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1. Introduction

Compared to cross-sectional data, panel data analyses offer the opportunity to deal
with data issues such as unobserved heterogeneity. Similarly, typical difficulties
arising in time series contexts, say short samples and instabilities, may also be
sidestepped in a panel setup. Panel data however prompt specific challenges,
of which cross-sectional error dependence is among the more important ones.
Cross-sectional dependence may arise for various reasons, most prominently due
to global shocks affecting several units at the same time. The dramatic effects on
the asymptotic and finite-sample properties of the least-squares [LS] estimator
and standard inferential procedures have been discussed in the literature; see
e.g. Andrews (2005). In particular, should the regressors correlate with the global
shocks, endogeneity is expected to bias the LS estimator. And even if endogeneity
is not an issue, the variances of the panel estimators are typically affected by the
presence of cross-sectional dependence. Therefore, detecting and accounting for
cross-dependence is a necessary step in panel data analyses. This step is by no
means a secondary one; see, for instance, the survey of Chudik and Pesaran (2015)
or the special issue of the Journal of Applied Econometrics on the topic (Pesaran
2016).

A strand of panel literature gaining momentum is dedicated to panel quantile
regressions [QR]; see, for instance, (Koenker 2005, Section 8.7) or Chernozhukov
et al. (2013). For early applications of quantile panel data methods, see, among
others, Abrevaya and Dahl (2008); Kniesner et al. (2010); Gamper-Rabindran et al.
(2010); Covas et al. (2014); Binder and Coad (2015). More recently, Zhu et al.
(2016) use panel QR to analyse the impact of foreign direct investment (FDI),
economic growth and energy consumption on carbon emissions in five selected
member countries in the Association of South East Asian Nations; Martínez-
Zarzoso et al. (2017) investigate whether aid for trade leads to greater exports in
recipient countries; Opoku and Aluko (2021) use it to analyse the heterogeneous
effect of industrialization on the environment; Baruník and C̆ech (2021) investigate
how to measure common risks in the tails of return distributions using panel QR,
while Brownlees and Souza (2021) and Nandi (2022) take a panel route to multi-
country Growth-at-Risk. On the theory side, the asymptotic analysis provided by
Kato et al. (2012) emphasizes the role of the relation between the time and the
cross-sectional dimensions of the panel. Harding and Lamarche (2014) allow for a
factor structure in the disturbances (see also Pesaran 2006 and Bai 2009) where
factors, loadings and regressors are not independent, and propose a suitable IV
estimator (see also Harding et al. 2020). Still, in spite of the increased use and
development of QR methods, the effect of cross-sectional dependence in panel QR
has to date not been fully explored yet.

This paper’s contribution to the literature is two-fold. First, we argue that cross-
sectional dependence is far less benign in QR than in LS regressions. Concretely, we
show that a factor structure in the errors may induce asymptotic bias in the panel
QR slope parameter estimators even if the factors and loadings are independent
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of all other model components – unlike LS under the same circumstances. The
explanation for this perhaps counter-intuitive finding is that the omitted factors
shift the conditional quantile of the idiosyncratic errors in a way that does depend
on the regressors in general, and thus have an indirect confounding effect on the
panel QR estimator. In the LS regression framework, only the standard errors
are affected under such exogeneity scenarios, and panel-robust standard errors
(Arellano 1987; Driscoll and Kraay 1998) are widely used in practice to deal
with cross-correlation. However, QR counterparts of clustered standard errors (see
Parente and Santos Silva 2016; Yoon and Galvao 2016) only account for cross-
sectional error dependence if cross-dependence does not induce asymptotic biases
in the slope coefficient estimators.

Second, we discuss ways of testing the null hypothesis of no cross-sectional
error dependence in panel QR models. Apart from their original use as detectors
of cross-sectional dependence (say in order to decide on whether to use the
usual or panel-robust standard errors), such procedures also play the important
role of misspecification tests in panel QR. In LS regression models, a factor
structure of the errors only causes endogeneity bias if the factors correlate with
the regressors. Since, as we show here, biases may arise in panel QR irrespective
of any dependence between common error components and regressors, any form
of cross-dependence is therefore indicative of misspecification. A cross-dependence
test is not a replacement for standard specification procedures such as Hausman
tests. These are however more demanding, requiring the existence of exogenous
instruments which may be costly to obtain. Therefore, detecting cross-sectional
dependence is a reasonable and convenient model check, and, in this sense, we
provide a procedure which complements standard specification tests. When cross-
sectional dependence is found, one should resort to estimation methods accounting
for their presence; see e.g. Harding and Lamarche (2014) and Chen et al. (2021).

We proceed as follows. In Section 2, we illustrate the biasing effect of ignoring
cross-sectional dependence on fixed-effects panel QR; the effect appears even if the
factors and the loadings are strictly exogenous, which is in stark contrast to the
LS case. Moreover, the arguments extend to nonlinear GMM panel procedures,
indicating that panel LS estimation is rather the particular case where cross-
dependence is benign under exogeneity of the common error components. We
then discuss in section 3 the adaptation of the residual-based Breusch-Pagan test
(Breusch and Pagan 1980) of no cross-sectional dependence to the QR framework
of this paper, provide jointN,T asymptotics and propose a finite-sample correction.
The proposed cross-sectional dependence tests are valid for panel QR estimators
satisfying weak regularity conditions. Section 4 analyzes the finite-sample properties
of the proposed tests, and we illustrate our procedures in an application to housing
markets in Section 5. The final section concludes, and technical proofs of the results
stated throughout the paper are provided in an appendix, together with additional
empirical findings.
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2. Effects of cross-sectional dependence

We are interested in the τ th conditional quantile of yi,t and consider the
“structural” model

yi,t = αi,τ + β′τxi,t + ui,t,τ (1)
where the subscript τ on the model parameters indicates that coefficients may
change across quantiles. The disturbances ui,t,τ have a factor structure such that,

ui,t,τ = λ′i,τf t + εi,t,τ . (2)

Such common components may arise e.g. due to global shocks or even omitted
variables. The idiosyncratic errors εi,t,τ have zero τ -quantile conditionally on xj,s,
∀ j = 1, . . . ,N and s = 1, . . . , T . Factor models of this type have been recently
discussed by Chen et al. (2021); see also Tran et al. (2019) for a less parametric
approach.

Irrespective of the concrete estimation method used, the asymptotic properties
of the estimators β̂τ of the slope coefficients in (1) rely on a correct model
specification in which the “aggregate” errors ui,t,τ have zero conditional τ th
quantile given the regressors xi,t. This is, however, not guaranteed to occur in
error models of the kind formulated in (2), even if the unobserved variables f t are
strictly exogenous.

To illustrate the fact that cross-dependence, as induced by the latent
component f t, may have unexpected effects in the panel QR in (1), let us focus
on the simplest model with one regressor and a scalar factor, whose impact, for
simplicity, does not depend on the quantile, λi,τ = λi, i.e.,

yi,t = αi,τ + βτxi,t + λift + εi,t,τ .

Furthermore, let {ft} be independent of {εi,t,τ}, {xi,t} and the fixed effects {αi,τ}.
Just to make the point, take εi,t,τ to be normal (conditionally on the regressors x)
with mean mi,t and variance σ2i,t, and let ft be normal with mean m and variance
σ2. Note that it must hold that

mi,t + zτσi,t = 0

for the conditional τ -quantile of εi,t,τ to be zero, where zτ is the τ -quantile of the
standard normal distribution.

Under these conditions, ui,t,τ is (conditionally) normal as well. Denote the
corresponding conditional τ -quantile by qi,t,τ , which obtains as

qi,t,τ = mi,t +mλi + zτ

√
σ2i,t + λ2iσ

2.

There is no omitted variable bias whenever this conditional quantile does not
depend on the regressor x. However, it holds that

qi,t,τ = mi,t + zτσi,t +mλi + zτ

(√
σ2i,t + λ2iσ

2 − σi,t
)

= mλi + zτ

(√
σ2i,t + λ2iσ

2 − σi,t
)
,
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where we used the fact that mi,t + zτσi,t = 0. The first component, mλi, is
absorbed into the fixed effect αi,τ as long as m does not depend on x (which
we excluded to make the point). Should the second component of qi,t,τ also not
depend on t, there is no omitted variable bias, at least not in the slope coefficient
estimators (the fixed effects are treated here as nuisance parameters and any bias
in the fixed effects estimators may thus be ignored). Moreover, there is no bias in
the slope coefficients whenever zτ = 0, i.e. for median regressions in this example.

But, apart from the case zτ = 0, one may expect effects on the conditional
quantile of the ui,t,τ , when the εi,t,τ are systematically heteroskedastic. If
conditional heteroskedasticity is present, say σ2i,t = σ2i,t (xi,t), the conditional
quantiles of the errors ui,t,τ ,

qi,t,τ = mλi + zτ

(√
σ2i,t (xi,t) + λ2iσ

2 − σi,t (xi,t)
)
,

depend explicitly on xi,t, and the linear QR model yi,t = αi,τ + β′τxi,t + error is
misspecified.

Effectively, one is dealing with an artificially induced nonlinear functional form,
since the data generating process is,

P
(
yi,t ≤ ci + βτxi,t + zτ

(√
σ2i,t (xi,t) + λ2iσ

2 − σi,t (xi,t)
))

= τ.

At the same time, (1) specifies a linear model to be fitted, resulting in
misspecification bias.

