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Abstract

A decision maker suspects that parameters of a set of structured parametric probabil-

ity models vary over time in unknown ways that he does not describe probabilistically.

He expresses a fear that all of these parametric models are misspecified by also want-

ing to consider alternative unstructured probability distributions. He restricts these

unstructured probability models to be statistically close to the structured paramet-

ric models. Because the decision maker is averse to ambiguity, he uses a max-min

criterion to evaluate alternative plans. We use this decision theory to construct com-

petitive equilibrium uncertainty prices that confront a robust decision maker who

solves a portfolio choice problem and offer a quantitative illustration for structured

parametric models that focus uncertainty on macroeconomic growth and its persis-

tence. Nonlinearities in marginal valuations induce time variation in market prices

of uncertainty that fluctuate because the investor especially fears high persistence in

bad states and low persistence in good states.
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“In what circumstances is a minimax solution reasonable? I suggest that it

is reasonable if and only if the least favorable initial distribution is reasonable

according to your body of beliefs.” Good (1952)

1 Introduction

Applied dynamic economic models typically assume that decision makers and nature share

a unique probability distribution (i.e., rational expectations). This paper instead assumes

that agents inside a model make decisions by evaluating alternatives under a set of probabil-

ity models. They may not know values of parameters that they think govern the evolution

of pertinent state variables; they may suspect that these parameters vary over time; they

may worry that their parametric models are incorrect. We put decision makers into what

they view as complicated settings in which learning is difficult or impossible. We draw

freely from literatures on decision theory, robust control theory, and the econometrics of

misspecification to model how decision makers’ specification concerns affect equilibrium

prices and quantities.

We use a consumption-based asset pricing model as a laboratory for studying how

decision makers’ specification worries influence “prices of uncertainty.” These prices emerge

from how decision makers evaluate the utility consequences of alternative specifications

of state dynamics. We show how these concerns induce variation in asset values and

construct a quantitative example that assigns an important role to macroeconomic growth

rate uncertainty. Investors in our model fear the presence of growth rate persistence in times

of weak growth because that has adverse consequences for discounted expected utilities.

They fear the absence of growth rate persistence when macroeconomic growth is high.

To simplify specification challenges both for a decision maker living in our model and for

us the outside analysts, we combine ideas from two seemingly distinct approaches. We start

by assuming that a decision maker considers a restricted family of structured models (with

either fixed or time varying parameters) using a recursive structure suggested by Chen

and Epstein (2002) for continuous time models with Brownian motion information flows.

Our decision maker distrusts all of his structured models so he adds unstructured models

residing within a statistical neighborhood of them.1 We extend work by Hansen and Sargent

1By “structured” we don’t mean what econometricians call “structural” models in the tradition of
either the Cowles commission or rational expectations. We simply mean more or less tightly parameterized
statistical models.
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(2001) and Hansen et al. (2006) that described a decision maker who expresses distrust of

a probability model by surrounding it with an infinite dimensional family of difficult-to-

discriminate unstructured models. The decision maker uses nonnegative martingales as

likelihood ratios to form alternatives to a baseline model whose entropies relative to one

among the family of structured models he restricts to be small via a penalty parameter.

Formally, we accomplish this by applying a continuous-time counterpart of the dynamic

variational preferences of Maccheroni et al. (2006b). In particular, we generalize what

Hansen and Sargent (2001) and Maccheroni et al. (2006a,b) call multiplier preferences.2

We illustrate our approach by applying it to an environment that features uncertainty

about macroeconomic growth rates. A representative investor who stands in for “the mar-

ket” has specification doubts. We calculate shadow prices that characterize aspects of

model specifications to which the representative investor thinks his utility evaluations are

most fragile. These representative investor shadow prices are also uncertainty prices that

clear competitive security markets. The negative of an endogenously determined vector

of worst-case drift distortions equals a vector of prices that compensate the representative

investor for bearing model uncertainty. Since investor concerns about the persistence of

macroeconomic growth rates depend on the state of the macroeconomy, time variation in

uncertainty prices emerges.

Viewed as a contribution to the consumption-based asset pricing literature, this paper

extends our earlier inquiries about whether responses to modest amounts of model ambi-

guity can substitute for the implausibly large risk aversions seemingly required to explain

observed market prices of risk. Viewed as a contribution to the economic literature on ro-

bust control theory and ambiguity, this paper introduces a tractable new way of formulating

and quantifying a set of models against which a decision maker seeks robust evaluations

and decisions.

Section 2 specifies an investor’s baseline probability model and martingale perturbations

to it, both cast in continuous time. Section 3 describes discounted relative entropy, a

statistical measure of discrepancy between probability models, and uses it to construct a

convex set of probability measures that we impute to our decision maker. The martingale

representation proves to be a tractable way for us to formulate robust decision problems in

sections 4, 5 and 8.

Section 6 uses Chernoff entropy, a statistical distance measure applicable to a set of

2Applications of multiplier preferences to macroeconomic policy design and dynamic incentive problems
include Karantounias (2013), Bhandari (2014) and Miao and Rivera (2016).
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martingales, to quantify difficulties in discriminating between competing specifications of

probabilities. We show how to use this measure a) ex post in the spirit of Good (1952),

to assess plausibility of worst-case models, and b) to calibrate the penalty parameter used

to represent preferences. By extending estimates from Hansen et al. (2008), section 7 cal-

culates key objects in a quantitative version of a baseline model together with worst-case

probabilities with a convex set of alternative models that concern both a robust investor

and a robust planner. Section 8 constructs a recursive representation of a competitive equi-

librium of an economy with a representative investor who stands for “the market.” Then

it links the worst-case model that emerges from a robust planning problem to equilibrium

compensations that the representative investor receives in competitive markets. By restrict-

ing the set of structured models, section 9 considers examples in which it is possible for the

decision maker to learn. It also briefly takes up a dynamic consistency issue that is present

and how changes in vantage points alter the worst-case models pertinent for constructing

prices of uncertainties. Finally, it indicates why a procedure recommended by Epstein and

Schneider (2003), when applied to the consideration of alternative unstructured models

that are statistically similar to structured models, leads to a rather extreme outcome. This

finding motivates our use of the more general decision making setting of Maccheroni et al.

(2006b) that permits us to explore model misspecification in a more revealing manner.

Section 10 offers concluding remarks.

2 Models and perturbations

This section describes nonnegative martingales that perturb a baseline probability model.

Section 3.1 then describes how we use a family of parametric alternatives to a baseline

model to form a convex set of martingales that in later sections we use to pose robust

decision problems.

2.1 Mathematical framework

For concreteness, we use a specific baseline model and in section 3 a corresponding family

of parametric alternatives that we call structured models. A representative investor cares

about a stochastic process X
.
“ tXt : t ě 0u that he approximates with a baseline model.

In what follows, we let X denote a stochastic process, Xt the process at time t, and x a
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realized value of the process.

dXt “ pµpXtqdt` σpXtqdWt, (1)

where W is a multivariate Brownian motion.

A decision maker cares about plans. A plan is a tCt : t ě 0u that is progressively

measurable process with respect to the filtration F “ tFt : t ě 0u associated with the

Brownian motion W augmented by any information available at date zero. Under this

restriction, the date t component Ct is measurable with respect to Ft.
Because he does not fully trust baseline model (1), the decision maker explores the

utility consequences of other probability models that he obtains by multiplying probabilities

associated with (1) by likelihood ratios. Following Hansen et al. (2006), we represent a

likelihood ratio by a positive martingale MU with respect to the baseline model (1) that

satisfies3

dMU
t “MU

t Ut ¨ dWt (2)

or

d logMU
t “ Ut ¨ dWt ´

1

2
|Ut|

2dt, (3)

where U is progressively measurable with respect to the filtration F . We adopt the con-

vention that MU
t is zero when

şt

0
|Uτ |

2dτ is infinite. In the event that

ż t

0

|Uτ |
2dτ ă 8 (4)

with probability one, the stochastic integral
şt

0
Uτ ¨ dWτ is an appropriate probability limit.

Imposing the initial condition MU
0 “ 1, we express the solution of stochastic differential

equation (2) as the stochastic exponential

MU
t “ exp

ˆ
ż t

0

Uτ ¨ dWτ ´
1

2

ż t

0

|Uτ |
2dτ

˙

; (5)

MU
t is a local martingale, but not necessarily a martingale.4

3James (1992), Chen and Epstein (2002), and Hansen et al. (2006) used this representation.
4Sufficient conditions for the stochastic exponential to be a martingale such as Kazamaki’s or Novikov’s

are not convenient here. Instead we will verify that an extremum of a pertinent optimization problem does
indeed result in a martingale.
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Definition 2.1. M denotes the set of all martingales MU constructed as stochastic expo-

nentials via representation (5) with a U that satisfies (4) and is progressively measurable

with respect to F “ tFt : t ě 0u.

Associated with U are probabilities defined by

EU
rBt|F0s “ E

“

MU
t Bt|F0

‰

for any t ě 0 and any bounded Ft-measurable random variable Bt. Thus, the positive

random variable MU
t acts as a Radon-Nikodym derivative for the date t conditional ex-

pectation operator EU r ¨ |X0s. The martingale property of the process MU ensures that

conditional expectations operators across horizons satisfy a Law of Iterated Expectations.

Under baseline model (1), W is a standard Brownian motion, but under the alternative

U model, it has increments

dWt “ Utdt` dW
U
t , (6)

where WU is now a standard Brownian motion. Furthermore, under the MU probabil-

ity measure,
şt

0
|Uτ |

2dτ is finite with probability one for each t. While (3) expresses the

evolution of logMU in terms of increment dW , the evolution in terms of dWU is:

d logMU
t “ Ut ¨ dW

U
t `

1

2
|Ut|

2dt. (7)

In light of (7), we can write model (1) as:

dXt “ pµpXtqdt` σpXtq ¨ Utdt` σpXtqdW
U
t .

3 Measuring statistical discrepancy

We use entropy relative to the baseline probability to restrict martingales that represent

alternative probabilities. The process MU logMU evolves as an Ito process with drift (also

called a local mean)

νt “
1

2
MU

t |Ut|
2.
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Write the conditional mean of MU logMU in terms of a history of local means5

E
“

MU
t logMU

t |F0

‰

“ E

ˆ
ż t

0

ντdτ |F0

˙

“
1

2
E

ˆ
ż t

0

MU
τ |Uτ |

2dτ |F0

˙

.

To formulate a decision problem that chooses probabilities to minimize expected utility,

we will use the representation after the second equality without imposing that MU is a

martingale and then verify that the solution is indeed a martingale. Hansen et al. (2006)

justify this approach.6

To construct relative entropy with respect to a probability model affiliated with a

martingale MS defined by a drift distortion process S, we use a log likelihood ratio

logMU
t ´ logMS

t with respect to the MS
t model rather than a log likelihood ratio logMU

t

with respect to the baseline model to arrive at:

E
“

MU
t

`

logMU
t ´ logMS

t

˘

|F0

‰

“
1

2
E

ˆ
ż t

0

MU
τ |Uτ ´ Sτ |

2dτ
ˇ

ˇ

ˇ
F0

˙

.

When the following limits exist, a notion of relative entropy appropriate for stochastic

processes is:

lim
tÑ8

1

t
E
”

MU
t

`

logMU
t ´ logMS

t

˘

ˇ

ˇ

ˇ
F0

ı

“ lim
tÑ8

1

2t
E

ˆ
ż t

0

MU
τ |Uτ ´ Sτ |

2dτ
ˇ

ˇ

ˇ
F0

˙

“ lim
δÓ0

δ

2
E

ˆ
ż 8

0

expp´δτqMU
τ |Uτ ´ Sτ |

2dτ
ˇ

ˇ

ˇ
F0

˙

.

