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Abstract
There is widespread evidence of parameter instability in the literature. One way to account
for this feature is through the use of time-varying parameter (TVP) models that discount
older data in favour of more recent data. This practise is often known as forgetting and can
be applied in several different ways. This paper introduces and examines the performance of
different (flexible) forgetting methodologies in the context of the Kalman filter. We review and
develop the theoretical background and investigate the performance of each methodology in
simulations as well as in two empirical forecast exercises using dynamic model averaging
(DMA). Specifically, out-of-sample DMA forecasts of CPI inflation and S&P500 returns
obtained using different forgetting approaches are compared. Results show that basing the
amount of forgetting on the forecast error does not perform as well as avoiding instability by
placing bounds on the parameter covariance matrix.
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1. Introduction

Time varying parameter (TVP) models offer insights into system dynamics that
traditional constant coefficient models are not designed to capture. Over the past
two decades TVP models have made their way into mainstream macroeconomics
and forecasting. For interesting overviews of work regarding TVPs in the context
of state space models see e.g. Harvey (1990), Durbin and Koopman (2012)
and references therein. Applications to macroeconomics include Primiceri (2005),
Cogley and Sargent (2005), and Koop et al. (2009). In these examples, TVPs
are usually considered as state variables and the observable data as measurement
variables in a state space format. The Kalman filter (KF) offers a feasible closed
form method to estimate the parameters in this setting and is frequently used in
place of Markov Chain Monte Carlo (MCMC) methods that can be computationally
demanding.

The use of KF to track state variables has been well studied in the control theory
literature for several decades and has been extended to a number of applications in
science and engineering. This is in large part due to KF’s simplicity in design and
adaptive interpretation (it can, for example, have a recursive least squares (RLS)
formulation as well as an appealing Bayesian interpretation (see e.g. Durbin and
Koopman, 2000)).

For KF to track TVPs it must avoid convergence to a set distribution.
For instance, in a simple autoregressive time series model, if the autoregressive
parameter is estimated at each iteration as in RLS then the variation in parameter
estimates will decrease as t → ∞. This happens not only in the case of a fixed
parameter, but also in the TVP case. Similarly, parameter estimates obtained with
KF will also undergo convergence unless some adaptation is made. Forecasting
techniques using, for instance, a rolling window or adjusting estimation through
some exponential weighting of the data address this issue. The same concept has
been applied to KF in a large number of studies in order to avoid convergence to a
set distribution and to track TVPs (Jazwinski, 1970). One common way to avoid
this convergence is through what is known as forgetting.

Generally, forgetting in KF allows the system to react to changes in the system’s
dynamics, such as changes in the marginal effects of inputs on outputs. Usually
in economics, these changes are unknown a priori so the problem of identifying
where these occur is challenging. Applying forgetting to limit the convergence of
parameter estimates is one way to potentially identify these dynamics. Forgetting
was initially applied in an ad hoc fashion, however starting in the early 90s formal
properties of different forgetting methods have been analysed; see, for instance,
Kulhavỳ and Zarrop (1993) and Parkum et al. (1992).

In its simplest form forgetting can be achieved by a single parameter that acts
as a discount factor on the data used in RLS, which is known as scalar exponential
forgetting (EF). EF is a means by which KF avoids convergence, by essentially
flattening the parameter covariance matrix at each iteration and thus stopping the
filter from learning the state variables too well. This method of filter tracking is
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employed in Raftery et al. (2010) and in an economic context by Koop and Korobilis
(2012). In both cases Bayesian model averaging (BMA) is applied to a set of TVP
models, which are estimated through KF using EF in what is known as dynamic
model averaging (DMA).

Although EF is easily applied and interpreted, it may not always offer the most
efficient means by which to estimate TVPs as the same rate of forgetting is applied
to all measurement variables regardless of how much information is contained in
each (Pollock, 2003). In a linear KF model, the parameters corresponding to certain
measurement variables or predictors may shift over time at different rates. If not
enough forgetting is applied, then we may not track these parameters quickly
enough, however if too much is applied KF becomes unstable. This motivates the
introduction of alternative more flexible forgetting approaches. Several methods
have been developed in the systems control literature. For instance, Fortescue
et al. (1981), Saelid and Foss (1983), Hägglund (1984) and Kulhavỳ and Kárnỳ
(1984) introduce approaches which allow the forgetting factor to be dynamic or
to vary across predictors depending on the information delivered by each predictor.
However, to date, their potential in economics and finance has not yet been
evaluated.

The first contribution of this paper is to introduce and classify several methods
of forgetting and to demonstrate the usefulness of these approaches through
an in depth Monte Carlo analysis. The second contribution consists of forecast
applications of these methods within a DMA framework to US inflation and
S&P 500 returns. We opt for a DMA approach since it is a commonly used
methodology that has been shown to have an interesting performance in terms
of forecasting and model analysis (Koop and Korobilis, 2012). Results suggest
that the more flexible forgetting approaches outperform the standard EF method.
In particular, when predictors undergo a decrease in variance there is a tendency
for the information content in the state space system to decrease and EF causes
over-correction by essentially fitting noise. Results also show that more accurate
forecasts, lower forecast variances and better state variable estimation is achieved
by using alternative forgetting schemes.

The remainder of the paper is organized as follows. Section 2 presents some
background theory on the KF and the concept of forgetting; Section 3 discusses
several dynamic forgetting methods and briefly introduces the DMA methodology.
Section 4 presents the Monte Carlo simulation results and Section 5 the empirical
forecasting exercise. Lastly, Section 6 concludes.

2. The Concept of Forgetting

This section provides a brief description of the application of the forgetting
concept in a simple RLS context and formalizes the idea for KF. Consider the state
space TVP model,
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yt = x′tθt + εt, εt ∼ N(0, Vt) (1)
θt = θt−1 + ηt, ηt ∼ N(0,Wt) (2)

where θt is the state variable, yt is the variable of interest, and xt is an m× 1
vector of predictors. The random walk representation of θt in (2) is frequently
used in macroeconomic studies; see e.g., Cogley and Sargent (2005), Groen et al.
(2013), Koop et al. (2009), Korobilis (2013) and Primiceri (2005).