The resulting bias of the slope parameter estimators depends on the strength
of the cross-sectional dependence (as captured by the nonzero λi) and on the
marginal distribution of the regressors. Moreover, its magnitude is expected to be
larger for more extreme quantiles.

Remark 1: Such effects have been noticed before in a more restricted context: for
instance, quantile fixed effects regressions and quantile random effects regressions
do not estimate the same quantity (see e.g. the discussion in Galvao and Poirier
2019). In a similar vein, Hausman et al. (2021) discuss the estimation of QR models
with measurement errors in the dependent variable. �

Remark 2: One may obtain more concrete statements on the misspecification bias
if considering “small” loadings λi. Concretely, as λi → 0,

zτ

(√
σ2i,t + λ2iσ

2 − σi,t
)

= zτ
λ2iσ

2

2σi,t (xi,t)
+ o

(
λ2i
)
,

so, assuming e.g. that σi,t (xi,t) = γ/xi,t with xi,t > 0 a.s. and λi = λ, we obtain
errors ui,t,τ having conditional quantile

qi,t,τ = mλi + zτ
λ2σ2

2γ
xi,t + o

(
λ2
)
,
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which, under regularity conditions ensuring
√
NT -consistency of β̂τ , suggests that

β̂τ − βτ − zτ
λ2σ2

2γ
= o

(
λ2
)

+Op

(
1√
NT

)
.

The conclusion (with a different expression for the bias) arguably holds for more
general forms of heteroskedasticity. For instance, should σi,t be a function of time
rather than depend on xi,t, cross-sectional dependence would induce a time trend
at the τ th quantile. Furthermore, we note that already a magnitude order of
N−1/4T−1/4 for the loadings λi may lead to such (2nd-order) biases. �

Remark 3: The same line of argumentation indicates that GMM panel estimators
based on moment conditions that are nonlinear in the errors are affected by
cross-sectional dependence in a similar manner. Finally, the effect of ignored
dependence is expected to be similar for nonlinear panel QR models, even if an
exact quantification is more difficult than in the presented linear panel QR example.
�

It may be seen that the biasing effect of ignored cross-dependence is not specific
to pooled estimation, since the shift in the conditional error quantile would equally
affect individual-unit estimation, and in fact in a unit-specific way depending on the
loadings λi. Relatedly, we also note that ignored slope coefficient heterogeneity may
induce cross-dependence too, e.g. when regressors are cross-dependent themselves.

Summing up, detecting cross-sectional dependence in panel QR is of paramount
importance in applied work. The following section discusses a test of no cross-
sectional dependence for specific use with panel QR.

3. Tests of cross-sectional dependence in panel QR

Should one observe the disturbances ui,t,τ directly, one may actually use any of
the available tests for cross-sectional dependence. We shall build on the familiar
Breusch-Pagan [BP] test based on the sample correlations of all unique pairs (ui,t,τ ,
uj,t,τ ), i 6= j.1 Then, plugging in residuals for the unobserved regression errors is
the natural way to proceed. The classical BP test resorts to LS residuals; here,
however, one should rather employ QR residuals. This is because slope coefficients
may well be quantile-specific, and we would thus take into account the fact that
cross-sectional dependence may have different effects at different quantile levels.
We consider pooled estimation first (allowing for fixed effects) and deal afterwards
with slope parameter heterogeneity by means of individual-unit estimation. In fact,
we do not focus on a particular choice of panel QR estimators, but rather require

1. In the above Gaussian example, the BP test is a Lagrange multiplier test, so we may argue in
its favor using Gaussian quasi-likelihood arguments. This, however, is just a theoretical musing, as
the regression disturbances are not observed.
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mild high-level assumptions on their convergence rates in a large-N large-T setup.
This allows for a flexible use of the proposed test of no cross-dependence in panel
QR practice.

The proposed test statistic is constructed as follows:

1. Estimate a fixed-effects QR at the relevant quantile τ ,

yi,t = α̂i,τ + β̂
′
τxi,t + ûi,t,τ .

2. Compute the pairwise correlation coefficients of the residual series,

ρ̂ij,τ =

∑T
t=1

(
ûi,t,τ − ¯̂ui,τ

) (
ûj,t,τ − ¯̂uj,τ

)√∑T
t=1

(
ûi,t,τ − ¯̂ui,τ

)2∑T
t=1

(
ûj,t,τ − ¯̂uj,τ

)2 .
Given that – unlike fixed-effects LS residuals – the QR residuals ûi,t,τ are not
necessarily centered at zero, with the mean depending on the quantile level τ ,
unit-wise demeaning is necessary. This results in a slightly different statistic
compared to the original BP test.

3. The test statistic is then given as

Tτ =
1√

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
T ρ̂2ij,τ − 1

)
. (3)

Since the BP-type statistic in (3) aggregates squared cross-correlations, the test
rejects for large positive outcomes of Tτ . In the following, we show the limiting null
distribution of Tτ to be standard normal, regularity conditions provided:

Assumption 1 Under the null hypothesis, the errors follow the multiplicative
component structure ui,t = σiεi,t, where σi are positive constants bounded and
bounded away from 0, and εi,t are independent of xi,t and iid across i and t with
absolutely continuous pdf f .

The independence assumption under the null is widespread in the literature
on testing for no cross-sectional dependence; see e.g. Baltagi et al. (2012). The
continuity requirement for the pdf f is specific to the QR literature.

The τ -quantile of the disturbances ui,t is given under the null hypothesis by
σiqτ , with qτ denoting the τ -quantile of εi,t; as usual, this may be incorporated
into the fixed effects αi to ensure identification of the slope coefficients. Under
cross-sectional dependence, we focus on sequences of local alternatives as follows.

Assumption 2 Under the alternative hypothesis, let ui,t = σiεi,t + λ′if t, where
1
T

∑T
t=1 f tf

′
t

p→ Σf > 0 as T → ∞ and λi = T−1/4N−1/4`i, with
N−2

∑N
i=1

∑N
j=i+1

(
`′iΣf`j

)2 → c2 <∞.

We note that such a local alternative corresponds to moderate cross-sectional
dependence in the sense of Bailey et al. (2016). Furthermore, note that we consider
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local alternatives in N−1/4T−1/4-neighbourhoods of the null, and Section 2 argues
that already such relatively weak cross-dependence may lead to panel QR bias.

Assumption 3 The regressors xi,t have uniformly bounded 8th order moments, and
satisfy 1

T

∑T
t=1 (xi,t − x̄i) (xi,t − x̄i)′

p→ Σi uniformly in i = 1, . . . ,N , with Σi

positive definite matrices with eigenvalues uniformly bounded and bounded away
from zero.

For the pooled fixed-effects QR estimator, we only require a high level
representation.

Assumption 4 Let the following Bahadur-type representation hold under the null
and the local alternative as N,T →∞,

√
NT

(
β̂τ − βτ

)
=

(
1

N

N∑
i=1

1

σi
f(0)Σi

)−1
1
√
NT

N∑
i=1

T∑
t=1

(
xi,t − x̄i

)
ψτ
(
ui,t − σiqτ

)
+RNT

(4)
where RNT = Op(1) and ψτ is the generalized sign function, ψτ (u) = τ − I(u < 0)
with I(·) the usual indicator function.

No conditions at all are placed on the estimators of the fixed effects α̂i,τ ; they
are washed out from the cross-dependence statistic when demeaning the residuals
ûi,t,τ .

Assumption 4 implies under the null – but also in the local alternative setup
– that β̂τ − βτ = Op

(
1/
√
NT

)
, where

√
NT is the usual convergence rate of

pooled or fixed-effects slope coefficient estimators. We note that RNT in (4) need
not be centered at zero, so estimators exhibiting 2nd order bias (as is the case in
Remark 2) may be employed in our framework.

We are now in a position to state the following proposition regarding the limit
distribution of the test statistic in (3) under the null and the considered local
alternatives.

Proposition 1 Under Assumptions 1–4, as N,T → ∞ with N/T → 0, it holds
that

Tτ
d→N

(
c2, 1

)
where c2 is as defined in Assumption 2.

Under the null (c2 = 0), this collapses to the standard normal distribution and
we may therefore reject the null hypothesis of no cross-sectional dependence at
asymptotic size α if Tτ exceeds the 1− α quantile of the standard normal.

If considering individual-unit estimation (see e.g. Kato et al. 2012), we obtain
the same limiting behaviour if Assumption 3 is modified, as in Assumption ??
below, to allow for individual-unit QR estimation.
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Assumption 5 Let the following Bahadur representations hold as N,T →∞,

√
T
(
β̂i,τ − βi,τ

)
=

(
1

σi
f(0)Σi

)−1
1√
T

T∑
t=1

(xi,t − x̄i)ψτ (ui,t − σiqτ ) +RiT

(5)
where there exists δ > 0 such that max1≤i≤N ‖RiT ‖ = Op

(
N (δ+1)/2

)
.

We note that, given the moment restrictions on the regressors x, Assumption
5 implies a uniform convergence rate of Op

(
Nδ/2

T 1/2

)
for β̂i,τ ; the individual-unit

estimators β̂i,τ may of course be
√
T -consistent.

The test statistic Tτ is modified so that the residuals ûi,t,τ are now obtained
from individual regressions, that is,

û
(i)
i,t,τ = yi,t − α̂i,τ − β̂

′
i,τxi,t.

The following proposition states a trade-off between the uniform convergence rate
of the unit-specific slope coefficient estimators (as characterized by δ in Assumption
5) and the dimensions of the panel: in a nutshell, the more estimation noise, the less
cross-sectional units are allowed for in order to obtain a standard normal limiting
distribution of the test statistics.