The second line is the limit of Abel integral averages, where scaling by δ makes the weights

δ expp´δτq integrate to one. We shall use Abel averages with a discount rate equal to

the subjective rate that discounts expected utility flows. With that in mind, we define a

discrepancy between two martingales MU and MS as:

∆
`

MU ;MS
|F0

˘

“
δ

2

ż 8

0

expp´δtqE
´

MU
t | Ut ´ St |

2
ˇ

ˇ

ˇ
F0

¯

dt.

Hansen and Sargent (2001) and Hansen et al. (2006) set St ” 0 to construct relative entropy

5In this paper, we simply impose the first equality. There exists a variety of sufficient conditions that
justify this equality.

6See their Claims 6.1 and 6.2.
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neighborhoods of a baseline model:

∆pMU ; 1|F0q “
δ

2

ż 8

0

expp´δtqE
´

MU
t |Ut|

2
ˇ

ˇ

ˇ
F0

¯

dt ě 0, (8)

where baseline probabilities are represented here by a degenerate martingale that is identi-

cally one. Formula (8) quantifies how a martingaleMU distorts baseline model probabilities.

Following Hansen and Sargent (2001), we call ∆pMU ; 1|Fq discounted entropy relative to

a probability represented by the baseline martingale.

In contrast to Hansen and Sargent (2001) and Hansen et al. (2006) who start from a

unique baseline model, we start from a convex set MS P Mo of structured models repre-

sented as martingales with respect to such a baseline model. We shall describe how we

form Mo in subsection 3.1. These structured models are parametric alternatives to the

baseline model that particularly concern the decision maker. For scalar θ ą 0, define a

scaled discrepancy of martingale MU from a set of martingales Mo as

ΘpMU
|F0q “ θ inf

MSPMo
∆
`

MU ;MS
|F0

˘

. (9)

Scaled discrepancy ΘpMU |F0q equals zero for MU in Mo and is positive for MU not in

Mo. We use discrepancy ΘpMU |F0q to express the idea that a decision maker wants to

investigate the utility consequences of all models that are statistically close to those in

Mo. The scaling parameter θ measures how heavily we will penalize an expected utility-

minimizing agent for distorting probabilities.

3.1 Constructing a family Mo for structured models

We construct a family of structured probabilities by forming a set of martingales MS with

respect to a baseline probability associated with model (1). Formally,

Mo
“
 

MS
PM such that St P Ξt for all t ě 0

(

(10)

where Ξ is a process of convex sets adapted to the filtration F . Chen and Epstein (2002)

also used an instant-by-instant constraint (10) to construct a set of probability models.7

Restriction (10) imposes a recursive structure on the decision maker’s preferences that

7Anderson et al. (1998) also explored consequences of this type of constraint but without the state
dependence in Ξ. Allowing for state dependence is important in the applications featured in this paper.
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allows using dynamic programming to solve Markov decision problems. That is one manifes-

tation of the fact that these preferences satisfy a dynamic consistency property axiomatized

by Epstein and Schneider (2003). The following example provides a specification of Ξ in

(10) that encompasses our application with uncertainty in macroeconomic growth to be

described in section 5. Later in section 9, we revisit restriction (10) and discuss its implica-

tions for applications not explored in this paper. As we shall see, in contrast to Chen and

Epstein (2002), we use constraint (10) only as an intermediate step and ultimately con-

struct a larger set of statistically similar unstructured models whose utility consequences

we want to study.

Example 3.1. Suppose that Sjt is a time invariant function of the Markov state, Xt for each

j “ 1, . . . , n. Linear combinations of Sjt ’s can generate the following set of time-invariant

parameter models:

#

MS
PM : St “

n
ÿ

j“1

πjSjt , π P Π for all t ě 0

+

. (11)

Here the unknown parameter vector π “
”

π1 π2 ... πn
ı1

P Π, a closed convex subset of

Rn. We can enlarge this set to include time-varying parameter models:

#

MS
PM : St “

n
ÿ

j“1

rπjtS
j
t , rπt P Π for all t ě 0

+

, (12)

where the unknown time-varying parameter vector π̃t “
”

rπ1
t rπ2

t ... rπnt

ı1

has realizations

confined to Π, the same convex subset of Rn that appears in (11). The decision maker has

an incentive to compute the mathematical expectation of rπt conditional on date t informa-

tion, which we denote πt. Since the realizations of rπt are restricted to be in Π, this same

restriction applies to their conditional expectations, and thus

Ξt “

#

n
ÿ

j“1

πjtS
j
t , πt P Π, πt is Ft measurable

+

. (13)

As the quantitative example in section 7 demonstrates, even though the structured

models are linear in a Markov state, max-min expressions of ambiguity aversion discover

worst-case models with nonlinearities in the underlying dynamics. An ex post assessment

of empirical plausibility of the type envisioned by Good (1952) would ask whether such
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nonlinear outcomes are plausible.

In section 4.2 we describe another construction of Ξt that is motivated in part by using

relative entropy to restrict alternative models that concern the decision maker. In our

application, we use this second construction to guide our specification of the set Π of

potential parameter values.

3.2 Misspecification of structured models

Our decision maker wants to evaluate the utility consequences not just of the structured

models in Mo but also of unstructured models that statistically are difficult to distin-

guish from them. For that purpose, we employ the scaled statistical discrepancy measure

ΘpMU |F0q defined in (9).8 The decision maker uses the scaling parameter θ ă 8 and the

relative entropy that it implies to calibrate a set of nearby unstructured models. We pose

a minimization problem in which θ serves as a penalty parameter that prohibits exploring

unstructured probabilities that statistically deviate too much from the structured models.

This minimization problem induces a preference ordering within a broader class of dy-

namic variational preference that Maccheroni et al. (2006b) have shown to be dynamically

consistent.

To understand how our formulation relates to dynamic variational preferences, notice

that structured models represented in terms of their drift distortion processes St enter

separately on the right side of the statistical discrepancy measure

∆
`

MU ;MS
|F0

˘

“
δ

2

ż 8

0

expp´δtqE
´

MU
t | Ut ´ St |

2
ˇ

ˇ

ˇ
F0

¯

dt.

Specification (10) leads to a conditional discrepancy

ξtpUtq “ inf
StPΞt

|Ut ´ St|
2

and an associated integrated discounted discrepancy

Θ
`

MU
|F0

˘

“
θδ

2

ż 8

0

expp´δtqE
”

MU
t ξtpUtq

ˇ

ˇ

ˇ
F0

ı

dt.

We want a decision maker to care also about the utility consequences of statistically close

8See Watson and Holmes (2016) and Hansen and Marinacci (2016) for recent discussions of longstanding
misspecification challenges confronted by statisticians and economists.
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unstructured models that we describe in terms of the discrepancy measure

Θ
`

MU
|F0

˘

. (14)

For any hypothetical state- and date-contingent plan – consumption in the example of

section 5 – we follow Hansen and Sargent (2001) in minimizing a discounted expected utility

function plus the θ-scaled relative entropy penalty ΘpMU |F0q over the set of models. The

following remark asserts that this procedure induces a dynamically consistent preference

ordering over decision processes.

Remark 3.2. Define what Maccheroni et al. (2006b) call an ambiguity index process:

Θt

`

MU
˘

“
θδ

2

ż 8

0

expp´δτqE

„ˆ

MU
t`τ

MU
t

˙

ξt`τ pUt`τ q
ˇ

ˇ

ˇ
Ft


dτ.

This process solves the following continuous-time counterpart to equations (11) and (12) of

Maccheroni et al.:9

0 “ ´δΘt

`

MU
˘

`
θδ

2
ξtpUtq.

4 Robust planning problem

To illustrate how a robust planner evaluates utility consequences of unstructured models

that our relative entropy measure says are difficult to distinguish, we deliberately consider

a simple setup with an exogenous consumption process. Richer models would include

production, capital accumulation, and distinct classes of decision makers with differential

access to financial markets. Before adding such features, we want to understand uncertainty

in our simple environment.10 We deduce shadow prices of uncertainty from martingales

that generate worst-case probabilities in a continuous time planning problem. Thus, even

in an economy without production decisions we use a robust planning problem to construct

competitive equilibrium prices that reflect investors’ concerns about model uncertainty.

To construct a set of models, the planner:

9The term θδ
2 ξtpUtq in our analysis is γt in Maccheroni et al. (2006b). In Hansen and Sargent (2001)

and Hansen et al. (2006), their γt “
θ
2 |Ut|

2 where their θ is a scaled version of ours. This construction
contrasts with how equation (17) of Maccheroni et al. (2006b) describes Hansen and Sargent’s “multiplier
preferences”. We regard the disparity as a minor blemish in Maccheroni et al. (2006b). It is pertinent to
point this out here only because the analysis in this paper generalizes our earlier work.

10In doing this, we follow a tradition extending back to Lucas (1978) and Mehra and Prescott (1985).
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1) Begins with a baseline model.

2) Creates a setMo of structured models by naming a sequence of closed convex sets tΞtu

and associated drift distortion processes tStu that satisfy structured model constraint

(10).

3) AugmentsMo with additional models that, although they violate (10), are statistically

close to models that do satisfy it according to discrepancy measure (9).

For step 1, we use the diffusion (1) as a baseline model. Step 3 includes statistically

similar models. We will describe two approaches for step 2.

4.1 Revisiting example 3.1

We begin with Markov alternatives to (1) of the form

dXt “ µjpXtq ` σpXtqdW
Sj

t ,

where W Sj is a Brownian motion and (6) continues to describe the relationship between

processes W and W Sj . The vectors of drifts µj differ from pµ in baseline model (1), but the

volatility vector σ is common to all models. These initial structured models have drift dis-

tortions that are time-invariant functions of the Markov state, namely, linear combinations

of Sjt “ ηjpXtq, where

ηjpxq “ σpxq´1
“

µjpxq ´ pµpxq
‰

.

As in example 3.1, we add structured models of the form (13), so we represent an initial

set of time invariant parameter models in terms of

spxq “
n
ÿ

j“1

πjηjpxq, π P Π, (15)

where Π is a convex set of possible parameters that can evolve over time. These config-

urations can be fixed or change over time. Without restrictions on the prior across the

parameter configurations and how they change over time, we are led to consider mixtures

in which

Π “

#

π : πj ě 0,
n
ÿ

j“1

πj “ 1

+
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represents alternative posterior probabilities that can be assigned to parameter configura-

tion in place at a given date.

We depict preferences with an instantaneous utility function δνpxq and a subjective

discount rate δ. Where m is a realized value of a martingale, a value function mV pxq that

satisfies the following HJB equation determines a worst-case model:

0 “min
u,s
´δmV pxq ` δmνpxq `mpµpxq ¨

BV

Bx
pxq `mrσpxqus ¨

BV

Bx
pxq

`
m

2
trace

„

σpxq1
B2V

BxBx1
pxqσpxq



`
θm

2
|u´ s|2 (16)

where minimization over u, s is subject to (15). Here s represents structured models in

Mo and u represents unstructured models that are statistically similar to models in Mo.

Because m multiplies all terms on the right side of equation (16), it can be omitted.

