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Abstract
We introduce a new joint test for the order of fractional integration of a multivariate fractionally
integrated vector autoregressive [FIVAR] time series based on applying the Lagrange multiplier
principle to a feasible generalised least squares estimate of the FIVAR model obtained under
the null hypothesis. A key feature of the test we propose is that it is constructed using a
heteroskedasticity-robust estimate of the variance matrix. As a result, the test has a standard
χ2 limiting null distribution under considerably weaker conditions on the innovations than are
permitted in the extant literature. Specifically, we allow the innovations driving the FIVAR
model to follow a vector martingale difference sequence allowing for both serial and cross-
sectional dependence in the conditional second-order moments. We also do not constrain the
order of fractional integration of each element of the series to lie in a particular region, thereby
allowing for both stationary and non-stationary dynamics, nor do we assume any particular
distribution for the innovations. A Monte Carlo study demonstrates that our proposed tests
avoid the large over-sizing problems seen with extant tests when conditional heteroskedasticity
is present in the data. We report an empirical case study for a sample of major U.S. stocks
investigating the order of fractional integration in trading volume and different measures of
volatility in returns, including realized variance. Our results suggest that both return volatility
and trading volume are fractionally integrated, but with the former generally found to be more
persistent (having a higher fractional exponent) than the latter, when more reliable proxies
for volatility such as the range or realized variance are used.
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1. Introduction

Long memory models have been used to model time series data in a wide
range of fields of application. The class of (multivariate) fractionally integrated
autoregressive moving average [ARFIMA] models provides a parsimonious means
of simultaneously modelling the patterns of long and short range dependence
typically seen in many macroeconomic and financial data sets; see, for example,
the surveys in Baillie (1996) and Robinson (2003). In the context of the ARFIMA
class of models the long memory parameter, or fractional exponent (vector of
exponents in the multivariate case), is the key parameter driving the behaviour of
the series. Where this is zero a weakly dependent (short memory) ARMA series
obtains. If it is less than one-half the series is weakly stationary, otherwise it is non-
stationary, the familiar autoregressive unit root case occurring where the exponent
is unity. Consequently, considerable interest has been paid to developing methods of
inference on the fractional exponent both as a parameter of interest in its own right
and for preliminary data analysis. A leading example is a test of the null hypothesis
of weak dependence (against fractional alternatives); here a non-rejection would
allow for the use of standard methods for conducting, among other things, causality,
structural vector autoregression, or impulse response analyses. More generally, such
tests could usefully be employed to indicate what order of differencing of the data
is required for such methods to be suitably employed.

In the univariate setting a number of hypothesis tests on the fractional exponent
have been proposed; see, among others, Robinson (1994), Tanaka (1999), Breitung
and Hassler (2002), Nielsen (2004b), Demetrescu et al. (2008), Hassler et al. (2009,
2016) and Cavaliere et al. (2017). In the context of a vector series one could
perform such univariate fractional integration tests separately on each element
of the vector. However, the overall size of such a testing procedure would be
hard to control. Moreover, multivariate testing can improve efficiency relative to
univariate testing because it explicitly acknowledges and exploits the existence
of any endogenous cross-dependencies in the vector series which can reduce the
variability in the estimation errors and, hence, improve efficiency in estimation and
testing. In this paper we develop multivariate fractional integration tests designed
to test joint null hypotheses concerning the values of the long memory parameters
of the elements of a fractionally integrated vector autoregressive [FIVAR] model.
Specifically, we propose a parametric multivariate Lagrange multiplier [LM]-type
test in the time-domain which generalises the univariate regression-based LM-type
test of Demetrescu et al. (2008) to the multivariate case. The method we propose
can also be used to construct confidence sets, at a given asymptotic coverage level,
for the true values of the long memory coefficients.

