Hierarchical Bank Supervision

Rafael Repullo

CEMFI

Conference on Financial Intermediation

Banco de Portugal, 7-8 July 2017

Motivation

"The European Council agreed on a roadmap for the completion of the Economic and Monetary Union, based on deeper integration and reinforced solidarity. This process will begin (...) with the adoption of a Single Supervisory Mechanism and of the new rules for recovery and resolution and deposit guarantees."

Brussels, 13-14 December 2012

Pillars of Banking Union

- Single Supervisory Mechanism
 - \rightarrow New system of banking supervision for Europe
 - → Comprises the European Central Bank (ECB) and national supervisory authorities of participating countries
- Single Resolution Mechanism
 - → For the efficient resolution of failing banks with minimal costs for taxpayers and the real economy
- Common Deposit Guarantee Scheme: Pending

Single Supervisory Mechanism

- Directly supervised banks
 - \rightarrow ECB directly supervises significant (i.e. large) banks
 - \rightarrow About 80% of banking assets in the euro area
 - \rightarrow In cooperation with national supervisors
 - → Joint Supervisory Teams
- Indirectly supervised banks

 \rightarrow National supervisors in charge of less significant banks

This paper

- Construct model of hierarchical supervision
 - \rightarrow Central and local supervisor choose supervisory efforts
 - \rightarrow Central supervisor decides on possible early liquidation
- Compare it with two alternative arrangements
 - \rightarrow Decentralized supervision: Local supervisor in charge
 - \rightarrow Centralized supervision: Central supervisor in charge
- Key question
 - \rightarrow Is hierarchical supervision better (in welfare terms)?

Overview of model (i)

- Bank characteristics
 - \rightarrow Funded with insured deposits
 - \rightarrow Invest in asset with random final return
 - \rightarrow Early liquidation yields random liquidation return
- Supervisory information
 - \rightarrow Supervisors get signal on bank's returns at a cost
 - \rightarrow Quality of signal depends on their effort
 - \rightarrow Signal and effort are not verifiable

Overview of model (ii)

- Efficient liquidation
 - \rightarrow When signal is bad it is efficient to liquidate bank
 - → Expected liquidation value > Expected continuation value
- Supervisors' objective functions
 - \rightarrow Supervisors are <u>not</u> social welfare maximizers
 - \rightarrow Have a bias against liquidation
 - \rightarrow Due to reputational concerns or supervisory capture

Overview of model (iii)

- Under hierarchical supervision
 - \rightarrow Supervisors' payoffs depend on effort of both supervisors
 - \rightarrow Characterize Nash equilibrium of this game
- Under decentralized or centralized supervision
 - \rightarrow Local or central supervisor's payoff depends on its effort
 - \rightarrow A simpler problem

Optimal institutional design

- Construct social welfare function
 - \rightarrow Compare three alternative arrangements
 - \rightarrow Hierarchical, decentralized, and centralized supervision
 - \rightarrow Which arrangement maximizes social welfare?

Key assumptions (i)

• Cost of effort is higher for central supervisor

 \rightarrow Lower familiarity/knowledge of local information

"Central supervisor has informational disadvantages relative to the national authorities, due to their better knowledge of banks, banking systems and regulatory frameworks, as well as their geographical and cultural proximity to them."

Torres (2015)

Key assumptions (ii)

• Bias against liquidation is higher for local supervisor

 \rightarrow Closer connections to the bank

"The existence of a supranational supervisor allows to increase the distance between supervisors and national lobbies and politicians, which in principle should reduce the risk of supervisors implementing excessively lax policies."

