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Banks are exposed to monetary policy shocks

Assets Liabilities

Loans Deposits
(long term) (short term)

Net Worth

◮ Maturity mismatch → interest rate risk

◮ Transmission channel of monetary policy

◮ Begenau, Piazzesi & Schneider (2014): banks use derivatives
(interest rate swaps) to increase exposure to interest rate risk



Why do banks choose this exposure?

◮ Focus on banks as providers of liquidity

◮ Banks’ exposure to interest-rate risk is part of dynamic hedging
strategy

◮ deposit spreads co-move with interest rate (Drechsler et al. 2015)
◮ capital gains offset flow returns
◮ implement with maturity-mismatched balance sheet

◮ Fits level, time series, and cross-section of maturity mismatch



Technology and Preferences

◮ Fixed capital stock k produces constant output flow y = ak

◮ “Households” and “bankers” with the same preferences:

f (x, U) = ρ (1− γ)U

(

log (x)−
1

1− γ
log ((1− γ)U)

)

Epstein-Zin with EIS=1 and RRA γ

◮ Currency-and-deposits in the utility function:

◮ x: Cobb-Douglas aggregator of c (consumption) and m (money)

x (c,m) = cβm1−β

◮ m: CES aggregator of h (real currency) and d ( real deposits).
Elasticity ǫ

m (h, d) =
(

α
1

ǫ h
ǫ−1

ǫ + (1− α)
1

ǫ d
ǫ−1

ǫ

) ǫ

ǫ−1



Monetary Policy

◮ Currency supplied via (stochastic) lump-sum transfers

◮ Flexible prices

◮ Reverse-engineered to produce stochastic process for interest
rates:

dit = µ (it) dt+ σ (it) dBt

◮ B is standard Brownian Motion

◮ Friedman rule is optimal it = 0

◮ In quantitative section, Cox-Ingersoll-Ross process:

µ (i) = −λ (i− ī)

σ (i) = σ
√
i



Deposits

◮ Bankers can issue deposits up to leverage limit

dS ≤ φn

◮ regulatory constraint/economic condition for deposits to be liquid
◮ prevents infinite supply of deposits
◮ makes bankers’ net worth an important state variable

◮ In equilibrium deposits pay (endogenous) nominal rate idt < it.
Spread:

st = it − idt > 0



Markets

◮ Complete markets
◮ real interest rate: rt = it − µp,t

◮ trade exposure to B at price πt

◮ Capital and lump-sum transfers priced by arbitrage

◮ No assumptions on what assets banks hold



Household and Banker’s Problems

◮ Household

max
w,x,c,m,h,d,σw

U (x)

s.t.
dwt

wt

=

(

rt + σw,tπt − ĉt − ĥtit − d̂t
(
it − idt

)

︸ ︷︷ ︸

≡st

)

dt+ σw,tdBt

xt = cβt m
1−β
t

mt =
(

α
1

ǫ h
ǫ−1

ǫ

t + (1− α)
1

ǫ d
ǫ−1

ǫ

t

) ǫ

ǫ−1

wt ≥ 0

◮ Banker: same except bankers earn spread on deposits issued:

dnt

nt

=
(

rt + σn,tπt − ĉt − ĥtit − d̂tst+d̂St st

)

dt+ σn,tdBt

d̂St ≤ φ



Equilibrium Definition

◮ State variables:

◮ i: current level of interest rates
◮ z = n

n+w
: fraction of total wealth held by bankers

◮ Equilibrium

1. Value functions and policy functions
2. Prices
3. Law of motion for z

such that

1. Value and policy functions solve household & banker’s problem
2. Markets clear

2.1 goods

2.2 currency

2.3 deposits

2.4 capital

3. Law of motion for z is consistent with policy functions



Deposit Spread

◮ From the FOCs and market clearing for deposits we get a static
equation for the deposit spread:

(1− α)

(
ι (i, s)

s

)ǫ

︸ ︷︷ ︸
d

m

(1− β)
χ(i, s)

ι (i, s)
︸ ︷︷ ︸

m

x

ρ

χ(i, s)
︸ ︷︷ ︸

x

ω

= φ

︸︷︷︸
d

n

z
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ω

where ι and χ are CES and Cobb-Douglas price indices

ι(i, s) =
(
αi1−ǫ + (1− α) s1−ǫ

) 1

1−ǫ

χ (i, s) = (β)
−β

(
ι (i, s)

1− β

)1−β

◮ Solve for spread s (i, z)

◮ decreasing in z
◮ increasing in i if ǫ > 1



Deposit Spread s(i, z)

◮ OLS regression of spread (Drechsler et al. [2014]) on i (Libor 6m)
and z (Flow of Funds):

s = 0.3% + 0.66 i − 0.99 z
(0.22%) (0.028) (0.25)

s = 0.3% + 0.98 i − 4.07 i2 − 0.71 z
(0.44%) (0.17) (2.02) (0.32)



Exposure of z to monetary shocks B

◮ Value function has form

V h
t (w) =

(ζtw)
1−γ

1− γ
for household

V b
t (n) =

(ξtn)
1−γ

1− γ
for banker

the endogenous ζt and ξt capture forward-looking investment
opportunities

◮ FOCs for risk exposure:

σw =
π

γ
+

1− γ

γ
σζ

︸ ︷︷ ︸

household

σn =
π

γ
+

1− γ

γ
σξ

︸ ︷︷ ︸

banker

◮ Premium + dynamic hedging
◮ Income vs. substitution. If γ > 1, income effect dominates



Exposure of z to monetary shocks B

◮ Therefore, exposure of z ≡
n

n+w
:

σz = (1− z)(σn − σw)

=⇒ σz = (1− z)
1− γ

γ
(σξ − σζ)

◮ How banks share of wealth z reacts to an increase in interest
rates depends on:

◮ how relative investment opportunities ξ/ζ react: σξ − σζ > 0
◮ income vs substitution effects: 1−γ

γ
< 0

◮ Dynamic hedge: banks are willing to take a loss when interest
rates rise because they expect large spreads looking forward



Parameter Values

Meaning Value Remarks

γ Risk aversion 10 ∼ Bansal & Yaron (2004)

ī Mean interest rate 3.5%
6m LIBOR

σ Volatility of i 0.044

λ Mean reversion of i 0.056 Volatility of 10-year rates

ρ Discount rate 0.055 consumption

wealth

φ Leverage 8.77 Checking + Savings

Net Worth

α CES weight on currency 0.95 Time series of s (i, z)

β CD consumption share 0.93 (Drechsler et. al. 2014)

ǫ Elasticity currency / deposits 6.6

σ̃a Volatility of TFP 0.073 Risk free rate

τ Tax on bank equity 0.195 Average z



Deposit Spread s(i, z)



Banks’ exposure to movements in interest rates: σn/σi



Maturity Mismatch T

◮ Implement σn with “traditional” balance sheet:

◮ assets: zero coupon nominal bond of maturity T
◮ liabilities: short-term nominal liabilities (e.g. deposits)

◮ Compute maturity mismatch:

◮ Price bonds of every maturity pB(i, z;T )
◮ Compute exposure of each bond to interest rates σpB(i,z;T )
◮ Find maturity T such that

σn = (1 + φ)σpB(i,z;T )



Maturity Mismatch

◮ Higher maturity mismatch when i and z are low: reflects larger
sensitivity of s (i, z) to changes in i in that region. OLS:

T = 4.4 – 11.7 i − 1.9 z
(0.1) (6.8) (0.4)



Quantitative evaluation: time series

◮ Construct banks’ maturity mismatch using Call Reports (English
et al. (2012))

◮ record contractual or repricing maturity of assets and liabilities,
and substract

◮ asset-weighted median across banks

◮ compare with model predictions based on time series for i and z



Maturity mismatch time series

◮ Levels: avg. maturity mismatch data: 4.4 yrs; model: 3.9 yrs
◮ Time pattern: maturity mismatch high when i low; correlation: 0.77



Cross sectional evidence

◮ Model: banks with more deposits should have a larger maturity
mismatch

◮ Re-solve banker’s problem with different φ = d/n; for each φ
compute the whole time series of maturity mismatch, and take
average

◮ Regress maturity mismatch on φ: β = 0.42

◮ Same regression in the data

Median OLS
Constant 2.6 3.6

(0.0023) (0.063)

φ 0.43 0.26
(0.0004) (0.013)

N 10, 351 10, 351



Real shocks under inflation targeting

◮ Shocks to expected growth rate µa,t:

dµa,t

µa,t

= −λ (µa,t − µ̄a) dt+ σ
√

µa,t − µmin
a,t dBt

◮ Central bank adjusts currency supply to keep inflation constant
(e.g. 2%):

it = rt + µ̄p

◮ Negative growth shock → low eq. real interest rate → low
nominal interest rate

◮ Set parameters to match volatility of interest rates

◮ Requires large and persistent growth shocks



Maturity Mismatch with Real Shocks

◮ Levels: avg. maturity mismatch data: 4.4 yrs; model: 4.7 yrs
◮ Time pattern: maturity mismatch high when i low; correlation: 0.51



Conclusions

◮ Dynamic hedging of deposit spreads explains banks interest-rate
exposure

◮ average, time pattern, cross-sectional pattern

◮ Does not depend on why interest rates move: monetary and real
shocks under inflation targeting

◮ Banks’ maturity mismatch amplifies the effects of monetary
policy shock on the cost of liquidity

◮ Implications for other types of risk exposure (e.g. credit spreads)



Extra: Static Decisions

◮ Currency-deposit choice (from CES):

d

m
= (1− α)

( ι

s

)ǫ h

m
= α

( ι

i

)ǫ

unit cost of m is

ι(i, s) =
(
αi1−ǫ + (1− α) s1−ǫ

) 1

1−ǫ

◮ Consumption-money choice (from Cobb-Douglas):

c = β(χx) ιm = (1− β) (χx)

unit cost of x is

χ (i, s) = (β)
−β

(
ι (i, s)

1− β

)1−β



Extra: Dynamic Decisions

◮ FOC for x̂ is the same for household and banker:

x̂t
︸︷︷︸

x

wealth

χt
︸︷︷︸

unit cost of x

= ρ

◮ IES = 1⇒ spending

wealth
= ρ

◮ Goods market clearing:

ak
︸︷︷︸

output

= β
︸︷︷︸

consumption

spending

ρ
︸︷︷︸

spending
wealth

ωt
︸︷︷︸

total wealth

⇒ ωt ≡ nt + wt =
ak

βρ

◮ Cobb-Douglas + IES = 1 ⇒ Constant wealth