Our testing procedure is implemented in a regression-based context, based
on feasible generalised least squares [FGLS] estimation of the multivariate FIVAR
model under the null hypothesis, coupled with a heteroskedasticity-robust variance
matrix estimate. A key advantage of, and motivation for, this approach is that it
allows us to significantly weaken the technical conditions needed on the innovations,
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relative to existing multivariate fractional tests including, among others, Robinson
(1995), Lobato and Robinson (1998), Lobato (1999), Lobato and Velasco (2000),
Marinucci and Robinson (2001), Breitung and Hassler (2002), Shimotsu (2007),
and (Nielsen 2004b, 2005, 2011). In particular, we allow the driving innovations in
the data generating process [DGP] to follow a vector martingale difference sequence
[MDS] which is permitted to exhibit time-varying conditional heteroskedasticity.
This therefore allows for both serial and cross-sectional dependence in the
conditional second-order moments, which is of particular empirical relevance when
modelling financial data and is not, to the best of our knowledge, allowed by any
extant multivariate fractional integration test.

Like Nielsen (2004a, 2005), we work within the context of a multivariate
FIVAR model. This model allows each series within the vector process to have
different fractional exponents irrespective of the parameters of the short-run
component of the model. This property is not guaranteed when using the class
of vector autoregressive fractionally integrated [VARFI] models where the orders
of integration of the elements of the vector series are not constant throughout
the parameter space of the model; for further details see Nielsen (2005, pp.381-
382). This is important for the empirical case study we consider in this paper
with respect to trading volume and return volatility where we aim to explicitly
investigate whether the data support the hypothesis that these series admit a
common fractional exponent or not. For a further recent empirical application
using FIVAR models, investigating the effects of monetary policy on the economy,
where it is important to allow the elements of the vector time series to have
potentially different fractional exponents, see Lovcha and Perez-Laborda (2018).
An implication of the FIVAR model, however, is that fractional cointegration is
not possible between the elements of the vector time series. In common with the
tests in Nielsen (2005) we do not restrict the fractional exponents to lie within a
particular region, thereby allowing for both stationary and non-stationary dynamics.
We also do not impose any particular distributional law on the innovations.

Under the conditionally heteroskedastic setting outlined above, our proposed
test retains a standard χ2 limiting null distribution (irrespective of the null values of
the long memory parameters being tested) and exhibits non-trivial power against
a sequence of local (Pitman drift) alternatives. Moreover, where the errors are
independent and identically distributed [i.i.d.] our test statistic is asymptotically
equivalent to the multivariate LM statistic discussed in Nielsen (2004a, 2005). As
a consequence, the LM-type test we propose is asymptotically (locally) efficient
when the errors are i.i.d. Gaussian. Monte Carlo simulation experiments show that
our proposed multivariate fractional integration test displays good finite sample
size control and power performance in the presence of empirically relevant data
features, such as short-run dependence and time-varying GARCH-type conditional
variances for both Gaussian and non-Gaussian innovations. In contrast, extant tests
are shown to display quite poor finite sample size control in the presence of such
features.
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Multivariate testing is naturally intended to address joint hypotheses involving
the degree of persistence of a set of variables. This has important practical
applications. As a leading example, there has been considerable interest in both
the theoretical and empirical finance literatures on understanding the link between
trading volume and return volatility. A number of papers have analysed if the long-
run dynamics of these variables share a common order of fractional integration,
with mixed evidence; see, for example, Bollerslev and Jubinski (1999), Lobato and
Velasco (2000), Luu and Martens (2003), Fleming and Kirby (2011) and Rossi and
de Magistris (2013).

In our empirical analysis we apply our new approach to conduct joint inference
on the order of fractional integration of trading volumes and different measures of
return volatility focusing on 30 major U.S. stocks from the Dow-Jones Industrial
Average Index [DJI]. We also investigate the existence of a common order of
fractional integration between volume and these measures of return volatility.
Because our tests do not require a particular distribution and, more importantly,
allow for time-varying conditional second-order moments, our results are likely to be
more robust than those reported in previous studies which are based on estimation
techniques which neglect these empirically relevant data features (e.g. Bollerslev
and Jubinski (1999), Lobato and Velasco (2000) and Fleming and Kirby (2011)).

