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Abstract
In this paper, I show how to perform spectral decomposition of the information about latent
variables in dynamic economic models. A model describes the joint probability distribution of
a set of observed and latent variables. The amount of information transferred from the former
to the latter is measured by the reduction of uncertainty in the posterior compared to the prior
distribution of any given latent variable. Casting the analysis in the frequency domain allows
decomposing the total amount of information in terms of frequency-specific contributions as
well as in terms of information contributed by individual observed variables. I illustrate the
usefulness of the proposed methodology with applications to two DSGE models taken from
the literature.
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1. Introduction

A pervasive challenge in empirical macroeconomic research is the estimation of
latent variables by combining theoretical models and observational information.
Examples abound and include endogenously determined variables, such as potential
output and natural rates of interest or unemployment, as well as a plethora
of exogenous random shocks driving business cycle fluctuations in modern
macroeconomic models. These variables are typically not directly observable and
to measure them requires estimating models that explicitly describe the joint
dynamics of observed and latent variables. Having correctly specified and accurately
measured latent endogenous variables and structural shocks is a key requirement
for macroeconomic models to meet to be useful as tools for policy analysis and to
be credible as story-telling devices.

The purpose of this paper is to show how to perform spectral decomposition of
the information about latent variables in dynamic economic models. In particular,
the proposed analysis reveals where in the frequency spectrum information about
latent variables predominantly comes from, and how much of it is contributed by
individual observed variables. The goal of this analysis is to enhance researchers’
understanding of where in the data, according to a given model, information about
unobservable quantities comes from. In doing so, the paper contributes to the
recent literature aimed at improving the transparency of structural estimation in
macroeconomic research.

The work that is most closely related to this paper is Iskrev (2019), where the
question regarding the sources of information about latent variables is treated in the
time domain. In that paper, the amount of information from observable variables
about latent variables is quantified by comparing prior and posterior probability
distributions and employing information-theoretic measures of uncertainty and
information gain. Analysis in the time domain preserves information about the
temporal order of the observable data in relation to the latent variables and allows
to study the transfer of information between variables with arbitrary temporal
patterns. The information pertaining to the temporal order of the variables is lost
completely in the frequency domain. At the same time, it allows to decompose
uncertainty and information into components of varying frequencies. Therefore, it
reveals how much and where in the spectrum uncertainty is resolved for a given
latent variable and what are the contributions from different observables. This is
something that cannot be deduced in the time domain. The two approaches are
therefore complementary.

The paper is also related to a growing literature on the feasibility of recovering
structural shocks using reduced form models. Building upon the work of Hansen and
Sargent (1980, 1991) and Lippi and Reichlin (1993, 1994), most of the research on
this topic has focused on the issue of invertibility (or fundamentalness) in structural
vector autoregressions, i.e. whether shocks from general equilibrium models can be
recovered from the residuals of VARs (see Alessi et al. (2011) and Giacomini (2013)
for useful overviews of this literature). Conditions for invertibility are discussed in
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Fernandez-Villaverde et al. (2007), Ravenna (2007), Franchi and Vidotto (2013),
Franchi and Paruolo (2015)), while Giannone and Reichlin (2006) and Forni and
Gambetti (2014) discuss how to test for lack of invertibility of structural VARs.
Invertibility issues that are specific to DSGE models with news shocks are discussed
in Leeper et al. (2013) and Blanchard et al. (2013). More recently, Soccorsi (2016)
and Sala et al. (2016) proposed measures of the degree of non-invertibility, which
quantify the discrepancies between true shocks and shocks obtained using non-
fundamental VARs.1 In another recent paper Chahrour and Jurado (2021) draw a
distinction between invertibility on one hand, and what they call “recoverability”
on the other, defining the latter as the feasibility of recovering structural shocks
from all leads and lags of the observables variables. They argue that recoverability
is often what matters in applied research and present a necessary and sufficient
condition one can use to check if shocks in linear models are recoverable.

Similar to that literature, the analysis in the present paper can be used to
determine whether the shocks in a given model are recoverable given a set of
observed variables. Furthermore, as in Soccorsi (2016) and particularly Sala et al.
(2016), a measure is provided of the degree to which any individual shock, or an
endogenous latent variable, can be recovered. In particular, the proposed spectral
measures of information gain are defined with respect to a particular unobserved
variable and show how much of the prior uncertainty about it, within a given
frequency band, is removed due to observing a given set of model variables.

While the existing research on invertibility is concerned with the usefulness of
VAR–based tools for empirical validation of structural models, the purpose of the
analysis presented here is to understand the properties of structural macroeconomic
models in terms of how much and from where in the spectrum information
transfers between observed and unobserved model variables. Therefore, identifying
the principal sources of information is of primary interest rather than the total
amount of information about a given shock or endogenous latent variable. To that
end, I define and apply measures of frequency band-specific conditional information
gains that quantify the amount of additional information contributed by a subset
of variables, given the information contained in the remaining observed variables,
at a given band of frequencies. As the analysis of the models considered in
the application section shows, the conclusions one draws may be very different
depending on what the conditional variables are.

The remainder of the paper is organized as follows. Section 2 reviews the
relevant information-theoretic and frequency domain concepts and defines measures
of information gains from observable with respect to latent variables. It also shows
how the measures can be evaluated for linear Gaussian DSGE models. Section 3
illustrates the proposed analysis in two applications. One is a small-scale New-
Keynesian model employed by Uribe (2021) to investigate the nature and empirical

1. Simulation evidence that non-invertible VARs may in some cases produce good approximations
of the true structural shocks are provided in Sims (2012) and Beaudry et al. (2015).
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importance of monetary policy shocks that produce neo-Fisherian dynamics, i.e.
move interest rates and inflation in the same direction over the short run. The
second is a medium-scale New Keynesian model estimated by Justiniano et al.
(2011) in order to investigate whether investment shocks are important drivers of
business cycle fluctuations. For both models, a complete investigation of the sources
of information about all structural shocks is presented. Section 4 concludes.

2. Methodology

The purpose of this section is three-fold. First, to introduce some basic information-
theoretic concepts and use them to define a measure of information gain for
variables with a multivariate complex Gaussian distribution. Second, to review
relevant properties of the spectral representation of a stationary Gaussian vector
process and present frequency domain measures of information gain. Third, to
show how to apply the measures in the context of DSGE models to evaluate the
information contributions with respect to latent variables across observed variables
and frequencies.

2.1. Quantifying information gains

Consider a (ny + 1)-dimensional random vector z = [y′, x]′ whose joint probability
density function is f(y, x). How much information about x is gained when a
realization of y is observed? Information theory provides the framework and tools
to answer such questions. Specifically, entropy is a measure of the uncertainty
associated with a random variable, and mutual information is a measure of the
information shared by two random variables. Formally, if f(x) is the marginal
probability density function of x, and Sx is the support of x, the entropy H(x)
of f(x) is defined as

H(x) = −
∫
Sx

f(x) ln (f(x))dx = −E ln f(x). (1)

The amount of information about x is measured as the reduction in uncertainty,
i.e. the entropy H(x), relative to some base distribution. The mutual information
of the random variables y and x is defined as

I(y, x) =

∫
Sy

∫
Sx

f(y, x) ln
f(y, x)

f(y)f(x)
dydx (2)

where Sy is the support of y. The information interpretation of (2) follows from
the fact that it can be expressed in terms of entropy as

I(y, x) = H(x)−H(x|y). (3)

where H(x|y) = −E ln f(x|y) is the entropy of the conditional probability density
function of x given y. Therefore, I(y, x) has an intuitive interpretation as the
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reduction of the uncertainty about x due to observing y. It can be shown
(see Granger and Lin (1994)) that H(x) ≥ H(x|y) with equality if and only if
f(y, x) = f(y)f(x). Hence, unless y and x are independent, observing y provides
information about x. If we partition y into two sub-vectors y1 and y2, we can
express the conditional mutual information of x and y1 given y2 as

I(y1, x|y2) = H(x|y2)−H(x|y1,y2) (4)

The conditional mutual information tells us how much of the uncertainty about
x that remains after y2 is observed is removed by observing also y1. Now, let
the joint density function f(y, x) be the (ny + 1)-dimensional complex Gaussian
distribution,

NC
((

0
0

)
,

(
Σyy Σyx
Σxy Σxx

))
(5)

Then, both the marginal distribution of x and the conditional distribution of x
given y are univariate complex Gaussian distributions, with covariances given by
Σxx, and Σx|y = Σxx−ΣxyΣ−1yyΣyx, respectively. Using this, it is straightforward
to show that the mutual information of y and x is