Torres (2015)

Main results (i)

- Hierarchical supervision dominates local supervision when
 - \rightarrow Cost of getting local information is low
 - \rightarrow Bias of local supervisor is high
- Central supervision dominates hierarchical supervision when
 - \rightarrow Cost of getting local information is sufficiently low
 - \rightarrow Bias of local supervisor is sufficiently high

Main results (ii)

- Hierarchical supervision less likely to dominate when
 - \rightarrow Bank profitability is high (low competition)
 - \rightarrow Bank risk-taking is low (tough regulation)
- Whenever hierarchical supervision dominates
 - \rightarrow Limiting size of central supervisor is welfare improving

Overview of presentation

- Model setup (single supervisor)
- Model of hierarchical supervision
- Optimal institutional design
- Limiting size of central supervisor
- Concluding remarks

Part 1 Model setup

Model setup

- Three dates (t = 0, 1, 2)
- Agents: \rightarrow Local bank

 \rightarrow Local supervisor

• Bank raises deposits at t = 0 and invests in asset with returns

Assumptions (i)

- Deposits are insured and deposit rate normalized to zero
- Asset returns are normally distributed (for tractability) with

$$\begin{bmatrix} L \\ R \end{bmatrix} \sim N\left(\begin{bmatrix} a\overline{R} \\ \overline{R} \end{bmatrix}, \sigma^2 \begin{bmatrix} b & c \\ c & 1 \end{bmatrix}\right)$$

Assumptions (ii)

• $E(R) = \overline{R} > 1$

 \rightarrow Expected final return > Face value of deposits

•
$$E(L) = a\overline{R} < \overline{R} = E(R)$$

 \rightarrow Expected liquidation return < Expected final return

•
$$Cov(L,R) = c\sigma^2 > 0$$

 \rightarrow Liquidation return and final return are positively correlated

•
$$Var(L) = b\sigma^2 < \sigma^2 = Var(R)$$

 \rightarrow Liquidation return is less volatile than final return

Supervisory information (i)

• Supervisor observes at t = 1 non-verifiable signal

 $s = R + \varepsilon$

 \rightarrow where $\varepsilon \sim N(0, \sigma^2 / e)$ and independent of *L* and *R*

• Variable *e* is non-verifiable effort of supervisor

 \rightarrow Related to intensity of banking supervision

 \rightarrow Positive effect on precision of supervisory signal

Supervisory information (ii)

• Joint distribution of signal and returns

$$\begin{bmatrix} L \\ R \\ s \end{bmatrix} \sim N \left(\overline{R} \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}, \sigma^2 \begin{bmatrix} b & c & c \\ c & 1 & 1 \\ c & 1 & 1 + e^{-1} \end{bmatrix} \right)$$

• By the properties of normal distributions

$$E(L|s) = a\overline{R} + \frac{c(s - \overline{R})}{1 + e^{-1}}$$
$$E(R|s) = \overline{R} + \frac{s - \overline{R}}{1 + e^{-1}}$$

Supervisory information (iii)

• Slope of E(L|s) is lower than slope of E(R|s), so

 $E(L|s) > E(R|s) \iff s < s^*$

 \rightarrow where s^* is the efficient liquidation threshold (given *e*)

• We assume that parameter values are such that

$$E(L|s^*) = E(R|s^*) = \frac{a-c}{1-c}\overline{R} \le 1$$

 \rightarrow Expected final return at s^* is smaller than value of deposits \rightarrow Efficient liquidation only if bank has negative equity

Efficient liquidation threshold

Supervisor's decisions (i)

• At t = 0 supervisor chooses effort e at a cost

$$c(e) = \gamma_0 + \frac{\gamma}{2}e^2$$

• At t = 1 supervisor observes signal s and decides on liquidation

Supervisor's decisions (ii)

• Supervisor liquidates the bank if

 $E(L|s) - \delta > E(R|s)$

 \rightarrow where $\delta > 0$ is a supervisory liquidation cost

 \rightarrow bias against liquidation

• What is behind δ ?