2.1. Recursive Least Squares Estimation

In what follows we provide an outline of the RLS methodology and show why it
is not always appropriate when parameter values are changing. Ignoring initial values
whose relevance decreases over time, the RLS corresponds to the minimization at
each t of the loss function,

Jt =
1

2

t∑
i=1

(yi − x′iθt)
′(yi − x′iθt), t = 1, ..., T (3)

producing parameter estimates, θ̂t =
(∑t

i=1 xix
′
i

)−1∑t
i=1 xiyi, which can be

written recursively as,

θ̂t = θ̂t−1 +

(
t∑
i=1

xix
′
i

)−1
xt(yt − x′tθ̂t−1). (4)

If
(∑t

i=1 xix
′
i

)−1
= Pt the usual expression for the Kalman gain matrix, Kt =

Ptx
′
t, is obtained which can be recursively updated. From P−1t = P−1t−1 + xtx

′
t,

the Woodbury matrix identity can be used to arrive at the parameter covariance
matrix updating equation,

Pt = Pt−1 −
Pt−1xtx

′
tPt−1

1 + x′tPt−1xt
. (5)

Expressions (4) and (5) are derived from RLS, however they are also analogous to
the updating equations of the KF. Here, Pt is the estimated parameter covariance
matrix at time t using information at time t. At this point, it becomes apparent
why the RLS is not appropriate for estimating TVPs. As t→∞, Pt will approach
0 and θ̂t will converge to a particular value as long as xt is, in some sense, bounded
away from 0. Thus, to handle TVPs some discounting must be introduced to stop
Pt from shrinking. This can be achieved by exponentially decreasing the weight
of older data through the use of a scalar forgetting factor λ ∈ [0, 1]. Hence, the
solution of the RLS minimization problem is,

θ̂t =

(
t∑
i=1

λt−ixix
′
i

)−1 t∑
i=1

λt−ixiyi (6)
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and the corresponding updating equations are,

θ̂t = θ̂t−1 + Pt−1xt(yt − x′tθ̂t−1); (7)
Pt = λ−1

(
Pt−1 − Pt−1xtx

′
tPt−1

1+x′tPt−1xt

)
. (8)

Using the forgetting factor, λ, an exponential information decay is forced
into the RLS solution, thereby keeping Pt from reaching zero. This is known as
exponential forgetting (EF). Inversely this is the same as preventing the information
matrix P−1t from growing without bound. This can be shown by rearranging the
covariance updating equation in (8) based on the Woodbury identity as,

P−1t = λP−1t−1 + xtx
′
t. (9)

2.2. The Kalman Filter

KF works in two steps per iteration. It links θt|t−1 to θt|t, by updating the
previous parameter estimates using data in period t, and predicts or propagates
the parameter distribution for time t + 1 using the specified model structure.
In the TVP framework the updating equations are, θt|t = θt|t−1 + Ktet; with
Kt =

Pt|t−1xt

1+x′tPt|t−1xt
= Pt|txt, where θt|t is an estimate of the first moment of the

parameter distribution at time t given information at time t, Pt|t is the estimate of
its variance, Kt is the Kalman gain and et is the predictive error, et = yt−x′tθt|t−1.
The propagating steps are,

θt+1|t = θt|t; (10)
Pt+1|t = Pt|t + Wt. (11)

Since specifying and estimating Wt is computationally challenging Raftery
et al. (2010) opt for a scalar forgetting factor approach using λ ∈ [0, 1] to specify
Wt as (λ−1 − 1)Pt|t. This is equivalent to writing the propagating equation as
Pt+1|t = λ−1Pt|t (which is the same as EF). Generally, a forgetting scheme will
act as a function of Pt|t, i.e., Pt+1|t = F (Pt|t) ≥ Pt|t. This flattens the estimated
parameter distribution, adds uncertainty to the KF output, provides some means
by which KF does not converge, and allows for the tracking of the TVPs.

3. Dynamic Model Averaging and Forgetting Methods

Forgetting approaches are applied within the context of KF in order to efficiently
manage information. These methods allow for parameter tracking while avoiding
instabilities resulting from too much forgetting. This has potential benefits for TVP
models, in particular, for those which are based on the state space framework. One
application of TVP models is DMA. This forecasting methodology was introduced
by Raftery et al. (2010) and subsequently brought into economics by Koop and
Korobilis (2012), and has since been successfully employed in a number of studies;
see, e.g., Aye et al. (2015) and Drachal (2016).
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The DMA forecast is a weighted average of forecasts from individual models,
which are assigned weights according to how well they are performing. In the
canonical version of the DMA, TVP models are state space models, estimated
with KF, using EF as discussed above. EF offers a simple means to allow for
TVP in the state space set up. However, Park and Jun (1992) note that there
are drawbacks connected with the use of scalar EF. Firstly, it employs the same
rate of discounting on all variables. This may not be optimal if parameters move
at different rates. Secondly, a fixed forgetting factor may result in a phenomenon
known as parameter blow-up, where more information from the system is discarded
via forgetting than added through new measurement variables (see (9)). If xtx

′
t

is small over several periods, the eigenvalues of P−1t+1|t will decrease and Kt will
increase making KF unstable and overly sensitive to noise. A number of studies
have attempted to address this issue; see e.g. Milek (1995), Parkum et al. (1992)
and Kulhavỳ and Zarrop (1993).

The reason why a scalar forgetting factor can cause instability is that old
information is discarded regardless of whether new information is added into the
system. The main goal behind the proposed solutions to the blow-up problem is to
better manage the information content of the filter in order to ease the bias-variance
trade off between fast tracking and instability. In the following section we present
three easy to implement forgetting schemes that potentially permit more efficient
parameter tracking by managing the information content in the system, bounding
the parameter covariance matrix, or through the use of a reference matrix.

Other approaches that allow for dynamics in the forgetting scheme have been
explored by Dangl and Halling (2012), in which models with different scalar
forgetting factors are included in the model averaging set, and Koop and Korobilis
(2013), where a self-perturbed KF method of dynamic forgetting, based on the
approach of Park and Jun (1992), is used. The idea behind methods such as Koop
and Korobilis (2013) and Bork and Møller (2015) is that dynamic forgetting can
make models more efficient with their information content, and thus mitigate the
trade off between tracking and instability. Thus, in a flexible forgetting scheme,
the variation of information content between competing models will likely be large
which may lead to gains from forecast averaging. In what follows we provide a brief
overview of several dynamic flexible forgetting methods which we will implement
in the DMA framework. In Table 1 we briefly summarise the main characteristics
of these forgetting methods for which a more detailed description is provided in
Section 2.1 and in Sections 3.1 - 3.3.

[Table 1 about here]

3.1. Selective Forgetting

One way to manage the information in a filter is to change the forgetting factor
to keep the trace of Pt|t−1 constant over time. This is referred to as selective
forgetting and was formalized by Fortescue et al. (1981). The idea is that instead
of a fixed forgetting factor, λ, this parameter is allowed to vary over time based on
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the amount of information brought into the system by errors and predictors, i.e.,

λt = 1− e2t
Vt(1 + x′tPt|txt)

(12)

where the second term on the right-hand side of (12) is the squared forecast
error scaled by the amount of new information entering the system (Vt is the
variance of the innovations); see Saelid and Foss (1983). Thus, low forecast errors
or information arriving in the form of predictor variation will result in low forgetting,
that is, λt will take values close to 1. In macroeconomics, it is often the case that
the variance changes over time, which makes selective forgetting factors appealing
both theoretically and empirically.

Recently Bork and Møller (2015) developed a system in which a time varying
forgetting factor is produced based on the value of the forecast error and which
appears to work quite well in their DMA application. Other studies, such as Grassi
et al. (2017) and Park and Jun (1992) also select forgetting factors based on the
ratio of the actual and expected error variance, however the style of forgetting used
is somewhat different.