I(y, x) = H(x)−H(x|y) = .5 ln

(
Σxx
Σx|y

)
(6)

From H(x) ≥ H(x|y) it follows that mutual information is positive unless y and
x are independent in which case it is zero. On the other hand, if the variables are
perfectly dependent i.e. there exists a one-to-one function g such that x = g(y),
observing y is equivalent to observing x. In that case Σx|y = 0 and I(y, x) =∞.
It is common in practice to normalize the measure to be in the interval [0, 1].
This can be achieved using the following monotonous increasing transformation
(see e.g. Joe (1989) or Granger and Lin (1994))

I∗(y,z) = 1− exp (−2I(y,z)) (7)

Applying this transformation to (6) results in the following measure of information
gain:

IGy→x =

(
Σxx −Σx|y

Σxx

)
× 100, (8)

The interpretation of IGy→x is the following: it measures the reduction in
uncertainty about x due to observing vector y, as a percent of the unconditional
(prior) uncertainty about x. Similarly, when y is partitioned into y1 and y2, we
can define the conditional information gain of y1 with respect to x, given y2 as

IGy1→x|y2
=

(
Σx|y2

−Σx|y

Σxx

)
× 100, (9)

The interpretation of IGy1→x|y2
is the following: it shows the amount of

uncertainty about x left after observing y2 that is removed by observing also y1,
as a percent of the unconditional uncertainty about x.
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2.2. Information gains in the frequency domain

Let zt ∈ Rnz for t ∈ Z be nz−dimensional stationary Gaussian time series with

Ezt = 0 t ∈ Z (10)
cov (zt,zt−h) = Γ (h) t, h ∈ Z (11)

If Z = [z′1,z
′
2, . . . ,z

′
T ]′ is a T × nz−dimensional realization the process, the

joint distribution of Z, as well as the marginal and conditional distributions of
any subset of components of Z, will be Gaussian. Therefore, in the time domain,
the information gain measures from the previous section can be applied directly to
quantify the information gained with respect to any realization of a component of z
due to observing a sample of realizations of a subset of the remaining components
of the process (see Iskrev (2019)).

In the frequency domain, the information gains analysis proceeds by applying
the discrete Fourier transform to the values of Z:

Z(ωj) = (2πT )−1/2
T∑
t=1

zte
−itωj (12)

for the Fourier frequencies ωj = 2πj/T , where j ∈ {j ∈ Z : −π < 2πj/T ≤ π}.
Due to the linearity of the discrete Fourier transform, the joint Gaussianity

is preserved. Furthermore, it can be shown that Z(ωj) behave asymptotically as
independent complex Gaussian random variables with zero mean and a covariance
matrix equal to f(ωj), where fzz(ω) ∈ Cnz×nz is the spectral density matrix of
z(t) at frequency ω (see Brillinger (1981, Theorem 4.4.1)),

fzz(ω) = (2π)−1
∞∑

h=−∞
Γ(h)e−ihω (13)

The asymptotic independence of the Fourier coefficients Z(ωj) across
frequencies implies that information gain analysis may be conducted on a frequency-
by-frequency basis. In particular, (asymptotically) there is no information about a
given component of the series at a frequency ωj that comes from components
at any other frequency ωl, l 6= j. Furthermore, the complex Gaussianity of the
distribution implies that information analysis at a given frequency ω can be
performed using the information gain measures from Section 2.1. To be more
concrete, consider a partition of zt into a ny−dimensional vector yt and a scalar
xt, and let y(ω) and x(ω) be their respective discrete Fourier transforms at a
frequency ω ∈ (−π, π]. The spectral density matrix of [y′t, xt]

′ is given by

fzz(ω) =

[
fyy(ω) fyx(ω)
fxy(ω) fxx(ω)

]
(14)

and the frequency-specific information gain of y(ω) with respect to x(ω) is

IGy→x(ω) =

(
fxx(ω)− fx|y(ω)

fxx(ω)

)
× 100 (15)
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where fx|y(ω) = fxx(ω)− fxy(ω)f−1yy (ω)fyx(ω) is the partial spectrum of x given
y (Priestley (1981)). Furthermore, if we split yt into y1t and y2t and let y1(ω)
and y2(ω) be their respective discrete Fourier transforms, the frequency-specific
conditional information gain of y1(ω) with respect to x(ω) given y2(ω) is

IGy1→x|y2
(ω) =

(
fx|y2

(ω)− fx|y(ω)

fxx(ω)

)
× 100 (16)

The interpretation of IGy→x(ω) and IGy1→x|y2
is the same as before (see Section

2.1), except that now information is defined in terms of the reduction of uncertainty
about x at a given frequency ω due to information from y (or conditionally, from
y1), also at frequency ω. In practice, we are usually interested not in a single
frequency but rather in a band of frequencies, such as low, business cycle, or high
frequencies. Frequency band-specific measure of information gain may be obtained
by replacing in (15) and (16) the frequency-specific spectrum and conditional
spectrum of x with their integrated versions,

IGy→x(ω) =

(
fxx(ω)− fx|y(ω)

fxx(ω)

)
× 100 (17)

IGy1→x|y2
(ω) =

(
fx|y2

(ω)− fx|y(ω)

fxx(ω)

)
× 100 (18)

where ω = {ω : ω ∈ [ω,ω] ∪ [−ω,−ω]} denotes the frequency band of interest,
fxx(ω) =

∫
ω∈ω

fxx(ω)dω, and fx|y(ω) =

∫
ω∈ω

fx|y(ω)dω. The interpretation
remains the same, except that now the uncertainty and information about x are
with respect to the frequency band ω. Note that IGy→x(ω) can be written also
as

IGy→x(ω) =

∫
ω∈ω

IGy→x(ω)
fxx(ω)

fxx(ω)
dω (19)

Therefore, the information gain for a selected band of frequencies ω is given simply
by the weighted sum of the frequency-specific information gains, with weights equal
to the contribution of each frequency to the total variance of x in ω. Similarly,
the conditional information gain (18) can be expressed as a weighted sum of the
frequency-specific conditional information gains.

A special case of the band-specific information gain is when ω covers the full
spectrum, i.e. when ω = 0 and ω = π. Let ω = {ω : ω ∈ [0, π]∪ (0,−π]}. Then, it
is straightforward to show that information gain takes the form:

IGy→x(ω) =

(
var(xt)− var(xt|yt−τ , τ ∈ Z)

var(xt)

)
× 100 (20)

Therefore, in addition to the obvious frequency domain interpretation, it has a time-
domain interpretation, namely the per cent reduction of the unconditional variance



8

of xt as a result of observing the infinite sequence of past, present, and future
values of yt. Similarly, the full spectrum version of the conditional information
gain measure of y1 with respect to x given y2 is

IGy1→x|y2
(ω) =

(
var (xt|y2t−τ , τ ∈ Z)− var(xt|yt−τ , τ ∈ Z)

var(xt)

)
× 100 (21)

The interpretation of (21) is the following: it shows the amount of uncertainty about
xt left after observing the infinite sequence of past, present, and future values of
y2 that is removed by observing also the infinite sequence of past, present, and
future values of y1, as a percent of the unconditional uncertainty about xt.

2.3. DSGE models

A linearized DSGE model can be expressed as a recursive equilibrium law of motion
given by the following system of equations:

yt = C(θ)vt−1 +D(θ)ut (22)
vt = A(θ)vt−1 +B(θ)ut (23)
ut = G(θ)ut−1 + εt, εt ∼ N (0,Σε(θ)) (24)

where yt is a ny vector of observed variables, vt is a nv vector of endogenous
state variables, ut is a nu vector of exogenous state variables, and εt is a nu
vector of exogenous shocks. The matrices A, B, C, D, and G are functions of
the structural parameters of the model, collected in the nθ vector θ.