The problem on the right side of HJB equation (16) can be simplified by first minimizing

with respect to u given s, or equivalently, by minimizing with respect to u´s given s. First-

order conditions for this simpler problem lead to

u´ s “ ´
1

θ
σpxq1

BV

Bx
pxq. (17)

Substituting from (17) into HJB equation (16) gives the reduced HJB equation in:

Problem 4.1.

0 “min
s
´δV pxq ` δνpxq ` pµpxq ¨

BV

Bx
pxq ` rσpxqss ¨

BV

Bx
pxq

`
1

2
trace

„

σpxq1
B2V

BxBx1
pxqσpxq



´
1

2θ

„

BV

Bx
pxq

1

σpxqσpxq1
„

BV

Bx
pxq



(18)

where minimization is subject to (15). Given the minimizing s˚pxq, we recover the mini-

mizing u from u˚pxq “ s˚pxq ´ 1
θ
σpxq1 BV

˚

Bx
pxq, where V * solves HJB equation (18).

This problem generates two minimizers, namely, s and u. The minimizing s is a struc-

tured drift taking the form s˚pxq “
řn
j“1 π

j˚pxqsjpxq that evidently depends on the state x.

The associated minimizing u is a worst-case drift distortion u˚pxq relative to the worst-case

structured model that adjusts for the decision maker’s suspicion that the data are generated

by a model not in Mo.

The solution of the HJB equation in problem 4.1 should in general be interpreted as

a viscosity solution satisfying appropriate boundary conditions and as well as conditions
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that render a verification theorem applicable. In one of the examples that follows, the first

derivative of the value function does in fact have a kink, but the value function is still a

viscosity solution.

We pose problem 4.1 as a single agent problem for pedagogical simplicity. More gen-

erally, the planner could solve a resource allocation problem that involves other factors

of production including the accumulation of capital. Shadow prices for that problem, in-

cluding prices of uncertainty, would also be prices in a competitive equilibrium. In such

settings, a counterpart to problem 4.1 would be posed as a two-player, zero-sum stochastic

differential game of a type studied by Fleming and Souganidis (1989).

4.2 Restricting relative entropy

In this section, we describe how, instead of forming a set of structured model according

to equation (15), we use another method to construct this set. In particular, we use a

restriction on their relative entropies to form a set of structured models. We will use this

approach in our quantitative application below. For special cases, including our application,

the two approaches coincide.

Recall from section 3 that relative entropy for a stochastic process conditioned on date

0 information is:

εpMU
q “ lim

δÓ0

δ

2

ż 8

0

expp´δtqE
´

MU
t |Ut|

2
ˇ

ˇ

ˇ
F0

¯

dt.

We continue to use the processMU to change the probability distribution conditioned on F0.

If we can initialize the probability to make the process for X be stationary and ergodic, then

the limit on the right side is the unconditional expectation of 1
2
|Ut|

2 under this stationary

distribution. Moreover, the mathematical expectation of discounted relative entropy under

the stationary distribution implied by MU equals εpMUq and does not depend on δ. Hence,

relative entropy is simply one half the expectation of |Ut|
2 under this measure.

Consider a structured model for which St “ ηpXtq. We depict relative entropy as the

solution to an HJB equation derived by taking a small δ limit of discounted relative entropy,

namely,

q2

2
“
|ηpxq|2

2
`
Bρ

Bx
pxq ¨ rpµpxq ` σpxqηpxqs `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



(19)
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where the function ρ is determined only up to a constant and

q2

2
“ εpMS

q.

Imposing a constraint on relative entropy by pre-specifying only q produces a family of

probabilities that fails to satisfy (10). Therefore, we instead specify Bρ
Bx

and a number q,

then use them to restrict St to satisfy a weakened version of (19):

|St|
2

2
`
Bρ

Bx
pXtq ¨ rpµpXtq ` σpXtqSts `

1

2
trace

„

σpXtq
1 B

2ρ

BxBx1
pXtqσpXtq



´
q2

2
ď 0. (20)

Inequality (20) is a state-dependent restriction on St. That it is quadratic in St, makes it

tractable to implement.11

One way to construct Bρ
Bx

and q is to posit an alternative drift configuration ηpxq and

solve (19). Imposing (19) with equality reveals other Markov models that imply the same
Bρ
Bx

and q . Alternatively, we can directly specify q and Bρ
Bx

restricted that imply St’s that

satisfy (20). An extreme example is to impose that Bρ
Bx
pxq “ 0, which is equivalent to

restricting:

|St| ď q.

Our application will lead us naturally to consider state-dependent (in fact linear) specifi-

cations of Bρ
Bx

.

We again depict preferences with an instantaneous utility function δνpxq and a sub-

jective discount rate δ. The robust planning problem that replaces problem 4.1 has HJB

equation

Problem 4.2.

0 “min
s
´δV pxq ` δνpxq ` pµpxq ¨

BV

Bx
pxq ` rσpxqss ¨

BV

Bx
pxq

`
1

2
trace

„

σpxq1
B2V

BxBx1
pxqσpxq



´
1

2θ

„

BV

Bx
pxq

1

σpxqσpxq1
„

BV

Bx
pxq



(21)

11Sbuelz and Trojani (2008) recognize the empirical importance of introducing state dependence when
they restrict local relative entropy 1

2 |St|
2 to be less than or equal an exogenously specified function of

a Markov state vector. Among other things, conditional inequality (20) restricts unconditional relative
entropy through our specification of q while also allowing alternative parametric models.
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where minimization over s is subject to

|s|2

2
`
Bρ

Bx
pxq ¨ rpµpxq ` σpxqss `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



´
q2

2
ď 0.

We can recover a minimizing u from a minimizing s˚pxq via u˚pxq “ s˚pxq´ 1
θ
σpxq1 BV

˚

Bx
pxq,

where V ˚ solves HJB equation (21).

In appendix A, we construct a different representation of the constraint set and verify that

it is not empty.

5 Uncertainty about Macroeconomic Growth

To prepare the way for the quantitative illustration in section 7, this section considers a

particular macro-finance setting. We start with a baseline parametric model, then form a

family of parametric structured probability models for a representative investor’s consump-

tion process. We deduce the pertinent version of HJB equation (16) for the value function

attained by worst-case drift distortions S and U .

The baseline model is

dYt “ .01
´

pαy ` pβZt

¯

dt` .01σy ¨ dWt

dZt “ ppαz ´ pκZtq dt` σz ¨ dWt. (22)

We scale by .01 because Y is typically expressed in logarithms and we want to work with

growth rates. Let

X “

«

Y

Z

ff

.

Notice that the drift pαz ´ pκz has a zero at

z̄ “
pαz
pκ
,

and that pαz ´ pκz “ ´pκpz ´ z̄q. The term z̄ is also the mean of Zt in the stationary

distribution under the baseline model.

We focus on the following collection of structured parametric models:

dYt “ .01 pαy ` βZtq dt` .01σy ¨ dW
S
t
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dZt “ pαz ´ κZtq dt` σz ¨ dW
S
t , (23)

where W S is a Brownian motion and (6) continues to describe the relationship between

the processes W and W S. By design, this collection nests the baseline model (22). Here

pαy, β, αz, κq are parameters distinguishing structured models (23) from the baseline model,

and pσy, σzq are parameters common to models (22) and (23).

We represent a parametric class defined by (23) in terms of our section 2.1 structure

with drift distortions S of the form

St “ ηpZtq ” η0 ` η1pZt ´ z̄q,

then use (1), (6), and (23) to deduce the following restrictions on η1:

ση1 “

«

β ´ pβ

pκ´ κ

ff

where

σ “

«

pσyq
1

pσzq
1

ff

.

Recall that relative entropy q2

2
emerges from the solution to HJB equation (19) appro-

priately specialized:

|ηpzq|2

2
`
dρ

dz
pzqr´pκpz ´ z̄q ` σz ¨ ηpzqs `

|σz|
2

2

d2ρ

dz2
pzq ´

q2

2
“ 0. (24)

Under our parametric alternatives, the solution for ρ is quadratic in z ´ z̄. Write:

ρpzq “ ρ1pz ´ z̄q `
1

2
ρ2pz ´ z̄q

2.

As illustrated in appendix B, we compute ρ2 and ρ1 by matching coefficients on the terms

pz ´ z̄q2 and pz ´ z̄q, respectively. Matching constant terms then implies q2

2
. In restricting

structured models, we impose:

|St|
2

2
` rρ1 ` ρ2pZt ´ z̄qs r´pκpZt ´ z̄q ` σz ¨ Sts `

|σz|
2

2
ρ2 ´

q2

2
ď 0. (25)

While appendix C starts from an AK production economy with adjustment costs and
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derives consumption, here we just posit an exogenous consumption process. We suppose

that Y “ logC, where C is consumption, δ is a subjective rate of discount, and the

instantaneous utility is δνpxq “ δy. In the appendix C production economy, consumption

is proportional to capital, σy¨dWt captures uncertainty in the returns to physical investment,

and the state variable Zt shifts the predictable part of the return to physical investment.

We mention these links to the economy with production to help guide our interpretation

of shocks and the growth state z.

Let r “ σs. We seek a value function V pxq “ y ` pV pzq that satisfies the HJB equation

for the robust planning problem:

0 “min
r
´δpV pzq ` .01rpαy ` pβz ` r1s ` r´pκpz ´ z̄q ` r2s

dpV

dz
pzq

`
1

2
|σz|

2d
2
pV

dz2
pzq ´

1

2θ

”

.01 dpV
dz
pzq

ı

σσ1

«

.01
dpV
dz
pzq

ff

(26)

where minimization is subject to

1

2
r1Λr ` rρ1 ` ρ2pz ´ z̄qs r´pκpz ´ z̄q ` r2s `

|σz|
2

2
ρ2 ´

q2

2
ď 0 (27)

and Λ “ pσ1q´1σ´1. A worst-case structured model induces a worst-case unstructured

model via equation (17). (In the portfolio problem of section 8, we will also maximize over

portfolio weights and the consumption process C.)

For a given pV and state realization z, the component of the objective that depends on

r is:
”

.01 dpV
dz
pzq

ı

r.

That this component is linear pushes the solution to the boundary of the convex constraint

set, an ellipsoid, for each z. Figure 1 shows ellipoids associated with two alternative values

of z and baseline parameters that we present in section 7. For every feasible choice of r2,

two choices of r1 satisfy the implied quadratic equation. Provided that dpV
dz
pzq ą 0, which

will be true in our calculations, we take the lower of the two solutions for r1. The solution

occurs at a point on the lower left of the ellipsoid where dr1
dr2
“ ´100d

pV
dz
pzq and depends on

z, as figure 1 indicates.
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Figure 1: Parameter contours for pr1, r2q holding relative entropy fixed. The upper right

contour depicted in red is for z equal to the .1 quantile of the stationary distribution under

the baseline model and the lower left contour is for z at the .9 quantile. The dot depicts the

p0, 0q point corresponding to the baseline model. The tangency points denote worst-case

structured models. This figure assumes that q “ .1 and a Chernoff half life of 60.

To see what structured models are entertained, we start investigating the linear alterna-

tives. We trace out a one-dimensional parameterized family of linear models with the same

relative entropy by prespecifying pρ1, ρ2, qq, Solve equation (24) for η0 and η1. by matching

a constant, a linear term, and a quadratic term in z ´ z̄, we obtain three equations in

four unknowns giving us a one-dimensional curve for η0 and η1. More models are allowed

because equation (24) holds for each z, and as a consequence we can choose a different
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point on the curve for each z. The outcome of such a construction may be viewed either

as a specific type of ‘time-varying coefficient” linear model, or as a nonlinear model for the

drifts of the two state variables. By using this construction, our relative entropy restriction

(25) can also be depicted as in example 3.1. See appendix A for a more complete derivation.