Proposition 2 Under Assumptions 1–3 and 5, as N,T →∞ such that N
1+2δ

T → 0,
it holds that

T (i)
τ

d→N
(
c2, 1

)
where c2 is as defined in Assumption 2.

When δ = 0 (which is in a sense closest to homogeneity in the unit-specific
estimation setup), one recovers the N = o(T ) rate from Proposition 1.

Irrespective of which slope coefficient estimators are employed, plugging in
estimates ûi,t for the unobserved ui,t has consequences on the behaviour of the
BP test if N is moderately large or large relative to T . This is in fact the case
for LS residuals too, see e.g. Pesaran et al. (2008) and Baltagi et al. (2012).
Since rate restrictions are difficult to check in practice, we suggest a finite-sample
refinement based on an evaluation of vanishing components of Tτ . Concretely, it can
be seen from the proof of Proposition 2 (see Appendix B) that most finite-sample
distortions are induced by two asymptotically negligible terms (whose expectation
is computed in the appendix), and we suggest the use of the corrected statistic,

T̃τ = Tτ −
√
N (N − 1)

2T
− τ (1− τ)

f̂2(0)

√
N (N − 1)

T
. (6)

The unknown density f at zero may be estimated using the pooled standardized
residuals, ε̂i,t = ûi,t/σ̂i, where σ̂i =

√
T−1

∑T
t=1 (ûi,t − ūi)2; in particular, we

use a standard kernel density estimator [KDE] to this end. See Section 4 for
recommendations on the choice of bandwidth. The correction may be used equally
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well for T (i)
τ , and we denote the corrected statistic based on individual-estimation

residuals by T̃ (i)
τ .

Remark 4: Under the imposed rate restriction N/T → 0, we have
√
N(N−1)
2T → 0,

such that T̃τ and Tτ are asymptotically equivalent. The first term of the proposed
correction is quite similar to that derived by Baltagi et al. (2012) for no error
cross-correlation in a classical fixed-effects homogeneous panel data model, and
essentially offsets terms that stem from demeaning the residuals. The second term
is specific to the QR setup, and is designed to capture some of the level-specific
effects of the slope coefficient estimation. �

To conclude this section, we consider a simple portmanteau test for no cross-
sectional dependence at several different quantiles, τ1, . . . , τK . We focus again on
the statistics with finite-sample correction, and let T̃τk (T̃ (i)

τk ) be the test statistics
at quantile τk as in (6). Assume that either Assumption 3 or Assumption ?? holds
at each of the K quantiles τk. The portmanteau statistic is then

M̃K =
1

K

K∑
k=1

T̃τk (7)

(M̃(i)
K = 1

K

∑K
k=1 T̃

(i)
τk ) and we again reject for test outcomes exceeding the 1−α

quantile of the standard normal distribution. Hence, the following proposition can
be stated.

Proposition 3 Under the Assumptions of either Propositions 1 or 2, it holds under
the local alternative that

M̃K
d→N

(
c2, 1

)
and

M̃(i)
K

d→N
(
c2, 1

)
,

respectively, where c2 is as defined in Assumption 2.

4. Finite-sample evidence

Building on Pesaran et al. (2008) and Moscone and Tosetti (2009), we follow the
setup of Demetrescu and Homm (2016) and use the following data generating
process:

yi,t = αi + β1x1,i,t + β2x2,i,t + ui,t, i = 1, . . . ,N (8)

where β1 = β2 = 1. Moreover, we simulate regressors which, due to a factor
structure, are correlated across cross-sections,

xl,i,t = f
(x)
l,t γ

(x)
l,i + ε

(x)
l,i,t
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where f (x)l,t ∼ iidN(0, 1) and ε
(x)
l,i,t ∼ iidN(0, 0.1). We set γ(x)l,i = 1, but one

could also consider, for example, γ(x)l,i ∼ iidU(−0.2, 0.2) with U(a, b) standing
for a uniform distribution on (a, b).2 The quantiles of interest are taken to be
τ = {0.2, 0.5, 0.8}.

We consider two scenarios for generating errors. First, we generate ui,t as,

ui,t = εi,t,

where εit ∼ iidN (0, 1) and independent from all the model variables so that we
have homoskedastic idiosyncratic error terms (the difference between mean and
quantile of interest is absorbed in the fixed-effect so centering at the relevant
quantile is not necessary). This serves to evaluate the test under the null hypothesis.
Second, we consider

ui,t = (εi,t − zτ )
√

1 + 0.5x21,i,t + 0.5x22,i,t,

where zτ is the τ -quantile of the standard normal distribution. Under the latter
specification, ui,t is conditionally heteroskedastic, and dependent across the cross-
sectional units, since xl,i,t are themselves dependent across the cross-sectional
dimension. This serves to evaluate the proposed tests under the alternative.

The KDE of f(0) is based on pooled normalized residuals, ûi,t/σ̂i, where σ̂i
is the standard deviation of {ûi,t}t=1,2,...,T . We use a Gaussian kernel with a
bandwidth of 0.35(NT )−0.2. The bandwidth is based on Silverman’s rule of thumb,
where we exploit the fact that the residuals are standardized prior to computing
the KDE of f(0). Furthermore, it is smaller than the Silverman bandwidth choice
for KDEs, which is due to the fact that the KDE of f(0) is based here on residuals
containing estimation noise, and a certain degree of undersmoothing was found in
preliminary simulations to be beneficial to the finite-sample properties of the test.

We estimate the model unit-by-unit using the conventional QR procedure of
Koenker and Bassett (1978), as well as in a pooled manner using the fixed-effects
estimation procedure proposed by Koenker (2004). Results based on 2000 Monte
Carlo replications for each case are given in Tables 1 and 2 for all quantiles τ of
interest.

2. This alternative design represents low regressor cross-dependence in the setup of Demetrescu
and Homm (2016); however, this does not significantly change the results and we do not report
them here.
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Individual-unit estimation Pooled estimation

T N T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 M̃3 T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 M̃3

10 10 14.0 6.6 20.6 11.4 13.5 6.5 5.8 12.0 5.5 12.5 5.4 11.7 5.8 5.3
20 10 8.4 5.1 10.2 7.1 9.2 6.0 5.0 8.3 5.4 7.7 5.3 8.2 5.3 4.9
30 10 6.6 3.9 8.5 5.5 7.0 4.8 4.0 6.9 5.0 7.4 5.0 7.8 5.6 5.2
50 10 7.0 5.2 7.6 5.8 6.6 5.0 5.1 6.8 5.2 6.9 5.2 6.8 5.0 5.2
100 10 7.0 6.1 6.9 6.1 6.8 6.0 5.9 6.9 5.7 6.5 5.6 6.7 5.7 5.6

10 20 30.5 7.4 52.3 19.0 31.0 7.1 7.6 27.1 5.6 26.7 5.5 25.8 6.1 5.4
20 20 13.2 5.2 19.0 7.7 12.6 4.8 4.4 12.7 4.9 12.8 5.2 12.9 4.9 5.0
30 20 11.2 6.1 12.4 6.7 10.6 5.2 5.3 11.2 5.3 11.1 5.1 11.0 5.1 5.0
50 20 9.2 4.9 10.3 6.2 8.6 4.8 4.9 9.2 5.1 9.2 4.9 9.2 4.9 4.8
100 20 6.5 4.8 7.2 5.4 6.6 4.7 4.8 6.7 4.5 6.5 4.7 7.0 4.6 4.4

10 30 54.9 9.2 82.6 29.7 54.0 7.8 11.3 48.9 6.1 48.1 5.8 48.2 6.5 6.0
20 30 18.3 4.9 28.3 9.3 18.1 4.8 4.8 18.8 4.5 18.3 4.8 18.1 5.3 4.8
30 30 12.2 4.0 16.8 6.0 11.5 3.9 3.7 11.0 3.8 11.2 3.8 11.2 3.6 3.6
50 30 9.2 4.7 11.6 5.6 9.3 4.3 4.6 9.6 4.6 9.8 4.9 9.7 4.9 4.8
100 30 6.8 4.3 7.7 4.4 7.4 3.9 4.2 6.3 4.0 6.3 4.0 6.1 3.7 3.9

10 50 93.5 12.9 99.9 52.7 92.9 11.9 19.8 88.7 6.3 89.1 6.3 89.1 6.5 6.1
20 50 36.6 3.6 56.5 10.7 35.7 3.7 4.0 34.4 3.2 35.1 3.2 35.1 3.2 3.0
30 50 20.4 4.0 31.8 7.4 20.9 4.0 4.3 20.6 3.7 20.8 3.7 21.0 3.7 3.7
50 50 12.2 3.4 15.3 4.4 11.4 2.9 3.4 12.0 2.9 12.0 2.8 11.4 2.7 2.7
100 50 7.8 3.1 9.6 3.5 8.3 3.3 3.1 8.6 2.9 9.0 3.1 8.8 3.0 2.8

10 100 100.0 23.8 100.0 93.0 100.0 24.2 56.4 100.0 8.8 100.0 7.9 100.0 8.5 8.6
20 100 84.6 3.7 98.1 22.0 85.7 3.4 5.8 85.1 3.5 84.8 3.4 85.0 3.5 3.4
30 100 50.6 2.6 74.3 8.8 49.2 3.2 3.8 49.3 2.3 49.4 2.3 50.0 2.4 2.4
50 100 25.9 2.4 38.2 4.7 24.8 2.5 2.8 25.6 2.3 25.5 2.2 25.2 2.3 2.3
100 100 12.2 2.5 15.7 3.3 12.4 2.1 2.7 11.7 2.8 11.8 2.8 11.8 2.8 2.9

Note: Tτ and T̃τ , correspond to the test statistics in (3) and (6), respectively computed
at quantiles τ = {0.2, 0.5, 0.8} using either individual-unit or pooled fixed-effects estimation.
M̃3 = 1

3 (T̃0.2 + T̃0.5 + T̃0.8) corresponds to the portmanteau statistics in (7). All results reported
are based on the nominal size of 5% and 2000 Monte Carlo replications.