In practice, latent variables researchers might be interested are endogenous
variables, such as output gap, exogenous shocks, such as total factor productivity
(TFP), or innovations to exogenous shocks, such as the innovation to the TFP
shock. In other words, and using the notation from sections 2.1 and 2.2, the latent
variable xt will be an element of vt, ut, or εt, while the vector of observed variables
is yt. Evaluating the unconditional and conditional information gain measures
requires knowing the spectral and cross-spectral densities of xt, yt, and individual
elements of y. Those can be obtained from the joint spectral density matrix of
zt = [y′t,v

′
t,u
′
t,ε
′
t]
′, which is given by (see Uhlig (1999)):

fz(ω) =
1

2π
W (ω,θ)Σε(θ)W (ω,θ)∗ (25)

where

W (ω,θ) =


C(θ)e−iω D(θ) Ony,nu

Inv Onv,nu Onv,nu

Onu,nv Inu Onv,nu

Onu,ny Onu,nu Inu

× (26)


(
Inv −A(θ)e−iω

)−1
B(θ)

(
Inu −G(θ)e−iω

)−1(
Inu −G(θ)e−iω

)−1
Inu
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and the asterisk denotes matrix transposition and complex conjugation.
In business cycle research, it is common to divide the spectrum into three non-

overlapping intervals, corresponding to business cycle frequencies with periodicity
between 6 and 32 quarters (as is standard in the literature, for example Stock and
Watson (1999)), and frequencies above and below that interval, labeled as low
and high frequencies, respectively. LetωBC , ωL, and ωH denote the respective
frequency bands. Then, the total information gain from yt with respect to xt can
be decomposed as follows:

IGy→x(ω) = IGy→x(ωL)
f(ωL)

f(ω)
+ IGy→x(ωBC)

f(ωBC)

f(ω)
+ IGy→x(ωH)

f(ωH)

f(ω)
(27)

Therefore, the total information gain is given by the weighted sum of the band-
specific information gains, with weights equal to the contribution of each frequency
band to the total variance of x.

Decomposing information gains across frequency bands is possible because
of the mutual independence of the respective frequency components. Since the
variables in y are typically correlated, the overall information about x cannot
be decomposed into contributions of individual observed variables. What we can
measure instead are the marginal contribution of a given observed variable yi, as
well as its conditional contribution given the information in other observed variables
yj ⊂ y−i ≡ {y \ yi}. In particular, the following decomposition holds for any given
frequency band ω:

IGy→x(ω) = IGy
i
→x|y−i (ω) + IGy−i→x(ω) (28)

The first term on the right hand side represents information in yi about x that is
not in y−i. Note that this includes both information that is unique to yi, i.e. is
independent from y−i, as well as information about x that emerges from observing
yi together with y−i. At the same time, some of the information in yi about x is
also in y−i, and is therefore captured by the second term in (28).

3. Applications

In this section, I show how the proposed measures can be used to investigate the
sources and spectral domain distribution of information about structural shocks
in dynamic macroeconomic models. I apply the methodology to two models taken
from the literature: the small-scale model of Uribe (2021), and the medium-scale
model of Justiniano et al. (2011). Considering two models allows me to illustrate
different elements of the analysis in a complementary fashion. The model of Uribe
(2021) is much smaller, with only three observed variables, which makes it possible
to present fully results regarding information interactions among those variables.
This is not practicable in the case of the Justiniano et al. (2011) model, where I
present only selected results and leave the rest for the Appendix. Another important
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difference is that the Uribe (2021) has more shocks than observables, and finding
out how well each shock can be recovered is a relevant dimension of the analysis,
in addition to investigating the main sources of information. This is not an issue
in the second model, which, with its richer structure, larger number of shocks
and observables, is much more representative of the medium-scale New Keynesian
framework in the DSGE literature

3.1. Uribe (2021)

Uribe (2021) investigates the nature and empirical importance of monetary policy
shocks that produce neo-Fisherian dynamics, i.e. move interest rates and inflation
in the same direction over the short run. To that end, the author estimates
a standard small-scale New-Keynesian model with price stickiness and habit
formation, augmented with seven structural shocks. Full details about the model
can be found in the original publication. Here I only describe those of its features
that are directly relevant for the analysis which follows.

Firstly, three of the shocks are to monetary policy, which is described by the
following policy rule:

1 + It
Γt

=

[
A

(
1 + Πt

Γt

)αt ( Yt
Xt

)αy]1−γI (1 + It−1
Γt−1

)γI
ez
m
t , (29)

where It the nominal interest rate, Yt is aggregate output, Πt is the inflation rate,
Γt is the inflation-target, Xt is a nonstationary productivity shocks, and zmt is a
stationary interest-rate shock. The inflation target is defined as

Γt = Xm
t e

zm2
t , (30)

where Xm
t and zm2

t are permanent and transitory components of the inflation
target. It is assumes that Xm

t and Xt grow at a rates gmt and gt, respectively.
There are two preference shocks affecting the lifetime utility function of the

representative household, given by

E0

∞∑
t=0

βteξt

{[(
Ct − δC̃t−1

)(
1− eθtht

)χ]1−σ − 1

1− σ

}
, (31)

where Ct is consumption, C̃t is the cross sectional average of consumption, ht is
hours worked, ξt is an intertemporal preference shock, and θt is a shock to labor
supply.

In addition to Xt, there is also a stationary productivity shock zt, which affects
the production technology according to

Yt = eztXth
α
t , (32)

The five stationary shocks (ξt, θt, zt, zmt , and zm2
t ) and the growth rates of

the two non-stationary shocks (gt and gmt ) are all assumed to follow first-order
autoregressive processes.
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Uribe (2021) estimates the model using quarterly US data on three variables:
per capita output growth (4yt), the interest-rate-inflation differential (rt =
it − πt), and the change in the nominal interest rate (4it). All variables are
assumed to be observed with measurement errors. Thus, there are ten independent
sources of randomness in the data and only three observables. Clearly, not all, if
any, of the latent variables can be recovered fully. The purpose of the remainder
of this section is to determine how well each structural shock can be recovered
and where in the spectrum most of the information comes from, as well as what
are the information contributions of different observed variables overall and across
different frequency bands.

3.1.1. Information decomposition across frequency bands. Uribe (2021) solves
the model by log-linear approximation of the equilibrium conditions around steady
state. The linearity of the solution together with the assumption that the structural
innovations and the measurement errors are Gaussian, implies that the joint
distribution of (any subset of) the innovations, shocks, state and observed variables
is also Gaussian. Therefore, the analysis of information gains can be conducted
using the measures introduced in Section 2. In the analysis which follows I fix the
parameter values at the mean of posterior distribution reported in Uribe (2021)
(see Table 5).

Table 1 presents the total information gains for the seven shocks and their
decompositions into gains from three frequency bands - low, business cycle and
high frequencies, with periodicities of more than 32 quarters, between 6 and 32
quarters and less than 6 quarters, respectively. The results show that none of the
shocks can be fully recovered from the observed variables. The largest reduction of
uncertainty is with respect to the intertemporal preference shock (ξt) – by about
93%, and the permanent productivity shock (gt) – by about 85%. The gains with
respect to the three monetary policy-related shocks are between 15% and 18%. The
least information is gained with respect to the labor supply (θt) and the transitory
productivity shocks (zt), with information gains for both of 1.8%.

Columns 3 to 5 of the table show the information gain contributions from
each frequency band. Following the earlier discussion (see equation (27)), the total
contribution in each case is shown as the product of two terms: the band-specific
information gain, which measures the reduction of uncertainty as a percent of the
uncertainty in that band, and the fraction of total uncertainty that originates in
the given frequency band.

For six of the seven shocks uncertainty is concentrated in either low and business
cycle frequencies, or high and business cycle frequencies. Specifically, in the first
groups are the transitory trend inflation, transitory productivity, and the labor
supply shocks. And in the second are the permanent productivity, transitory interest
rate, and permanent trend inflation shocks. The one exception is the intertemporal
preference shock for which the low frequencies are by far the main source of
uncertainty. As can be expected, the largest gains generally come from parts of
the spectrum where prior uncertainty is larger. There are some notable exceptions,
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total low BC high

ξt preference 93.2 70.4= 96.4× 0.73 19.5= 88.4× 0.22 3.2= 66.0× 0.05
θt labor supply 1.8 0.2= 0.5× 0.33 1.1= 2.3× 0.48 0.5= 2.9× 0.18
zt transitory productivity 1.8 0.2= 0.5× 0.32 1.1= 2.2× 0.49 0.5= 2.9× 0.19
gt permanent productivity 83.5 9.3= 94.9× 0.10 32.3= 87.1× 0.37 42.0= 78.9× 0.53
zmt transitory interest rate 15.5 0.1= 0.9× 0.12 3.2= 7.9× 0.41 12.2= 25.7× 0.47
zm2
t transitory trend inflation 16.5 5.8= 12.7× 0.46 9.7= 23.1× 0.42 1.0= 8.3× 0.12
gmt permanent trend inflation 18.0 7.2= 69.4× 0.10 7.0= 18.3× 0.38 3.9= 7.5× 0.51

Note: Information gain (IG) measures the reduction of uncertainty (variance) about a shock
due to observing all three observed variables, as a percent of the unconditional uncertainty of
the shock. The contribution from each frequency band is shown as the product of the IG for
that band and the variance in that band as a fraction of the total variance. Thus, the units
in the last three columns are % = %× variance band

variance total .

