\mu_{a,t}$:

$$\frac{d\mu_{a,t}}{\mu_{a,t}} = -\lambda \left(\mu_{a,t} - \bar{\mu}_a\right) dt + \sigma \sqrt{\mu_{a,t} - \mu_{a,t}^{\min}} dB_t$$

 Central bank adjusts currency supply to keep inflation constant (e.g. 2%):

$$i_t = r_t + \bar{\mu}_p$$

- ▶ Negative growth shock \rightarrow low eq. real interest rate \rightarrow low nominal interest rate
- Set parameters to match volatility of interest rates
 - Requires large and persistent growth shocks

Maturity Mismatch with Real Shocks

Levels: avg. maturity mismatch data: 4.4 yrs; model: 4.7 yrs
 Time pattern: maturity mismatch high when *i* low; correlation: 0.51

Conclusions

- Dynamic hedging of deposit spreads explains banks interest-rate exposure
 - ▶ average, time pattern, cross-sectional pattern

 Does not depend on why interest rates move: monetary and real shocks under inflation targeting

- Banks' maturity mismatch amplifies the effects of monetary policy shock on the cost of liquidity
- ▶ Implications for other types of risk exposure (e.g. credit spreads)

Extra: Static Decisions

► Currency-deposit choice (from CES):

$$\frac{d}{m} = (1 - \alpha) \left(\frac{\iota}{s}\right)^{\epsilon} \qquad \qquad \frac{h}{m} = \alpha \left(\frac{\iota}{i}\right)^{\epsilon}$$

unit cost of m is

$$\iota(i,s) = \left(\alpha i^{1-\epsilon} + (1-\alpha) s^{1-\epsilon}\right)^{\frac{1}{1-\epsilon}}$$

Consumption-money choice (from Cobb-Douglas):

$$c = \beta(\chi x)$$
 $\iota m = (1 - \beta)(\chi x)$

unit cost of x is

$$\chi(i,s) = (\beta)^{-\beta} \left(\frac{\iota(i,s)}{1-\beta}\right)^{1-\beta}$$

Extra: Dynamic Decisions

FOC for \hat{x} is the same for household and banker:

•
$$IES = 1 \Rightarrow \frac{\text{spending}}{\text{wealth}} = \rho$$

▶ Goods market clearing:

• Cobb-Douglas + $IES = 1 \Rightarrow$ Constant wealth