3.2. Directional Selective Forgetting

One drawback of the selective forgetting method described in (12) in managing
the information content is that instability can still arise if variation shifts across
predictors. When the flow of new information is non-uniform, gains can be made in
the bias-variance trade off if information is more quickly forgotten in the dimensions
of the predictor space that carry more information. Early algorithms that consider
directional selective forgetting (DSF ) have been developed by Saelid and Foss
(1983) [henceforth DSFSF ] and Parkum et al. (1992) [henceforth DSFPPH ].
This is an interesting idea since it is often the case that different predictors have
different variances, and that these variances may change over time.

DSF can be thought of as updating P t|t by multiplication with a diagonal
matrix, Λ, i.e.,

P t+1|t = ΛP t|tΛ, (13)

where each diagonal element of Λ is λ−1/2m , m = 1, 2, ...,M , which corresponds to
the specific forgetting factor for predictor xmt.

If λ1 = λ2 = ... = λM this corresponds to a common scalar in the dispersion
propagation step of KF. However, if the forgetting factors are different, then each
coefficient will weigh past observations differently.

3.2.1. The Saelid and Foss algorithm The DSFSF algorithm updates individual
forgetting factors at time t. We start from (13) and use λmt to represent the
forgetting factor that is used to propagate predictor m’s uncertainty at time t. The
algorithm increases or decreases the value of λmt based on the forecast error at t− 1

and predictor values at time t, i.e., λmt := max
(
1− e2t−1

N0( Ht−1+x′tP t|txt)γmt, λmin
)
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and γmt := min
(∑M

j=1 σj,jx
2
jt

Mσm,mx2
mt

, 1
)
, where σm,m is the mth diagonal element of P t|t,

xmt, m= 1, ...,M are the predictors, λmin is the minimum bound for the forgetting
parameters, and Ht is the rolling estimate of the variance of the signal variable.
We include a tuning parameter N0 that dictates the sensitivity of the forgetting
algorithm. The part of the algorithm that represents the change in the individual
forgetting factor is γmt, which dictates the predictor specific forgetting factors.

3.2.2. The Parkum, Poulsen and Holst algorithm The DSFPPH algorithm is
based on the same concept as DSFSF , however it differs in its application by
placing bounds on the eigenvalues of P t+1|t. These bounds prevent the propagated
covariance matrix from becoming too large and therefore over sensitive to small
forecast errors, while the lower bounds prevent P t+1|t from decreasing to a point
where it is no longer tracking time varying parameters. The following algorithm
selects the individual forgetting factors as,

λmt =

{
α
(m)
t|t
[
αmin + α

(m)
t|t

αmax−αmin

αmax

]−1 if α(m)
t|t ≤ αmax

1 if α(m)
t|t > αmax

, (14)

where α(m)
t|t is an eigenvalue of P t|t. These forgetting factors are then aligned

along the main diagonal of Λ in (13). DSFPPH essentially sets a range for
the eigenvalues of P t|t. When the mth eigenvalue of P t|t is greater than αmax,
indicating that there is a low amount of information being received in the direction
of m, the algorithm sets the forgetting factor pertaining to that direction to 1,
meaning no forgetting. For eigenvalues between 0 and αmax the algorithm gets
forgetting factors via an upward sloping concave function. The higher αmin the
more the filter is able to track time varying parameters.

3.3. Stabilized Linear Forgetting

Stabilized linear forgetting (SLF) is discussed by Milek (1995) and Milek and
Kraus (1995) as a RLS based forgetting method that avoids the blow-up of Pt+1|t,
yet allowing for sufficient parameter tracking. Stabilization comes from a reference
matrix, ideally one that includes any prior knowledge regarding the variance of
the parameter vector. In this paper, we will focus on linear versions of stabilized
forgetting.

The SLF method does not use a fixed λ forgetting factor directly, instead it
includes and additive reference matrix, G,

Pt+1|t = µPt|t + G (15)

where µ ∈ (0, 1) and G is a positive semi-definite reference matrix that provides an
upper bound for the covariance matrix. The idea behind SLF is to forget information
proportionally to the difference between Pt|t and some upper bound. Precise details
on how the upper bound, and the contraction factor µ stabilize the propagation
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of the Pt|t matrix and allow parameter tracking while still avoiding instability are
given in Milek and Kraus (1995).

One advantage of SLF is its similarity to variance propagation in the familiar
KF setting with parameters that follow a random walk and covariance matrix G,
i.e., Pt+1|t = Pt|t + G. The difference between this and SLF is that Pt|t in (15)
is scaled down by µ producing what in effect are the eigenvalues of Pt+1|t as a
linear function of Pt|t, that has an intercept greater than 0 and a slope less than
1.

Rearranging (15) it follows that Pt+1|t = Pt|t + (1 − µ)(P∗ − Pt|t), where
the propagation step is based on the difference between P∗ = G/(1− µ) and the
updated parameter covariance matrix. This can be seen as a modification to the
filter, but also as a model based means of forgetting, similar to that given in (11).
One strength of this approach is the reference matrix G, which can incorporate
prior information on how parameters are expected to co-move. A diagonal matrix
for example will give the eigenvalues of Pt|t a tendency to move towards lines
spanned by unit vectors (for example the (1, 0) and (0, 1) 2 dimensional space).
The strength of this tendency will depend on the norm of G.

In a normal setting when adequate information is provided to the system,
such that there is no potential for instability, P∗ − Pt|t is a positive semi-
definite matrix that increases the variance on at least some axis of the parameter
covariance matrix. When not enough information from the predictors is received
Pt|t = (P−1t|t−1 + xtx

′
t)
−1 increases and the gain matrix from the filter becomes

unstable. In this case P∗ −Pt|t is negative, and shrinks the propagated covariance
matrix relative to the updated one, thus preventing instability in the gain matrix.

4. Monte Carlo Analysis

To better understand where the gains from non-fixed forgetting schemes come
from we perform an in depth Monte Carlo investigation. Our simulation study
is designed to identify any gains in using different forgetting schemes in terms
of the bias-variance trade off. We use a simple KF to identify state parameter
variables and conduct forecasts. The results we compare are the average mean
square forecast error (MSFE) of the signal variable, as is done in the empirical
application, as well as the average mean square prediction error (MSPE) of the
actual state variables, and the spread of the 90% confidence interval. Note that
we are not simulating the DMA, we are only simulating a state space system in
which various forgetting factors are applied to KF. DMA would average across
models such as these. However, if individual models are more accurate, overall the
DMA is also expected to achieve better estimates of the state variables and better
forecasts.
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4.1. Simulation Setup

The random walk model of parameter movement is frequently applied in TVP
models since little is known a priori about the parameter structure. However, other
models may also suitably represent parameter variation in the data. In order to
examine this more closely, we generate parameters from three different models:
i) a random walk, ii) a deterministic setting, and iii) an Ornstein–Uhlenbeck
(OU) process. We compare the different forgetting methods across each parameter
specification with different forgetting schemes.