 \rightarrow Reputational concerns

 \rightarrow Supervisory capture (e.g. revolving doors)

Supervisor's liquidation decision

Supervisor's liquidation decision

Supervisor's effort decision (i)

• Supervisor's objective function

$$v(e) = \underbrace{\int_{-\infty}^{\hat{s}} [E(L|s) - \delta] dF(s)}_{\text{Liquidation}} + \underbrace{\int_{\hat{s}}^{\infty} E(R|s) dF(s)}_{\text{Continuation}} - c(e)$$

 \rightarrow where F(s) is the cdf of the signal $s \sim N(\overline{R}, \sigma^2(1+e^{-1}))$

• Supervisor chooses

$$\hat{e} = \arg\max_{e} v(e)$$

Supervisor's payoff function

Comparative statics

• Whenever the supervisor chooses positive effort $\hat{e} > 0$ we have

$$\frac{\partial \hat{e}}{\partial \gamma} < 0, \quad \frac{\partial \hat{e}}{\partial \delta} < 0, \quad \frac{\partial \hat{e}}{\partial \overline{R}} < 0, \quad \frac{\partial \hat{e}}{\partial \sigma} > 0$$

- \rightarrow Effort is decreasing in supervisory cost of effort γ
- \rightarrow Effort is decreasing in supervisory liquidation cost δ
- \rightarrow Effort is decreasing in expected asset return \overline{R}
- \rightarrow Effort is increasing in volatility of asset return σ

Effect of cost of effort

Effect of supervisory liquidation costs

Effect of expected asset return

Effect of volatility of asset return

Summing up

• Model of a single bank and a single supervisor

 \rightarrow Interpreted as local bank and local (national) supervisor

- Bank is completely passive
- Supervisor is <u>not</u> social welfare maximizer
 - \rightarrow Bias in favor of continuation (supervisory capture)
- Would a supranational supervisor do better?

 \rightarrow Trade-off: higher costs of supervision but lower bias

Part 2

Model of hierarchical supervision

Model setup

- Three dates (t = 0, 1, 2)
- Agents: \rightarrow Local bank

 \rightarrow Local supervisor

 \rightarrow Central supervisor

- Same structure of asset returns
- Hierarchical supervision
 - \rightarrow Central and local supervisor jointly supervise bank
 - \rightarrow Central supervisor decides on early liquidation

Supervisory information

• Central supervisor observes at t = 1 non-verifiable signal

 $s = R + \varepsilon$

 \rightarrow where $\varepsilon \sim N(0, \sigma^2 / (e_c + e_l))$ and independent of L and R

 $\rightarrow e_c$ is non-verifiable effort of central supervisor

 $\rightarrow e_l$ is non-verifiable effort of local supervisor

Key assumptions

• Cost of effort is higher for central supervisor

 $\gamma_c > \gamma_l$

 \rightarrow Justified by reference to lower local knowledge

• Supervisory liquidation cost is higher for local supervisor $\delta_l > \delta_c$

 \rightarrow Justified by reference to closer connections to bank

• To simplify presentation, assume that $\delta_c = 0$

 \rightarrow Central supervisor has zero liquidation cost

Structure of the game

- At t = 0 central and local supervisor choose efforts e_c and e_l \rightarrow Nash equilibrium
- At t = 1 signal *s* is observed

 \rightarrow Central supervisor decides on liquidation

Central supervisor's liquidation decision

• By the properties of normal distributions

$$E(L|s) = a\overline{R} + \frac{c(s-\overline{R})}{1+(e_c+e_l)^{-1}}$$
$$E(R|s) = \overline{R} + \frac{s-\overline{R}}{1+(e_c+e_l)^{-1}}$$

• From here it follows that

$$E(L|s) > E(R|s)$$
 if and only if $s < s^{**}$

 \rightarrow where s^{**} is the efficient liquidation threshold

Payoff function of central supervisor

$$v_{c}(e_{c}, e_{l}) = \underbrace{\int_{-\infty}^{s^{**}} E(L|s)dF(s)}_{\text{Liquidation}} + \underbrace{\int_{s^{**}}^{\infty} E(R|s)dF(s)}_{\text{Continuation}} - c_{c}(e_{c})$$

 \rightarrow where F(s) is the cdf of the signal s

• Central supervisor does not take into account cost of effort of local supervisor