Table 1. Information gain decomposition across frequency bands

however. In particular, note that even though the low frequency band accounts
for only 10% of the uncertainty about the permanent trend inflation shock, the
information gain contribution from that band is largest than the business cycle
frequency band, which accounts for 38% of the uncertainty, and much larger than
the contribution from the high frequency band, which accounts for more than half
of the total uncertainty. This is due to the fact that a much larger fraction of
the uncertainty in the low frequencies is resolved by information provided by the
observed variables than is the case for the higher frequencies. Similarly, note that
for the labor supply and transitory productivity shocks, because of the relatively
larger information gains from the higher end of the spectrum, the information
contributions from there is larger than from the low frequencies, even though the
low frequencies account for a significantly larger fraction of the prior uncertainty.

3.1.2. Information contributions by variables. Table 2 shows the conditional
information gains for each observed variable for the full spectrum and the three
frequency bands. The largest contribution by far is from output growth (4yt) with
respect to the permanent productivity shock. Note that the conditional information
gain of 83.4% is almost equal to the total gain (all observables) of 83.5% for
that shock (see Table 1). This implies that the other two variables - the interest
rate-inflation differential (rt) and the change in the nominal interest rate (4it)
alone reduce the uncertainty about the permanent productivity shock by only
0.1%. This result holds for the full spectrum and the individual frequency bands.
Output growth contributes less information for the other shocks, compared to rt
or 4it. The contributions of these variables with respect to the two trend inflation
shocks are similar, with rt being relatively more informative for the transitory trend
inflation shock, while 4it is more informative for the permanent one. In addition,
rt contributes much more information than either 4yt or 4it with respect to the
preference shock, while 4it is the most informative observable with respect to the
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total low BC high

shock 4yt rt 4it 4yt rt 4it 4yt rt 4it 4yt rt 4it

ξt preference 0.3 26.8 7.2 0.0 26.4 0.8 0.1 0.5 4.1 0.1 0.0 2.3
θt labor supply 0.1 0.1 1.1 0.0 0.0 0.0 0.1 0.0 0.6 0.0 0.0 0.5
zt transitory productivity 0.1 0.0 1.1 0.0 0.0 0.0 0.1 0.0 0.6 0.0 0.0 0.5
gt permanent productivity 83.4 0.8 5.7 9.3 0.0 0.1 32.2 0.6 2.8 41.9 0.2 2.8
zmt transitory interest rate 2.2 1.5 9.0 0.0 0.1 0.0 0.4 0.9 0.4 1.8 0.5 8.5
zm2
t transitory trend inflation 1.7 13.0 8.2 0.1 5.5 4.3 1.1 7.3 3.7 0.5 0.2 0.2
gmt permanent trend inflation 0.5 10.4 15.6 0.0 4.7 7.0 0.2 5.2 5.6 0.3 0.5 3.0

Note: Conditional information gain measures the additional reduction of uncertainty
(variance) about a shock due to observing a variable given that the other two variables
are also observed, as a percent of the unconditional uncertainty of the shock. The observed
variables are: output growth (4yt), interest-rate-inflation differential (rt), and the change
in the nominal interest rate (4it). Due to rounding in some cases the band-specific
contributions do not add up to the total values.

Table 2. Conditional information gains

transitory interest rate shock, and, marginally, for the labor supply and transitory
productivity shocks.

total low BC high

shock 4yt rt 4it 4yt rt 4it 4yt rt 4it 4yt rt 4it

ξt preference 3.5 84.6 66.0 0.9 69.6 44.0 2.0 14.6 18.9 0.6 0.4 3.1
θt labor supply 0.0 0.6 1.7 0.0 0.1 0.2 0.0 0.5 1.0 0.0 0.0 0.5
zt transitory productivity 0.0 0.6 1.6 0.0 0.1 0.1 0.0 0.5 1.0 0.0 0.0 0.5
gt permanent productivity 76.7 0.1 0.1 9.0 0.0 0.0 28.7 0.0 0.0 39.1 0.0 0.0
zmt transitory interest rate 0.7 5.8 11.5 0.0 0.1 0.0 0.2 2.5 1.8 0.5 3.2 9.7
zm2
t transitory trend inflation 2.2 5.3 0.9 0.2 1.1 0.1 1.6 3.8 0.6 0.4 0.4 0.2
gmt permanent trend inflation 1.8 0.4 6.8 0.1 0.0 2.5 0.9 0.3 1.3 0.8 0.1 3.0

Note: Unconditional information gain measures the reduction of uncertainty (variance) about
a shock due to observing a given variable, as percent of the unconditional uncertainty of the
shock.

Table 3. Unconditional information gains

The ranking of variables in terms of their total information contributions is
determined by the relative size of the information gains in the part of the spectrum
from where a given shock receives the most total information (see Table 1). In
several cases, the ranking changes with the frequency band. For instance, 4it
contributes significantly more information than rt with respect to the intertemporal
preference shock in the BC and high frequencies. At the same time, rt contributes
the most information with respect to the transitory interest rate shock in the low
and BC frequencies, in spite of being the least informative variable in the high
frequencies and overall. Similarly, 4yt is the least informative variable overall with
respect to the transitory trend inflation shock, but has the largest contribution in
the high frequency band.
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It is worth emphasizing that the information gains shown in Table 2 are from
observing a given variable conditional on already having observed the other two
variables. As the observed variables are obviously not mutually independent, it
is conceivable that in some cases the contributions are small because different
variables share common information with respect to those shocks. To help find out
if and when that is the case, Table 3 shows the unconditional information gains,
i.e. the percent reduction of uncertainty about a given shock due to observing only
one variable at a time.

The results reveal some notable differences between conditional and
unconditional information gains. Most striking is the reduction in the contributions
of the three observables with respect to the intertemporal preference shock. In
particular, the information gains from rt and 4it change from, respectively, 85%
and 66% unconditionally, to 27% and 7% conditionally. Similarly, the contribution
of 4yt decreases from 3.5% to only 0.3%. This suggests that, to a large extent,
the information in either one of the observable variables is not unique to them but
is also contained in the other two. In other words, there is a significant degree of
redundancy of the information about the intertemporal preference shock. Another,
less striking, example of redundancy is the transitory interest rate shock, where the
conditional information gains from rt and 4it are smaller than the unconditional
ones.

Information redundancy is not the only possible consequence of the existing
interdependence among observables. In the case of the permanent productivity
shock, the conditional information gains for all variables are significantly larger
than the unconditional ones. The same is true for the contributions of rt and 4it
with respect to the permanent and transitory trend inflation shocks, as well as for
the contribution of 4yt with respect to the transitory interest rate shock. In all of
these cases there is a positive information complementarity instead of information
redundancy, that is, information increases when variables are observed together.

Following Iskrev (2019), the degree of information complementarity between
variables can be measured by comparing the joint information gain with respect
to a shock to the individual gains. Specifically, the information complementarity
between variables y1 and y2 conditional on variables y3 ⊂ {y \ y12} at frequency
band ω is defined as:

ICy12→x|y3
(ω) =

IGy12→x|y3
(ω)

IGy1→x|y3
(ω) + IGy2→x|y3

(ω)
− 1. (33)

Negative values indicate negative complementarity, or information redundancy,
between y1 and y2, and positive values indicate positive complementarity
between the two variables. Since the information gain is non-negative, we have
ICy12→x|y3

(ω) ≥ −1/2, with equality when y1 and y2 are (conditionally on
y3) functionally dependent, in which case IGy12→x|y3

(ω) = IGy1→x|y3
(ω) =

IGy2→x|y3
(ω). A lack of information complementarity,
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Figure 1: Pairwise information complementarity between observables with respect to
shocks.
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i.e. ICy12→x|y3
(ω) = 0 occurs when y1 and y2 are (conditionally on y3)

independent, and hence IGy12→x|y3
(ω) = IGy1→x|y3

(ω) + IGy2→x|y3
(ω). Note

that the conditioning could be with respect to any subset of observables, including
the empty set, in which case we have unconditional complementarity between y1
and y2.

Figure 1 shows the unconditional and conditional information complementarities
between all pairs of variables. The results are shown for the full spectrum
as well as the three frequency bands. As already anticipated, the strongest
complementarity overall is between rt and 4it, and is negative for all shocks
except the permanent and transitory trend-inflation shocks. Both unconditionally
and conditionally the degree of complementarity tends to be significantly lower in
the higher frequencies. Conditioning on the third observable in most cases preserves
the sign of complementarity and reduces the magnitude. There are some notable
exceptions to this pattern, however. For instance, the degree of complementarity
between rt and 4it increases when conditioning on 4yt, especially in the business
cycle frequencies. Furthermore, the complementarity between the same variables
with respect to the transitory productivity shock changes signs when conditioning
on yt, from positive to negative in the low frequencies, and from negative to
positive in the high frequencies. At the same time, when evaluated over the full
spectrum, the complementarity is strongly negative unconditionally and only weekly
so, conditionally.