Experiment 1: The random walk (RW). In the RW case the data generation
process (DGP) is,

xt = ϕxt−1 + εt (16)
y∗t = 0.1y∗t−1 + x′t−1θt + νt, νt ∼ N(0, 0.1) (17)

where the state vector θt is generated as, θt = θt−1 + εt with εt ∼ N(0,Σt) as in
Raftery et al. (2010), and Σt is a diagonal matrix that does not necessarily have
common elements on the main diagonal. The predictors xt are generated using an
AR(1) process as indicated in (16). In this simulation exercise xt is a 2× 1 vector
of predictors, ϕ := diag{0.6, 0.6} and εt is a 2 × 1 vector of innovations drawn
from a mean zero bivariate normal distribution. The variances of the elements of εt
are either equal to 1 or 0.1 depending on the particular simulation setup considered
(see Table 2).

Experiment 2: The deterministic setting. The deterministic parameter
specification includes breaks in the parameter values. The DGP is as in (16) -
(17), but in this experiment θt is deterministic, such that θt = θ = (θ1, θ2)

′, with
θ1 = 0 and

θ2 =


0 if t < 150

0.5 if 150 ≤ t < 350

−0.5 if 350 ≤ t < 450

0 if t ≥ 450

.

Experiment 3: The Ornstein-Uhlenbeck (OU) process. When θt is modelled as
a RW, it is possible that it may grow in absolute value and cause instabilities in the
resulting response variable, y. In order to rectify this concern, our last parameter
specification is that of an OU process. Since OU is a mean reverting stochastic
process, we avoid having instances in which parameter values increase in absolute
value without bound. In this case, the DGP is as in (16) - (17) with the state
vector θt generated as θt = σ

∫ t
0 e
−η(t−s)dWs where σ = 0.5, η varies depending

on the case considered, and Ws denotes a standard Wiener process. The starting
values and the mean of the process are set to zero.
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In general in each experiment (except in experiment 2), we consider four
different cases:

Case 1: Parameters have the same DGP over time;
Case 2: Introduces changes in the parameter generating process. In the RW and

OU specifications, half way through the sample, the variance of one of the
parameters drops from 0.1 to 0.001 and from 0.5 to 0.1, respectively;

Case 3: The parameter generation process is kept constant, but the predictor
generating process changes half way through;

Case 4: The variance of a predictor and a parameter, change half way through
the sample.

In all cases predictors are generated as in (16), however, in Cases 2 and 4, the
variance of one of the predictors decreases from 1 to 0.1.

To evaluate the simulation results we consider: i) the average MSFE for the y
variable (Avy); ii) the average MSPE which measures how well, on average, the
KF in each specification tracks the movement of the parameters (Avs); and lastly,
iii) the spread of the parameter estimates, i.e., the distance between the 90th and
10th percentile of the estimates. A higher value for the spread suggests a higher
dispersion of the computed parameter estimates. The hyper-parameters used in
each forgetting method are constant throughout all cases and specifications. All
results are based on the sample size T = 500 and 1000 Monte Carlo replications.

4.2. The Simulation Results

The competing models used in the simulations are: the RLS, which is equivalent
to using a scalar forgetting factor of λ = 1, i.e. no discounting of older information;
a model with a fixed scalar forgetting factor of λ = 0.8, which corresponds to the
value which provided the lowest MSFE in Case 1; and DSFSF , DSFPPH and
SLF . DSFSF uses a lower bound of 0.9, DSFPPH includes eigenvalue limits
of αmax = 0.1 and αmin = 0.001, and SLF is as in (15) with µ = 0.99 and
G = 0.001I, where I is an identity matrix. Apart from the fixed values, the hyper-
parameters chosen were the ones that appeared to work well in the empirical
application.

[Table 2 about here]

Table 2 shows that RLS presents the worst forecast performance and parameter
estimation accuracy. This is not surprising as RLS is not designed for time varying
parameters. However, it delivers the lowest spread, which suggests that in cases in
which parameters are known not to vary it would perform well.

Fixed forgetting with λ = 0.8 does relatively well in the random walk
specification. In Case 1 fixed forgetting has the lowest forecast and prediction
error. With constant variance for both predictors and constant movement of both
parameters, we have no need for directional forgetting. Information is constantly
arriving into the system and no efficiency gains can be made through the use of a
more flexible forgetting method. There is also little chance of a blow up situation.
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For changes in parameter variation, predictor variation or both, as in Cases 2,
3 and 4, respectively, we observe the benefits of the other forgetting schemes. In
cases where the variance of a predictor drops, forgetting schemes which manage the
information more efficiently often have lower parameter prediction errors than the
fixed forgetting method. This only translates into lower forecast errors in the case of
SLF as the variance of the predictors is quite large compared to the variance of the
parameters and thus much of the gains from more accurate parameter predictions
is washed out.

In the case of deterministic parameters with fixed break points there is a clear
advantage of DSFPPH . The limits placed on the size of the covariance matrix
keep the system from becoming unstable after discrete jumps in parameter values.
When we introduce variability in the variance of the predictors, we also find that
SLF performs quite well. The fixed forgetting methods suffer from a large spread
in parameter prediction making them less effective in real world applications when
parameters are thought to be mostly stable with large discrete breaks. Interestingly,
we notice a marked increase in the spread for all flexible forgetting schemes when
we introduce a drop in the variance of a predictor halfway through the sample.
SLF appears to cope with this quite well. The decrease in information in one of the
predictors does not cause the instability found with EF. Similarly to the DSF setting,
SLF also sets a bound for the eigenvalues of the covariance matrix. However, it
differs in how information is forgotten. The use of the SLF reference matrix, which
in these simulations is set to 0.001I, keeps the propagated covariance matrix from
becoming too small and losing tracking ability while avoiding the blow up situation.

For parameters following an OU process the SLF and DSFPPH methods
perform quite well in terms of forecast and parameter prediction error. DSFPPH
suffers however from a large variance of the parameter estimates which could
make empirical applications problematic. It is interesting to note that although
η, which governs the central tendency of the OU process is 0.5 and drops to 0.1
halfway through the sample depending on the case, SLF and DSFPPH continue
to perform well in terms of MSFE, MSPE and spread, with DSFPPH displaying
sizable forecasting gains. We use a diagnoal matrix for the reference matrix G in
the SLF method which acts as a prior of independence on θt. This may give SLF
an advantage as it reinforces the directions of the covariance matrix’s eigenvectors
towards independence (Milek and Kraus, 1995).

5. Empirical Application of DMA

In this section we explore how the different methods of forgetting compare
when applied to DMA in two forecasting applications. Firstly, we consider the US
inflation data used in Koop and Korobilis (2012). Secondly, we consider forecasting
S&P 500 returns using data from Welch and Goyal (2008). In each case we compare
the MSFE and MAFE from different forgetting methods for each TVP model in
the DMA and the dynamic model selection (DMS) settings. DMS is a special case
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of DMA in which the best model receives a weight of 1, and the remaining models
are given a weight of 0.