Table 1. Empirical rejection frequencies for Tτ and T̃τ under a homoskedastic error structure
and no cross-unit error dependence
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Individual-unit estimation Pooled estimation

T N T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 M̃3 T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 M̃3

10 10 20.4 12.2 24.7 14.4 21.3 11.6 9.5 27.4 17.0 24.0 13.9 27.0 16.6 14.2
20 10 23.8 17.2 23.1 16.8 24.8 17.5 14.7 30.1 22.5 26.4 19.5 31.4 24.2 21.1
30 10 27.4 22.2 23.6 18.7 25.7 20.5 18.8 31.5 26.0 26.4 21.2 31.0 26.2 23.5
50 10 30.4 26.6 24.6 21.2 29.8 26.2 22.7 33.8 29.8 26.3 22.4 33.7 29.6 27.3
100 10 40.4 38.2 27.7 24.7 40.8 38.1 33.3 42.9 40.2 28.2 25.9 42.7 39.9 35.4

10 20 50.1 21.5 60.7 28.9 51.6 21.3 19.6 63.2 33.2 60.0 27.4 63.6 31.9 30.6
20 20 48.6 31.8 48.8 30.8 47.8 31.7 30.8 58.8 43.4 54.5 37.6 61.4 45.2 42.4
30 20 56.1 44.1 49.8 36.6 53.4 40.5 41.4 65.6 52.9 55.1 42.9 62.0 51.5 49.7
50 20 65.4 58.0 56.6 46.9 66.3 57.8 55.8 72.0 63.1 60.0 51.5 72.1 64.8 61.5
100 20 80.6 76.1 60.2 54.7 78.2 74.3 72.4 82.0 77.4 61.9 56.9 81.2 77.1 74.2

10 30 77.1 31.8 87.8 42.4 77.9 30.9 32.8 87.7 47.6 85.3 42.2 87.5 46.0 45.6
20 30 72.4 48.9 71.3 47.9 72.8 49.0 49.1 81.9 63.3 77.8 54.8 81.4 63.2 61.4
30 30 79.9 65.6 76.0 58.9 79.5 65.1 65.7 85.6 73.9 80.8 66.3 85.3 74.5 73.0
50 30 88.0 79.9 79.9 68.7 87.7 80.3 79.5 90.4 84.7 83.8 74.5 90.4 84.9 83.7
100 30 95.0 93.0 84.4 78.3 95.7 93.3 92.7 95.8 93.8 86.0 80.9 96.8 94.2 93.4

10 50 99.1 52.4 99.9 69.4 99.1 52.2 60.5 99.5 68.9 99.6 65.3 99.4 69.3 69.1
20 50 94.6 73.8 96.3 73.6 94.9 73.0 76.5 97.8 85.6 97.3 81.3 97.6 85.0 85.3
30 50 96.6 87.2 95.9 84.6 96.9 87.6 88.7 98.2 92.3 97.7 87.8 98.3 92.7 92.2
50 50 99.1 96.6 98.1 92.6 99.0 96.4 97.0 99.5 98.0 98.6 94.8 99.5 97.9 97.9
100 50 100.0 99.9 99.0 97.0 99.9 99.6 99.8 100.0 100.0 99.1 97.9 99.8 99.7 99.8

10 100 100.0 84.4 100.0 97.7 100.0 84.6 93.8 100.0 91.2 100.0 90.1 100.0 91.2 91.8
20 100 100.0 95.9 100.0 97.3 99.9 95.6 97.1 100.0 98.7 100.0 97.7 100.0 98.3 98.3
30 100 100.0 99.1 100.0 99.0 100.0 99.2 99.0 100.0 99.5 100.0 99.2 100.0 99.5 99.4
50 100 100.0 99.9 100.0 99.9 100.0 99.8 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0
100 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Tτ and T̃τ , correspond to the test statistics in (3) and (6), respectively computed at
quantiles τ = {0.2, 0.5, 0.8} using either individual-unit or pooled fixed-effects estimation.
M̃3 = 1

3 (T̃0.2 + T̃0.5 + T̃0.8) corresponds to the portmanteau statistics in (7). All results
reported are based on the nominal size of 5% and 2000 Monte Carlo replications.

Table 2. Empirical rejection frequencies for Tτ and T̃τ under a heteroskedastic error
structure and no cross-unit error dependence



14

Table 1 provides the empirical rejection rates when the idiosyncratic error term is
homoskedastic. As expected, the test based on Tτ is oversized when T is relatively
small, with distortions being somewhat larger for the individual-unit estimation
case. This Table also shows that T̃τ provides a good size correction for all quantiles
of interest for almost all {N,T} constellations for pooled estimation of the slope
coefficients. Exceptions are observed when τ = 0.2 and τ = 0.8 with N = 100 and
T = 10 where the rejection rate of T̃τ turns out to be 8.1% and 8.3%, respectively.
The resulting size control observed for the individual-unit estimation is effective in
general too, but is sensitive to cases when N/T is bigger than 2. Further, when
we observe size distortions for the individual-unit estimation, then these turn out
to be larger when τ = 0.5 compared to τ = 0.2 and 0.8.

Table 1 also reports the rejection rates for the portmanteau statistic, M̃3,
which we calculate using the corrected statistic T̃τ computed at the quantiles
τ = {0.2, 0.5, 0.8}. The observed behavior of M̃3 is in line with that of the tests
for individual quantiles.

Table 2 shows that the tests reject more often than under the previous
scenario. This is not surprising since ui,t is cross-sectionally dependent through
its dependence on xi,t (which is in turn cross-sectionally dependent). Also, the
rejection frequencies increase as either N or T grow, apparently faster in N than
in T . Both Tτ and its corrected version T̃τ are able to detect cross-sectional error
dependence (where of course the corrected version should be preferred on the basis
of the improved size control). The conclusions regarding the portmanteau statistic,
M̃3, are qualitatively the same. While the tests are, expectedly, not able to pin
down the source of dependence, they are clearly indicative of misspecification. All in
all, the tests appear to be a useful diagnostic tool for specifying panel QR models.

5. A panel QR analysis of housing market growth

Homes are one of the most important assets in many households’ portfolios
(Englund et al. 2002) and, consequently, changes in housing wealth may lead
to changes in home-owners’ consumption (Case et al. 2005). E.g., it has been
shown that the impact of changes in housing wealth on the economy can be more
important than changes in wealth caused by stock price movements (Helbling and
Terrones 2003, and Rapach and Strauss 2006). Economic history indeed suggests
that some of the most severe systemic financial crises have been associated with
boom-bust cycles in real estate markets (see e.g. Bordo and Jeanne 2002, and
Crowe et al. 2013).

In this context, Deghi et al. (2020) propose the so-called houses-prices-at-risk
approach as a measure to evaluate risks to the real estate market. This measure
is inspired in the work of Adrian et al. (2022) (see also Adrian et al. 2019)
who developed a measure to evaluate risks to GDP growth (Growth-at-Risk); see
Brownlees and Souza (2021) and Nandi (2022) for panel approaches to Growth-
at-Risk. In a similar vein, Makabe and Norimasa (2022) analyse the term structure



15 Cross-Sectional Error Dependence in Panel Quantile Regressions

of Inflation-at-Risk. Such approaches estimate a (panel) QR to determine which
of the covariates considered affect the response variable of interest, i.e. house
price growth (for houses-prices-at-risk), inflation (for inflation-at-risk), or GDP
growth (for growth-at-risk) and to explain the conditional predictive distribution of
the response variable derived from the estimates. Moreover, the entire conditional
distribution of the variable of interest is computed following two steps: (1) panel QR
estimation of the effect of the covariates at each quantile, and (2) approximation of
the estimated quantile function e.g. with a skewed t-distribution. Consequently, the
correct estimation in the first step is of tantamount importance in this approach.
In this section, we illustrate the relevance of our procedure with an application of
panel QR to house price growth data for eleven countries.

5.1. Data

In our analysis we consider a balanced panel of quarterly time series, for the period
from 1995:Q1 to 2020:Q3 (T = 103), for nine Euro Area countries (Germany (DE),
France (FR), Italy (IT), Spain (ES), the Netherlands (NL), Ireland (IE), Portugal
(PT), Belgium (BE) and Finland (FI)), the UK and the US (N = 11). Data on
house prices, disposable income, labour force and private consumption deflator
were collected from the OECD, while short-term interest rates were taken from the
European Central Bank. A detailed description of all data sources and availability,
as well as country specificities are provided in Appendix C.

House price indices correspond generally to seasonally unadjusted series
constructed from national data from a variety of public and/or private sources (e.g.,
national statistical services, mortgage lenders and real estate agents). National
house price series may differ in terms of dwelling types and geographical coverage
(most are country-wide and refer to existing apartments). Several series are based
on hedonic approaches to price measurement, characterized by valuing the houses in
terms of their attributes (average square meter price, size of the dwellings involved
in transactions and their location).

