Monetary Policy According to HANK

Greg Kaplan Ben Moll Gianluca Violante

Banco de Portugal Conference on Monetary Economics June 11-13, 2017

HANK: Heterogeneous Agent New Keynesian models

 Framework for quantitative analysis of the transmission mechanism of monetary policy

HANK: Heterogeneous Agent New Keynesian models

- Framework for quantitative analysis of the transmission mechanism of monetary policy
- Three building blocks
 - 1. Uninsurable idiosyncratic income risk
 - 2. Nominal price rigidities
 - 3. Assets with different degrees of liquidity

How monetary policy works in RANK

• Total consumption response to a drop in real rates

$$C \text{ response} = \underbrace{\text{direct response to } r}_{>95\%} + \underbrace{\text{indirect effects due to } Y}_{<5\%}$$

• Direct response is everything, pure intertemporal substitution

How monetary policy works in RANK

• Total consumption response to a drop in real rates

$$C \text{ response} = \underbrace{\text{direct response to } r}_{>95\%} + \underbrace{\text{indirect effects due to } Y}_{<5\%}$$

- Direct response is everything, pure intertemporal substitution
- However, data suggest:
 - 1. Low sensitivity of C to r
 - 2. Sizable sensitivity of C to Y
 - 3. Micro sensitivity vastly heterogeneous, depends crucially on household balance sheets

How monetary policy works in HANK

- Once matched to micro data, HANK delivers realistic:
 - Wealth distribution: small direct effect
 - MPC distribution: large indirect effect (depending on ΔY)

How monetary policy works in HANK

- Once matched to micro data, HANK delivers realistic:
 - Wealth distribution: small direct effect
 - MPC distribution: large indirect effect (depending on ΔY)

 $C \text{ response } = \underbrace{\text{direct response to } r}_{\text{RANK: >95\%}} + \underbrace{\text{indirect effects due to } Y}_{\text{RANK: <5\%}}$ $\frac{\text{RANK: <5\%}}{\text{HANK: <1/3}} + \frac{\text{RANK: <5\%}}{\text{RANK: >2/3}}$

How monetary policy works in HANK

- Once matched to micro data, HANK delivers realistic:
 - Wealth distribution: small direct effect
 - MPC distribution: large indirect effect (depending on ΔY)

 $C \text{ response } = \underbrace{\text{direct response to } r}_{\text{RANK: >95\%}} + \underbrace{\text{indirect effects due to } Y}_{\text{RANK: <5\%}}$ $HANK: <1/3 \qquad HANK: >2/3$

• Overall effect depends crucially on fiscal response, unlike in RANK where Ricardian equivalence holds

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

Households

- Face uninsured idiosyncratic labor income risk
- Consume and supply labor
- Hold two assets: liquid and illiquid

Households

- Face uninsured idiosyncratic labor income risk
- Consume and supply labor
- Hold two assets: liquid and illiquid
- Budget constraints (simplified version)

$$\dot{b_t} = r^b b_t + w z_t \ell_t - c_t - d_t - \chi(d_t, a_t)$$

$$\dot{a_t} = r^a a_t + d_t$$

- b_t : liquid assets
- a_t: illiquid assets
- d_t : illiquid deposits (≥ 0) χ : transaction cost function
- In equilibrium: $r^a > r^b$
- Full model: borrowing/saving rate wedge, taxes/transfers

Kinked adjustment cost function $\chi(d, a)$

Remaining model ingredients

Illiquid assets: a = k + qs

• No arbitrage: $r^k - \delta = \frac{\Pi + \dot{q}}{q} := r^a$

Firms

- Monopolistic intermediate-good producers \rightarrow final good
- Rent capital and labor services
- Quadratic price adjustment costs à la Rotemberg (1982)

Government

• Issues liquid debt (B^g) , spends (G), taxes and transfers (T)

Monetary Authority

• Sets nominal rate on liquid assets based on a Taylor rule

Summary of market clearing conditions

• Liquid asset market

 $B^h + B^g = 0$

• Illiquid asset market

$$A = K + q$$

Labor market

$$N=\int z\ell(a,b,z)d\mu$$

• Goods market:

 $Y = C + I + G + \chi + \Theta$ + borrowing costs

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

- 1. Measurement and partition of asset categories into: 50 shades of K
 - Liquid (cash, bank accounts + government/corporate bonds)
 - Illiquid (equity, housing)

- 1. Measurement and partition of asset categories into: 50 shades of K
 - Liquid (cash, bank accounts + government/corporate bonds)
 - Illiquid (equity, housing)
- 2. Income process with leptokurtic income changes . income process
 - Nature of earnings risk affects household portfolio

- 1. Measurement and partition of asset categories into: 50 shades of K
 - Liquid (cash, bank accounts + government/corporate bonds)
 - Illiquid (equity, housing)
- 2. Income process with leptokurtic income changes . income process
 - Nature of earnings risk affects household portfolio
- 3. Adjustment cost function and discount rate adj cost function
 - Match mean liquid/illiquid wealth and fraction HtM

- 1. Measurement and partition of asset categories into: 50 shades of K
 - Liquid (cash, bank accounts + government/corporate bonds)
 - Illiquid (equity, housing)
- 2. Income process with leptokurtic income changes **•** income process
 - Nature of earnings risk affects household portfolio
- 3. Adjustment cost function and discount rate adj cost function
 - Match mean liquid/illiquid wealth and fraction HtM
 - Production side: standard calibration of NK models
 - Separable preferences: $u(c, \ell) = \log c \frac{1}{2}\ell^2$

Model matches key feature of U.S. wealth distribution

Model generates high and heterogeneous MPCs

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

Innovation $\epsilon < 0$ to the Taylor rule: $i = \bar{r}^b + \phi \pi + \epsilon$

• All experiments: $\epsilon_0 = -0.0025$, i.e. -1% annualized

Innovation $\epsilon < 0$ to the Taylor rule: $i = \bar{r}^b + \phi \pi + \epsilon$

• All experiments: $\epsilon_0 = -0.0025$, i.e. -1% annualized

$$dC_{0} = \underbrace{\int_{0}^{\infty} \frac{\partial C_{0}}{\partial r_{t}^{b}} dr_{t}^{b} dt}_{\text{direct}} + \underbrace{\int_{0}^{\infty} \left[\frac{\partial C_{0}}{\partial r_{t}^{a}} dr_{t}^{a} + \frac{\partial C_{0}}{\partial w_{t}} dw_{t} + \frac{\partial C_{0}}{\partial T_{t}} dT_{t} \right] dt}_{\text{indirect}}$$

$$dC_{0} = \int_{0}^{\infty} \frac{\partial C_{0}}{\partial r_{t}^{b}} dr_{t}^{b} dt + \int_{0}^{\infty} \left[\frac{\partial C_{0}}{\partial r_{t}^{a}} dr_{t}^{a} + \frac{\partial C_{0}}{\partial w_{t}} dw_{t} + \frac{\partial C_{0}}{\partial T_{t}} dT_{t} \right] dt$$

$$\checkmark$$

Intertemporal substitution and income effects from $r^b \downarrow$

$$dC_{0} = \int_{0}^{\infty} \frac{\partial C_{0}}{\partial r_{t}^{b}} dr_{t}^{b} dt + \int_{0}^{\infty} \left[\frac{\partial C_{0}}{\partial r_{t}^{a}} dr_{t}^{a} + \frac{\partial C_{0}}{\partial w_{t}} dw_{t} + \frac{\partial C_{0}}{\partial T_{t}} dT_{t} \right] dt$$

$$\checkmark$$

Portfolio reallocation effect from $r^a - r^b \uparrow$

$$dC_{0} = \int_{0}^{\infty} \frac{\partial C_{0}}{\partial r_{t}^{b}} dr_{t}^{b} dt + \int_{0}^{\infty} \left[\frac{\partial C_{0}}{\partial r_{t}^{a}} dr_{t}^{a} + \frac{\partial C_{0}}{\partial w_{t}} dw_{t} + \frac{\partial C_{0}}{\partial T_{t}} dT_{t} \right] dt$$