3.1.3. Information gains in the time domain. The time domain version of the full
spectrum information gain measure (see equation (20)) is given by:

IGY
T
→xt =

(
var(xt)− var(xt|YT )

var(xt)

)
× 100, (34)

where 1≤ t≤ T and YT = {y1, . . . ,yT }. The difference between the two measures
is that, in the frequency domain, the information for any given xt stems from the
infinite past and future values of the observable variables. Therefore, for a given set
of observed variables, the total amount of information is invariant to the temporal
location of the latent variable. In contrast, in the time domain, it matters where
the location of t is, relative to the beginning and the end of the sample. Thus, the
value of time domain measure changes with t and is bounded from above by the
value of the full spectrum frequency domain measure.

Figure 2 compares the time and frequency domain information gains for the
seven shocks in the model. Specifically, it shows the ratio of the time domain
to the frequency domain measure for all values of t in a sample of T = 255
observations, which is the sample size in Uribe (2021). The results show that for
most values of t the time and frequency domain information gains coincide. As
anticipated, differences occur only at the beginning and end of the sample. For
all shocks except the transitory trend inflation shock, for which convergence is
somewhat slower, there are about ten observations or fewer on either end of the



17 Spectral decomposition of information

8 28 48 68 88 108 128 148 168 188 208 228 248
0.96

0.98

1.00
preference

7 27 47 67 87 107 127 147 167 187 207 227 245

0.8

1.0
labor supply

6 26 46 66 86 106 126 146 166 186 206 226 246

0.8

1.0
transitory productivity

8 28 48 68 88 108 128 148 168 188 208 228 248

0.98

0.99

1.00
permanent productivity

4 24 44 64 84 104 124 144 164 184 204 224 244
0.50

0.75

1.00
transitory interest rate

14 34 54 74 94 114 134 154 174 194 214 234
0.6

0.8

1.0
transitory trend inflation

7 27 47 67 87 107 127 147 167 187 207 227 247
time

0.50

0.75

1.00
permanent trend inflation

Figure 2: Total information gains in the time domain relative to the frequency domain
(full spectrum).

sample where the time domain information gains are smaller than the frequency
domain ones.

3.1.4. Discussion of the results. As already noted, having more sources of
uncertainty than the number of observed variables necessarily implies that the
latent variables in the model cannot all be recovered fully. At the same time, as the
results presented in Section 3.1.1 show, some shocks in the Uribe (2021) model are
significantly better recoverable than others. The goal of this section is to develop
a further understanding of these findings.

A natural question to ask is: why are the information gains with respect to the
intertemporal preference and permanent productivity shocks so much larger than
the gains for the remaining shocks, and in particular compared to those with respect
to the labor supply and transitory productivity shocks? Intuitively, the amount
of information one or more variables contain about another variable depends on
the strength of their mutual dependence.2 Furthermore, an insight gained from
the frequency domain perspective is that the interactions need to be strong in
the parts of the spectrum that are mainly responsible for the uncertainty of the
latent variable. In addition, the extent to which information from multiple sources
accumulates, in turn, depends on how interdependent they are among themselves.

2. In fact, the mutual information coefficient is commonly used to measure and test for statistical
dependence between random variables (see e.g. Linfoot (1957), Joe (1989), and Granger and Lin
(1994)).
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For instance, variables that are functionally dependent on other observed variables
provide no useful information.3

Consider the intertemporal preference shock (ξt). According to the posterior
mean estimates reported in Uribe (2021, Table 5), this shock is significantly more
persistent and volatile than all other shocks. In particular, its volatility is an order
of magnitude larger than the volatilities of all other shocks except the permanent
productivity shock (gt). The high degree of persistence explains why most of the
uncertainty about ξt is concentrated in the lower end of the spectrum, as seen
in Table 1. Furthermore, as seen from the same table, most of the uncertainty
in the low frequencies is resolved by the information contained in the observed
variables, which suggests that there are strong interactions between ξt and (some
of) those variables. Since in the present context, the variables have a clear causal
direction, i.e. from shocks to endogenous variables, a natural way of describing
their interactions is in terms of the shocks’ impact on the observed variables. A
convenient measure of the size of the total impact is each shock’s contribution
to the total variance of each variable. Figure 3 shows the individual contributions
of the shocks as a percent of the total variances of the observables, as well as
decompositions of the individual and total contributions in the low, BC, and high
frequency bands. Note that the measurement errors also contribute to the variances,
which is why the total contributions of the shocks sum up to less than 100%.

The results show that ξt drives most of the volatility in two of the observed
variables – rt and 4it, and, in the case of rt, the contribution is mostly in the low
frequencies. This

3. An example of this is output growth in the model estimated by Schmitt-Grohé and Uribe (2012),
see Iskrev (2019) for details.
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Figure 3: Total and individual contributions of the shocks as a percent of the variances of
the observables in the full spectrum and the low, business cycle, and high frequency
bands. The difference to 100% is accounted for by the measurement error variances.
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is consistent with the earlier findings that, of the three observed variables, rt is
the most informative and 4yt – the least informative one. Similarly, the second
best recoverable shock – to permanent productivity, is responsible for the bulk
of the volatility of the third variable – 4yt, and particularly in the BC and high
frequencies, which, as seen in Table 1, is also where most of the uncertainty of
that shock stems from. The variance contributions of the remaining five shocks are
significantly smaller, and account for only between 12%, in the case of transitory
interest rate shock (zmt ) with respect to 4it, and 2.3%− 2.4% in the case of both
the labor supply (θt) and transitory productivity (zt) shocks with respect again to
4it.

Equivalence between variance and information decompositions. Variance
decompositions in dynamic structural models are typically obtained by shutting-
off all shocks but one at a time and then computing the endogenous variables’
variances or spectral densities (see for instance Fernández-Villaverde et al. (2016,
Section 8)). This gives the contribution of each shock to the total variances or
spectral densities of the endogenous variables. It is easy to see that the same
quantities can be obtained using the information gain measures introduced in
Section 2. Specifically, a shock’s contribution to the variance of a variable is equal
to the information gained, i.e. the reduction in variance, with respect to the variable
due to knowing that shock. In other words, instead of information from observed
variables to shocks, we measure the flow of information in the opposite direction
– from shocks to observables. Of course, this only works when the shocks are
mutually independent, which is also the assumption behind the standard variance
decomposition approach. If shocks are mutually dependent one has to distinguish
between conditional and unconditional variance contributions, as in the case of
information from observed variables with respect to shocks.

To summarize, as expected, there is a clear link between, on the one hand, the
shocks’ contributions to the observed variables’ volatilities and, on the other hand,
the degree to which each shock can be recovered from information contained in
those variables. At the same time, it is important to point out that the size of
the contributions is not necessarily a good indicator of the variables’ importance as
sources of information about the shocks. For instance, the intertemporal preference
shock contributes similar fractions of the variances of rt and 4it. Yet, rt is
significantly more informative than 4it about that shock. As noted earlier, this
is due to the fact that the variance contributions are in different parts of the
spectrum – the low frequencies in the case of rt, and the BC and high frequencies,
in the case of 4it. Since most of the variance of the preference shock comes
from the low frequencies, rt is significantly more informative than 4it. In other
cases, it is the information interactions among the observed variables that affect
their relative importance as sources of information. For instance, as can be seen
in Table 2, the conditional contribution of information by 4it with respect to the
transitory trend inflation shock (zm2

t ) is much larger than that of 4yt, in spite of
the significantly larger fraction of the variance of 4yt attributed to that shock,
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compared to4it. This is explained by the strong positive complementarity between
rt and 4it in the BC and especially the low frequencies, which is where most of
the uncertainty of that shocks is located. Lastly, small variance contributions of a
shock does not necessarily imply that the shock cannot be recovered. In general,
having the same number of non-redundant observables as the number of sources
of uncertainty means that all shocks are fully recoverable. This is the case in the
model I consider next.

3.2. Justiniano, Primiceri, and Tambalotti (2011)

Justiniano et al. (2011) (henceforth JPT) investigate whether investment shocks
are important drivers of business cycle fluctuations. To that end, and expanding on
their previous work in Justiniano et al. (2010), they estimate a New Keynesian
model featuring imperfectly competitive goods and labor markets, as well as
different nominal and real frictions such as sticky prices and wages, habit formation
in consumption, variable capital utilization and investment adjustment costs. As
in the previous section, here I outline only those features of the model that are
relevant for the information decomposition analysis that follows.