Together with daily log-volume, we consider the log-transformations of three
alternative measures of return volatility with increasing degrees of efficiency,
namely: absolute-valued returns, the range-based estimator of Garman and Klass
(1980), and a measure of realised variance constructed from 5-minute returns. An
important aspect of this analysis is to investigate the influence that measurement
errors have on the conclusions drawn from the data. Our empirical findings suggest
that a common fractional exponent cannot in general be rejected when return
volatility is proxied by absolute-valued returns, but can be rejected when it is
proxied by more accurate estimates such as the range or realised variance. These
findings are consistent with the previous literature and help us to understand the
disparity between empirical results where different proxies for volatility are used. Our
empirical results indicate that return volatility tends to exhibit a larger fractional
integration exponent than trading volume, with long-term behaviour possibly driven
by non-stationary dynamics. Heterogeneous degrees of fractional integration, such
that return volatility tends to be more persistent than trading volume, could
originate in certain types of trading strategies associated with imitation and herding
in investors and market microstructure environmental conditions; see, e.g., LeBaron
and Yamamoto (2008) and Yamamoto (2011).

The remainder of the paper is organised as follows. Section 2 introduces the
DGP and the main assumptions underlying our theoretical analysis. In section 3
we detail our new LM-type multivariate fractional integration test and derive its
asymptotic distribution under both the null hypothesis and a sequence of local
alternatives. Section 4 discusses the results of our finite sample Monte Carlo study.
Section 5 analyses the empirical relationship between trading volume and return
volatility for stocks from the DJI. Section 6 concludes. An on-line supplementary
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appendix contains mathematical proofs of the large sample results given in section
3 together with additional material relating to the Monte Carlo analysis in section
4 and to the empirical application in section 5.

In what follows, ⇒ and p→ denote weak convergence and convergence in
probability, respectively, as T →∞. I(·) is an indicator function that equals one if
the condition in parenthesis is fulfilled, and equals zero otherwise. The operators
⊗ and � correspond to the Kronecker and Hadamard products, respectively. The
quantities In and 0n×m denote an n-dimensional identity matrix and an n×m
zero matrix, respectively. The notation A= {aij} denotes that the (i, j)th element
of the matrix A is given by aij .

2. A FIVAR Model with Heteroskedasticity

We consider the observable k-dimensional time series vector {yt}Tt=1, where
yt ≡ (y1,t, ..., yk,t)

′, is generated according to the DGP:

∆d+θ (L)yt = εtI(t ≥ 1) (1)

where ∆d+θ (L) is a k × k diagonal matrix polynomial in the conventional lag
operator, L, with characteristic element given by (1− L)di+θi , i ∈ {1, ..., k}. The
real-valued fractional exponent, di+ θi, is commonly referred to as the long memory
or fractional integration parameter, such that d+ θ ≡ (d1 + θ1, ..., dk + θk)′. The
k-dimensional vector εt ≡ (ε1,t, ..., εk,t)

′ is a weakly-dependent (short memory or
I(0)) noise process with bounded spectral density that is bounded away from zero
at the origin. Our focus is on developing tests of the null hypothesis that d is
the true order of integration of {yt}; that is, H0 : θ = 0, against the alternative
hypothesis that at least one element of θ is non-zero.

Assumption 1 details the formal properties which we will assume to hold on
{εt} in (1).

Assumption 1. {εt} in (1) is generated as Π (L)εt = et ≡ (e1,t, ..., ek,t)
′, with

Π (L) := Ip −
∑p
j=1 ΠjL

j , where Πj are k×k parameter matrices such that
Π (L) has all of its roots lying outside the unit circle and {et} satisfies the following
conditions:
(A1) E (et) = 0 and E (ete

′
t) =: Σ, with Σ positive definite.

(A2) suptE
(
||et||4+η

)
<∞ for some η > 0.

(A3) {et,Ft}∞t=−∞ is a strictly stationary and ergodic vector MDS, with respect
to the natural filtration Ft, the σ-field generated by {es : s ≤ t} .
(A4)

∑∞
i=1

∑∞
j=1,i6=j E|eh,tes,ter,t−ieu,t−j | <∞, for any 1 ≤ h, s, r, u ≤ k.