We will feature the following special case in some of our calculations.

Example 5.1. Suppose that

ηpzq “ η1pz ´ z̄q, (28)

which focuses uncertainty on how drifts for pY, Zq respond to the state variable Z. In this

case ρ1 “ 0 and

´
q2

2
`

1

2
ρ2|σz|

2
“ 0,

or equivalently,

ρ2 “
q2

|σz|2
.

Notice that restriction (25) implies that

St “ 0

when Zt “ z̄. To connect this to a time-varying parameter specification, first construct the

convex set of η1’s that satisfy:

1

2
η1 ¨ η1 `

ˆ

q2

|σz|2

˙

r´pκ` σz ¨ η1s ď 0

Next form the boundary of the convex set Π by solving

ση1 “

«

pβ ´ pβq

ppκ´ κq

ff

for pβ, κq for the alternative choices of η1. This illustrates how imposing restriction (28)

in the HJB equation of problem 4.1 is equivalent to imposing the restricted version of ρ in

the HJB equation of problem 4.2.

6 Chernoff entropy

Good (1952) suggests that to evaluate a max-min expected utility approach one should
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verify that the associated worst-case model is plausible.12 We implement that suggestion

by using entropy to measure how far a worst-case model is from a set of structured models,

then applying Good’s idea to help us calibrate the penalty parameter θ in HJB equation

(16).

Chernoff entropy emerges from studying how, by disguising changes in probabilities as

drift distortions of a baseline model hidden within Brownian motion increments, make it

challenging to distinguish models statistically. Chernoff entropy’s connection to a statistical

decision problem makes it interesting, but it is less tractable mathematically than relative

entropy. In this section, we extend a construction of Chernoff (1952) to measure a distor-

tion MH to a baseline model. Previously, Anderson et al. (2003) used Chernoff entropy

measured as a local rate to draw direct connections between magnitudes of market prices

of uncertainty and statistical discrimination. This local rate is state dependent and for

diffusion models proportional to the local drift in relative entropy. Important distinctions

arise when we measure statistical discrepancy globally as did Newman and Stuck (1979).

In this section, we characterize the long-term Chernoff entropy and show how to compute

it.

6.1 Bounding mistake probabilities

Think of a pairwise model selection problem that statistically compares the baseline model

(1) with a model generated by a martingale MU whose logarithm evolves according to

d logMU
t “ ´

1

2
|Ut|

2dt` Ut ¨ dWt.

Consider a statistical model selection rule based on a data history of length t that takes the

form logMU
t ě h, where MU

t is the likelihood ratio associated with the alternative model

for a sample size t. This selection rule might incorrectly choose the alternative model when

the baseline model governs the data. We can bound the probability of this outcome by

using an argument from large deviations theory that starts from

1tlogMU
t ěhu

“ 1t´γh`γ logMU
t ě0u “ 1texpp´γhqpMU

t q
γě1u ď expp´γhqpMU

t q
γ.

This inequality holds for 0 ď γ ď 1. Under the baseline model, the expectation of the

term on the left side equals the probability of mistakenly selecting the alternative model

12See Berger (1994) and Chamberlain (2000) for related discussions.
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when data are a sample of size t generated by the baseline model. We bound this mistake

probability for large t by following Donsker and Varadhan (1976) and Newman and Stuck

(1979) and studying

lim sup
tÑ8

1

t
logE

“

expp´γhq
`

MU
t

˘γ
|F0

‰

“ lim sup
tÑ8

1

t
logE

“`

MU
t

˘γ
|F0

‰

for alternative choices of γ. The threshold h does not affect this limit. Furthermore, the

limit is often independent of the initial conditioning information. To get the best bound,

we compute

inf
0ďγď1

lim sup
tÑ8

1

t
logE

“`

MU
t

˘γ
|F0

‰

,

a limit supremum that is typically negative because mistake probabilities decay with sample

size. Chernoff entropy is then

χpMU
q “ ´ inf

0ďγď1
lim sup
tÑ8

1

t
logE

“`

MU
t

˘γ
|F0

‰

. (29)

Setting χpMUq “ 0 would mean including only alternative models that cannot be distin-

guished on the basis of histories of infinite length. In effect, that is what is done in papers

that extend the rational expectations equilibrium concept to self-confirming equilibria asso-

ciated with probability models that are wrong off equilibrium paths, i.e., for events that do

not occur infinitely often. See Sargent (1999) and Fudenberg and Levine (2009). Because

we want to include alternative parametric probability models, we entertain positive values

of χpMUq. Our decision theory differs from that typically used for self confirming equilibria

because our decision maker acknowledges model uncertainty and wants to adjust decisions

accordingly.

To interpret χpMUq, consider the following argument. If the decay rate of mistake

probabilities were constant, say χ, then mistake probabilities for two sample sizes Ti, i “

1, 2, would be

mistake probabilityi “
1

2
exp p´Tiχq

for χ “ χpMUq. We define a ‘half-life’ as an increase in sample size T2 ´ T1 ą 0 that

multiplies a mistake probability by a factor of one half:

1

2
“

mistake probability2

mistake probability1

“
exp p´T2χq

exp p´T1χq
,
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so the half-life is approximately

T2 ´ T1 “
log 2

χ
. (30)

The preceding back-of-the-envelope calculation justifies the detection error bound com-

puted by Anderson et al. (2003). The bound on the decay rate should be interpreted

cautiously because it is constant although the actual decay rate is not. Furthermore, the

pairwise comparison oversimplifies the true challenge, which is statistically to discriminate

among multiple models.

We can make a symmetrical calculation that reverses the roles of the two models and

instead conditions on the perturbed model implied by martingale MU . It is straightfor-

ward to show that the limiting rate remains the same. Thus, when we select a model by

comparing a log likelihood ratio to a constant threshold, the two types of mistakes share

the same asymptotic decay rate.

6.2 Using Chernoff entropy

To implement Chernoff entropy, we follow an approach suggested by Newman and Stuck

(1979). Because our worst-case models are Markovian, we can use Perron-Frobenius theory

to characterize

lim
tÑ8

1

t
logE

“`

MU
t

˘γ
|F0

‰

for a given γ P p0, 1q as a dominant eigenvalue for a semigroup of linear operators. When this

approach is appropriate, the limit does not depend on the initial state x and is characterized

as a dominant eigenvalue associated with an eigenfunction that is strictly positive. Given

the restrictions on γ, since MU is a martingale,
`

MU
˘γ

is a super martingale and its

expectation typically decays to zero at an asymptotically exponential rate.

See Appendix D for a discussion of the numerical method we used to evaluate Chernoff

entropy for nonlinear Markov specifications in our forthcoming applications.

7 Quantitative example

Our quantitative example builds on the setup of section 5 and features a representative

investor who wants to explore utility consequences of alternative models portrayed by

tMU
t u and tMS

t u processes, some of which contribute difficult to detect and troublesome
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predictable components of consumption growth.13 Relative entropy and Chernoff entropy

shape and quantify the doubts that we impute to investors.

7.1 Baseline model

Our example blends parts of Bansal and Yaron (2004) and Hansen et al. (2008). We use

a vector autoregression (VAR) to construct a quantitative version of a baseline model like

(22) that approximates responses of consumption to permanent shocks. In contrast to

Bansal and Yaron (2004), we introduce no stochastic volatility because we want to focus

exclusively on fluctuations in uncertainty prices that are induced by the representative

investor’s specification concerns.

In constructing a VAR, we follow Hansen et al. (2008) by using additional macroeco-

nomic time series to infer information about long-term consumption growth. We report a

calibration of our baseline model (22) deduced from a trivariate VAR for the first difference

of log consumption, the difference between logs of business income and consumption, and

the difference between logs of personal dividend income and consumption. This specifi-

cation makes consumption, business income, and personal dividend income cointegrated.

Business income is measured as proprietor’s income plus corporate profits per capita. Div-

idends are personal dividend income per capita.14 We fit a trivariate vector autoregression

that imposes cointegration among these three series. Since we presume that all three time

series grow, the coefficients in the cointegrating relation are known. In Appendix E we tell

how we used the discrete time VAR estimates to deduce the following parameters for the

baseline model (22):

pαy “ .386 pβ “ 1

pαz “ 0 pκ “ .019

13While we appreciate the value of a more comprehensive empirical investigation with multiple macroe-
conomic time series, here our aim is to illustrate a mechanism within the context of relatively simple time
series models of predictable consumption growth.

14The time series are quarterly data from 1948 Q1 to 2015 Q1. Our consumption measure is nondurables
plus services consumption per capita. The business income data are from NIPA Table 1.12 and the dividend
income from NIPA Table 7.10. By including proprietors’ income in addition to corporate profits, we use
a broader measure of business income than Hansen et al. (2008) who used only corporate profits. Hansen
et al. (2008) did not include personal dividends in their VAR analysis.
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σy “

«

.488

0

ff

σz “

«

.013

.028

ff

(31)

We suppose that δ “ .002 and ν “ y, where y is the logarithm of consumption. Under

this model, the standard deviation of the Z process in the implied stationary distribution

is .158.

7.2 Benchmark models and a robust plan

We solve HJB equation (26) for three different configurations of structured models.

7.2.1 Uncertain growth rate responses

We first compute the solution by first focusing on a specification described Example 5.1 in

which ρ1 “ 0 and ρ2 satisfies:

ρ2 “
q2

|σz|2
.

When η is restricted to be η1pz ´ z̄q, a given value of q imposes a restriction on η1 or

implicitly on pβ, κq. Figure 2 plots iso-entropy contours for pβ, κq for q “ .1 and q “ .05.
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Figure 2: Parameter contours for pβ, κq holding relative entropy fixed. The outer curve

q “ .1 and the inner curve q “ .05. The small diamond depicts the baseline model.

While Figure 2 looks at contours of time invariant parameters with the same relative

entropy, the robust planner chooses a two-dimensional vector of drift distortions r for a

structured model in a more flexible way. As happens when there is parameter uncertainty

for pβ, κq, the set of possible r’s differs depending on the state z. As we remarked earlier,

the only feasible r when z “ z̄ is r “ 0. Figure 1 also reports the contours when z is at the

.1 and .9 quantile of the stationary distribution under the baseline model. The larger value

of z results in a lower downward shift of the contour relative to the smaller value of z. The

tangent lines have slopes equal to ´100d
pV
dz

where the point of tangency is the worst-case

structured model. This point occurs at lower drift distortion for the .9 quantile than for
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the .1 quantile.

Consider next the adjustment for model misspecification. Since

σpu˚ ´ s˚q “ ´
1

θ
σσ1

«

.01
dpV
dz

ff

and entries of σσ1 are positive, the adjustment for model misspecification is smaller in

magnitude for larger values of the state z. Taken together, the vector of drift distortions

is:

σu˚ “ σpu˚ ´ s˚q ` r˚.

The first term on the right is smaller in magnitude for a larger z and conversely, the second

term is larger in magnitude for smaller z.

The first derivative of the value function under this restriction on structured models

is not differentiable at z “ z̄. We compute the value function and the worst-case models

by solving two coupled HJB equations, one for z ă z̄ and another for z ą z̄. In effect

we obtain two second-order differential equations in value functions and their derivatives;

these value functions coincide at z “ z̄, as do their first derivatives.