In these two empirical cases, the number of models averaged over in the DMA
grows exponentially with the number of predictors. This can make the DMA a time
consuming procedure when the predictor set is large. For this reason we reduce the
predictor space via factors in the first application and use only 6 predictors in
the second application. All models also contain a constant as well as a lagged
autoregressive term.

5.1. Forecasting exercises

5.1.1. Inflation forecasting We start by applying DMA using the forgetting
methods described above, to forecast US inflation. The predictors used are: 1)
Unemployment Rate (UNRATE); 2) Real Personal Consumption Expenditures
(PCECC96); 3) Private Residential Fixed Investment (PRFI); 4) Real Gross
Domestic Product (GDPC1); 5) Housing Starts: Total: New Privately Owned
Housing Units Started (HOUST); 6) Industrial Production Index (INDPRO);
7) All Employees, Total Private (USPRIV); 8) Employment-Population Ratio
(EMRATIO); 9) Average Hourly Earnings of Production and Nonsupervisory
Employees, Manufacturing (AHEMAN); 10) 3-Month Treasury Bill: Secondary
Market Rate (TB3MS); 11) Moody’s Seasoned Aaa Corporate Bond Yield (AAA);
and 12) M1 Money Stock (M1SL). The predictors are divided into blocks of
employment variables (variables 1), 7) and 8)), real economic variables (variables
2), 3), 4), 5), 6), and 9)) and financial variables (variables 10), 11), and 12)). A
factor is extracted from each block and used as a predictor.

We forecast two versions of inflation based on personal consumption
expenditures: the Chain-type Price Index (PCE) and the Consumer Price Index for
All Urban Consumers (CPI). All variables are log first differences. We consider two
out-of-sample periods (one (h=1) and four (h=4) quarters ahead), with starting
dates 2001:Q1 and 2006:Q1.

Numerous DMA forgetting schemes are tested in our analysis starting with fixed
λ = {0.9, 0.95, 0.97, 0.99, 1}. This is followed by the DSFSF and the DSFPPH
algorithms with upper and lower bounds set to 1.0E-5 and 1.0E-6, respectively, for
the Pt|t matrix; as well as by the variable forgetting method of Bork and Møller
(2015) (BM). This method uses a time-varying version of the scalar EF factor
λ. Briefly, λ decreases, meaning more forgetting, when the model’s forecast errors
are large relative to the expanding history of previous forecast errors. A number of
quantiles are calculated from the expanding history, and λ shifts based on whether
the current forecast error is in a higher quantile than the previous.1 Lastly, we look

1. This method has been employed in a house price forecasting DMA application in both Bork
and Møller (2015) and Risse and Kern (2016).
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at a specification of the SLF forgetting scheme of Milek (1995) with µ = 0.99
and reference matrix G = (1.0e− 8)I, where I is the identity matrix.

[Tables 3 about here]

Table 3 presents results for CPI.2 The MSFE and MAFE of the best performing
fixed forgetting parameter is included in the table and is λ = 0.97 and α = 1 for
one quarter ahead forecasts, and λ = 0.95 and α = 1 for four quarters ahead. The
α tuning parameter is used in the DMA procedure to govern how much uncertainty
the forecaster attaches to the model weight. α has a similar interpretation to the
fixed forgetting parameter λ in the sense that the closer α is to 1, the more memory
the model weights will have, meaning the weight reflects not only the model’s recent
performance, but also how it did in the past. We also present results for different
values of α in the tables.

Results show that the DSFPPH and SLF methods work quite well, offering
the lowest MSFE and MAFE for both one and four quarters in each out-of-sample
period. We also conduct Diebold Mariano (DM) tests for predictive accuracy of
the various flexible forgetting schemes against the fixed exponential forgetting
scheme with the lowest MSFE. According to the DM test, for the one quarter
ahead forecasts for both out-of-sample periods, we find that the DSFPPH and
SLF forgetting methods perform significantly better than the best competing
exponential forgetting scheme. For four quarters ahead forecasts, we find that
SLF has lower forecast errors than the best performing exponential forgetting,
however they are only significant for the DMS.

Results for forecasting schemes that increase forgetting upon receiving larger
forecasting errors is mixed. Both the BM and DSFSF do not significantly improve
upon the best fixed forgetting scheme despite having lower MSFE and MAFE for
the one quarter ahead forecasts. This suggests that a large forecast error variance
could be causing BM and DSFSF to increase forgetting when it is not required.
The idea behind these forgetting schemes is that large forecast errors may be the
result of models being misspecified and therefore requiring a larger forgetting factor.
This does not appear to be the case in this setting. Large forecast errors appear to
be noise, and thus changing parameter values as a result does not improve forecast
accuracy.

5.1.2. Stock returns forecasting It is well known that returns are difficult to
predict and any predictive power of a given model may be short lived (Pesaran and
Timmermann, 2002). We investigate the performance of the methods discussed
above for forecasting S&P500 end-of-month returns. Results are shown in Table
4. As predictors we use the 12 month moving sum of dividends (D12), the 12
month moving sum of earnings (E12), the book to market (b/m), the treasure bills

2. Results for PCE forecasts lead to similar conclusions and are therefore omitted, but these can
be obtained from the authors.
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(tbl), and AAA and BAA corporate bond yields3, which are all log first differences.
We use a sample starting in March 1990 and three out of sample periods. The first
starts in December 2000, the second in December 2005 and the third in December
2008. The end of all out of sample periods is November 2019. We present results
for both h = 1 and h = 4 (see Table 4). Three model specifications are considered
with varying values of the DMA tuning parameter α, namely: i) the DSFPPH
method; ii) the BM method; and iii) the SLF . The DSFSF method was not as
competitive so we left it out in order to simplify Table 4.

[Table 4 about here]

SLF appears to give the strongest forecasting performance in terms of lower
MSFE and MAFE, for both forecast horizons, however according to the DM test it
is only significantly better for four month ahead forecasts. Other forgetting schemes
are not as promising, particularly the SF and BM method which adjust forgetting
based on the forecast error. The usage of the reference matrix G in the SLF
propagation step may be what is helping the SLF model. We adjust G to allow
more forgetting for the AR coefficient relative to the constant and other predictor
coefficients. It is interesting to note that for four month ahead forecasts in the
December 2008 to November 2019 sample, the fixed or EF appears to deliver
superior forecasts. Note that the best fixed forgetting scheme uses λ = 1 for h = 1
and λ = 0.99 for h = 4, which suggests that little or no forgetting is applied. This
in line with Case 1 in the simulation exercise, where the out of sample period is
characterized by constant variance for predictors and parameters thus favouring
the same constant forgetting factor applied to all predictors.