Remark 1. Assumption 1 allows the short memory component of {yt} to be driven
by a stationary VAR(p) process. Accordingly, (1) is a FIVAR model in which each
component {yi,t} , i= 1, ..., k, follows a Type-II ARFIMA(p, di + θi, 0) process. The
choice of Type-II fractional integration in our setting has the desirable feature that
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the same definition is valid for an arbitrarily large range of admissible values of the
fractional parameters, di + θi, i = 1, ..., k; in particular, these are not restricted to
lie in the interval (−0.5, 0.5), a necessary condition for stationarity and invertibility.

Remark 2. (A1) and (A2) are standard moment conditions. Unlike the existing
multivariate fractional integration tests discussed in Section 1, (A3) allows the
innovations to exhibit time-varying conditional variances. The absolute summability
condition (A4) limits the amount of temporal and cross-sectional dependence in
the second-order moments, and is equivalent to requiring absolutely summable
4th-order joint cumulants. Our conditions are weaker than requiring {et,Ft} to
be either conditionally homoskedastic or independent, both of which imply (A4).
Finally, (A1) and A(3) imply that E (ei,tej,t+h) = 0 whenever h 6= 0, but allows
E (ei,tej,t) 6= 0 when i 6= j because Σ is not restricted to be diagonal.

Remark 3. Assumption 1 imposes that the unconditional variance matrix of et,
Σ, is constant. However, the pivotal χ2 limiting null distribution of our proposed
FGLS statistic, LMFGLS

d , defined below in (8), in Theorem 2 under the conditions
of Assumption 1 remains valid in so-called non-stationary volatility cases where
E (ete

′
t) = Σt = σtσ

′
t, provided the unconditional volatility matrix, σt, satisfies

the regularity conditions detailed in, e.g., Assumption 2(a) of Boswijk et al. (2016).1
In particular, these entail that σt := σ (t/T ), for all t = 1, ..., T , where σ (·) is a
non-stochastic element of the space of k× k matrices of càdlàg functions on [0, 1]
equipped with the Skorokhod metric, and is such that Σ(u) := σ (u)σ(u)′ is
positive definite for all u ∈ [0, 1]. For further discussion, including a number of
examples satisfying these conditions, see Boswijk et al. (2016, p.66).

Remark 4. Under Assumption 1, the model in (1) can be re-written as
Π (L) ∆d+θ (L)yt = et. Given the stationarity restriction imposed under
Assumption 1, for a sufficiently large value of p the FIVAR representation could
be viewed as an approximation to the more general class of FIVARMA models,
although we treat p as fixed (independent of the sample size) in this paper. We
conjecture that it should be possible to extend our analysis to allow p to increase
with the sample size but this would considerably complicate the theoretical analysis
and is beyond the scope of this paper.

Remark 5. The FIVAR model in (1) under Assumption 1 rules out the possibility
of fractional cointegration between the elements of {yt}; for further discussion
see, among others, Sela and Hurvich (2009) and Nielsen (2005, pp.381-382).
The maintained assumption of no fractional cointegration is also made in all
of the extant multivariate fractional integration tests cited in the Introduction.
However, noting from Remark 10 below that the feasible GLS multivariate fractional

1. Numerical experiments investigating the properties of the LMFGLS
d test for data with a one-

time break in unconditional variance are reported in the supplementary appendix. These results
suggest that even quite large variance breaks have very little impact on the finite sample size of the
FGLS-based tests.
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integration test we propose in section 3.2 is asymptotically equivalent to the
multivariate LM fractional test in Nielsen (2005), then for the same reasons as are
discussed in Nielsen (2005, pp.378-379), the LM-type test, LMFGLS

d , developed
in section 3 is also implicitly a test of the null of no fractional cointegration (in
the sense defined in Nielsen (2005, p.378)) and will diverge at rate Op(T ) under
fractional cointegration.2 It therefore seems advisable to consider the tests proposed
in this paper alongside tests for fractional cointegration. We adopt this approach in
the empirical application in section 5 by also considering the procedures developed
in Nielsen and Shimotsu (2007).