Figure 3: Distorted growth rate drifts. Left panel: larger structured entropy (q “ .1).

Right panel: smaller structured entropy (q “ .05). red: worst-case structured model;

blue: half life 120; and green: half life 60.
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Figure 3 shows adjustments of the drifts due to ambiguity aversion and concerns about

misspecification of the structured models. Setting θ “ 8 silences concerns about misspec-

ification of the structured models, all of which must be expressed through minimization

over s. When we set θ “ `8, the implied worst-case structured model has state dynamics

that take the form of a threshold autoregression with a kink at zero. The distorted drifts

again show more persistence than does the baseline model for negative values of z and less

persistence for larger values of z. Activating a concern for misspecification of the structured

models by letting θ be finite shifts the drift as a function of the state downwards, even more

so for negative values of z than positive ones. The impact of the drift for Y is much more

modest.
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Figure 4: Distribution of Yt´Y0 under the baseline model and worst-case model for q = .1

and a Chernoff half life of 60 quarters. The gray shaded area depicts the interval between

the .1 and .9 deciles for every choice of the horizon under the baseline model. The red

shaded area gives the the region within the .1 and .9 deciles under the worst-case model.

Figure 4 extrapolates impacts of the drift distortion on distributions of future consump-

tion growth over alternative horizons. It shows how the consumption growth distribution

adjusted for ambiguity aversion and misspecification tilts down relative to the baseline

distribution.

7.2.2 Altering the scope of uncertainty

Previously we restricted

ρ2 “
q2

|σz|2
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with the implication that the alternative structured models have drifts for Z with no

distortions at Zt “ z̄. We now alter this restriction by cutting the value of ρ2 in half.

The consequences of this change are depicted in the right panel of figure 5. For sake of

comparison, this figure also includes our previous specification in the left panel. The worst-

case structured drift no longer coincides with the baseline drift at z “ z̄ and varies smoothly

in the vicinity of this point.

Figure 5: Distorted growth rate drift for Z. Relative entropy q “ .1. Left panel: ρ2 “
p.01q
|σz |2

.

Right panel: ρ2 “
p.01q

2|σz |2
. red: worst-case structured model; blue: half life 120; and green:

half life 60.

We study consequences of adding the restriction that ρ2 “ 0. In this case, the value

function for the robust planner is linear and the minimizing s and u are constant (inde-

pendent of z). Specifically,

dpV

dz
“ .01

pβ

δ ` pκ
,

and

s˚9´ σ1

«

.01
.01
δ`pκ

ff

u˚ ´ s˚ “ ´
1

θ
σ1

«

.01
.01
δ`pκ

ff
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The constant of proportionality for s˚ is determined by the constraint |s˚| “ q. Thus,

setting ρ1 and ρ2 to zero results in worst-case drifts for both Y and Z that are downward

parallel shifts of the baseline drifts and is equivalent to changing the coefficients αy and αz

in a way that is time invariant while leaving κ “ pκ and β “ pβ.

7.3 A bigger set

We now replace (20) with its “on average counterpart.” Let

ζtpStq “
|St|

2

2
` rρ1 ` ρ2pZt ´ z̄qsr´pκpZt ´ z̄q ` σz ¨ Sts `

ρ2

2
|σz|

2
´

q2

2
.

We restrict:

lim
δÓ0

δE

„
ż 8

0

expp´δtqMS
t ζtpStqdt | F0



ď 0. (32)

Notice that by Ito’s Lemma, at date t the drift of ρpZq under the S “ ηpZq implied

evolution is:

rρ1 ` ρ2pZt ´ z̄qsr´pκpZt ´ z̄q ` σz ¨ Sts `
ρ2

2
|σz|

2

Under stationarity and an additional technical restriction, this drift has mean zero.15 There-

fore, under restriction (32)

lim
δÓ0

δE

ˆ
ż 8

0

expp´δtqMS
t

„

|St|
2

2



dt | F0

˙

ď
q2

2
. (33)

The second set of martingales that we want to explore is

M2
“
 

MS
PMo : S satisfies inequality (33)

(

,

where we no longer prespecify a dρ
dz

that we use to restrict S. We instead prespecify only q.

7.4 Commitment to a worst-case structured model

Partly to make contact with an alternative formulation proposed by Hansen et al. (2006),

we now alter timing protocols. Instead of pSt, Utq being chosen simultaneously at each

15A sufficient condition entails requiring that ρ be in the domain of the generator for the associ-
ated Markov process for an appropriate function space. See Ethier and Kurtz (1986) and Hansen and
Scheinkman (1995). This particular argument was suggested to us by Yiran Fan.
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instant as depicted in HJB equation (16), a decision maker now confronts a single model

that has been chosen by a statistician in charge of selecting our U drift-distortion process.

Until now, in choosing U our decision maker has used discounted relative entropy. In

choosing a worst-case model, the statistician uses the limiting δ Ó 0 measure and imposes

the restriction (32) at a given q. Relative entropy neighborhoods of interior martingales

are included in this set. Taking the δ Ó 0 limit eliminates the dependence on conditioning

information for a convex set of martingales MS.

We adopt a date-zero perspective. The statistician uses the same instantaneous utility

function as the decision maker and takes a process of instantaneous utilities as given. The

statistician then uses a martingale relative to the baseline model to construct a structured

model by solving a continuous-time analogue of a control problem posed by Petersen et al.

(2000).

The decision maker discounts at rate δ ą 0 and accepts the statistician’s model as a

structured. This problem is reminiscent of Brunnermeier and Parker (2005), who formulate

two-agent decision problems in which one agent chooses beliefs using an undiscounted utility

function while the other agent takes those beliefs as fixed when evaluating alternative plans.

Theirs, however, is not intended to be a model of concerns about robustness and has a

different decision-making timing protocol.

An equilibrium for our robust planner game is particularly easy to compute because the

instantaneous utility is specified a priori. This allows us to solve the statistician problem

first; then the planner’s problem simply involves computing discounted expected utility.16

7.4.1 Statistician Problem

We solve the statistician problem first taking as given a Lagrange multiplier `. Since we

study a limiting version of this problem in which δ declines to zero, we separate two objects.

The first is the limiting objective function that will be constant and that we denote by ςp`q.

The second is the function used to characterize the worst-case model for the statistician,

which we denote by ςpz, `q and which is determined only up to an additive constant. The

statistician’s value functions pς, ςq solves:

ςp`q “ min
u
.01

´

pαy ` pβz ` σy ¨ u
¯

`
dς

dz
pz, `q r´pκpz ´ z̄q ` σz ¨ us

`
1

2
|σz|

2 d
2ς

dz2
pz, `q ` `

ˆ

1

2
u ¨ u´

q2

2

˙

16In a model with production, this two-step approach would no long apply.
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This problem is a limiting version of a constraint robust control problem of a type suggested

by Hansen and Sargent (2001); it is a constraint counterpart of an infinite horizon control

problem investigated by Fleming and McEneaney (1995). The function ς is linear in z as

a function of the multiplier:

ςpz, `q “ ς1pz ´ z̄q “ .01

˜

pβ

pκ

¸

pz ´ z̄q,

and the undiscounted objective ςp`q is:

ς̄p`q “ .01
´

pαy ` pβz̄
¯

´
p.01q2

`

”

1
´

pβ
pκ

¯ı

σ1σ

«

1
´

pβ
pκ

¯

ff

´
`

2
q2.

We set the multiplier ` to satisfy the relative entropy constraint (32) by maximizing:

max
`
ς̄p`q.

The implied drift adjustment used to represent the statistician’s structured model is

u˚ “ ´
.01

`˚
σ1

«

1
pβ
pκ

ff

,

Since ς is linear in z, the statistician’s worst-case structured model alters the probability

distribution for W by adding a constant to the drift vector for the composite X process.

This leads us to express the local dynamics for the worst-case structured model as:

pαy ` pβz ` σy ¨ u
˚
“ α˚y `

pβz

pαz ´ pκz ` σz ¨ u
˚
“ α˚z ´ pκz.

Evidently, here the worst-case structured model remains within our parametric class. Note

that this worst-case model is not a time-varying or state-dependent coefficient model, in

contrast to the outcome under the distinct section 7.2 setting. A weak form of time consis-

tency prevails in the sense that if we ask the statistician to reassess choices at some date

t ą 0, the statistician would remain content with its original choice. Investors use the

statistician model when making their portfolio allocations.

In this formulation, the minimizing drift distortion no longer shows state dependence.
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The implication of a constant distortion for both components is no doubt special and

dependent on the modeling assumptions that we have made. Our aim has been simply to

illustrate the possible impact of adding some commitment to the analysis. In this simple

example, doing that removes state dependence of the worst-case drift.

8 Robust portfolio choice and pricing

In this section, we describe equilibrium prices that make a representative investor willing to

bear risks accurately described by baseline model (1) in spite of his concerns about model

misspecification. We construct equilibrium prices by appropriately extracting shadow prices

from the robust planning problem of section 4. We decompose equilibrium risk prices into

distinct compensations for bearing risk and for bearing model uncertainty. We begin by

posing the representative investor’s portfolio choice problem.

8.1 Robust investor portfolio problem

A representative investor faces a continuous-time Merton portfolio problem in which indi-

vidual wealth K evolves as

dKt “ ´Ctdt`KtιpZtqdt`KtAt ¨ dWt `KtπpZtq ¨ Atdt, (34)

where At “ a is a vector of chosen risk exposures, ιpxq is the instantaneous risk free rate

expressed, and πpzq is the vector of risk prices evaluated at state Zt “ z. Initial wealth

is K0. The investor discounts the logarithm of consumption and distrusts his probability

model.

Key inputs to a representative investor’s robust portfolio problem are the baseline model

(1), the wealth evolution equation (34), the vector of risk prices πpzq, and the quadratic

function ρ and relative entropy q2

2
that define the alternative structured models that concern

the representative investor.

Under a guess that the representative investor’s value function takes the form mṼ pzq`

m log k `m log δ, the HJB equation for the robust portfolio allocation problem is

0 “ max
a,c

min
u,s
´δmrV pzq ´ δm log k ´ δm log δ ` δm log c´

mc

k
`mιpzq

`mπpzq ¨ a`ma ¨ u´
m|a|2

2
`m

drV

dz
pzq r´pκpz ´ z̄q ` σz ¨ us
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`
m

2
|σz|

2d
2
rV

dz2
pzq `

ˆ

mθ

2

˙

|u´ s|2 (35)

where extremization is subject to

|s|2

2
`
dρ

dz
pzqr´pκpz ´ z̄q ` σz ¨ ss `

|σz|
2

2

d2ρ

dz2
pzq ´

q2

2
“ 0. (36)

First-order conditions for consumption are

δ

c˚
“

1

k
,

which imply that c˚ “ δk, an implication that follows from the unitary elasticity of in-

tertemporal substitution. First-order conditions for a and u are

πpzq ` u˚ ´ a˚ “ 0 (37a)

a˚ ` θpu˚ ´ s˚q `
drV

dz
pzqσz “ 0. (37b)

Equations (37a)-(37b) determine a˚ and u˚´s˚ as functions of πpzq and the value function

rυ. We determine s˚ as a function of u˚ by solving

min
s

θ

2
|u´ s|2

subject to (36). Taken together, these determine pa˚, u˚, s˚q. We can appeal to arguments

like those of Hansen and Sargent (2008, ch. 7) to justify stacking first-order conditions as

a way to collect equilibrium conditions for the pertinent two-person zero-sum game.