6. Conclusion

In this paper we used different means of discounting older information in favour
of more recent information in the DMA procedure put forward by Raftery et al.
(2010). These discounting methods, known as forgetting schemes vary from a
simple fixed scalar forgetting factor that discounts uniformly across the predictors,
to more complicated methods that either change the amount of discounting based
on the magnitude of the squared forecast error, place bounds on eigenvalues of the
covariance matrix, or use a reference matrix to guide the evolution of the covariance
matrix through the filter. According to our simulated and empirical applications we
find the specific context will dictate which method is preferred. For instance, in the
simulation, depending on whether we expect the parameters to evolve as a random
walk, or act deterministically with discrete breaks, the SLF andDSFPPH methods
appear to offer better forecasts. On the empirical side, the DSFPPH and SLF

3. The data used in the returns’ prediction analysis was taken from Amit Goyal’s website:
https://www.hec.unil.ch/agoyal.
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methods again appear to do quite well in forecasting CPI and returns over different
forecast horizons in comparison to the other competing forgetting schemes.

Our findings suggest that when predicting noisy series, basing the amount
of discounting on the magnitude of the forecast error could lead us to discard
older information under the incorrect assumption of parameter movement. One
interpretation of the empirical work is that this could be the case. On the other
hand, placing a bound on the eigenvalues of the covariance matrix appears to
work well in simulations, however it offers room for improvement when forecasting
returns.

It is important to consider, that as with most forecasting methodologies, tuning
parameters play an important role in model performance. Choosing the correct
forgetting factor tuning parameter, regardless of whether it is a single scalar, or
involves picking bounds of eigenvalues can be challenging and usually involves
some trial and error. One advantage of using SLF is the possibility of selecting
the reference matrix G using some prior knowledge about the distribution of the
parameters.
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Forgetting

Approaches
to

Im
prove

Forecasting
Approach Description Usage Forgetting Parameters

Exponential forgetting
(EF )
See Section 2.1.

Discounts information uniformly
across all predictors and over time.
Computationally efficient and simple
to implement with KF. Potentially
unstable if too much information is
forgotten relative to that received.

Good to use in large model averaging
settings.

Typically, a fixed forgetting parameter, λ ∈ [0, 1] is used. λ = 1
corresponds to no forgetting.

Dynamic Selective For-
getting: Saelid and Foss
(1983) (DSFSF ).
See Section 3.2.1

Forgetting is based on information
content of the state space system.
Forgetting increases in all directions
as forecast error increases and
is applied to each component of
the parameter covariance matrix
based on the relative potential for
instability.

When noise and model confidence is
expected to be low such that large
forecasting errors are interpreted as
coming from incorrect models and
not large idiosyncratic innovations.

The forgetting parameter λmt increases or decreases based on the
forecast error at time t− 1 and predictor values at time t, i.e.,

λmt := max
(
1−

e2t−1

N0( Ht−1 + x′tP t|txt)
γmt, λmin

)
γmt := min

(∑M
j=1 σj,jx

2
jt

Mσm,mx2mt
, 1
)

where σm,m is the mth diagonal element of P t|t, xmt, m = 1, ...,M are
the predictors, λmin is the minimum bound for the forgetting parameters,
and Ht is the rolling estimate of the variance of the signal variable. N0

is a sensitivity parameter.
Dynamic Selective
Forgetting: Parkum et
al. (1992) (DSFPPH).
See Section 3.2.2

Forgetting factors are specific to
each component of the parameter
space and are time varying so that
the eigenvalues of the parameter
covariance matrix are bounded from
above and below.

This method works well in most
cases, however some experimenta-
tion is required to find appropriate
bounds for the eigenvalues.

The forgetting parameter is,

λmt =

α
(m)
t|t
[
αmin + α

(m)
t|t

αmax−αmin
αmax

]−1 if α(m)
t|t ≤ αmax

1 if α(m)
t|t > αmax

,

where α(m)
t|t is an eigenvalue of P t|t, αmax is the upper eigenvalue

bound on P t+1|t, and αmin is the parameter governing the amount of
forgetting.

Stabilized Linear For-
getting (SLF ): Milek
(1995). See Section 3.3

Sets a reference matrix to build
an upper bound of the parameter
covariance matrix. Forgetting is pro-
portional to the difference between
the upper bound of the parameter
covariance matrix and the reference
matrix.

When prior knowledge of parameters
is available it can be incorporated
into the reference matrix, allowing
for certain parameters to vary more
than others within some upper
bound.

The SLF method uses,

Pt+1|t = µPt|t +G

where µ ∈ (0, 1) and G is a positive semi-definite reference matrix that
provides an upper bound for the covariance matrix. Larger elements
of reference matrix G mean more forgetting for the corresponding
coefficient. µ dictates how much forgetting will take places, and at what
point eigenvalues of P t+1|t will start to decrease to avoid instability.

Table 1. Summary of the main features of the EF , DSFSF , DSFPPH and SLF Forgetting Methods
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random walk parameter dynamics deterministic parameter dynamics OU parameter dynamics

σ2T1
σ2T2

Approach Avy Avs Spread σ2T1
σ2T2

Approach Avy Avs Spread σ2T1
σ2T2

Approach Avy Avs Spread

CASE 1

σ2β1
0.001 0.001 RLS 0.022 0.022 483.979 - - RLS 0.022 0.021 27.542 0.5 0.5 RLS 0.027 0.026 470.034

σ2β2
0.001 0.001 EF(λ=0.8) 0.008 0.006 760.806 - - EF(λ=0.8) 0.009 0.008 72.334 0.5 0.5 EF(λ=0.8) 0.011 0.010 698.806

σ2x1
1 1 DSFSF 0.009 0.007 732.504 1 1 DSFSF 0.013 0.012 54.174 1 1 DSFSF 0.011 0.011 686.539

σ2x2
1 1 SLF 0.008 0.006 744.440 1 1 SLF 0.009 0.008 62.530 1 1 SLF 0.010 0.010 694.702

DSFPPH 0.008 0.006 763.775 DSFPPH 0.008 0.007 93.798 DSFPPH 0.009 0.009 717.230

CASE 2

σ2β1
0.001 0.001 RLS 0.020 0.019 498.216 0.5 0.5 RLS 0.023 0.022 464.653

σ2β2
0.001 0.0001 EF(λ=0.8) 0.008 0.005 734.924 0.5 0.1 EF(λ=0.8) 0.010 0.009 619.681

σ2x1
1 1 DSFSF 0.008 0.006 709.578 1 1 DSFSF 0.010 0.009 609.805

σ2x2
1 1 SLF 0.008 0.005 719.185 1 1 SLF 0.009 0.008 615.429

DSFPPH 0.008 0.006 737.214 DSFPPH 0.009 0.008 636.076

CASE 3

σ2β1
0.001 0.0001 RLS 0.018 0.023 450.455 - - RLS 0.025 0.021 30.649 0.5 0.5 RLS 0.022 0.027 441.398

σ2β2
0.001 0.0001 EF(λ=0.8) 0.008 0.008 756.195 - - EF(λ=0.8) 0.016 0.015 220.695 0.5 0.5 EF(λ=0.8) 0.009 0.011 684.773

σ2x_1 1 1 DSFSF 0.008 0.008 725.973 1 1 DSFSF 0.017 0.013 134.742 1 1 DSFSF 0.010 0.011 671.347
σ2x_2 1 0.1 SLF 0.007 0.007 733.880 1 0.1 SLF 0.016 0.010 107.404 1 0.1 SLF 0.009 0.011 676.980