Payoff function of local supervisor

$$v_l(e_c, e_l) = \underbrace{\int_{-\infty}^{s^{**}} [E(L|s) - \delta_l] dF(s)}_{\text{Liquidation}} + \underbrace{\int_{s^{**}}^{\infty} E(R|s) dF(s)}_{\text{Continuation}} - c_l(e_l)$$

 \rightarrow where F(s) is the cdf of the signal s

• Local supervisor takes into account liquidation threshold s^{**} chosen by central supervisor

Nash equilibrium

• Reaction function of the two supervisors

 $e_{c}(e_{l}) = \arg \max_{e_{c}} v_{c}(e_{c}, e_{l})$ $e_{l}(e_{c}) = \arg \max_{e_{l}} v_{l}(e_{c}, e_{l})$

• The intersection of these function is a Nash equilibrium

Nash equilibrium

Part 3

Optimal institutional design

"The assignment of decision rights influences incentives to acquire information. (...) Determining the optimal level of decentralization requires balancing the costs of bad decisions owing to poor information and those owing to inconsistent objectives."

Jensen and Meckling (1990)

Three alternative arrangements

• Decentralized supervision

 \rightarrow Only local collects information & decides on liquidation

- Hierarchical supervision
 - \rightarrow Both supervisors exert effort
 - \rightarrow Central supervisor decides on liquidation
- Centralized supervision

 \rightarrow Only central collects information & decides on liquidation

Social welfare function (i)

- Two components
 - \rightarrow Expected bank returns (given liquidation decision)
 - \rightarrow Cost of supervisory effort
- Supervisory liquidation costs are not taken into account
 - \rightarrow Related to loss of transfers from bank to supervisors
 - → Supervisory capture

Social welfare (ii)

• Decentralized supervision

$$w_{l} = \int_{-\infty}^{\hat{s}_{l}} E(L|s) dF(s) + \int_{\hat{s}_{l}}^{\infty} E(R|s) dF(s) - c_{l}(\hat{e}_{l})$$

• Centralized supervision

$$w_{c} = \int_{-\infty}^{\hat{s}_{c}} E(L|s) dF(s) + \int_{\hat{s}_{c}}^{\infty} E(R|s) dF(s) - c_{c}(\hat{e}_{c})$$

• Hierarchical supervision

$$w_{h} = \int_{-\infty}^{s^{**}} E(L|s) dF(s) + \int_{s^{**}}^{\infty} E(R|s) dF(s) - c_{l}(e_{l}^{*}) - c_{c}(e_{c}^{*})$$

Two key parameters

• Liquidation cost of local supervisor δ_l

 \rightarrow Rationale for taking decisions at higher level

• Supervisory cost of central supervisor γ_c (relative to γ_l)

 \rightarrow Rationale for keeping decisions at local level

Main result

- Hierarchical model dominates decentralized model when
 - \rightarrow Liquidation cost of local supervisor δ_l is high
 - \rightarrow Supervisory costs of central supervisor γ_c are low
- Centralized model dominates hierarchical model when
 - \rightarrow Liquidation cost of local supervisor δ_l is much higher
 - \rightarrow Supervisory costs of central supervisor γ_c are much lower

Optimal institutional design

Comparative statics

- Increase in expected asset return \overline{R}
 - \rightarrow Related to extent of banking competition
 - \rightarrow Or favorable macroeconomic conditions
- Decrease in volatility of asset return σ
 - \rightarrow Possibly related to tightening prudential requirements
 - \rightarrow But choice of bank risk is not modeled

Increase in expected asset return

Decrease in volatility of asset return

Summing up

- Hierarchical supervision less likely to dominate when
 - \rightarrow Bank profitability is high (low competition)
 - \rightarrow Bank risk-taking is low (tough regulation)

Part 4

Limiting size of central supervisor

"It is always optimal for the firm to be in a situation of overload so as to credible commit to rewarding initiative."