8.2 Competitive equilibrium prices

We now impose logC “ Y as an equilibrium condition and show that the drift distortion

η˚ that emerges from the robust planner’s problem of section 5 determines prices that a

competitive equilibrium charges for bearing model uncertainty. To compute a vector πpxq

of competitive equilibrium risk prices, we find a robust planner’s marginal valuations of

exposures to the W shocks. We decompose that price vector into separate compensations

for bearing risk and for accepting model uncertainty.

Noting from the robust planning problem that the shock exposure vectors for logK and
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Y must coincide implies

a˚ “ p.01qσy.

From (37b) and the solution for s˚,

u˚ “ η˚pzq,

where η˚ equals the worst-case drift from the robust planning problem, provided that we

can show that rV “ pV , where pV is the value function for the robust planning problem.

Thus, from (37a), π “ π˚, where

π˚pzq “ p.01qσy ´ η
˚
pzq. (38)

Similarly, in the robust decision problem faced by a representative investor within a

competitive equilibrium, the drifts for logK and Y coincide:

´δ ` ιpzq ` rp.01qσy ´ η
˚
pzqs ¨ a˚ ´

.0001

2
σy ¨ σy “ p.01qpα̂y ` β̂zq,

so that ι “ ι˚, where

ι˚pzq “ δ ` .01ppαy ` pβzq ` .01σy ¨ η
˚
pzq ´

.0001

2
σy ¨ σy. (39)

We use these formulas for equilibrium prices to construct a solution to the HJB equation

of a representative investor in a competitive equilibrium by letting rυ “ υ.

8.3 Local uncertainty prices

The equilibrium stochastic discount factor process Sdf for our robust representative investor

economy is

d logSdft “ ´δdt´ .01
´

pαy ` pβZt

¯

dt´ .01σy ¨ dWt ` U
˚
t ¨ dWt ´

1

2
|U˚t |

2dt. (40)

The components of the vector π˚pZtq given by (38) equal minus the local exposures to

the Brownian shocks. While these are usually interpreted as local “risk prices,” we shall
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reinterpret them. Motivated by the decomposition

minus stochastic discount factor exposure “ .01σy ´U˚t ,

risk price uncertainty price

we prefer to think of .01σy as a vector of risk prices induced by the curvature of log utility

and ´U˚t as “uncertainty” prices induced by a representative investor’s doubts about the

baseline model. Here U˚t is state dependent.

The resulting local uncertainty prices are large in both good and bad macroeconomic

growth states. Over longer horizons things will differ in important ways that we study

next.

8.4 Uncertainty prices over alternative investment horizons

In the context of our quantitative models, we now report shock-price elasticities that

Borovička et al. (2014) showed are horizon-dependent uncertainty prices of risk exposures.

Shock price elasticities describe the dependence of logarithms of expected returns on an

investment horizon. The logarithm of the expected return from a consumption payoff at

date t consists of two terms:

logE

˜

Ct
C0

ˇ

ˇ

ˇ

ˇ

ˇ

X0 “ x

¸

´ logE

«

Sdft

ˆ

Ct
C0

˙

ˇ

ˇ

ˇ

ˇ

ˇ

X0 “ x

ff

. (41)

where logCt “ Yt. The first term is the expected payoff and the second is the cost of

purchasing that payoff. In our example, we imposed a unitary elasticity of substitution

Sdft

ˆ

Ct
C0

˙

“MU˚

t ,

so the second term features the martingale computed to capture concerns about robustness.

To compute an elasticity, we change locally the exposure of consumption to the un-

derlying Brownian motion, then compute consequences for the expected return. From a

mathematical perspective, important inputs into this calculation are Malliavin derivatives

that measure how a shock at given date affects consumption and stochastic discount factor

processes. Both Sdft and Ct depend on the Brownian motion between dates zero and t.

We are particularly interested in the impact of a date t shock on Sdft and Ct. Computing
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the derivative of the logarithm of the expected return given in (41) results in

E rDtCt|F0s

E rCt|F0s
´ E

”

DtMU˚

t |F0

ı

,

where DtCt and DtMU˚

t denote the two dimensional vectors of Malliavin derivatives with

respect to the two dimensional Brownian increment at date t for consumption and the

worst-case martingale.

Using a convenient formula familiar from other forms of differentiation

DtCt “ Ct pDt logCtq ,

the Malliavin derivative of logCt “ Yt is the vector .01σy or the exposure vector logCt to

the Brownian increment dWt

DtCt “ .01Ctσy,

and thus
E rDtCt|F0s

E rCt|F0s
“ .01σy.

Similarly,

DtMU˚

t “MU˚

t U˚t .

Therefore, the term structure of prices that interests us is given by

.01σy ´ E
”

MU˚

t U˚t |F0

ı

.

The first term is the familiar risk price for consumption-based asset pricing models. It is

state independent and contributes a (small) term that is independent of the horizon. In

contrast, the equilibrium drift distortion in the second term contributes state dependent

component: its expectation under the distorted probability measure makes a time- and

state-dependent contribution to the term structure of uncertainty prices.17

17There are other horizon dependent elasticities that we could compute. For instance, we might look at
the impact of a shock at date zero on Ct and MU˚

t and trace out the impact of changing the horizon but
keeping the date of the shock fixed.
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Figure 6: Shock price elasticities for alternative horizons and deciles for the specification

with pβ, κq uncertainty. Left panels: larger baseline entropy (q “ .1). Right panels:

smaller structured entropy (q “ .05). Top panels: first shock. Bottom panels: second

shock. Black: median of the Z stationary distribution red: .1 decile; and blue: .9 decile.

Notice that although the price elasticity is initially smaller for the median specifica-

tion of z than for the .9 quantile, this inequality is eventually reversed as the horizon is

increased. (The blue curve and black curve cross.) The uncertainty price for positive z

initially diminishes because the probability measure implied by the martingale has reduced

persistence for the positive states. Under this probability, the growth rate state variable is
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expected to spends less time positive region. This is reflected in the smaller prices for the .9

quantile than for the median over longer investment horizons. For longer investment hori-

zons, but not necessarily for very short ones, an endogenous nonlinearity makes uncertainty

prices larger for negative values of z than for positive values of z. This horizon dependence

is thus an important aspect of how concerns about misspecification and ambiguity aversion

influence valuations of assets.

We have designed our quantitative examples to investigate a particular mechanism

for generating fluctuations in uncertainty prices from statistically plausible amounts of

uncertainty. We infer parameters of the baseline model for these examples solely from time

series of macroeconomic quantities and completely ignore asset prices during calibration.

As a consequence, we do not expect to track high frequency movements in financial markets

closely. By limiting our empirical inputs, we respect concerns that Hansen (2007) and Chen

et al. (2015) expressed about using asset market data to calibrate macro-finance models

that assign a special role to investors’ beliefs about the future asset prices.18

8.5 Relation to previous applied research

It is worthwhile comparing this paper’s way of inducing time-varying prices of risk with

three other macro/finance models that also get them. Campbell and Cochrane (1999) pro-

ceed in the standard rational expectations single-known-probability-model tradition and so

exclude any fears of model misspecification from the mind of their representative investor.

They construct a history-dependent utility function in which the history of consumption

expresses an externality. This history dependence makes the investor’s local risk aversion

depend in a countercyclical way on the economy’s growth state. Ang and Piazzesi (2003)

use an exponential quadratic stochastic discount factor in a no-arbitrage statistical model

and explore links between the term structure of interest rates and other macroeconomic

variables. Their approach allows movements in risk prices to be consistent with histori-

cal evidence without specifying an explicit general equilibrium model. A third approach

introduces stochastic volatility into the macroeconomy by positing that the volatilities

of shocks driving consumption growth are themselves stochastic processes. A stochas-

18Hansen (2007) and Chen et al. (2015) describe situations in which it is the behavior of rates of return
on assets that, through the cross-equation restrictions, lead an econometrician to make inferences about
the behavior of macroeconomic quantities like consumption that are much more confident than can be
made from the quantity data alone. That opens questions about how the investors who are supposedly
putting those cross-equation restrictions into returns came to know those quantity processes before they
observed returns.
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tic volatility model induces time variation in risk prices via exogenous movements in the

conditional volatilities impinging on macroeconomic variables. In contrast, we explore en-

dogenous movements in financial market compensations coming from changes in investors’

most feared models.

In Hansen and Sargent (2010), countercyclical uncertainty prices emerge when a se-

quence of representative investors, each of whom does robust model averaging, plays a dy-

namic game. At each instant an investor carries along difficult-to-distinguish time invariant

models of consumption growth, including some with substantial growth rate dependence

and others with little such dependence. The investors use observations on consumption

growth to update Bayesian priors over these models, then express their specification dis-

trust by pessimistically exponentially twisting a posterior over alternative models. That

leads investors to act as if good news is temporary and bad news is persistent, an outcome

that is qualitatively similar to what we have found here. In contrast to the setting of this

paper in which learning is difficult or impossible, learning occurs in the Hansen and Sargent

(2010) analysis because the initial parameterized structured models are time invariant. Our

analysis in this paper differs in two ways. First, we define investor preference recursively,

and second we entertain a much larger family of structured models.

Next, we discuss consequences of narrowing the set of structural models in the setup

suggested in this paper.

9 Learning and dynamic consistency

The set of models that concerns our decision maker is so vast and some of the models are

so complicated that our decision maker thinks that it is pointless to learn his way out of

model ambiguity as he observes more data. Had we featured only time invariant models

at date zero, there would be ways for the decision maker to learn some things, although

ambiguity would still add a source of variation to valuations. Even if we were to begin with

a family of time invariant models, confiningMo to contain only the martingales associated

with those models would be too restrictive for at least two reasons. One is that this time

invariance excludes learning from new information. Another is the same channel that we

have emphasized so far. The passage of time and evolution of the state alter what a decision

maker cares about and therefore the models that he most fears.
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9.1 Learning

The following example illustrates how learning breaks time invariance:

Example 9.1. Apply Bayes’ rule to a finite collection of models characterized by Sj where

MSj is in Mo for j “ 1, . . . , n. Let πj0 ě 0 be a prior probability of model Sj where
řn
i“1 π

j
0 “ 1. A martingale

M “

n
ÿ

j“1

πj0M
Sj

corresponds to a mixture of Sj models. The mathematical expectation of M conditioned on

date zero information equals unity. The law of motion for M is

dMt “

n
ÿ

j“1

πj0dM
Sj

t

“

n
ÿ

j“1

πj0M
Sj

t Sjt ¨ dWt

“Mt

`

πjtS
j
t

˘

¨ dWt

where πjt is the date t posterior

πjt “
πj0M

Sj

t

Mt

.

The drift distortion is

St “
n
ÿ

i“1

πjtS
j
t .

The example illustrates how Bayes’ rule leads naturally to a particular form of history-

dependent weights on the Sjt ’s that characterize alternative models.

9.2 Changing perspectives

Another reason for history dependence is that a decision maker with a set of priors (i.e.,

a robust Bayesian) would want to evaluate the utility consequences of sets of posteriors

implied by Bayes’ law from different perspectives as time passes. With an aversion to ambi-

guity, a robust Bayesian would rank alternative plans by minimizing expected continuation

utilities over the set of priors. Epstein and Schneider (2003) note that for many possible

sets of models and priors, this approach induces a form of dynamic inconsistency. This

41



possibility led Epstein and Schneider to examine the implications of a dynamic consistency

axiom.