3. A Multivariate LM-type Fractional Integration Test

3.1. Preliminaries

Given the observable time series vector {yt} generated as in (1) and an arbitrary
real-valued vector g ≡ (g1, ..., gk)′, define the k-dimensional stochastic processes

εt,g ≡ (ε1,t,g1 , ..., εk,t,gk)′ := (1− L)g+ yt =
t−1∑
j=0

Λj (g)yt−j , (2)

where (1− L)g+ :=
∑t−1
j=0 Λj (g)Lj , and

z∗t−1,g ≡
(
z∗1,t−1,g1 , ..., z

∗
k,t−1,gk

)′
:=

t−1∑
j=1

j−1εt−j,g, t = 2, ..., T (3)

with {Λj (g)}t−1j=0 denoting a sequence of k× k diagonal matrices with ith diagonal
element

λ0 (gi) := 1, and λj (gi) :=
j − 1− gi

j
λj−1 (gi) , j ≥ 1, (4)

corresponding to the truncated series of polynomial coefficients in the binomial
expansion (1− L)gs :=

∑∞
j=0 λj (gs)L

j . These variables are straightforward
generalisations of the corresponding univariate processes in Breitung and Hassler
(2002) to the multivariate context, with the characteristic harmonic weighting in
(3) arising from the derivative of a (Gaussian) score function. Remark 10 below
gives further insight into the key role played by these variables in the construction
of our proposed LM-type test statistic.

2. Numerical experiments investigating rejection rates of the LMFGLS
d test and the tests of

Nielsen (2005) and Breitung and Hassler (2002) in a fractionally cointegrated model are reported in
the supplementary appendix. These show that, as expected, all three tests display empirical rejection
frequencies in excess of the nominal level which are larger, other things equal, the larger is T or
the strength of cointegration. Of the three tests, our FGLS test tends to reject with slightly lower
frequency than the other two tests.
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Let Φ denote a k× k diagonal matrix with ith diagonal element ϕii, i= 1, ..., k.
Under Assumption 1, testing the null hypothesis that d is the true order of
integration of {yt} , H0 : θ = 0, is equivalent to testing H0 : Φ = 0 in the
multivariate linear regression model

εt,d = Φz∗t−1,d +

p∑
j=1

Πjεt−j,d + vt, t = p∗ + 1, ..., T (5)

where p∗ := max(1, p). This equivalence holds because, under H0 : θ = 0, (5)
and (1) are bijective with ϕii = 0 for all i = 1, ..., k and vt = et in (5); see also
Breitung and Hassler (2002), Demetrescu et al. (2008), and Hassler et al. (2009).

It will prove convenient to re-write (5) in matrix notation. First, corresponding
to the time series of observations for each element of yt, we have the equivalent
representation,

Yi,di = X∗i,−1,dβi + ui, 1 ≤ i ≤ k (6)

where Yi,di := (εi,p∗+1,di , ..., εi,T,di)
′ is a (T − p∗) × 1 vector, βi :=

(ϕii,πi1, ...,πip)
′ is a k′-dimensional parameter vector, with k′ := pk+ 1, and πij

denotes the i-th row of Πj , j = 1, ..., p, ui := (vi,p∗+1, ..., vi,T )′ is a (T − p∗)× 1
vector of innovations, and X∗i,−1,d is the (T − p∗)× k′ matrix of observations of

the (lagged) right-hand side variables x∗i,t−1,d :=
(
z∗i,t−1,di ,ε

′
t−1,d, ...,ε

′
t−p,d

)′
.

With the exception of the first regressor, all other right-hand side variables that
characterise the i-th equation (6) are the same, since these always correspond to
lagged values of εt,d. Then, given T ′ := k (T − p∗), we can write the system of
equations (6) compactly as Yd =X∗−1,d β+u, with these terms defined implicitly
as:


Y1,d1

Y2,d2
...

Yk,dk


T ′×1

=


X∗1,−1,d 0(T−p∗)×k′ · · · 0(T−p∗)×k′

0(T−p∗)×k′ X∗2,−1,d · · · 0(T−p∗)×k′
...

... . . . ...
0(T−p∗)×k′ 0(T−p∗)×k′ · · · X∗k,−1,d


T ′×kk′


β1

β2
...
βk


kk′×1

+


u1

u2
...
uk


T ′×1

.