$$\checkmark$$

Labor demand channel from $w \uparrow$

$$dC_{0} = \int_{0}^{\infty} \frac{\partial C_{0}}{\partial r_{t}^{b}} dr_{t}^{b} dt + \int_{0}^{\infty} \left[\frac{\partial C_{0}}{\partial r_{t}^{a}} dr_{t}^{a} + \frac{\partial C_{0}}{\partial w_{t}} dw_{t} + \frac{\partial C_{0}}{\partial T_{t}} dT_{t} \right] dt$$

Fiscal adjustment: $T \uparrow$ in response to \downarrow in interest payments on B

$$dC_{0} = \underbrace{\int_{0}^{\infty} \frac{\partial C_{0}}{\partial r_{t}^{b}} dr_{t}^{b} dt}_{19\%} + \underbrace{\int_{0}^{\infty} \left[\frac{\partial C_{0}}{\partial r_{t}^{a}} dr_{t}^{a} + \frac{\partial C_{0}}{\partial w_{t}} dw_{t} + \frac{\partial C_{0}}{\partial T_{t}} dT_{t} \right] dt}_{81\%}$$

Monetary transmission across liquid wealth distribution

• Total change = c-weighted sum at each liquid wealth level b

Why small direct effects?

- Income effect: (-) for rich households
- Intertemporal substitution: (+) for non-HtM
- Portfolio reallocation: (-) for those with low but > 0 liquid wealth

Fiscal response important for total effect

	T adjusts	G adjusts	B ^g adjusts
	(1)	(2)	(3)
Elasticity of Y_0 to r^b	-3.96	-7.74	-2.17
Elasticity of C_0 to r^b	-2.93	-2.80	-1.68
Share of Direct effects:	19%	21%	42%

- Fiscal response to lower interest payments on debt:
 - T adjusts: stimulates AD through MPC of HtM households
 - G adjusts: translates 1-1 into AD
 - B^g adjusts: no initial stimulus to AD from fiscal side

Comparison to one-asset HANK model

When is HANK \neq RANK? Persistence

• RANK:
$$\frac{\dot{C}_t}{C_t} = \frac{1}{\gamma}(r_t - \rho) \Rightarrow C_0 = \bar{C} \exp\left(-\frac{1}{\gamma}\int_0^\infty (r_s - \rho)ds\right)$$

- Cumulative *r*-deviation $R_0 := \int_0^\infty (r_s \rho) ds$ is sufficient statistic
- Persistence η only matters insofar as it affects R_0

$$-rac{d\log C_0}{dR_0}=rac{1}{\gamma}=1 \quad ext{for all } \eta$$

When is HANK \neq RANK? Persistence

• RANK:
$$\frac{\dot{C}_t}{C_t} = \frac{1}{\gamma}(r_t - \rho) \Rightarrow C_0 = \bar{C} \exp\left(-\frac{1}{\gamma}\int_0^\infty (r_s - \rho)ds\right)$$

- Cumulative *r*-deviation $R_0 := \int_0^\infty (r_s \rho) ds$ is sufficient statistic
- Persistence η only matters insofar as it affects R_0

Inflation-output tradeoff same as in RANK

Monetary transmission in RANK and HANK

 $\Delta C = \text{direct response to } r + \text{indirect GE response} \\ \text{RANK: 95\%} \\ \text{HANK: 1/3} \\ \text{HANK: 2/3}$

Monetary transmission in RANK and HANK

 $\Delta C = \text{direct response to } r + \text{indirect GE response} \\ \text{RANK: 95\%} \\ \text{HANK: 1/3} \\ \text{HANK: 2/3}$

- RANK view:
 - High sensitivity of C to r: intertemporal substitution
 - Low sensitivity of C to Y: the RA is a PIH consumer
- HANK view:
 - Low sensitivity to *r*: income effect of wealthy offsets int. subst.
 - High sensitivity to *Y*: sizable share of hand-to-mouth agents

 \Rightarrow **Q:** Is Fed less in control of *C* than we thought?