The model has eight structural shocks in total, with three technology shocks,
two of which are related to investment. Specifically, JPT distinguish between final
and intermediate consumption, investment, and capital goods, each being produced
in a different sector. They introduce a shock that affects the transformation
of consumption into investment goods, and another shock that affects the
transformation of investment goods into productive capital. The first, called
investment-specific technology (IST) shock, is introduced via the production
function in the investment good producing sector:

It = ΥtY
I
t , (35)

where It is the quantity of investment goods in efficiency units produced with Y It
units of the final good. Υt represents the IST and is assumed to be a non-stationary
random process growing at a rate υt.

The second investment technology shock is introduced via the production
technology in the capital good producing sector, which assumes that new capital,
denoted with it, is produced from investment goods according to

it = µt

(
1− S

(
It
It−1

))
(36)

where S is an investment adjustment cost function, and µt is a stationary shock
to the marginal efficiency of investment (MEI), assumed to be an AR(1) process.

The third technology shocks affects the production functions in the intermediate
good producing sector according to:

Yt(i) = max{A1−α
t Kt(i)

αLt(i)
1−α −AtΥ

α
1−α
t F ; 0} (37)
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where Yt(i), Kt(i), and Lt(i) are the quantities of output produced, and effective
capital and labor employed by intermediate good producer i. F represents fixed
cost of production, and At is a common non-stationary neutral technology process,
growing at rate zt.

The final consumption good Yt is produced by combining a continuum of
intermediate goods, according to

Yt =

[∫ 1

0

Yt(i)
1

1+λp,t

]1+λp,t
(38)

where λp,t is a stationary price markup shock following ARMA(1,1) process.
Similarly to the model in the previous section, there is a shock to the

intertemporal preferences of the households populating the economy whose lifetime
utility function is given by

E0

∞∑
t=0

βtbt

{
log (Ct − hCt−1)− ϕLt(j)

1+ν

1 + ν

}
, (39)

where Ct is consumption, bt is the stationary intertemporal preference shock,
assumed to follow an AR(1) process. JPT assume that there is a continuum of
households j ∈ [0, 1], each one being a supplier of specialized labor denoted by
Lt(j). The specialized labor in turn is combined into homogenous labor input
according to

Lt =

[∫ 1

0

Lt(i)
1

1+λw,t

]1+λw,t
(40)

where λw,t is a stationary wage markup shock assumed to follow an ARMA(1,1)
process.

The last two shocks are to government fiscal and monetary policy. Public
spending Gt is a time-varying fraction of output,

Gt =

(
1− 1

gt

)
Yt (41)

where the government spending shock gt as a stationary AR(1) process.
Monetary policy consists of setting the nominal interest rate Rt according to

the following policy rule:

Rt
R

=

(
Rt−1
R

)ρR [(πt
π

)ϕπ (Xt
X∗t

)ϕX]1−ρR [Xt/Xt−1
X∗t /X

∗
t−1

]ϕdX
εmp,t, (42)

where emp,t is the monetary policy shock, R is the steady state of the nominal
rate, πt is the inflation rate, Xt = Ct + It +Gt is actual real GDP and X∗t is the
level of GDP under flexible prices and wages and in the absence of markup shocks.

To summarize, there are eight shocks in the model, six stationary and two
non-stationary. Two of the stationary shocks – to price and wage markups, follow
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ARMA(1,1) processes, and one – to monetary policy, is an i.i.d process. The
remaining stationary shocks – to government spending, MEI, and intertemporal
preferences, as well as the growth rates of the two non-stationary shocks – to IST
and neutral technology, follow AR(1) processes. The disturbances to all shocks are
assumed to be Gaussian, leading to a linear Gaussian state space representation of
the solution of log-linear approximation of model.

JPT estimate the model using US data on hours worked (ht = logLt),
inflation (πt), the nominal interest rate (Rt), and the growth rates of GDP
(xt = 4 logXt), consumption (ct = 4 logCt), investment (it = 4 log It), real
wages (wt = 4 log Wt

Pt
), and the relative price of investment (πit = 4 log PIt

Pt
).

Unlike Uribe (2021), they do not allow for measurement errors in any of the
series. As seen below, this implies that all eight shocks can be recovered fully with
the information in the eight observed variables. In the remainder of this section I
investigate the main sources of information for each shock in terms of observed
variables and parts of the spectrum.

3.2.1. Information decomposition across frequency bands. Table 4 presents the
total information gains for the eight shocks and their decompositions into gains
from the low, BC, and high frequencies. As noted earlier, all shocks can be fully
recovered from information in the observables, in the full spectrum as well as
within each frequency band. The information contributions from the bands reflect
the fraction of each shock’s variance originating in that band.

shock total low BC high

z neutral technology 100 11.2= 100× 0.11 40.0= 100× 0.40 48.8= 100× 0.49
g government 100 96.1= 100× 0.96 3.2= 100× 0.03 0.7= 100× 0.01
υ IST 100 8.4= 100× 0.08 33.6= 100× 0.34 58.0= 100× 0.58
λp price mark-up 100 51.7= 100× 0.52 16.1= 100× 0.16 32.2= 100× 0.32
λw wage mark-up 100 5.1= 100× 0.05 27.3= 100× 0.27 67.6= 100× 0.68
b preference 100 22.8= 100× 0.23 49.9= 100× 0.50 27.4= 100× 0.27
εmp monetary policy 100 6.3= 100× 0.06 27.1= 100× 0.27 66.7= 100× 0.67
µ MEI 100 47.4= 100× 0.47 40.8= 100× 0.41 11.7= 100× 0.12

Note: Information gain (IG) measures the reduction of uncertainty (variance) about a
shock due to observing all three observed variables, as a percent of the unconditional
uncertainty of the shock. The contribution from each frequency band is shown as the
product of the IG for that band and the variance in that band as a fraction of the total
variance. Thus, the units in the last three columns are % = %× variance band

variance total

Table 4. Information gain decomposition across frequency bands, JPT model

For six of the eight shocks uncertainty is distributed monotonically across the
frequency bands, i.e. increases or decreases moving from low to high frequencies.
Only for one of them – the government spending shock, uncertainty is concentrated
in a single frequency band – the low frequencies, contributing 96% of the total
variance. In the case of the MEI shock, most of the uncertainty is in the low and
BC frequencies. For the other two technology shocks – neutral and IST, as well as
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the wage mark-up and the monetary policy shocks, uncertainty is mostly in the BC
and high frequencies. In the case of the intertemporal preference shock, half of the
uncertainty is in the BC frequencies, and the rest is divided almost evenly between
the low and high frequencies. The other shock with a non-monotonic distribution
of uncertainty is the price mark-up shocks, for which about half of the variance is
due to the low frequencies, with a significant contribution by the high frequencies,
and the least amount of uncertainty due to the BC frequencies.

shocks total low

x c i h w π R πi x c i h w π R πi

z neutral technology 15.6 0.0 0.2 46.4 0.0 0.0 0.0 0.1 0.9 0.0 0.1 1.5 0.0 0.0 0.0 0.0
g government 45.5 52.8 18.3 0.0 0.0 0.0 0.0 0.0 42.6 49.9 14.8 0.0 0.0 0.0 0.0 0.0
υ IST 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1
λp price mark-up 13.7 0.2 0.3 21.4 29.3 32.4 0.2 0.2 11.0 0.0 0.2 9.1 27.3 0.5 0.0 0.1
λw wage mark-up 0.8 0.2 0.4 1.4 93.2 23.3 0.3 0.3 0.1 0.0 0.0 0.1 1.6 1.4 0.1 0.0
b preference 1.4 28.5 7.3 11.2 2.5 0.7 5.6 0.0 1.0 4.2 6.1 6.6 2.3 0.6 3.4 0.0
εmp monetary policy 0.3 3.1 0.2 10.2 0.1 12.1 92.6 0.0 0.1 0.1 0.0 1.5 0.0 4.4 4.8 0.0
µ MEI 0.1 0.0 8.7 0.4 2.2 0.4 5.2 1.9 0.0 0.0 3.9 0.1 2.0 0.1 3.2 1.2

shocks BC high

x c i h w π R πi x c i h w π R πi

z neutral technology 4.5 0.0 0.0 13.4 0.0 0.0 0.0 0.0 10.2 0.0 0.0 31.6 0.0 0.0 0.0 0.0
g government 2.5 2.6 3.0 0.0 0.0 0.0 0.0 0.0 0.5 0.3 0.5 0.0 0.0 0.0 0.0 0.0
υ IST 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56.1
λp price mark-up 1.5 0.0 0.0 6.7 1.9 7.9 0.1 0.0 1.2 0.1 0.1 5.7 0.1 24.0 0.1 0.0
λw wage mark-up 0.3 0.1 0.1 0.4 24.6 8.7 0.2 0.2 0.4 0.1 0.2 1.0 67.1 13.2 0.1 0.1
b preference 0.1 10.0 1.1 2.7 0.2 0.2 1.8 0.0 0.2 14.3 0.1 2.0 0.0 0.0 0.4 0.0
εmp monetary policy 0.1 0.8 0.1 4.8 0.0 4.1 24.8 0.0 0.1 2.2 0.2 3.9 0.0 3.6 63.0 0.0
µ MEI 0.0 0.0 1.7 0.2 0.1 0.2 1.6 0.3 0.0 0.0 3.2 0.2 0.0 0.1 0.4 0.3