3.2. A Heteroskedasticity-Robust LM Test

Under Assumption 1 and H0 : θ = 0, it follows that E (uu′) = Σ ⊗ IT−p∗ .
Equation (5) defines a seemingly unrelated regression equation [SURE] system.
Although equation-by-equation ordinary least squares [OLS] estimation will deliver
consistent estimates of β, these estimates will not be efficient unless Σ is diagonal
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(recalling that the regressors differ across the equations in the system). We will
therefore consider a FGLS estimator of β based on a preliminary consistent estimate
of Σ (obtained using OLS residuals estimated on an equation-by-equation basis).
The resulting FGLS estimator of β is defined as:

β̂ :=
(
X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗−1,d

)−1 (
X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
Yd

)
(7)

where Σ̃ = {σ̃ij} is estimated as σ̃ij := T−1ũ′iũj , with ũs := Ys,ds −X∗s,−1,dβ̃s,
and β̃s denotes the equation-by-equation OLS estimate of βs, s = 1, ..., k in (6).3

In Theorem 1 we now characterise the asymptotic distribution of the FGLS
estimate, β̂, under Assumption 1 and H0 : θ = 0.

Theorem 1 Let yt be generated according to (1) and let β̂ be the vector of FGLS
estimates defined in (7). Under Assumption 1 and H0 : θ = 0,

√
T
(
β̂ − β0

)
⇒

N (0,Ωβ) where β0 ≡ (β′01, ...,β
′
0k)
′ with β0s := (0,πs1, ...,πsp)

′ , s = 1, ..., k,

and Ωβ := A−1β BβA
−1
β , with Aβ := plim

T→∞
E
(

1
TX

′∗
−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗−1,d

)
,

Bβ := plim
T→∞

E
(

1
Tw
∗
−1,dw

′∗
−1,d

)
, and w∗−1,d := X ′∗−1,d

[
Σ−1 ⊗ IT−p∗

]
u.

The dependence of the asymptotic variance of the FGLS estimator on nuisance
parameters arising from any weak dependence and/or cross sectional correlation in
εt implies that asymptotically pivotal inference on the long memory parameters
will need to be based on a heteroskedasticity-robust statistic formed using a
consistent estimate of Ωβ. This can be achieved by using the familiar Eicker-
Huber-White approach building on the preliminary OLS estimate Σ̃ and the FGLS
residuals û := Yd −X∗−1,dβ̂. In particular, a heteroskedasticity-robust estimate
of the variance matrix Ωβ is given by Ω̂β := A∗−1T B∗TA

∗−1
T , where A∗T :=

X ′∗−1,d

[
Σ̃−1/2 ⊗ IT−p∗

]
X∗−1,d/T and B∗T := ŵ∗−1,dŵ

′∗
−1,d/T , with ŵ∗−1,d :=

X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
û. It is shown in the supplementary appendix that Ω̂β is a

consistent estimate of Ωβ under the conditions given in Assumption 1.
Based on the heteroskedasticity-robust estimate, Ω̂β, it is then straightforward

to construct a test statistic for the joint hypothesis H0 : θ = 0 using the LM testing
principle. Specifically, we can form a heteroskedasticity-robust LM-type test which
rejects H0 : θ = 0 for large values of the statistic

LMFGLS
d := T

[
Rβ̂
]′ [
R Ω̂β R

′
]−1 [

Rβ̂
]

(8)

where R = {rij} is a k × kk′ indicator matrix taking a value equal to one when
j = (i− 1)k′ + 1, i = 1, ..., k, and zero otherwise. In Theorem 2 we next derive the

3. Some numerical experiments comparing the finite sample properties of the equation-by-equation
OLS estimate and the FGLS estimate in (7) of β are given in the supplementary appendix. These
clearly demonstrate the efficiency gains that can be obtained by FGLS over OLS.
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large sample behaviour of LMFGLS
d under both the null hypothesis, H0 : θ = 0,

and under the sequence of local alternatives Hc : θ = c/
√
T , where c≡ (c1, ..., ck)′

is a k-vector of finite constants (Pitman drifts) at least one of which is non-zero.