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material Literature

Detailed Model Description Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

Literature and contribution

Combine two workhorses of modern macroeconomics:

- New Keynesian models Gali, Gertler, Woodford
- Bewley models Aiyagari, Bewley, Huggett

Literature and contribution

Combine two workhorses of modern macroeconomics:

- New Keynesian models Gali, Gertler, Woodford
- Bewley models Aiyagari, Bewley, Huggett

Closest existing work:

New Keynesian models with limited heterogeneity

Campell-Mankiw, Gali-LopezSalido-Valles, Jacoviello, Bilbiie, Challe-Matheron-Ragot-Rubio-Ramirez

micro-foundation of spender-saver behavior

Bewley models with sticky prices

Oh-Reis, Guerrieri-Lorenzoni, Bavn-Sterk, Gornemann-Kuester-Nakaiima, DenHaan-Rendal-Rieoler, Baver-Luetticke-Pham-Tiaden, McKav-Reis,

McKay-Nakamura-Steinsson, Huo-RiosRull, Werning, Luetticke

- assets with different liquidity Kaplan-Violante
- new view of individual earnings risk Guvenen-Karahan-Ozkan-Song
- Continuous time approach Achdou-Han-Lasry-Lions-Moll CHICAGO

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description

Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

Households

$$\max_{\{c_t, \ell_t, d_t\}_{t \ge 0}} \mathbb{E}_0 \int_0^\infty e^{-(\rho+\lambda)t} u(c_t, \ell_t) dt \quad \text{s.t.}$$

$$\dot{b}_t = r^b(b_t) b_t + w z_t \ell_t - d_t - \chi(d_t, a_t) - c_t - \tilde{T} (w z_t \ell_t + \Gamma) + \Gamma$$

$$\dot{a}_t = r^a a_t + d_t$$

$$z_t = \text{some Markov process}$$

$$b_t \ge -\underline{b}, \quad a_t \ge 0$$

- c_t : non-durable consumption
- *b_t*: liquid assets
- z_t : individual productivity
- ℓ_t : hours worked
- *a_t*: illiquid assets

- d_t : illiquid deposits (≥ 0)
- χ : transaction cost function
- \tilde{T} : income tax/transfer
- Γ: income from firm ownership
- no housing see working paper

Households

• Adjustment cost function

$$\chi(d, a) = \chi_0 |d| + \chi_1 \left| \frac{d}{\max\{a, \underline{a}\}} \right|^{\chi_2} \max\{a, \underline{a}\}$$

- Linear component implies inaction region
- · Convex component implies finite deposit rates

Households

• Adjustment cost function

$$\chi(d, a) = \chi_0 |d| + \chi_1 \left| \frac{d}{\max\{a, \underline{a}\}} \right|^{\chi_2} \max\{a, \underline{a}\}$$

- Linear component implies inaction region
- Convex component implies finite deposit rates

- Recursive solution of hh problem consists of:
 - 1. consumption policy function $c(a, b, z; w, r^a, r^b)$
 - 2. deposit policy function $d(a, b, z; w, r^a, r^b)$
 - 3. labor supply policy function $\ell(a, b, z; w, r^a, r^b)$
 - \Rightarrow joint distribution of households $\mu(da, db, dz; w, r^a, r^b)$

Firms

Representative competitive final goods producer:

$$Y = \left(\int_0^1 y_j^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}} \quad \Rightarrow \quad y_j = \left(\frac{p_j}{P}\right)^{-\varepsilon} Y$$

Firms

Representative competitive final goods producer:

$$Y = \left(\int_0^1 y_j^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}} \quad \Rightarrow \quad y_j = \left(\frac{p_j}{P}\right)^{-\varepsilon} Y$$

Monopolistically competitive intermediate goods producers:

- Technology: $y_j = Z k_j^{\alpha} n_j^{1-\alpha} \quad \Rightarrow \quad m = \frac{1}{Z} \left(\frac{r}{\alpha}\right)^{\alpha} \left(\frac{w}{1-\alpha}\right)^{1-\alpha}$
- Set prices subject to quadratic adjustment costs:

$$\Theta\left(\frac{\dot{p}}{p}\right) = \frac{\theta}{2} \left(\frac{\dot{p}}{p}\right)^2 Y$$

Firms

Representative competitive final goods producer:

$$Y = \left(\int_0^1 y_j^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}} \quad \Rightarrow \quad y_j = \left(\frac{p_j}{P}\right)^{-\varepsilon} Y$$

Monopolistically competitive intermediate goods producers:

- Technology: $y_j = Z k_j^{\alpha} n_j^{1-\alpha} \quad \Rightarrow \quad m = \frac{1}{Z} \left(\frac{r}{\alpha}\right)^{\alpha} \left(\frac{w}{1-\alpha}\right)^{1-\alpha}$
- Set prices subject to quadratic adjustment costs:

$$\Theta\left(\frac{\dot{p}}{p}\right) = \frac{\theta}{2} \left(\frac{\dot{p}}{p}\right)^2 Y$$

Exact NK Phillips curve:

$$\left(r^{a}-\frac{\dot{Y}}{Y}
ight)\pi=rac{arepsilon}{ heta}\left(m-ar{m}
ight)+\dot{\pi},\quadar{m}=rac{arepsilon-1}{arepsilon}$$

Intermediate good firm pricing problem

$$\max_{\{p_t\}_{t\geq 0}} \int_0^\infty e^{-r^a t} \left\{ \Pi_t(p_t) - \Theta_t\left(\frac{\dot{p}_t}{p_t}\right) \right\} dt \quad \text{s.t.}$$

$$\Pi(p) = \left(\frac{p}{P} - m\right) \left(\frac{p}{P}\right)^{-\varepsilon} Y$$
$$m = \frac{1}{Z} \left(\frac{r}{\alpha}\right)^{\alpha} \left(\frac{w}{1-\alpha}\right)^{1-\alpha}$$
$$\Theta(\pi) = \frac{\theta}{2} \pi^2 Y$$

Back to firms

• Illiquid assets = part capital, part equity

a = k + qs

- k: capital, pays return $r \delta$
- s: shares, price q, pay dividends $\omega \Pi = \omega (1 m) Y$

• Illiquid assets = part capital, part equity

a = k + qs

- k: capital, pays return $r \delta$
- *s*: shares, price *q*, pay dividends $\omega \Pi = \omega (1 m)Y$
- Arbitrage:

$$\frac{\omega\Pi + \dot{q}}{q} = r - \delta := r^a$$

• Illiquid assets = part capital, part equity

$$a = k + qs$$

- k: capital, pays return $r \delta$
- *s*: shares, price *q*, pay dividends $\omega \Pi = \omega (1 m)Y$
- Arbitrage:

$$\frac{\omega\Pi + \dot{q}}{q} = r - \delta := r^a$$

• Remaining $(1 - \omega)\Pi$? Scaled lump-sum transfer to hh's:

$$\Gamma = (1 - \omega) \frac{z}{\bar{z}} \Pi$$

• Illiquid assets = part capital, part equity

$$a = k + qs$$

- k: capital, pays return $r \delta$
- s: shares, price q, pay dividends $\omega \Pi = \omega (1 m) Y$
- Arbitrage:

CHICAGC

$$\frac{\omega\Pi + \dot{q}}{q} = r - \delta := r^a$$

• Remaining $(1 - \omega)\Pi$? Scaled lump-sum transfer to hh's:

$$\Gamma = (1-\omega)\frac{z}{\bar{z}}\Pi$$

• Set $\omega = \alpha \Rightarrow$ neutralize asset redistribution from markups

total illiquid flow =
$$rK + \omega \Pi = \alpha mY + \omega (1 - m)Y = \alpha Y$$

total liquid flow
$$= wL + (1 - \omega)\Pi = (1 - \alpha)Y$$

Monetary authority and government

• Taylor rule

$$i = \overline{r}^b + \phi \pi + \epsilon, \quad \phi > 1$$

with $r^b := i - \pi$ (Fisher equation), $\epsilon =$ innovation ("MIT shock")