Aghion and Tirole (1997)

Central supervisor as Stackelberg leader

- If central supervisor were a Stackelberg leader
 - \rightarrow Central supervisor would reduce its effort e_c
 - \rightarrow Local supervisor would increase its effort e_l
 - \rightarrow Central supervisor would be better off
- Intuition
 - \rightarrow Maximizing over the reaction function of local supervisor
 - \rightarrow Instead of responding to its (Nash) choice of effort

Central supervisor as Stackelberg leader

Limiting size of central supervisor

- How can central supervisor commit to exert lower effort \rightarrow Limiting its size, so $e_c \leq \overline{e_c}$
- Would this be socially optimal? \rightarrow Yes!
 - \rightarrow Even though central supervisor does not maximize welfare

Why would it be socially optimal?

• Given social welfare function

$$w(e_{c}, e_{l}) = v_{c}(e_{c}, e_{l}) - c_{l}(e_{l})$$

 \rightarrow We have

$$\frac{\partial}{\partial e_c} w(e_c^*, e_l^*) = \frac{\partial}{\underbrace{\partial e_c}} v_c(e_c^*, e_l^*) = 0$$

$$\underbrace{\frac{\partial}{\partial e_c}}_{\text{Nash equilibrium}} v_c(e_c^*, e_l^*) = 0$$

→ Reducing central supervisory effort increases welfare!

→ Central supervisor's objectives aligned with society's objectives in costs and benefits of its effort

Limiting size of central supervisor

Concluding remarks

Summing up

- Construct model of hierarchical supervision
 - \rightarrow Central and local supervisor choose supervisory efforts
 - \rightarrow Signal on quality of bank's assets
 - \rightarrow Central supervisor decides on early liquidation
- Compare it with two alternative arrangements
 - \rightarrow Decentralized supervision: Local supervisor in charge
 - \rightarrow Centralized supervision: Central supervisor in charge

Main results

- Moving supervision to central authority dominates when
 - \rightarrow Possible capture of local supervisor is a concern
 - \rightarrow Cost of getting local knowledge is low
- Going from decentralized to hierarchical to centralized
- Under hierarchical supervision
 - \rightarrow Limiting size of central supervisor is socially optimal

Implications

- Results are line with design of Single Supervisory Mechanism
 - \rightarrow Capture may be more likely for large banks
 - \rightarrow Large banks supervised by ECB
- Results point to possibility of getting rid of local supervisor
 - \rightarrow When cost of getting local knowledge is sufficiently low
 - \rightarrow A longer run prospect
- Meanwhile, limiting size of central supervisor may be good

Final comments (i)

• Model of hierarchical supervision is isomorphic to model where

 \rightarrow Central supervisor gets signal

 $s_c = R + \varepsilon_c$ with $\varepsilon_c \sim N(0, \sigma^2 / e_c)$

 \rightarrow Local supervisor gets signal

$$s_l = R + \varepsilon_l$$
 with $\varepsilon_l \sim N(0, \sigma^2 / e_l)$

 \rightarrow Local supervisor truthfully reports s_l to central supervisor

• Institutional design where supervisors work independently

 \rightarrow But no problem of strategic information transmission

Final comments (ii)

- Model assumes that liquidation cost is driven capture
 - \rightarrow What if (part of it) is also a social cost?
 - \rightarrow Biased supervisor may be better than unbiased supervisor
 - \rightarrow Larger region where decentralized supervision dominates
- Model assumes that bank is completely passive
 - \rightarrow Interesting to endogenize bank's choice of risk
 - \rightarrow Effects of regulation and supervision on risk-taking
 - \rightarrow Is there a trade-off between regulation and supervision?

Final comments (iii)

- Model is static, but could think of dynamic implications
 - \rightarrow In good times supervisors might reduce capabilities
 - \rightarrow Not able to increase effort when bad times arrive
 - \rightarrow (Involuntary) supervisory forbearance
- Model focuses on supervision of a domestic bank
 - \rightarrow Interesting to explore the case of an international bank