Theorem 2 Let yt be generated according to (1) and let Assumption 1 hold. Let
LMFGLS

d be as defined in (8). Then: (i) under the null hypothesis, H0 : θ = 0,
LMFGLS

d ⇒ χ2
(k), and (ii) under the sequence of local alternatives, Hc : θ = c/

√
T ,

with at least one element of c non-zero, LMFGLS
d ⇒ χ2

(k,ξ), where χ2
(k) and

χ2
(k,ξ) denote a standard χ2 distribution with k degrees of freedom, and a non-

central χ2 distribution with k degrees of freedom and non-centrality parameter
ξ := (L′−1c)′(L′−1c), respectively, with L denoting an upper triangular matrix
such that L′L = RΩβR

′.

Remark 6. The result in part (i) of Theorem 2 shows that the limiting null
distribution of LMFGLS

d is pivotal and that a test of H0 : θ = 0 can be run using
standard critical values from the χ2

(k) distribution, where k is the dimension of yt.
Part (ii) of Theorem 2 establishes that the asymptotic distribution of LMFGLS

d

displays a non-trivial positive offset under the local alternative, Hc : θ = c/
√
T ,

vis-à-vis the null, H0, but that its asymptotic local power function will, in general,
depend on nuisance parameters arising from any weak dependence or cross sectional
correlation present in εt. The same is also true of the extant multivariate fractional
integration tests discussed in section 1, except that these do not, in general, have
pivotal limiting null distributions when conditional heteroskedasticity is present in
et, as a consequence of the fact that they are not based around a heteroskedasticity-
robust estimate of the variance matrix Ωβ.

Remark 7. Theorem 2 provides a theoretical basis for the construction of
confidence sets. This can be achieved by inverting the non-rejection region of the
test statistic; see Hassler et al. (2009). More specifically, let LMg denote the value
of the LM statistic when testing H0 : θ = 0 for an arbitrary g ∈ Rk, and let Ψ be an
arbitrary compact set in Rk. Define Dλ :=

{
g ∈ Ψ : Pr

[
χ2
(k) > LMg

]
≤ 1− λ

}
with λ ∈ (0, 1) , i.e., the subset of Ψ for which H0 cannot be rejected at the λ
significance level. From Theorem 2, it follows that if Ψ is large enough so as to
contain the true values of the long memory parameter vector, then the probability
of the true order of integration lying within Dλ is at least (1− λ).

Remark 8. Our proposed test procedure can be generalised to account for non-
zero means following the approach in Robinson (1994). To that end, consider
the extended form of the DGP in (1) given by yt = µ+ ∆ (L)−d−θ εtI(t ≥ 1),

where µ ≡ (µ1, ..., µk)′ is a fixed vector. Under H0 : θ = 0, (1− L)di+ yit =

(1− L)di+ µi + εtI(t ≥ 1), 1 ≤ i ≤ k. Following Robinson (1994), we regress
the differences (1− L)di+ yit :=

∑t−1
j=0 λj (di) yit−j on ht,di :=

∑t−1
j=0 λj (di) ,

t = 2, ..., T, with {λj (di)} as defined in (4) . Denote the resulting estimates as
µ̃i, i = 1, ..., k, and the corresponding residuals as ε̃it,di := (1− L)di+ yit − µ̃iht,di .
One then simply redefines the ith element of the vector εt,d from (2) to be ε̃it,di ,
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i= 1, ..., k, and then proceeds as before. Let β̃ denote the FGLS estimator obtained
in this way. Then, following the approach taken in Proposition 4 of Demetrescu
et al. (2008), it can be shown that Theorem 1 holds with β̂ replaced by β̃ since
‖β̃− β̂‖= op(T

−1/2) under the restrictions considered and the additional condition
that d> 0. More generally, the results can be extended to account for, among other
things, deterministic polynomial time trends and deterministic seasonal effects; see
also Nielsen (2005) and Demetrescu et al. (2008). The large sample results given
in this section are not affected by accounting for such deterministics.4

Remark 9. In practical applications of the tests, the lag order p will typically
be unknown and so could be selected using a standard consistent information
criterion such as the Bayes information criterion [BIC]. Demetrescu et al. (2008)
argue that these can lead to substantial finite-sample biases in the context of the
tests considered here. As an alternative, Demetrescu et al. (2008) advocate the use
of a deterministic lag selection rule, such as the popular Schwert (1989) rule which
sets p = bK(T/100)1/4c, where b·c denotes the integer part of its argument and
K is a finite positive constant. Provided the true lag order p is finite, as we assume
in this paper, then the limiting distribution theory given in this section will remain
apposite for tests based on a lag length determined according to such deterministic
rules. We will implement Schwert’s rule in the empirical application considered in
section 5.