DSFPPH 0.008 0.007 755.641 DSFPPH 0.016 0.010 161.459 DSFPPH 0.008 0.010 704.771

CASE 4

σ2β1
0.001 0.001 RLS 0.018 0.020 468.452 0.5 0.5 RLS 0.021 0.023 466.457

σ2β2
0.001 0.0001 EF(λ=0.8) 0.007 0.007 751.956 0.5 0.1 EF(λ=0.8) 0.009 0.009 624.217

σ2x1
1 1 DSFSF 0.008 0.007 724.789 1 1 DSFSF 0.010 0.010 614.165

σ2x2
1 0.1 SLF 0.007 0.006 734.132 1 0.1 SLF 0.009 0.008 620.381

DSFPPH 0.008 0.007 751.631 DSFPPH 0.008 0.008 640.545

Note: Results correspond to the MSFE of the simulated measurement series (Avy), and the MSPE of the state parameters’ variances (Avs). Spread is the
sum of the absolute difference between the 90th and 10th percentiles of the predictions for state parameters over time. σT1

and σT2
refer to the sample

variances of the first and second half of the simulated sample and T1 + T2 = 500. DSFSF is computed using a lower bound of 0.9; SLF is as in (15) with
µ = 0.99 and G = 0.001I; and DSFPPH is computed with upper and lower eigenvalue bounds αmax = 0.1 and αmin = 0.001, respectively. The Table is
divided into four cases, which show results for the different predictor (σxi) and parameter (σβi

) variances used.

Table 2. Simulation results of the forecast performance ofRLS,EF with λ= 0.8,DSFSF ,DSFPPH and SLF under random walk, deterministic
and OU parameter dynamics
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h=1 h=4
2000Q4-2019Q3 MSFEDMA MAFEDMA MSFEDMS MAFEDMS MSFEDMA MAFEDMA MSFEDMS MAFEDMS

Bork Møller
α = 90 1.0019 1.0096 0.9784 0.9927 1.2001 1.2331 1.1886 1.2500
α = 95 1.0017 1.0102 0.9921 1.0007 1.1983 1.2328 1.1536 1.2097
α = 97 0.9997 1.0096 0.9872 1.0009 1.1991 1.2342 1.1913 1.2195
α = 99 0.9888 1.0034 0.9600 0.9778 1.2100 1.2447 1.1935 1.2418
α = 1 0.9781 0.9983 0.9432 0.9700 1.2405 1.2712 1.2543 1.2884
DSFSF
α = 90 1.0056 1.0126 1.0021 0.9960 1.1563 1.1814 1.1403 1.1621
α = 95 1.0091 1.0147 1.0042 1.0000 1.1588 1.1841 1.1360 1.1526
α = 97 1.0094 1.0151 0.9998 0.9989 1.1598 1.1852 1.1444 1.1781
α = 99 1.0037 1.0114 0.9973 0.9972 1.1619 1.1865 1.1429 1.1752
α = 1 0.9983 1.0106 0.9975 1.0248 1.1783 1.2012 1.1825 1.2128
DSFPPH
α = 90 0.9347** 0.9506** 0.9320** 0.9365** 1.0128 1.0518 1.0354 1.0671
α = 95 0.9362** 0.9520** 0.9623* 0.9541* 1.0091 1.0493 1.0587 1.0708
α = 97 0.9363** 0.9524** 0.9528* 0.9414* 1.0069 1.0468 1.0002 1.0064
α = 99 0.9339** 0.951** 0.9366** 0.9508** 1.0124 1.0438 1.0297 1.0523
α = 1 0.9301** 0.9506** 0.9265** 0.9454** 1.0295 1.0512 1.0297 1.0523
SLF
α = 90 0.8854** 0.9068** 0.8992** 0.9052** 0.9586 0.9784 0.9474 0.9757
α = 95 0.8878** 0.9079** 0.9081* 0.9133* 0.9622 0.9803 0.9229** 0.9263**
α = 97 0.8877** 0.9086** 0.9144* 0.9042* 0.9649 0.9823 0.931* 0.9454*
α = 99 0.8828** 0.9096** 0.8938** 0.8940** 0.9774 0.9894 1.0024 1.0167
α = 1 0.8825** 0.9121** 0.8866** 0.9096** 1.0052 1.0141 1.0101 1.0202

2005Q4-2019Q3 MSFEDMA MAFEDMA MSFEDMS MAFEDMS MSFEDMA MAFEDMA MSFEDMS MAFEDMS

Bork Møller
α = 90 0.9908 1.0078 0.9573 0.9825 1.1436 1.1882 1.1079 1.1952
α = 95 0.9908 1.0086 0.9661 0.9911 1.1414 1.1874 1.0816 1.1526
α = 97 0.9887 1.0081 0.9617 0.9910 1.1418 1.1885 1.1280 1.1621
α = 99 0.9762 1.0015 0.9306 0.9657 1.1520 1.1991 1.1475 1.1973
α = 1 0.9636 0.9958 0.9238 0.9639 1.1839 1.2295 1.1971 1.2471
DSFSF
α = 90 1.0011 1.0132 0.9951 0.9918 1.1019 1.1365 1.0701 1.1065
α = 95 1.0058 1.0156 0.9952 0.9959 1.1050 1.1395 1.0582 1.0828
α = 97 1.0063 1.0159 0.9892 0.9946 1.1065 1.1410 1.0694 1.1025
α = 99 0.9989 1.0110 0.9830 0.9875 1.1099 1.1438 1.0972 1.1292
α = 1 0.9926 1.0091 0.9691 0.9835 1.1278 1.1622 1.1299 1.1733
DSFPPH
α = 90 0.9367* 0.953* 0.9383** 0.9365** 0.9754 1.0296 0.9970 1.0430
α = 95 0.9388* 0.9547* 0.9706* 0.9540* 0.9713 1.0269 1.0108 1.0487
α = 97 0.9393* 0.9552* 0.9603* 0.9404* 0.9688 1.0242 0.9578 0.9778
α = 99 0.9373* 0.9535* 0.9370* 0.9496* 0.9755 1.0222 0.9964 1.0329
α = 1 0.9343* 0.9530* 0.9293** 0.9443** 0.9966 1.0324 0.9964 1.0329
SLF
α = 90 0.8970* 0.9100* 0.9060* 0.9047* 0.9539 0.9800 0.9169 0.9695
α = 95 0.9002* 0.9113* 0.9190* 0.9133* 0.9580 0.9816 0.8950** 0.9148**
α = 97 0.9005* 0.9122* 0.9273 0.9027 0.9610 0.9837 0.9054** 0.9369**
α = 99 0.8946* 0.9132* 0.8926* 0.8870* 0.9794 0.9949 1.0149 1.0283
α = 1 0.8947* 0.9155* 0.8944* 0.9088* 1.0190 1.0267 1.0247 1.0322

Note: This Table reports the MSFE and MAFE ratios of different forgetting schemes relative to the lowest
MSFE of a model with a fixed forgetting scheme. *, ** and *** indicate significant Diebold-Mariano
test results at 10%, 5% and 1% nominal levels, respectively. CPI refers to Consumer Price Index for All
Urban Consumers (FRED: CPIAUCSL). Bork and Møller method includes 5 quantiles. DSFSF has tuning
parameter N0 = 10 and a lower bound of 0.9. DSFPPH has tuning parameters αmax = 1.0e-6 and
αmin = αmax/10. For the SLF , we set µ = 0.99 and G = {1.0e-8}I. The fixed forgetting scheme in
the benchmark model uses λ = 0.97 for one quarter ahead (h = 1) and λ = 0.99 for four quarters ahead
(h = 4) forecast horizons.