• Progressive tax on labor income:

$$\tilde{T}(wz\ell+\Gamma) = -T + \tau(wz\ell+\Gamma)$$

• Government budget constraint (in steady state)

$$G-r^bB^g=\int \tilde{T}d\mu$$

• Transition? Ricardian equivalence fails ⇒ this matters!

Summary of market clearing conditions

• Liquid asset market

 $B^h + B^g = 0$

• Illiquid asset market

$$A = K + q$$

Labor market

$$N=\int z\ell(a,b,z)d\mu$$

• Goods market:

 $Y = C + I + G + \chi + \Theta$ + borrowing costs

• Illiquid assets = part capital, part equity

a = k + qs

- k: capital, pays return $r \delta$
- s: shares, price q, pay dividends $\omega \Pi = \omega (1 m) Y$

• Illiquid assets = part capital, part equity

a = k + qs

- k: capital, pays return $r \delta$
- *s*: shares, price *q*, pay dividends $\omega \Pi = \omega (1 m)Y$
- Arbitrage:

$$\frac{\omega\Pi + \dot{q}}{q} = r - \delta := r^a$$

• Illiquid assets = part capital, part equity

a = k + qs

- k: capital, pays return $r \delta$
- *s*: shares, price *q*, pay dividends $\omega \Pi = \omega (1 m)Y$
- Arbitrage:

$$\frac{\omega\Pi + \dot{q}}{q} = r - \delta := r^a$$

• Remaining $(1 - \omega)\Pi$? Scaled lump-sum transfer to hh's:

$$\Gamma = (1 - \omega) \frac{z}{\bar{z}} \Pi$$

• Illiquid assets = part capital, part equity

$$a = k + qs$$

- k: capital, pays return $r \delta$
- s: shares, price q, pay dividends $\omega \Pi = \omega (1 m) Y$
- Arbitrage:

CHICAGC

$$\frac{\omega\Pi + \dot{q}}{q} = r - \delta := r^a$$

• Remaining $(1 - \omega)\Pi$? Scaled lump-sum transfer to hh's:

$$\Gamma = (1-\omega)\frac{z}{\bar{z}}\Pi$$

• Set $\omega = \alpha \Rightarrow$ neutralize asset redistribution from markups

total illiquid flow =
$$rK + \omega \Pi = \alpha mY + \omega (1 - m)Y = \alpha Y$$

total liquid flow
$$= wL + (1 - \omega)\Pi = (1 - \alpha)Y$$

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

Monetary Policy in Benchmark NK Models

Goal:

• Introduce decomposition of C response to r change

Setup:

- Prices and wages perfectly rigid = 1, GDP=labor = Y_t
- Households: CRRA(γ), income Y_t , interest rate r_t

 $\Rightarrow C_t(\{r_s, Y_s\}_{s\geq 0})$

• Monetary policy: sets time path $\{r_t\}_{t\geq 0}$, special case

$$r_t = \rho + e^{-\eta t} (r_0 - \rho), \quad \eta > 0$$
 (*)

- Equilibrium: $C_t(\{r_s, Y_s\}_{s \ge 0}) = Y_t$
- Overall effect of monetary policy

$$-\frac{d\log C_0}{dr_0} = \frac{1}{\gamma\eta}$$

Monetary Policy in RANK

• Decompose C response by totally differentiating $C_0(\{r_t, Y_t\}_{t \ge 0})$

$$dC_0 = \underbrace{\int_0^\infty \frac{\partial C_0}{\partial r_t} dr_t dt}_{\text{direct response to } r} + \underbrace{\int_0^\infty \frac{\partial C_0}{\partial Y_t} dY_t dt}_{\text{indirect effects due to } Y}.$$