In our analysis we consider fluctuations in real house prices,3 measured as
quarterly changes in the natural logarithm of the real house price index of each
country, i.e., quarterly real house price growth. Figure 1 plots the cross-sectional
10th-90th percentile range, the 25th-75th percentile range and the median of the
11 quarterly real house price growth at each time in the sample.

3. All series in real terms are computed using the private consumption deflator.
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Figure 1: Quarterly change in log real house prices (in percentage)

This figure illustrates that, although some countries appear to be more cyclical
than others, real house prices tend to co-move during crises, which suggests the
presence of an underlying common factor in these series. We see a general decline
during the global financial crisis (2008-2009) as well as during the European
sovereign debt crisis (2011-2012).

5.2. Model

There is a vast number of studies that analyses the determinants of house prices
and their growth. Findings in the literature indicate that models that explain
changes in house prices include a wide set of fundamentals, such as income (or
GDP), population, employment or unemployment rate, taxes, borrowing costs,
construction costs and returns on alternative assets (Poterba et al. 1991, Englund
and Ioannides 1997, Tsatsaronis and Zhu 2004).

In our analysis, the dependent variable is the growth rate of real house prices,
∆rhp. To keep the model tractable, and due to data availability, we focus on the
most consensual fundamentals, such as, log of real disposable income, lrdi, real
mortgage interest rate, rmtgr, log of gross fixed capital formation, lGFCF , the
unemployment rate, unemp, and the volume of loans for house purchases, vlhp.

We take a predictive perspective here, and the panel QR model is given as

∆rhpi,t = αi,τ + β1,τ∆lrdii,t−1 + β2,τ∆lGFCFi,t−1 + β3,τ∆vlhpi,t−1

+β4,τunempi,t−1 + β5,τrmtgri,t−1 + λ′i,τf t,τ + ui,t,τ , (9)

where τ ∈ (0, 1) is the quantile of interest, i= 1, . . . , 11 indexes the eleven countries
considered, and ∆ is the first difference operator.
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The quantile-dependent factors, f t,τ , used in (9) are estimated using the
quantile factor methodology recently proposed by Chen et al. (2021). The number
of factors considered at each quantile is determined using the rank-minimization
approach proposed by Chen et al..

QR0 QRF QR0 QRF QR0 QRF
τ = 0.1 τ = 0.2 τ = 0.3

β1,τ 0.2293∗∗∗ 0.2262∗∗∗ 0.1136∗∗∗ 0.1129∗∗∗ 0.1174∗∗∗ 0.0941∗∗∗

β2,τ 0.1072∗∗∗ 0.1084∗∗∗ 0.1220∗∗∗ 0.1068∗∗∗ 0.1175∗∗∗ 0.0888∗∗∗

β3,τ 0.2260∗∗∗ 0.2247∗∗∗ 0.2205∗∗∗ 0.2116∗∗∗ 0.1909∗∗∗ 0.1075∗∗∗

β4,τ −0.1258∗∗∗ −0.0916∗∗∗ −0.0807∗∗∗ −0.0672∗∗∗ −0.0537∗∗∗ −0.0284
β5,τ −0.1597∗∗∗ −0.1628∗∗∗ −0.1295∗∗∗ −0.1493∗∗∗ −0.0922∗∗∗ −0.2416∗∗∗
f1,τ −0.0044∗∗∗ −0.0030∗∗ 0.0055∗∗∗

f2,τ 0.0024∗∗∗

τ = 0.4 τ = 0.5 τ = 0.6

β1,τ 0.1131∗∗∗ 0.0678∗∗∗ 0.0669∗∗ 0.0682∗∗ 0.0469 0.0576∗∗∗

β2,τ 0.0968∗∗∗ 0.0730∗∗∗ 0.1017∗∗∗ 0.0786∗∗∗ 0.0817∗∗∗ 0.0638∗∗∗

β3,τ 0.1955∗∗∗ 0.1011∗∗∗ 0.1904∗∗∗ 0.0832∗∗∗ 0.1652∗∗∗ 0.0725∗∗∗

β4,τ −0.0439∗∗∗ −0.0283∗ −0.0363∗∗ −0.0104 −0.0246∗ 0.0258
β5,τ −0.0718∗∗∗ −0.1652∗∗∗ −0.0607∗∗∗ −0.2020∗∗∗ −0.0638∗∗∗ −0.2589∗∗∗
f1,τ 0.0053∗∗∗ 0.0052∗∗∗ 0.0057∗∗∗

f2,τ −0.0012∗∗∗ −0.0013∗∗∗ −0.0016∗∗∗
f3,τ −0.0017∗∗∗ −0.0006 −0.0015∗∗∗
f4,τ 0.0010∗∗ 0.0033∗∗∗ 0.0034∗∗∗

f5,τ 0.0008∗ 0.0007∗

τ = 0.7 τ = 0.8 τ = 0.9

β1,τ 0.0472 0.0158 0.0416 0.0301 0.0494 0.0516
β2,τ 0.0693∗∗∗ 0.0498∗∗∗ 0.0527∗∗∗ 0.0309∗∗ 0.0268 0.0211
β3,τ 0.1471∗∗∗ 0.0549∗∗∗ 0.1485∗∗∗ 0.0737∗∗∗ 0.1438∗∗∗ 0.1063∗∗

β4,τ −0.0356∗∗ 0.0410∗∗∗ −0.0170 −0.0460∗∗∗ 0.0119 −0.0505∗∗
β5,τ −0.0692∗∗∗ −0.3048∗∗∗ −0.0472∗∗ −0.2151∗∗∗ −0.0366 −0.0386
f1,τ 0.0072∗∗∗ −0.0109∗∗∗ −0.0096∗∗∗
f2,τ 0.0027∗∗∗

Note: Quantile regression estimation results of (9) with (QRF ) and without (QR0) the
inclusion of factors. The factors used where extracted using the approach of Chen et al.

(2021).

Table 3. Panel QR results from models with and without quantile factors (QRF and QR0,
respectively)

Table 3 provides the estimation results of the panel QR model in (9) with
(QRF ) and without (QR0) the inclusion of factors.

The signs of the parameter estimates in Table 3 are in general as expected.
Specifically, positive variations in the log of real disposable income, lrdi, the
log of gross fixed capital formation, lGFCF and the volume of loans for house
purchases, vlhp, have positive impacts on house price growth whereas positive
variations in the unemployment rate, unemp, and the real mortgage interest rate,
rmtgr, have negative impacts on house price growth. Moreover, we also observe
that the association between the covariates and house price growth varies at the
different parts of the house price growth distribution. Overall, the differences in
slopes indicate a markedly stronger relationship towards the left tail of the future
house prices growth distribution relatively to the median and the upper percentiles
of the distribution.
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Importantly, the QRF estimation results highlight the relevance of the quantile
factors used in the panel QR model. This Table shows that the factors are all
statistically significant regardless of the quantile τ considered. Furthermore, if we
contrast the slope parameter estimates obtained from QR0 and QRF we observe
that the slope estimates are in general different.4

To formally support the choice of the QRF results, Table 4 provides the
outcomes of the QR cross-sectional dependence tests introduced here at quantiles
τ ∈ {0.1, 0.2, . . . , 0.9}.

τ Tτ T̃τ T (i)
τ T̃ (i)

τ

0.1 16.2443 16.1505 29.6742 29.5804
0.2 17.6134 17.5149 27.0103 26.9119
0.3 15.3685 15.2690 21.8558 21.7563
0.4 17.4186 17.3155 23.4883 23.3852
0.5 19.5389 19.4411 17.2902 17.1924
0.6 19.3413 19.2428 19.3435 19.2449
0.7 21.4241 21.3256 26.4987 26.4001
0.8 20.6872 20.5915 31.5651 31.4694
0.9 30.4355 30.3372 39.3485 39.2503

Note: Tk and T̃k are the test statistics provided in (3) and (6), respectively; and T (i)
k and

T̃ (i)
k are also computed as indicated in (3) and (6), respectively, but the residuals used are

obtained from individual regressions.

Table 4. Cross-sectional dependence test results

In addition to the results in Table 4 we have also computed the classical Breuch-
Pagan test, BP = 31.144, and the bias-corrected version proposed by Baltagi et al.
(2012), BPbc = 31.089.

The results in Table 4 indicate that:

1. there is not a significant difference between the asymptotic and the corrected
versions of the panel QR cross-sectional dependence tests;

2. the strength of the cross-correlation depends to some extent on the quantile
of interest. The BP and the BPbc tests do not provide quantile specific
information.

3. there are visible differences between the tests based on pooled estimation
(Tτ and T̃τ ) and those based on individual-unit estimation (T (i)

τ and
T̃ (i)
τ ), where the latter indicates stronger cross-correlation. This points

towards heterogeneity of the slope parameters in addition to cross-unit error
dependence.

Hence, overall Table 4 points to the presence of cross-sectional dependence
which suggests that this feature needs to be addressed in the panel QR estimation

4. This is also observed by Nandi (2022) when explicitly accounting for cross-unit dependence in
the panel QR analysis of Brownlees and Souza (2021).
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and hence, supports the results obtained from the factor augmented panel QR
model in (9).