Table 3. Out of sample MSFE and MAFE ratios of different forgetting schemes relative to
the lowest MSFE fixed forgetting scheme for CPI
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Dec-00 Dec-05 Dec-08

h=1 MSFEDMA MAFEDMA MSFEDMS MAFEDMS MSFEDMA MAFEDMA MSFEDMS MAFEDMS MSFEDMA MAFEDMA MSFEDMS MAFEDMS

DSFPPH
α = 90 1.0093 1.0149 1.0532 1.0942 1.0032 1.0031 1.0435 1.0966 1.0018 1.0117 1.0585 1.1563
α = 95 1.0147 1.0265 1.0580 1.1004 1.0096 1.0181 1.0399 1.0999 1.0079 1.0302 1.0584 1.1451
α = 97 1.0181 1.0323 1.0626 1.0991 1.0133 1.0252 1.0320 1.0801 1.0122 1.0397 1.0475 1.1147
α = 99 1.0222 1.0353 1.0256 1.0362 1.0209 1.0295 1.0214 1.0266 1.0213 1.0488 1.0337 1.0586
α = 1 1.0059 1.0115 1.0085 1.0252 1.0132 1.0097 1.0413 1.0571 1.0150 1.0321 1.0333 1.0547
Bork Møller
α = 90 1.0305 1.0404 1.0803 1.1058 1.0126 1.0193 1.0397 1.0695 1.0106 1.0280 1.0425 1.0872
α = 95 1.0307 1.0460 1.0719 1.1096 1.0102 1.0245 1.0189 1.0512 1.0082 1.0332 1.0213 1.0629
α = 97 1.0280 1.0463 1.0714 1.1036 1.0080 1.0259 1.0246 1.0543 1.0067 1.0362 1.0279 1.0668
α = 99 1.0173 1.0333 1.0364 1.0747 1.0063 1.0203 1.0277 1.0800 1.0100 1.0375 1.0305 1.0935
α = 1 1.0091 1.0004 0.9936 0.9806 1.0016 0.9874 0.9831 0.9634 1.0081 1.0137 0.9993 0.9979
SLF
α = 90 0.9901 0.9988 0.9727 0.9898 0.9831 0.9843 0.9704 0.9843 0.9703 0.9729 0.9843 1.0048
α = 95 0.9911 1.0006 0.9960 1.0115 0.9836 0.9859 0.9706 0.9893 0.9713 0.9765 0.9593 0.9924
α = 97 0.9951 1.0040 1.0173 1.0213 0.9863 0.9885 0.9910 0.9965 0.9750 0.9807 0.9905 1.0100
α = 99 1.0099 1.0151 1.0361 1.0412 1.0027 0.9978 1.0424 1.0440 0.9940 0.9902 1.0551 1.0724
α = 1 1.0092 1.0215 1.0066 1.0147 1.0024 1.0074 1.0242 1.0414 0.9923 0.9837 1.0186 1.0259

h=4 MSFEDMA MAFEDMA MSFEDMS MAFEDMS MSFEDMA MAFEDMA MSFEDMS MAFEDMS MSFEDMA MAFEDMA MSFEDMS MAFEDMS

DSFPPH
α = 90 1.0088 1.0083 1.0335 1.0463 1.0116 0.9997 1.0003 1.0000 1.0292 1.0293 1.0274 1.0598
α = 95 1.0106 1.0149 1.0285 1.0458 1.0100 1.0039 0.9992 1.0060 1.0281 1.0288 1.0103 1.0446
α = 97 1.0096 1.0159 1.0193 1.0441 1.0071 1.0052 0.9997 0.9994 1.0257 1.0281 1.0105 1.0390
α = 99 1.0003 1.0007 0.9981 1.0006 1.0005 1.0012 1.0007 1.0016 1.0155 1.0222 1.0061 1.0313
α = 1 1.0014 0.9670 1.0151 0.9500 1.0076 0.9731 1.0022 0.9388 1.0010 1.0002 1.0001 1.0001
Bork Møller
α = 90 1.1847 1.3834 1.2355 1.4892 1.2555 1.4755 1.3202 1.6065 1.1830 1.2849 1.2460 1.4245
α = 95 1.2080 1.4439 1.2583 1.5287 1.2845 1.5466 1.3417 1.6346 1.2019 1.3247 1.2776 1.5010
α = 97 1.2162 1.4535 1.2561 1.5278 1.2906 1.5579 1.3412 1.6331 1.2102 1.3519 1.2696 1.4719
α = 99 1.2236 1.4188 1.2839 1.4754 1.2892 1.5158 1.3528 1.5649 1.2114 1.3754 1.2818 1.4882
α = 1 1.2055 1.3132 1.2265 1.2998 1.2625 1.3939 1.3034 1.4268 1.1981 1.3255 1.2174 1.3579
SLF
α = 90 0.9565 0.9055 0.9932 0.9431 0.9438 0.8642 0.9473 0.8695 1.0203 1.0101 1.0307 1.0586
α = 95 0.9651 0.9157 0.9944 0.9399 0.9486* 0.8697* 0.9627 0.8687 1.0142 1.0124 1.0611 1.0878
α = 97 0.9710 0.9164 1.0156 0.9636 0.9527* 0.8686* 0.9895 0.9027 1.0147 1.0115 1.0430 1.0756
α = 99 0.9551* 0.8782* 0.9480* 0.8527* 0.9474* 0.8475* 0.9299* 0.8234* 1.0178 1.0087 0.9936 1.0045
α = 1 0.9500* 0.8531* 0.9652 0.8402 0.9380 0.8306 0.9355 0.8020 1.0251 1.0150 1.0765 1.1320

Note: This Table reports the MSFE and MAFE ratios of different forgetting schemes relative to the lowest MSFE of a model with a fixed forgetting scheme. *, **
and *** indicate significant Diebold-Mariano test results at 10%, 5% and 1% nominal levels, respectively. Bork Møller forgetting method uses five quantiles. The
SLF tuning parameters are µ = 0.99 and G = {1.0e-8}I. The fixed forgetting scheme in the benchmark model uses λ = 1 for h = 1 and λ = 0.99 for h = 4.

Table 4. Out of sample MSFE and MAFE ratios of different forgetting schemes relative to the lowest MSFE fixed forgetting scheme for S&P 500
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