• In special case (*)

$$-\frac{d \log C_0}{dr_0} = \frac{1}{\gamma \eta} \left[\underbrace{\frac{\eta}{\rho + \eta}}_{\text{direct response to } r} + \underbrace{\frac{\rho}{\rho + \eta}}_{\text{indirect effects due to } Y} \right].$$

- Reasonable parameterizations \Rightarrow very small indirect effects, e.g.
 - $\rho = 0.5\%$ quarterly
 - $\eta = 0.5$, i.e. quarterly autocorr $e^{-\eta} = 0.61$

$$\Rightarrow \quad rac{\eta}{
ho+\eta}=99\%, \qquad rac{
ho}{
ho+\eta}=1\%$$

What if some households are hand-to-mouth?

- "Spender-saver" or Two-Agent New Keynesian (TANK) model
- Fraction \wedge are HtM "spenders": $C_t^{sp} = Y_t$
- Decomposition in special case (*)

• \Rightarrow indirect effects $\approx \Lambda = 20-30\%$

What if there are assets in positive supply?

- Govt issues debt B to households sector
- Fall in r_t implies a fall in interest payments of $(r_t \rho) B$
- Fraction λ^{T} of income gains transferred to spenders
- Initial consumption restponse in special case (*)

$$-\frac{d\log C_0}{dr_0} = \frac{1}{\gamma\eta} + \underbrace{\frac{\lambda^T}{1-\lambda \bar{Y}}}_{\text{fiscal redistribution channel}}$$

• Interaction between non-Ricardian households and debt in positive net supply matters for overall effect of monetary policy

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model

Solution Method

Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

Solution Method (from Achdou-Han-Lasry-Lions-Moll)

- Solving het. agent model = solving PDEs
 - 1. Hamilton-Jacobi-Bellman equation for individual choices
 - 2. Kolmogorov Forward equation for evolution of distribution
- Many well-developed methods for analyzing and solving these
 - simple but powerful: finite difference method
 - COdeS: http://www.princeton.edu/~moll/HACTproject.htm
- Apparatus is very general: applies to any heterogeneous agent model with continuum of atomistic agents
 - 1. heterogeneous households (Aiyagari, Bewley, Huggett,...)
 - 2. heterogeneous producers (Hopenhayn,...)
- can be extended to handle aggregate shocks (Krusell-Smith,...) CHICAGO

Computational Advantages relative to Discrete Time

- 1. Borrowing constraints only show up in boundary conditions
 - FOCs always hold with "="
- 2. "Tomorrow is today"
 - FOCs are "static", compute by hand: $c^{-\gamma} = V_b(a, b, \gamma)$
- 3. Sparsity
 - solving Bellman, distribution = inverting matrix
 - but matrices very sparse ("tridiagonal")
 - reason: continuous time \Rightarrow one step left or one step right
- 4. Two birds with one stone
 - tight link between solving (HJB) and (KF) for distribution
 - matrix in discrete (KF) is transpose of matrix in discrete (HJB)
- reason: diff. operator in (KF) is adjoint of operator in (HJB) CHICAGÔ

HA Models with Aggregate Shocks: A Matlab Toolbox

- Achdou et al & HANK: HA models with idiosyncratic shocks only
- Aggregate shocks \Rightarrow computational challenge much larger
- Companion project: efficient, easy-to-use computational method
 - see "When Inequality Matters for Macro and Macro Matters for Inequality" (with Ahn, Kaplan, Winberry and Wolf)
 - open source Matlab toolbox online now see my website and https://github.com/gregkaplan/phact
 - extension of linearization (Campbell 1998, Reiter 2009)
 - different slopes at each point in state space

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method

Balance Sheet Details

Earnings Dynamics Parameter Table Empirical Evidence

Fifty shades of K

	Liquid	Illiquid	Total
Non-productive	Household deposits net of revolving debt Corp & Govt bonds $B^h = 0.26$		0.26
Productive		Indirectly held equity Directly held equity Noncorp bus equity Net housing Net durables	2.92 K
Total	$-B^{g} = 0.26$	A = 2.92	3.18