Since Table 4 is suggestive of slope coefficient heterogeneity, we provide
individual-estimation results in Appendix C (Table C2) and we also present plots
of the country specific quantile predictions (Figure C1). Interestingly, during the
COVID 19 pandemic the development of the housing market has been atypical.
This is, to a certain extend, well illustrated in Figure C1. Specifically, we note that
at the end of the sample, for many of the countries considered, the covariates point
to an evolution of house price growth which is in contrast to the actual observed
house price growth dynamics. In past recessions, downturns were typically followed
by a moderate fall in nominal house prices, lasting about four quarters. However, in
the pandemic period until the end of 2021, there was no decline at all. In addition,
the current recession has not been accompanied by significant changes in credit
growth, unlike past episodes, when households typically reduced their leverage after
it had increased in the expansion phase (Igan et al. 2022).

In recent years, the international synchronization of house prices has increased.
As noted by Igan et al. (2022), more than 60% of house price movements can
now be explained by a common global factor. One reason for this much higher
synchronization is that the pandemic has been truly global, thus inducing similar
policy reactions and flattening yield curves worldwide.

6. Concluding remarks

This paper has argued that cross-sectional dependence in panel QR models may
have a biasing effect on the QR estimator even if the latent error common
components are independent of the regressors. This extends more generally to
panel nonlinear GMM estimators with errors having a factor structure.

Motivated by this argument, we proposed a test for no cross-sectional
dependence. Such tests may also be interpreted as misspecification tests, since
the detection of cross-sectional dependence may imply the existence of potential
estimation biases.

The proposed test is a version of the familiar Breusch-Pagan test based on
residuals from either pooled or individual-unit QR estimation. While it possesses
a standard normal limiting distribution under joint N,T asymptotics, the rate
restrictions are not benign, which is reflected in the finite-sample behavior. For
this reason we discuss a finite-sample correction which largely removes the size
distortions when N is too large in relation to T . We also discuss a portmanteau
version of the tests which aggregates evidence across several quantiles. Moreover,
we provide an in-depth Monte Carlo analysis of the finite sample size and power
properties of the new procedures introduced, confirming the usefulness of the
finite-sample correction and revealing interesting power performance under the
alternative.
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Finally, we illustrate the usefulness of our approach in an empirical analysis of
house-price growth determinants, from a predictive perspective, in a panel of eleven
countries (Germany (DE), France (FR), Italy (IT), Spain (ES), the Netherlands
(NL), Ireland (IE), Portugal (PT), Belgium (BE) and Finland (FI), the UK and
the US), for the period from 1995:Q1 to 2020:Q3. The tests introduced clearly
highlight the need to address cross-sectional dependence, favoring therefore a factor
augmented panel QR model. Furthermore, evidence of cross-dependence is stronger
in pooled residuals than in residuals from individual-unit estimation, indicating the
presence of slope coefficient heterogeneity in addition to cross-unit dependence in
the data.



21 Cross-Sectional Error Dependence in Panel Quantile Regressions

References

Abrevaya, J. and C. M. Dahl (2008). The effects of birth inputs on birthweight:
Evidence from quantile estimation on panel data. Journal of Business &
Economic Statistics 26(4), 379–397.

Adrian, T., N. Boyarchenko, and D. Giannone (2019). Vulnerable growth. American
Economic Review 109(4), 1263–89.

Adrian, T., F. Grinberg, N. Liang, S. Malik, and J. Yu (2022). The term structure of
growth-at-risk. American Economic Journal: Macroeconomics 14(3), 283–323.

Andrews, D. W. K. (2005). Cross-section regression with common shocks.
Econometrica 73(5), 1551–1585.

Arellano, M. (1987). Computing robust standard errors for within-group estimators.
Oxford Bulletin of Economics and Statistics 49(4), 431–434.

Bai, J. (2009). Panel data models with interactive fixed effects.
Econometrica 77(4), 1229–1279.

Bailey, N., G. Kapetanios, and M. H. Pesaran (2016). Exponent of cross-sectional
dependence: Estimation and inference. Journal of Applied Econometrics 31(6),
929–960.

Baltagi, B. H., Q. Feng, and C. Kao (2012). A Lagrange Multiplier test for
cross-sectional dependence in a fixed effects panel data model. Journal of
Econometrics 170(1), 164–177.

Baruník, J. and F. C̆ech (2021). Measurement of common risks in tails: A panel
quantile regression model for financial returns. Journal of Financial Markets 52,
100562.

Binder, M. and A. Coad (2015). Heterogeneity in the relationship
between unemployment and subjective wellbeing: A quantile approach.
Economica 82(328), 865–891.

Bordo, M. D. and O. Jeanne (2002). Monetary policy and asset prices: Does
‘benign neglect’ make sense? International Finance 5(2), 139–164.

Breusch, T. S. and A. R. Pagan (1980). The Lagrange Multiplier test and its
application to model specification tests in econometrics. Review of Economic
Studies 47(1), 239–253.

Brownlees, C. and A. B. M. Souza (2021). Backtesting global Growth-at-Risk.
Journal of Monetary Economics 118, 312–330.

Case, K. E., J. M. Quigley, and R. J. Shiller (2005). Comparing wealth effects: The
stock market versus the housing market. Advances in Macroeconomics 5(1).

Chen, L., J. J. Dolado, and J. Gonzalo (2021). Quantile factor models.
Econometrica (89), 875–910.

Chernozhukov, V., I. Fernández-Val, J. Hahn, and W. Newey (2013). Average and
quantile effects in nonseparable panel models. Econometrica 81(2), 535–580.

Chudik, A. and M. H. Pesaran (2015). Large panel data models with cross-sectional
dependence: A survey. In B. H. Baltagi (Ed.), The Oxford Handbook of Panel
Data, pp. 3–45. Oxford University Press.



22

Covas, F. B., B. Rump, and E. Zakrajšek (2014). Stress-testing US bank holding
companies: A dynamic panel quantile regression approach. International Journal
of Forecasting 30(3), 691–713.

Crowe, C., G. Dell’Ariccia, D. Igan, and P. Rabanal (2013). How to deal with
real estate booms: Lessons from country experiences. Journal of Financial
Stability 9(3), 300–319.

Deghi, A., M. Katagiri, S. Shahid, and N. Valckx (2020). Predicting downside risks
to house prices and macro-financial stability. IMF Working Paper No. 2020/011 .

Demetrescu, M. and U. Homm (2016). Directed tests of no cross-sectional
correlation in large-N panel data models. Journal of Applied Econometrics 31(1),
4–31.

Driscoll, J. C. and A. C. Kraay (1998). Consistent covariance matrix estimation with
spatially dependent panel data. The Review of Economics and Statistics 80(4),
549–560.

Englund, P., M. Hwang, and J. Quigley (2002). Hedging housing risk. Journal of
Real Estate Finance and Economics (24), 167–200.

Englund, P. and Y. M. Ioannides (1997). House price dynamics: An international
empirical perspective. Journal of Housing Economics 6(2), 119–136.

Galvao, A. F. and A. Poirier (2019). Quantile regression random effects. Annals
of Economics and Statistics (134), 109–148.

Gamper-Rabindran, S., S. Khan, and C. Timmins (2010). The impact of piped
water provision on infant mortality in Brazil: A quantile panel data approach.
Journal of Development Economics 92(2), 188–200.

Harding, M. and C. Lamarche (2014). Estimating and testing a quantile regression
model with interactive effects. Journal of Econometrics 178(1), 101–113.

Harding, M., C. Lamarche, and M. H. Pesaran (2020). Common correlated effects
estimation of heterogeneous dynamic panel quantile regression models. Journal
of Applied Econometrics 35(3), 294–314.

Hausman, J. A., H. Liu, Y. Luo, and C. Palmer (2021). Errors in the dependent
variable of quantile regression models. Econometrica 89(2), 849–873.

Helbling, T. and M. Terrones (2003). Real and financial effects of bursting asset
price bubbles. IMF World Economic Outlook, Chapter 2. April .

Igan, D., E. Kohlscheen, and P. Rungcharoenkitkul (2022). Housing market risks
in the wake of the pandemic. BIS Bulletin (50).

Kato, K., A. F. Galvao, and G. V. Montes-Rojas (2012). Asymptotics
for panel quantile regression models with individual effects. Journal of
Econometrics 170(1), 76–91.

Kniesner, T., W. Viscusi, and J. Ziliak (2010). Policy relevant heterogeneity in
the value of statistical life: New evidence from panel data quantile regressions.
Journal of Risk and Uncertainty 40, 15–31.

Koenker, R. (2004). Quantile regression for longitudinal data. Journal of
Multivariate Analysis 91(1), 74–89.

Koenker, R. (2005). Quantile regression. Cambridge University Press.



23 Cross-Sectional Error Dependence in Panel Quantile Regressions

Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica 46(1),
33–50.

Makabe, Y. and Y. Norimasa (2022). The term structure of inflation at risk: A panel
quantile regression approach. Bank of Japan Working Paper Series No.22-E-4.

Martínez-Zarzoso, I., F. Nowak-Lehmann D., and K. Rehwald (2017). Is aid for
trade effective? A panel quantile regression approach. Review of Development
Economics 21(4), e175–e203.

Moscone, F. and E. Tosetti (2009). A review and comparison of tests of cross-
section independence in panels. Journal of Economic Surveys 23(3), 528–561.

Nandi, S. (2022). Cross-sectional dependence in Growth-at-Risk. King’s Business
School Working paper No. 2022/3.

Opoku, E. E. O. and O. A. Aluko (2021). Heterogeneous effects of industrialization
on the environment: Evidence from panel quantile regression. Structural Change
and Economic Dynamics 59, 174–184.