Note: Conditional information gain measures the additional reduction of uncertainty (variance)
about a shock due to observing a variable given that the other seven variables are also
observed, as a percent of the unconditional uncertainty of the shock. The observed variables
are: the growth rates of output (y), consumption (c), investment, and wages (w), the inflation
rates for consumption (π) and investment (πi), hours worked (h) and the nominal interest
rate (r). Due to rounding in some cases the band-specific contributions do not add up to the
total values.

Table 5. Conditional information gains, JPT model

3.2.2. Information contributions by variables. Table 5 shows the conditional
information gains for each observed variable in the full spectrum and the individual
frequency bands. The three largest contributions, each exceeding 90%, are from
the growth rate of the relative price of investment (πi) with respect to the IST
shock (υ), from the real wage growth (w) with respect to the wage mark-up
shock (λw), and from the nominal interest rate (R) with respect to the monetary
policy shock (εmp). As JPT show, the price of investment in terms of consumption
goods coincides with the inverse of the IST process. Therefore, the IST growth
rate process is fully recovered by observing πi alone. A conditional information
gain of 97.2% in the full spectrum implies that, in absence of πi, information
from the remaining variables reduces uncertainty about υ by 2.8%. In addition
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to IST shock, πi also contributes information with respect to the MEI shock,
although much less compared to other variables, and in particular the investment
growth rate, which is the most informative variable for that shock. Other large
conditional contributions are from the growth rates of output and consumption with
respect to the government spending shock, and from hours worked with respect
to the neutral technology shock. Consumption growth is also the most informative
variable with respect to the intertemporal preference shock, while inflation is the
most informative observable with respect to the price mark-up.

shocks total low

x c i h w π R πi x c i h w π R πi

z neutral technology 17.4 20.1 7.3 24.3 28.7 24.4 9.6 0.0 5.4 6.1 2.7 0.6 7.5 2.0 0.6 0.0
g government 0.4 3.1 0.1 4.4 0.0 1.7 4.8 0.0 0.1 3.1 0.1 4.2 0.0 1.7 4.7 0.0
υ IST 1.3 0.1 2.0 0.6 0.1 0.1 0.2 100.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 8.4
λp price mark-up 1.8 0.3 4.4 4.8 18.1 39.3 3.6 0.0 1.3 0.3 3.8 4.3 8.3 6.2 1.5 0.0
λw wage mark-up 0.4 0.4 0.6 1.0 59.7 3.4 0.6 0.0 0.3 0.2 0.2 0.8 0.2 2.1 0.5 0.0
b preference 7.4 61.9 0.9 6.9 0.0 1.7 9.7 0.0 0.3 3.6 0.2 0.6 0.0 0.6 1.7 0.0
εmp monetary policy 3.5 1.2 2.8 3.1 0.0 1.7 57.6 0.0 0.2 0.1 0.1 0.3 0.0 0.4 0.2 0.0
µ MEI 47.2 10.3 73.1 56.3 3.4 9.7 51.6 0.0 16.5 8.4 28.2 24.9 2.8 4.9 30.4 0.0

shocks BC high

x c i h w π R πi x c i h w π R πi

z neutral technology 7.5 8.4 2.7 7.7 16.8 14.3 6.0 0.0 4.5 5.6 1.9 15.9 4.4 8.1 3.0 0.0
g government 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0
υ IST 0.2 0.0 0.3 0.1 0.0 0.0 0.1 33.6 1.0 0.0 1.7 0.5 0.0 0.0 0.0 58.0
λp price mark-up 0.3 0.0 0.3 0.3 3.6 7.2 0.6 0.0 0.3 0.0 0.3 0.2 6.2 25.8 1.5 0.0
λw wage mark-up 0.1 0.1 0.2 0.1 10.1 1.2 0.2 0.0 0.0 0.1 0.2 0.0 49.4 0.1 0.0 0.0
b preference 4.0 34.9 0.5 3.9 0.0 0.9 5.6 0.0 3.2 23.5 0.2 2.3 0.0 0.2 2.4 0.0
εmp monetary policy 1.1 0.4 0.8 1.2 0.0 0.7 8.1 0.0 2.2 0.7 1.9 1.6 0.0 0.6 49.3 0.0
µ MEI 24.6 1.9 34.6 26.6 0.6 4.4 20.2 0.0 6.1 0.1 10.4 4.7 0.0 0.4 1.0 0.0

Note: Unconditional information gain measures the reduction of uncertainty (variance) about
a shock due to observing a given variable, as percent of the unconditional uncertainty of the
shock.

Table 6. Unconditional information gains, JPT model

With a few exceptions, variables that contribute the most information overall are
also the most informative ones within each frequency band. One of the exceptions
is the contribution of wage growth with respect to the price markup shock, which is
significantly larger than the contribution of inflation in the low frequency band, but
much smaller in the BC and high frequencies, and thus overall. Another notable
exception is the intertemporal preference shock where consumption growth is by far
the most informative variable overall, even though in the low frequency band the
conditional contributions of both hours worked and investment growth are much
larger.

Table 6 shows results for the unconditional information gains. As discussed
earlier, for a given variable and a shock, the difference between conditional
and unconditional information gains indicates the existence of information
complementarities with respect to that shock between the variable and other
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observables. The complementary may be positive or negative depending on whether
the conditional gains are larger or smaller than the unconditional ones.

The most extreme case of positive complementarity is observed with respect
to the government spending shock, where the largest unconditional gain – from
R, is less than 5%, whereas there are two variables – c and x, with conditional
gains exceeding 45%, and a third one – i, with conditional gain exceeding 18%.
The obvious explanation for this result is the existing tight relationship among x,
c, i, and g implied by the resource constraint of the economy. Since g is latent,
joint information from pairs of the observed resource constraint variables is larger
than the information contained in each of them individually. This intuition can
be confirmed by applying the measure of information complementarity introduced
earlier (see equation (33)). The top panel of Figure 4 shows the largest, in
absolute value, unconditional and conditional information complementarities with
respect to the government spending shock. In both cases, the largest positive
complementarities are between pairs of resource constraint variables. For instance,
the value of 3.2 in the case of x and c implies that, conditional on observing the
remaining six variables, observing x and c together provides 2.2 times as much
information about g as adding up the information from each of them individually.
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Figure 4: Largest pairwise information complementarities with respect to the government
spending and MEI shocks, full spectrum.

The bottom panel of Figure 4 shows the most significant complementarities with
respect to the MEI shock. As can be confirmed by comparing the values reported in
Table 5 and Table 6, the MEI shock presents the most prominent case of negative
information complementarities. In particular, the gain from i, which is the most
informative variable for that shock, both conditionally and unconditionally, drops
from more than 70% unconditionally, to less than 10%, conditionally. Similarly, the
information gains from R, h, and x all drop from around 50% to about 5% or less.
This implies that, to a large extent, information from these variables regarding
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the MEI shock is not unique to them but is also contained in other observed
variables. As can be seen in Figure 4, different combinations of i, R, h, and x are
among the variable pairs with the strongest negative information complementarity.
In the case of i and x, the explanation again can be traced to their strong mutual
dependence, together with c, implied by the resource constraint of the economy.
In fact, we should expect to find negative complementarity with respect to all
shocks, other than g, between any two of the resource constraint variables when
the third is among the conditional variables.4 This is indeed the case as shown in
more details in the Appendix. Also there, I report the pairwise complementarity
coefficients for each frequency band. Examining those results can help explain, for
example, the finding that the overall information complementarity between c and
i with respect to the g shock is zero, which may be puzzling given the preceding
argument for why all pairs of resource constraint variables should exhibit significant
mutual complementarity. Indeed, the complementarities between c and i, c and x,
and x and i are very strong in the BC and high frequencies. However, as seen earlier,
almost all information about g is in the low frequencies, where the complementarity
between c and i is zero.