- Quantities are multiples of annual GDP
- Sources: Flow of Funds and SCF 2004
- Working paper: part of housing, durables = unproductive illiquid assets

back

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method Balance Sheet Details

Earnings Dynamics

Parameter Table Empirical Evidence

Continuous time earnings dynamics

- Literature provides little guidance on statistical models of high frequency earnings dynamics
- Key challenge: inferring within-year dynamics from annual data
- Higher order moments of annual changes are informative
- Target key moments of one 1-year and 5-year labor earnings growth from SSA data
- Model generates a thick right tail for earnings levels

Leptokurtic earnings changes

One-year change

Five-year change

Two-component jump-drift process

• Flow earnings (y = wzI) modeled as sum of two components:

 $\log y_t = y_{1t} + y_{2t}$

- Each component is a jump-drift with:
 - mean-reverting drift: $-\beta y_{it} dt$
 - jumps with arrival rate: λ_i , drawn from $\mathcal{N}(0, \sigma_i)$
- Estimate using SMM aggregated to annual frequency
- Choose six parameters to match eight moments:

Model distribution of earnings changes

Moment	Data	Model	Moment	Data	Model
Variance: annual log earns	0.70	0.70	Frac 1yr change < 10%	0.54	0.56
Variance: 1yr change	0.23	0.23	Frac 1yr change < 20%	0.71	0.67
Variance: 5yr change	0.46	0.46	Frac 1yr change < 50%	0.86	0.85
Kurtosis: 1yr change	17.8	16.5			
Kurtosis: 5yr change	11.6	12.1			

Transitory component: $\hat{\lambda}_1 = 0.08$, $\hat{\beta}_1 = 0.76$, $\hat{\sigma}_1 = 1.74$ Persistent component: $\hat{\lambda}_2 = 0.007$, $\hat{\beta}_2 = 0.009$, $\hat{\sigma}_2 = 1.53$

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table

Empirical Evidence

Description		Value	Target / Source		
Prefere	nces				
λ	Death rate	1/180	Av. lifespan 45 years		
γ	Risk aversion	1			
φ	Frisch elasticity (GHH)	1			
ψ	Disutility of labor		Av. hours worked equal to 1/3		
ρ	Discount rate (pa)	5.1%	Internally calibrated		
Production					
ε	Demand elasticity	10	Profit share 10 %		
α	Capital share	0.33			
δ	Depreciation rate (p.a.)	7%			
θ	Price adjustment cost	100	Slope of Phillips curve, $\varepsilon/\theta = 0.1$		
Govern	ment				
au	Proportional labor tax	0.30			
Т	Lump sum transfer (rel GDP)	\$6,900	6% of GDP		
\overline{g}	Govt debt to annual GDP	0.233	government budget constraint		
Monetary Policy					
ϕ	Taylor rule coefficient	1.25			
rb	Steady state real liquid return (pa)	2%			
Illiquid Assets					
r ^a	Illiquid asset return (pa)	5.7%	Equilibrium outcome		
Borrowing					
r ^{borr}	Borrowing rate (pa)	8.0%	Internally calibrated		
b	Borrowing limit	\$16,500	$\approx 1 \times$ quarterly labor inc		
Adjustment Cost Function					
χ_0	Linear term	0.04383	Internally calibrated		
χ_1	Coef on convex term	0.95617	Internally calibrated		
χ_2	Power on convex term	1.40176	Internally calibrated		

Outline

1. Model

2. Parameterization

3. Results

4. Additional Material

Literature Detailed Model Description Simple Model Solution Method Balance Sheet Details Earnings Dynamics Parameter Table Empirical Evidence

Evidence on MPCs from Norwegian lotteries

Figure 4: Heterogeneous consumption responses. Quartiles of liquid and net illiquid assets

Source: Fagereng, Holm and Natvik (2016)