Parente, P. M. D. C. and J. Santos Silva (2016). Quantile regression with clustered
data. Journal of Econometric Methods 5(1), 1–15.

Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels
with a multifactor error structure. Econometrica 74(4), 967–1012.

Pesaran, M. H. (2016). Cross-sectional dependence in panel data models: A special
issue. Journal of Applied Econometrics 31(1), 1–3.

Pesaran, M. H., A. Ullah, and T. Yamagata (2008). A bias-adjusted LM test of
error cross-section independence. Econometrics Journal 11(1), 105–127.

Poterba, J. M., D. N. Weil, and R. Shiller (1991). House price dynamics: The
role of tax policy and demography. Brookings Papers on Economic Activity (2),
143–203.

Rapach, D. E. and J. K. Strauss (2006). The long-run relationship between
consumption and housing wealth in the eighth district states. Regional Economic
Development, Federal Reserve Bank of St. Louis, issue Oct, 140–147.

Tran, N. M., P. Burdejová, M. Ospienko, and W. K. Härdle (2019). Principal
component analysis in an asymmetric norm. Journal of Multivariate Analysis 171,
1–21.

Tsatsaronis, K. and H. Zhu (2004). What drives housing price dynamics: Cross-
country evidence. BIS Quarterly Review, March 2004 .

Yoon, J. and A. F. Galvao (2016). Robust inference for panel quantile regression
models with individual fixed effects and serial correlation. Mimeo.

Zhu, H., L. Duan, Y. Guo, and K. Yu (2016). The effects of FDI, economic growth
and energy consumption on carbon emissions in ASEAN-5: Evidence from panel
quantile regression. Economic Modelling 58, 237–248.



24

Appendix A - Auxiliary results

Throughout the appendix, let ui, ûi,τ and Xi stack ui,t, ûi,t,τ and x′i,t for
t = 1, ..., T , and denote by σ̂ij the sample covariance of the residuals, σ̂ij =
1
T

(
ûi,τ − ¯̂ui,τ ι

)′ (
ûj,τ − ¯̂uj,τ ι

)
with ι a T -vector of ones, and by äi (Äi) the

column-specific demeaning of a vector (matrix).
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Ẍ′
iüj
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ü′
iüj ü
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where Q1 through Q10 are computed using either a pooled slope coefficient estimator or individual-
unit estimators.
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Appendix B - Proofs of main results

Proof of Lemma 1
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Ẍ′iüj
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Ẍ′iüj
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since

1

NT

N−1∑
i=1

N∑
j=i+1

E
(
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)
= O (NT ) ,

and, thanks to assumption 3,

1

N2T 2
E

N−1∑
i=1

N∑
j=i+1

(
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Ẍ′iẌj
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ü′iüjẌ
′
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iüj

 =
1

N2T 2

N∑
j=2

j−1∑
i=1

E

((
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ü′iüjẌ
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iẌj

where again using the same arguments as for Q4 we obtain Q6 = Op
(
Nδ+1

T

)
.

Q7 is similar to Q6.
For Q8 we have

1

N
Q8 = −2

N−1∑
i=1

N∑
j=i+1

(
β̂i,τ − βi

)′
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2
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Plugging the latter into the expression for Q10 we obtain
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ü′j üj
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ü′
iüi
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Proof of Lemma 2

For item 1, we have
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where the summation over the first term is by assumption c2 + o(1) and the summation over the
second and third terms is op(1) with stationarity and bounded 4th moment assumption on f t.

For part 2 we have
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S3 is dealt with in a manner similar to S2.
For S4, we have
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Using similar arguments, S5 up to S9 are then all shown to be op(1).

Proof of Proposition 1

We have that
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Then,
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′
iẌj
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with Ak,ij defined implicitly. Write now
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where the rest terms Qk, k = 1, . . . , 10, are shown in Lemma 1 to be op (N) under the weaker
conditions of individual-unit estimation. Therefore
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ü′iüj

)2

=

(
1
√
T

(ui − ιµi)′
(
uj − ιµj

)
−
√
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under our rate restrictions, so the result follows if the second and third terms on the r.h.s. vanish.
We examine the vanishing terms in turn.
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, we have
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such that
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Moreover, since bi and bj are zero-mean independent quantities, and also independent of akl for
any i 6= k, j 6= l it can be seen that the products aijbibj are pairwise uncorrelated and, given the
moment requirements on ε̃i,t, also have finite variance. Therefore,
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To complete the analysis, note that the leading term of T (ūi − µi)2
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is obtained from Lemma 1, stemming from the leading term of Q1 +Q2.
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leading to the desired result.
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Proof of Proposition 2

We closely follow the proof of Proposition 1 and obtain similarly
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where Q̃1, . . . , Q̃10 are defined analogously to the terms in the proof of Proposition 1 but are
computed using β̂i,τ rather than a pooled slope coefficient estimator. Thanks to Lemma 1, we
obtain that
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under our rate conditions. The result follows using the same arguments as in the proof of Proposition
1.

Proof of Proposition 3

We focus w.l.o.g. on the case of individual-unit estimation. Then, like in the proof of Proposition
2, we have
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ü′iüj
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for any finite K; the result follows.

Appendix C - Data sources, and additional empirical results and figures



Country name Source Series Frequency sa Availability

Germany Deutsche Bundesbank Residential property prices annuala 1970:Q1 - 2020:Q3
France Institut National de la Statistique et Indice trimestriel des prix quarterly yes 1970:Q1 - 2020:Q3

des Études Économiques (INSEE) des logements anciens
- France métropolitaine -

Italy Eurostat Residential Eurostat : Residential property prices, quarterly no 1970:Q1 - 2020:Q3
Property Price Index for recent indicator existing dwellings, whole country no
and Nomisma for the past Nomisma : 13 Main Metropolitan Areas semi-annual

- Average current prices of used housing
Belgium Banque National de Belgique Residential property prices, quarterly no 1970:Q1 - 2020:Q3

existing dwellings, whole country
Finland Statistics Finland Prices of dwellings quarterly no 1990:Q3 - 2020:Q3
Ireland Central Statistics Office Residential property price index monthly no 1970:Q1 - 2020:Q3
Netherlands Kadaster House Price Index for monthly no 1970:Q1 - 2020:Q3

existing own homes
Portugal European Central Bank Residential property prices, quarterly no 1988:Q1 - 2020:Q3

new and existing dwellings
Spain Banco de España Precio medio del m2 de la vivienda libre quarterly no 1971:Q1 - 2020:Q3

(>2 años de antigüedad)
UK Department for Communities Mix-adjusted house price index quarterly no 1970:Q1 - 2020:Q3

and Local Government
US Federal Housing Finance Agency (FHFA) Purchase and all-transactions indices quarterly yes 1970:Q1 - 2020:Q3

(from 1991 and OECD adjusted
all-transaction index previously)

Note: a use of quarterly series (owner-occupied apartments in 7 cities) for the quarterly profile.

Table C1. Sources of Nominal House Prices Used



τ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DE αi,τ 0.018∗∗∗ 0.017∗∗∗ 0.025∗∗∗ 0.024∗∗∗ 0.021∗∗∗ 0.019∗∗∗ 0.022∗∗∗ 0.019∗∗∗ 0.014∗∗∗

β1i,τ −0.227∗∗∗ −0.150∗ −0.198∗∗ −0.281∗∗∗ −0.221∗∗∗ −0.199∗∗∗ −0.238∗∗∗ −0.375∗∗∗ −0.219
β2i,τ 0.025 0.018 −0.002 −0.021 −0.024 −0.003 0.006 0.045∗ −0.080∗∗∗
β3i,τ 0.180 0.146 0.118∗ 0.046 0.052 0.027 −0.022 0.122∗ 0.187∗∗

β4i,τ −0.373∗∗∗ −0.310∗∗∗ −0.383∗∗∗ −0.299∗∗∗ −0.214∗∗∗ −0.156∗∗∗ −0.185∗∗∗ −0.015 0.228∗∗

β5i,τ 0.031 −0.018 −0.004 −0.048 −0.120∗∗ −0.151∗∗∗ −0.123∗∗ −0.274∗∗∗ −0.534∗∗∗

FR αi,τ −0.017 −0.002 −0.012 0.017 0.035∗∗ 0.029∗∗ 0.029∗∗ 0.043∗∗∗ 0.045∗∗

β1i,τ 0.861∗∗∗ 0.928∗∗∗ 0.818∗∗∗ 0.405∗∗ 0.270 0.280 0.193 −0.111 −0.170
β2i,τ 0.166∗∗∗ 0.146∗∗∗ 0.082∗∗∗ 0.093∗∗∗ 0.143∗∗∗ −0.001 −0.026 −0.018 0.018
β3i,τ 0.028 0.165∗ 0.339∗∗∗ 0.397∗∗∗ 0.302∗∗ 0.383∗∗ 0.487∗∗ 0.545∗∗∗ 0.451
β4i,τ 0.159 −0.027 0.043 −0.226∗ −0.368∗∗∗ −0.292∗ −0.272∗∗ −0.405∗∗∗ −0.339
β5i,τ −0.351∗∗∗ −0.205∗∗∗ 0.020 0.072 0.060 0.096 0.109∗ 0.178∗∗∗ 0.104

IT αi,τ 0.000 0.005 0.013∗∗∗ 0.012∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.011∗∗∗ 0.021∗∗∗