The main conclusion of JPT is that the MEI shock is the key source of business
cycle fluctuations whereas the IST shock plays no role. In particular, they show that
the MEI shock is responsible for large fractions of the variances of GDP, investment,
and hours at business cycle frequencies, and the contributions of the IST shock are
nil. In Figure 5, I report variance decompositions for the individual frequency bands
as well as the overall contribution of each shock to the variances of the observed
variables.5 The results show that the MEI shock explains the bulk of the variances
of x, i, and h in the full spectrum, not just the BC frequencies. In addition, the
same shock contributes most of the volatility of R. This helps understand the
earlier observation that R is the second most informative variable about µ (see
Table 5). Note that the MEI shock contributes most of the variance in the low and
BC frequencies of R – 65% and 55% of the total variance in those frequency bands,
respectively, and those are the parts of the spectrum where most of the uncertainty
about µ resides. Furthermore, unlike the resource constraint variables, a relatively
smaller fraction of the information in R is redundant. The spectral decomposition

4. At the risk of belaboring the obvious, consider the case where g is also observed, or, alternatively,
where the g shock has zero variance. Then, because of the exact collinearity among them, the
information in any variable entering the resource constraint with respect to all shocks is completely
redundant given the information in the remaining resource constraint variables.
5. The JPT results are displayed in Table 3 of their article. There are several differences between
their presentation and the one in Figure 5. One is that JPT show the variance contributions as
fractions of the total variance in the business cycle frequencies. In my plot, the fractions are relative
to the total variances in the full spectrum. To obtain comparable contributions, the values in the plot
have to be multiplied by the fraction of the total variance of each shock due to the BC frequencies.
Another difference is that for the trending variables (x, c, i, and w), JPT show decompositions for
the levels, whereas I present results for the growth rates. Finally, the point estimates in JPT are the
median values of the posterior distributions of the contributions. I present decompositions at the
posterior median of the estimated parameters of the model.
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of the contribution of the preference shock to the variance of c shows a relatively
small impact in the low frequency band, which helps explain another observation
made earlier – that in spite of being the most informative variable for that shock
overall, c is not as informative about it in the low frequencies. Similarly, the fact that
the contribution of the wage mark-up shock to the volatility of w is predominantly
in the higher end of the spectrum is consistent with the dominant role of w as a
source of information for that shock. In contrast, the low frequencies are a major
source of uncertainty about the price mark-up shock, contributing more than half
of its total variance. Given that most of that shock’ contribution to the variance of
h is also in the low frequency band, this helps understand why the importance of
h as a source of information about λp is comparable to that of w and π, in spite
of the much smaller fraction of total variance of h due to that shock.

As seen earlier, the importance of h is even greater in the case of the neutral
technology shock, for which it is the observable with the largest conditional
contribution of information. This might be hard to anticipate on the basis of the
variance decomposition results, which show that more than half of the contribution
of z is to the low frequency component of the variance, and only 0.3% of the total
variance of h stems from the high frequency contribution of that shock. At the
same time, the BC and high frequencies account for almost 90% of the total
information about z, and the bulk of the information contributed by h is within
the high frequency band. As shown in more details in the Appendix, this result
is due to, on the one hand, the strong positive complementarity between h and
x, and, on the other hand, the also strong negative complementarities among x,
c and i, as well as between π and w, and π and R. In other words, there is a
substantial redundancy in the information about z in variables for which this shock
is an important source of volatility. Furthermore, note that only 1% of the total
variance of h originates in the high frequency band. Therefore, z is responsible for
30% of it, making it the second most important shock, after µ, for h in the high
frequencies.

The last observation supports a point made earlier, with respect to the Uribe
(2021) model, that the size of the variance contribution is not necessarily a good
indicator of the variables’ importance as sources of information about the shocks.
As also pointed out earlier, it is possible that shocks are recoverable even if they
play only a modest role as sources of volatility. In the JPT model, the monetary
policy shock is responsible for at most 9.5% of the volatility of any observable,
and the government spending shock contributes at most 7.3%. Yet both shocks
are fully recoverable.
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x c i h w π R πi

al
ls

ho
ck

s 22.4 30.4 19.6 79.8 21.5 46.7 63.4 8.4

52.3 45.9 58.9 19.2 33.7 35.4 33.5 33.6

25.3 23.7 21.5 1.0 44.7 17.9 3.1 58.0

z

23.2 30.4 8.4 6.6 33.1 22.2 8.1 0.0

9.9 17.0 3.0 3.8 14.6 6.3 3.1 0.0
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Figure 5: Total and individual contributions of shocks as a percent of the variances of the
observables in the full spectrum and the low, business cycle, and high frequency bands.
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4. Conclusion

I have proposed a new framework for spectral decomposition of the information
observables provide with respect to latent variables in dynamic macroeconomic
models. Through this analysis, researchers can determine where in the frequency
domain information about latent variables predominantly comes from, and evaluate
the contributions of individual observed variables. In cases of information deficiency,
the methodology can reveal what type of information is needed to better recover
unobserved variables of interest. Having well-identified structural shocks and
unobserved endogenous variables, such as potential output or natural rate of
interest, is a key requirement for macroeconomic models to meet to be useful as
tools for policy analysis and to be credible as story-telling devices. The methodology
described in this paper will benefit both researchers who develop and estimate
structural macroeconomic models, as well as the readers of such research, by
improving their understanding and increasing the transparency of these models.
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Appendix

A. Uribe (2021) model

parameter posterior mean

ϕ price stickiness 146.000
απ coeff inflation in monetary policy rule 2.320
αy coeff output in monetary policy rule 0.188
γm backward-looking component in inflation 0.606
γI coeff lagged interest rate in monetary policy rule 0.242
δ habit formation 0.258
ρξ AR preference 0.915
ρθ AR labor supply 0.708
ρz AR transitory productivity 0.700
ρg AR permanent productivity 0.221
ρgm AR permanent trend inflation 0.248
ρzm AR transitory interest rate 0.306
ρzm2 AR transitory trend inflation 0.796
σξ std. preference 0.0287
σθ std. labor supply 0.00164
σz std. transitory productivity 0.00122
σg std. permanent productivity 0.00758
σgm std. permanent trend inflation 0.000848
σzm std. transitory interest rate 0.000832
σzm2 std. transitory trend inflation 0.00131
σme1 std. measurement error4yt 4.46e-06
σme2 std. measurement errorrt 4.55e-06
σme3 std. measurement error 4it 1.74e-07

Table A1. Parameter values, Uribe (2021) model
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B. Justiniano, Primiceri, and Tambalotti (2011)

parameter posterior median

α capital share 0.169
ιp price indexation 0.113
ιw wage indexation 0.102
h consumption habit 0.864
λp SS mark-up goods prices 0.177
λw SS mark-up wages 0.166
ν inverse frisch elasticity 5.162
ξp Calvo prices 0.783
ξw Calvo wges 0.773
χ Elasticity capital utilization cost 5.491
S
′ Investment adjustment costs 3.017

ϕπ Taylor rule inflation 1.735
ϕY Taylor rule output 0.059
ρR Taylor rule smoothing 0.863
ρz AR neutral technology growth 0.286
ρg AR government spending 0.990
ρν AR IST growth 0.148
ρp AR price mark-up 0.978
ρw AR wage mark-up 0.968
ρb intertemporal preference 0.583
θp MA price mark-up 0.793
θw MA wage mark-up 0.990
ϕdy Taylor rule output growth 0.199
ρµ AR MEI 0.807
σmp std. monetary policy 0.216
σz std. neutral technology growth 0.943
σg std. government spending 0.362
σν std. IST growth 0.634
σp std. price mark-up 0.222
σw std. wage mark-up 0.310
σb std. intertemporal preference 0.038
σµ std. MEI 5.691

Table B1. Parameter values, JPT (2011) model
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Figure B1: Largest unconditional pairwise information complementarities, all frequencies.
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Figure B2: Largest unconditional pairwise information complementarities, low frequencies.
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Figure B3: Largest unconditional pairwise information complementarities, BC frequencies.
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Figure B4: Largest unconditional pairwise information complementarities, high frequencies.
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Figure B5: Largest conditional pairwise information complementarities, full spectrum.
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Figure B6: Largest conditional pairwise information complementarities, low spectrum.
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Figure B8: Largest conditional pairwise information complementarities, high spectrum.
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