To make preferences satisfy that axiom, they argue that the decision maker’s set of

probabilities should satisfy a property that they call rectangularity. A rectangular family of

probabilities is formed by i) specifying a set of possible local (i.e., instantaneous) transitions

for each t, and ii) constructing all possible joint probabilities having such local transitions.

Epstein and Schneider make

. . . an important conceptual distinction between the set of probability laws that

the decision maker views as possible, such as Prob, and the set of priors P that

is part of the representation of preference.

Regardless of whether they are subjectively or statistically plausible, Epstein and Schneider

recommend augmenting a decision maker’s original set of “possible” probabilities (i.e.,

their Prob) with enough additional probabilities to make an enlarged set (i.e., their P )

satisfy a condition that suffices to render the conditional preferences orderings dynamically

consistent as required by their axioms.

We illustrate what Epstein and Schneider’s procedure does and does not accomplish

within the setting of Example 9.1 with n “ 2. Suppose that we have a set of priors

π1
0 ď π1

0 ď π1
0. For each π1

0, we can use Bayes’ rule to construct a posterior residing in an

interval rπ1
t , π

1
t s, an associated set of drift processes tSt : t ě 0u, and implied probability

measures over the filtration tFt : t ě 0u. This family of probabilities will typically not be

rectangular in the sense of Epstein and Schneider. To obtain a smallest rectangular family

that contains these probabilities, we construct the larger space tSt : t ě 0u with St P Ξt,

where

Ξt “
 

π1
tS

1
t ` p1´ π

1
t qS

2
t , π

1
t ď πt ď π1

t , πt is Ft measurable.
(

(42)

Augmenting the set tSt : t ě 0u in this way makes conditional preference orderings over

plans remain the same as time passes. But this expanded set of probabilities includes

elements that can emerge from no single date zero prior. Thus, in constructing the set

tSt : t ě 0u, we allow different date zero priors at each calendar date t. Doing that

intertemporally disconnects restrictions on local transition probabilities.19

Because we use martingales in M to represent alternative probabilities, the time sep-

arability of specification (10) implies a rectangular family of probabilities.20 As we have

19This approach could be made tractable by using a family of conjugate priors that enable updating via
Bayes law by applying recursive methods.

20Rectangularity, per se, does not require Ξt to be convex, a property that we impose for other reasons.
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illustrated with our calculations, the representative decision maker’s set of structured mod-

els can have an important impact on how uncertainty prices change with the state of the

macroeconomy. While we have assumed that the set of models of interest to the decision

maker in our quantitative application makes learning particularly difficult, had we instead

restricted that set of models enough, learning would be possible. For time invariant pa-

rameter models with unknown parameters, endowing the decision maker with a family of

conjugate priors could make it tractable to construct a rectangular set of models recursively

by repeatedly applying Bayes law. This could serve as alternative way to construct the

family of structured models.

We offer one caveat to this approach. The failure of Epstein and Schneider’s procedure to

yield a unique prior capable of justifying their dynamically consistent preference ordering

creates a tension with the useful concept called admissibility that is widely applied in

statistical decision theory. An admissible decision rule cannot be dominated under all

possible probability specifications entertained by the decision maker. Verifying optimality

against a unique worst-case model is a common way to establish that a statistical decision

rule is admissible. Epstein and Schneider’s proposal to achieve dynamic consistency by

adding probabilities to those that the decision maker thinks are possible can render the

resulting decision rule inadmissible. When this happens, Good (1952)’s recommendation

for assessing max-min decision making is then unworkable.21

9.3 Rectangularity and statistical measures of misspecification

Suppose that we set aside concerns about admissibility. It is our interest in model misspeci-

fication that leads us to proceed differently than Epstein and Schneider (2003). Recall that

we use an entropy-penalty approach to express the decision maker’s concern about what we

can think of as “local” misspecifications. Our decision maker’s concern that all structured

models might be misspecified leads him to want explore the utility consequences of un-

structured probability models that are statistically close, as measured by relative entropy.

An alternative approach would be first to construct a set that includes relative entropy

21Presumably, an advocate of Epstein and Schneider’s dynamic consistency axiom could respond that
admissibility is too limiting in a dynamic context because it commits to a time 0 perspective and does
not allow a decision maker to reevaluate later. However, it is common in the control theory literature
to maintain just such a date zero perspective and in effect solve a commitment problem under ambiguity
aversion.
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neighborhoods of all martingales in Mo. For instance, we could start with a set

M “
 

MU
PM : ΘpMU

|F0q ă ε
(

(43)

that yields a set of implied probabilities that are not rectangular. At this point suppose

we follow Epstein and Schneider’s (2003) recommendation to add enough martingales to

attain a rectangular set of probability measures? The answer is that doing so would include

all martingales in M. That set is too big to use in posing a meaningful robust decision

problem. See Appendix G for a derivation.

10 Concluding remarks

This paper formulates and applies a tractable model of equilibrium prices of exposures

to macroeconomic uncertainties. Our analysis uses models’ consequences for discounted

expected utilities to quantify investors’ concerns about model misspecification. We char-

acterize the effects of concerns about misspecification of a baseline stochastic process for

individual consumption as shadow prices for a planner’s problem that supports competitive

equilibrium prices.

Specifically, we have produced a model of the log stochastic discount factor whose

uncertainty prices reflect a robust planner’s worst-case drift distortions U˚. We have argued

that these drift distortions should be interpreted as prices of model uncertainty. The

dependence of these uncertainty prices U˚ on the growth state z is shaped partly by the

alternative parametric models that an investor entertains. In this way, our theory of state

dependence in uncertainty prices is all about how our robust investor responds to the

presence of the alternative parametric models among a huge set of unspecified alternative

models that also concern him.

To illustrate our approach, we have focused on the growth rate uncertainty featured in

the “long-run risk” literature initiated by Bansal and Yaron (2004). In contrast to Bansal

and Yaron (2004), we consider alternative models with parameters whose future variations

cannot be inferred from historical data. We allow investors to consider alternative fixed

parameter models whose parameters could be well estimated from historical data, but

they also entertain time-varying parameter models with implications that are statistically

similar. The alternative models include ones that allow persistence parameters that govern

macroeconomic growth rates to be unknown. In addition to this particular parametric
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class of alternative models, the investors worries about other specifications. The robust

planner’s worst-case model responds to these forms of model ambiguity partly by having

more persistence in bad growth states and less persistence in good growth states.

Other applications seem natural. For example, the tools developed here could shed light

on a recent public debate between two groups of macroeconomists, one prophesying secular

stagnation because of technology growth slowdowns, the other dismissing those pessimistic

forecasts. The tools that we describe can be used, first, to quantify how challenging it is

to infer persistent changes in growth rates, and, second, to guide macroeconomic policy

design in light of available empirical evidence.

In this paper we assumed that the structured model probabilities can be represented as

martingales with respect to a baseline model. An alternative approach invented by Peng

(2004) uses a theory of stochastic differential equations under a broader notion of ambiguity

that is rich enough to allow for uncertainty in the conditional volatility of the Brownian

increments. Alternative probability specifications there fail to be absolutely continuous and

standard likelihood ratio analysis ceases to apply. With interesting bounds on volatility

under a rectangular embedding, we could extend the construction of worst-case structured

models and still restrain relative entropy as a way to limit the unstructured models to be

explored.22

22See Epstein and Ji (2014) for an application of the Peng analysis to asset pricing that does not use
relative entropy.
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Appendices

A Structured model restrictions

To verify that the constraint set in problem 4.2 is not empty, suppose that there exists an

η such that

|ηpxq|2

2
`
Bρ

Bx
pxq ¨ rpµpxq ` σpxqηpxqs `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



´
q2

2
“ 0.

Pose the problem

min
s

|s|2

2
`
Bρ

Bx
pxq ¨ rpµpxq ` σpxqss `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



´
q2

2
,

whose solution

s̃pxq “ ´σpxq1
Bρ

Bx
pxq

attains a minimized objective function

´
Υpxq

2
” ´

1

2

„

Bρ

Bx
pxq

1

σpxqσpxq1
„

Bρ

Bx
pxq



`
Bρ

Bx
pxq ¨ pµpxq `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



´
q2

2

ď 0.

For convenience, write the constraint as

|s´ s̃pxq|2

2
ď

Υpxq

2
. (44)

Since Υpxq is nonnegative for each x, minimizing solutions exist and reside on an ellipsoid

centered at s̃pxq.

Next we construct an implicit parametrization for our section 5 example in which

ρpxq “ ρ1pz ´ z̄q `
1

2
ρ2pz ´ z̄q

2.

For this ρpxq, s̃ is affine in z ´ z̄ and Υ is quadratic:

Υpzq “ Υ0 ` 2Υ1pz ´ z̄q `Υ2pz ´ z̄q
2.
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Since Υpzq ě 0 for all z, Υ0 ě 0, Υ2 ě 0, and

|Υ1| ď
a

Υ0Υ2.

Write

η̃pzq “ ηpzq ´ s̃pzq “ η̃0 ` η̃1pz ´ z̄q.

We seek a family of η’s or equivalently a family of η̃1s that satisfies constraint (44) with

equality for all z. We obtain this by solving:

η̃0 ¨ η̃0 “ Υ0

η̃0 ¨ η̃1 “ Υ1

η̃1 ¨ η̃1 “ Υ2. (45)

The first and third equations define ellipsoids, each with one free parameter. Suppose first

that either Υ0 or Υ2 is zero but not both. Then Υ1 is also zero. Either the first or the

third equation gives rise to a nondegenerate ellipse in R2 representable as a closed curve.

Suppose next that both Υ0 or Υ2 are strictly positive and that the first and third

equations define non degenerate ellipsoids that restrict η̃0 and η̃1, respectively. For any

given solution η̃0 on its respective ellipsoid, the inner product with the alternative restricted

η̃1’s have inner products that fill out the interval:

”

´
a

Υ1Υ2,
a

Υ1Υ2

ı

.

Thus for every choice of η̃0 on the ellipsoid defined by the first equation in (45), we can

find an η̃2 that satisfies the other two equations. This gives us a one parameter family of

solutions representable as a closed curve in R4. Moreover, using

s´ s̃pzq “ η̃0 ` η̃1pz ´ z̄q,

this construction also defines a closed curve of ps ´ s̃q’s, holding z fixed for appropriately

restricted choices of η̃0 and η̃1. Call this curve one.

Now consider the constraint set (44) for this special example. Call the ps ´ s̃pzqq’s

that satisfy (44) with equality for a given z curve two. Since curve two is an ellipsoid, it

is a simple closed curve, meaning a closed curve that does not cross itself. Thus, curve

one necessarily traces out the entire ellipsoid. As a consequence, we can view the implied
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restricted choices of η̃0 and η̃1 as a one-dimensional parameterization of the structured

models.

B Computing relative entropy

We compute relative entropies for parametric models of the form (23). Recall that relative

entropy q2

2
emerges as part of the solution to an appropriately specialized version of HJB

equation (19):

|ηpzq|2

2
`
dρ

dz
pzqr´pκpz ´ z̄q ` σz ¨ ηpzqs `

|σz|
2

2

d2ρ

dz2
pzq ´

q2

2
“ 0,

where

ηpzq “ η0 ` η1pz ´ z̄q.

Under our parametric alternatives, the solution for ρ is quadratic in z ´ z̄. Write:

ρpzq “ ρ1pz ´ z̄q `
1

2
ρ2pz ´ z̄q

2.