β1i,τ 0.403∗∗∗ 0.216 0.347∗∗∗ 0.337∗∗∗ 0.243∗∗∗ 0.199∗∗∗ 0.097 −0.009 −0.006
β2i,τ 0.080∗∗∗ 0.020 −0.002 0.007 0.029 0.042∗ 0.048 −0.003 −0.002
β3i,τ 0.288∗∗∗ 0.317∗∗∗ 0.307∗∗∗ 0.350∗∗∗ 0.342∗∗∗ 0.347∗∗∗ 0.381∗∗∗ 0.349∗∗∗ 0.186∗∗∗

β4i,τ −0.099 −0.101∗ −0.156∗∗∗ −0.133∗∗∗ −0.150∗∗∗ −0.130∗∗∗ −0.156∗∗∗ −0.062 −0.085∗∗
β5i,τ −0.224∗∗∗ −0.286∗∗∗ −0.317∗∗∗ −0.283∗∗∗ −0.197∗∗∗ −0.229∗∗∗ −0.159∗∗∗ −0.093 −0.170∗∗∗

ES αi,τ −0.005 0.015 0.013 0.011 0.009 0.010∗ 0.023∗∗∗ 0.026∗∗∗ 0.040∗∗∗

β1i,τ 0.215 0.505∗∗∗ 0.550∗∗∗ 0.183 0.060 −0.011 −0.189∗∗ −0.186 −0.053
β2i,τ 0.178∗∗∗ 0.172∗∗ 0.213∗∗∗ 0.171∗∗∗ 0.165∗∗∗ 0.154∗∗∗ 0.132∗∗∗ 0.145∗∗∗ 0.100∗∗∗

β3i,τ 0.357∗∗ 0.042 0.058 0.198∗∗∗ 0.255∗∗∗ 0.280∗∗∗ 0.199∗∗∗ 0.259∗∗∗ 0.223∗∗∗

β4i,τ −0.075 −0.153∗ −0.092 −0.040 0.001 0.012 −0.040 −0.060 −0.126∗∗∗
β5i,τ −0.306∗∗∗ −0.097 −0.172 −0.217∗∗ −0.229∗∗∗ −0.277∗∗∗ −0.220∗∗∗ −0.084 0.025

NL αi,τ 0.003 0.003 0.007 0.008 0.005 0.014∗∗∗ 0.017∗∗∗ 0.023∗∗∗ 0.030∗∗∗

β1i,τ 0.142 0.139 0.143∗ 0.124 0.089 −0.001 −0.061 −0.137∗∗ −0.048
β2i,τ 0.153∗∗ 0.108∗∗∗ 0.103∗∗∗ 0.082∗∗∗ 0.049∗ 0.067∗∗∗ 0.080∗∗∗ 0.033 0.010
β3i,τ 0.095 0.213∗∗∗ 0.252∗∗∗ 0.240 0.296∗∗∗ 0.288∗∗∗ 0.346∗∗∗ 0.470∗∗∗ 0.382∗∗∗

β4i,τ −0.117 −0.036 −0.034 −0.022 0.076 −0.019 −0.030 −0.080 −0.165
β5i,τ −0.258 −0.224∗∗ −0.325∗∗∗ −0.239 −0.176∗ −0.183∗ −0.203∗∗∗ −0.231∗∗∗ −0.146∗

IE αi,τ 0.016∗ 0.016∗ 0.007 0.011 0.011∗ 0.019∗∗∗ 0.030∗∗∗ 0.025∗∗∗ 0.020∗∗

β1i,τ 0.055 0.004 −0.020 0.039 0.075 0.043 0.005 0.013 0.017
β2i,τ 0.114∗∗∗ 0.136∗∗∗ 0.174∗∗∗ 0.174∗∗∗ 0.126∗∗∗ 0.117∗∗∗ 0.071∗∗ 0.061∗∗ 0.061
β3i,τ 0.137 0.157∗ 0.120 0.067 0.142 0.142 0.113 0.158∗ 0.245∗∗

β4i,τ −0.281∗∗∗ −0.250∗∗ −0.032 −0.054 0.053 −0.005 −0.003 0.104 0.421∗∗∗

β5i,τ −0.595∗∗∗ −0.427∗∗∗ −0.223∗∗ −0.127 −0.257∗∗ −0.196 −0.288∗∗ −0.363∗∗∗ −0.662∗∗∗

PT αi,τ −0.009∗∗ −0.004 0.003 0.005 0.005 0.006 0.011∗∗ 0.016∗∗ 0.029∗∗∗

β1i,τ 0.357∗∗∗ 0.341∗∗∗ 0.248∗∗ 0.082 0.198 0.181 0.394∗∗∗ 0.230 0.463∗

β2i,τ 0.001 0.040 0.046 0.096∗∗∗ 0.137∗∗∗ 0.100∗∗∗ 0.064 0.114∗ −0.014
β3i,τ 0.079∗ 0.032 −0.009 −0.025 −0.021 0.069 −0.003 −0.014 −0.068
β4i,τ −0.062 −0.066 −0.106∗∗ −0.063 −0.023 0.008 −0.010 −0.013 −0.018
β5i,τ −0.006 0.014 0.010 −0.019 −0.050 −0.124∗ −0.138∗ −0.139 −0.289∗∗∗

BE αi,τ 0.004 0.000 −0.007 −0.014∗ −0.007 −0.005 −0.003 0.007 0.010
β1i,τ −0.098 −0.077 −0.002 −0.035 0.001 0.110 0.100 0.185 0.039
β2i,τ −0.036 −0.006 0.049 0.033 0.029 0.018 0.036 0.029 0.053
β3i,τ −0.017 0.000 0.008 0.025 0.042 0.058∗∗ 0.059∗∗ 0.086∗∗∗ 0.021
β4i,τ −0.071 −0.003 0.137 0.251∗∗ 0.153 0.143 0.147 0.051 0.129
β5i,τ −0.145∗∗ −0.046 −0.100∗ −0.051 0.101 0.123∗∗ 0.086 0.093 −0.020

FI αi,τ −0.040∗∗∗ −0.023∗∗∗ −0.028∗∗∗ −0.029∗∗∗ −0.028∗∗∗ −0.028∗∗∗ −0.029∗∗∗ −0.037∗∗∗ −0.041∗∗∗
β1i,τ 0.102 0.003 −0.084∗∗ −0.068 −0.020 0.052 0.063 0.076 0.030
β2i,τ 0.061∗∗ 0.056∗∗ 0.040∗ 0.034 0.012 −0.024 −0.041 −0.048∗ −0.042
β3i,τ 0.320∗∗∗ 0.250∗∗∗ 0.324∗∗∗ 0.377∗∗∗ 0.185∗ 0.312∗∗∗ 0.280∗∗∗ 0.381∗∗∗ 0.447∗∗∗

β4i,τ 0.387∗∗∗ 0.217∗∗∗ 0.294∗∗∗ 0.312∗∗∗ 0.328∗∗∗ 0.351∗∗∗ 0.392∗∗∗ 0.506∗∗∗ 0.623∗∗∗

β5i,τ −0.361∗∗∗ −0.136 −0.112 −0.135 0.057 0.078 0.069 0.002 −0.177

UK αi,τ −0.002 0.001 0.004 −0.003 −0.005 0.000 −0.009 −0.012∗∗ 0.000
β1i,τ −0.152 0.122 0.004 −0.216 −0.111 −0.056 −0.029 0.068 0.003
β2i,τ 0.114∗∗∗ 0.149∗∗∗ 0.101∗∗∗ 0.058∗∗ 0.058∗∗ 0.014 0.002 0.004 −0.003
β3i,τ 0.393 0.290∗ 0.295∗∗∗ 0.470∗∗∗ 0.491∗∗∗ 0.454∗∗∗ 0.569∗∗∗ 0.600∗∗∗ 0.643∗∗∗

β4i,τ −0.166 −0.114 −0.126 0.032 0.102 0.056 0.254∗∗∗ 0.319∗∗∗ 0.156∗

β5i,τ 0.038 0.034 0.136∗∗ 0.203∗∗∗ 0.230∗∗∗ 0.304∗∗∗ 0.342∗∗∗ 0.352∗∗∗ 0.484∗∗∗

US αi,τ 0.017∗∗∗ 0.018∗∗∗ 0.015∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.020∗∗∗

β1i,τ −0.274∗∗∗ −0.197∗∗∗ 0.065 0.108∗∗ 0.095 0.184∗∗∗ 0.193∗∗∗ 0.166∗∗∗ 0.032
β2i,τ 0.324∗∗∗ 0.269∗∗∗ 0.232∗∗∗ 0.162∗∗∗ 0.159∗∗∗ 0.113∗∗∗ 0.077∗∗∗ 0.046∗∗∗ 0.011
β3i,τ 0.441∗∗∗ 0.297∗∗∗ 0.248∗∗∗ 0.207∗∗∗ 0.282∗∗∗ 0.272∗∗∗ 0.271∗∗∗ 0.312∗∗∗ 0.201∗∗∗

β4i,τ −0.376∗∗∗ −0.243∗∗∗ −0.195∗∗∗ −0.126∗∗∗ −0.084∗∗ −0.081∗∗ −0.038 −0.006 0.041
β5i,τ −0.129∗∗∗ −0.154∗∗∗ −0.122∗∗ −0.107∗∗∗ −0.148∗∗∗ −0.184∗∗∗ −0.187∗∗∗ −0.207∗∗∗ −0.197∗∗∗

Table C2. Country specific QR estimation results
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Figure C1: Quarterly change in log real house prices, conditional median and conditional
10th and 90th percentiles.
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