Compute ρ2 by targeting only the terms of the HJB equation that involve pz ´ z̄q2:

η1 ¨ η1

2
` ρ2 r´pκ` σz ¨ η1s “ 0,

so

ρ2 “
η1 ¨ η1

2 ppκ´ σz ¨ η1q
.

Given ρ2, compute ρ1 by targeting only the terms in pz ´ z̄q

η0 ¨ η1 ` ρ2 pσz ¨ η0q ` ρ1 p´pκ` σz ¨ η1q “ 0,

so

ρ1 “
η0 ¨ η1

pκ´ σz ¨ η1

`
pη1 ¨ η1q pσz ¨ η0q

2 ppκ´ σz ¨ η1q
2 .

Finally, calculate q by targeting the remaining constant terms:

η0 ¨ η0

2
` ρ1 pσz ¨ η0q ` ρ2

|σz|
2

2
´

q2

2
“ 0.
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So
q2

2
“
η0 ¨ η0

2
`
η0 ¨ η1 pσz ¨ η0q

pκ´ σz ¨ η1

`
η1 ¨ η1 p`σz ¨ η0q

2

2 ppκ´ σz ¨ η1q
2 `

η1 ¨ η1|σz|
2

4 ppκ´ σz ¨ η1q
.

This formula could also be derived by computing the expectation of |ηpZtq|
2

2
under the altered

distribution.

C A production economy

Consider an economy with an AK technology that makes output be proportional to capital.

Output can be allocated between investment and consumption. Suppose that there are

adjustment costs to capital that are represented as the product of capital times a quadratic

function of the investment-capital ratio. A robust planner chooses consumption-capital and

investment-capital ratios. Given the constraint on output imposed by the AK technology,

it suffices to let the planner choose the consumption-capital ratio. Capital optimally evolves

as

dKt “ .01Kt

«

µkpZtq ´ ϑ1
Ct
Kt

dt´
ϑ2

2

ˆ

Ct
Kt

˙2
ff

dt` .01Ktσk ¨ dWt

or in logarithms

d logKt “ .01

«

µkpZtq ´ ϑ1
Ct
Kt

dt´
ϑ2

2

ˆ

Ct
Kt

˙2
ff

dt´
|.01σk|

2

2
dt` .01σk ¨ dWt,

where Kt is the capital stock and Ct is consumption. To interpret the right-hand-side of

this evolution equation, notice that under the zero consumption solution in which all of

output is reinvested and not consumed,

dKt “ .01KtµkpZtqKtdt` .01Ktσk ¨ dWt.

With the quadratic adjustment cost specification, consumption reduces the drift in the

capital stock by:

.01Kt

«

ϑ1Ct `
ϑ2

2

ˆ

Ct
Kt

˙2
ff

.

Suppose that the instantaneous utility δνpxq “ δ logC. Let r “ σs. For this problem,

we seek a value function V pxq “ k ` rV pzq, where k is a possible value of the logarithm

of the capital stock. Let c be a possible value of the consumption/capital ratio. Finally,
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parameterize

µkpzq ´ ϑ1c
˚
´

1

2
ϑ2 pc

˚
q
2
´
.0001

2
|σk|

2
“ .01

”

pαk ` pβpz ´ z̄q
ı

(46)

and

µzpzq “ pαz ´ pκpz ´ z̄q

The value function for the robust planning problem satisfies the HJB equation

0 “max
c

min
r
δ log c´ δrV pzq ` .01

”

pαk ` pβpz ´ z̄q ` r1

ı

´ ϑ1c´
ϑ2

2
c2

` pαk ` pβpz ´ z̄q ` r1 ` rpαz ´ pκpz ´ z̄q ` r2s
drV

dz
pzq

`
1

2
|σz|

2d
2
pV

dz2
pzq ´

1

2θ

”

.01 drV
dz
pzq

ı

σ̃σ̃1

«

.01
dpV
dz
pzq

ff

,

where extremization is subject to

1

2
r1 rσ̃σ̃1s

´1
r ` rρ1 ` ρ2pz ´ z̄qs r´pκpz ´ z̄q ` r2s `

|σz|
2

2
ρ2 ´

q2

2
ď 0

and

σ̃ “

«

pσkq
1

pσzq
1

ff

.

Because the objective function separable in c and r so that the order of extremization does

not matter.

We maximize first. The consumption/capital ratio c turns out to be constant and to

solve
1

c
´ ϑ1 ´ ϑ2c “ 0.

Multiplying by c yields a quadratic equation in c. At c “ 0, the quadratic function is

positive and since ϑ2 ą 0, the function slopes downward. Thus, there is a positive and a

negative solution, with the positive one being the one of interest. We denote this by c˚.

So Yt “ logKt ` constant where Yt “ logC˚t and the constant term is negative. The drift

of Y in the absence of misspecification is .01
”

pαy ` pβpz ´ z̄q
ı

, where pαy “ pαk is implied by

(46). Moreover, the vector σy “ σk, where σk ¨ dWt denotes the exposure to uncertainty of

the return to a capital investment. Given these relations, we compute rV up to a constant

translation by solving HJB equation (26). This latter equation is missing the term involving
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δc˚ that alters only the constant term in the value function.

D Computing Chernoff entropy

We compute Chernoff entropies for Markov specifications in which the associated U ’s take

the form

Ut “ ηpZtq,

which makes the alternative models be Markovian.

Given the Markov structure of both models, we compute Chernoff entropy by using an

eigenvalue approach of Donsker and Varadhan (1976) and Newman and Stuck (1979). We

start by computing the drift of
`

MH
t

˘γ
gpZtq for 0 ď γ ď 1 at t “ 0:

rGpγqgspzq .“
p´γ ` γ2q

2
|ηpzq|2gpzq ` γgpzq1σ ¨ ηpzq

´ g1pzqκz `
g2pzq

2
|σ|2,

where rGpγqgspxq is the drift given that Z0 “ z. Next we solve an eigenvalue problem

rGpγqsepz, γq “ ´λpγqepz, γq

whose eigenfunction epz, γq is the exponential of a quadratic function of z. We compute

Chernoff entropy numerically by solving:

χpMH
q “ max

γPr0,1s
λpγq.

For a respecified γ, we solve for λpγq numerically using a finite-difference approach.

We form an n ˆ n matrix, the largest eigenvalue of which equals ´λpγq. The matrix is

formed by using two-sided symmetric approximations except at the edges, where we use

corresponding one-sided derivatives. In our calculations, we used a grid for z over the

interval r´2.5, 2.5s with grid increments equal to .01 so that n “ 501.

51



E Statistical calibration

We fit a trivariate VAR for

log Yt`1 ´ log Yt

logGt`1 ´ log Yt`1

logDt`1 ´ log Yt`1,

where Yt is per capita consumption, Gt is the sum of corporate profits and proprietors’

income, and Dt is personal income.

Provided that the VAR has stable coefficients, this is a co-integrated system. All three

time series have stationary increments, but there one common martingale process. The

shock to this process is identified as the only one with long-term consequences. We set

pαz “ 0 and pβy “ 1. For the remaining parameters we:

i) fit a VAR with a constant and four lags of the first variable and five of the other two;

ii) compute the implied mean for log Yt`1 ´ log Yt and set this to pαy;

iii) compute the state dependent component of the expected long-term growth rate by

calculating the value of

log Y p
t “ lim

jÑ8
E plog Yt`j ´ log Yt ´ jpαy|Ftq

implied by the VAR estimates. Our counterpart calculation in a continuous-time

model:

Zp
t “ lim

jÑ8
E plog Yt`j ´ log Yt ´ jpαy|Ztq “

1

pκ
Zt.

iv) compute the implied autoregressive coefficient for tlog Y p
t u in the discrete-time speci-

fication using the VAR parameter estimates and equate this coefficient to 1´ pκ.

v) compute the VAR implied covariance matrix for the one-step-ahead forecast error for

tlog Y pu, the shock directly to consumption, and equate this to

«

pσyq
1

1
pκ
pσzq

1

ff

”

pσyq
1
pκ
pσzq

ı

,
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where we achieve identification of σz and σy by imposing a zero restriction on the

second entry of σy and positive signs on both the first coefficient of σy and on the

second coefficient of σz.

F Solving some ODE’s

For large |z|, the function pV pzq appearing in HJB equation (26) for the robust planning

problem is approximately linear in the state variable. This gives a good boundary Neumann

boundary condition to use in an approximation in which z is restricted to a compact interval

that includes z “ z. Recall the constraint (27):

1

2
r1Λr ` rρ1 ` ρ2pz ´ z̄qs r´pκpz ´ z̄q ` r2s `

|σz|
2

2
ρ2 ´

q2

2
ď 0.

Consider an affine solution r “ r̄ ` dpz ´ z̄q. The vector d satisfies

1

2
d1Λd´ ρ2pκ` ρ2d2 “ 0.

When we view this relation as a quadratic equation in d1 given d2, there will be two

solutions. We choose the solution that makes d1pz ´ z̄q the smallest which will differ

depending whether we use a left boundary point z´ ăă z or a right boundary point

z` ąą z.

It remains to pick the two boundary conditions for the derivative of the value function

φ´ and φ`. From the HJB equation:

p´δ ´ pκ` d2qφ` .01ppβ ` d1q “ 0

Λd`

«

0

ρ2

ff

9

«

.01

φ

ff

.

The first equation is the derivative of the value function for constant coefficients, putting

aside any minimization. The next euation is the large z approximation to the first-order

conditions implied by (26). By taking ratios of this latter condition, we obtain an equation

in d and φ. Solving the resulting three equations determines pd´1 , d
´
2 , φ

´q and pd`1 , d
`
2 , φ

`q,

where φ´ and φ` are the two approximate boundary conditions for the derivative of the

value function.

We used bvp4c in Matlab to solve the ode’s over the two intervals r´2.5, 0s and r0, 2.5s
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where z “ 0.

G A rectangular embedding of relative entropy neigh-

borhoods

We explore the connection between relative entropy and rectangularity. For notational

simplicity, we study a relative entropy neighborhood of the baseline model. Including

additional structured models would only make the set of martingales larger. To construct

a rectangular set of models that includes the baseline model, consider a random vector U τ

that is observable at a fixed date τ and that satisfies

E
`

|U τ |
2
| F0

˘

ă 8. (47)

Form a drift distortion stochastic process

Uh
t “

$

’

&

’

%

0 0 ď t ă τ

U τ τ ď t ă τ ` h

0 t ě τ ` h.

(48)

The martingale MUh associated with drift distortion Uh equals one both before time τ and

after time τ ` h. Compute relative entropy:

∆pMUh
|F0q “

ˆ

1

2

˙
ż τ`h

τ

expp´δtqE
”

MUh

t |U τ |
2dt

ˇ

ˇ

ˇ
F0

ı

dt

“

„

1´ expp´δhq

2δ



expp´δτqE
`

|U τ |
2
| F0

˘

.

Evidently, relative entropy ∆pMUh |F0q can be made arbitrarily small by shrinking h to zero.

This means that any rectangular set that contains M must allow for a drift distortion U τ

at date τ . We summarize this argument in the following proposition:

Proposition G.1. Any rectangular set of probabilities that contains the probabilities in-

duced by martingales in (43) must also contain the probabilities induced by any martingale

in M.

This rectangular set of martingales allows us too much freedom in setting date τ and
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random vector U τ : all martingales in the setM identified in definition 2.1 are included in

the smallest rectangular set that embeds the set described by (43).
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