Remark 10. It is useful to compare the large sample properties of our proposed
test with the Gaussian LM test of Nielsen (2005) in comparable settings. To this
end, consider the case where, as required by the conditions imposed in Theorem 3
of Nielsen (2005, p.381), Assumption 1 is restricted such that p = 0 and et is an
i.i.d. innovation sequence. It is straightforward to show that under these additional
restrictions

LMFGLS
d =

(
X ′∗−1,d

[
Σ̃−1 ⊗ IT−1

]
Yd

)′ (
X ′∗−1,d

[
Σ̃−1 ⊗ IT−1

]
X∗−1,d

)−1
×
(
X ′∗−1,d

[
Σ̃−1 ⊗ IT−1

]
Yd

)
+ op(1)

where X∗−1,d :=diag
{
X∗1,−1,d, ...,X

∗
k,−1,d

}
in which X∗i,−1,d = Z∗−1,dai,

where Z∗−1,d := (z∗1,d, ...,z
∗
T−1,d)′ and ai denotes the i-th unit k-dimensional

vector. Noting, moreover, that z∗t−1,d :=
∑t−1
j=1 j

−1et−j,d = − ln (1− L)+ et−j,d

under the null hypothesis, the vector X ′∗−1,d
[
Σ̃−1 ⊗ IT−1

]
Yd corresponds

to the Gaussian score vector ST := J ′kvec
(
Σ̃−1S′10

)
given in Equation

(11) of Nielsen (2005), where S10 :=
∑T
t=2 e

∗
t−1e

′
t with e∗t−1 :=

4. Numerical experiments investigating the finite sample rejection rates of our tests when a non-
zero mean is allowed for are given in section B.3 of the supplementary appendix. These confirm the
(exact) invariance of such tests and the lack of invariance of tests which do not allow for a non-zero
mean. The loss of finite sample power from allowing for a non-zero mean appears very modest.
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∑t−1
j=1 j

−1et−j , and Jk := (vec (A11) , ..., vec (Akk)) with Aii := aia
′
i. Because

1
TX

′∗
−1,d

[
Σ̃−1 ⊗ IT−1

]
X∗−1,d

p→ Aβ, where Aβ = π2

6 Σ ⊗ Σ−1 under the
additional restrictions outlined above, it can be seen that LMFGLS

d is
asymptotically equivalent to the Gaussian LM test proposed in Nielsen (2005).
Consequently, LMFGLS

d is asymptotically locally efficient when et is a Gaussian
i.i.d. sequence; see Nielsen (2004a). Where p > 0 the two tests differ crucially
on how the short-run autocorrelation is handled. While LMFGLS

d uses pth-
order augmentation in (5), Nielsen’s (2005) test relies on pre-whitening using the
residuals from a VAR(p) model in a two-stage procedure. Augmentation and pre-
whitening are asymptotically equivalent strategies but will differ in finite samples,
as will be explored in the next section.

4. Monte Carlo Simulations

We consider the simulation DGP,[
(1− L)1+θ1 0

0 (1− L)1+θ2

]
yt = εtI(t ≥ 1), t = 1, ..., T, (9)

where yt ≡ (y1t, y2t)
′, Π(L)εt = et with Π(L) = diag{1− π1L, 1− π2L}, and

(π1, π2) ∈ {(0, 0), (0.4, 0.4)}; such that the former corresponds to white noise,
while the latter yields weakly stationary VAR(1) errors. As the particular values of
the long memory coefficients play no role in our context, we set d1 = d2 = 1. We
report results for T ∈ {500, 1000}.

The innovations {et} are generated to exhibit time-varying conditional second-
order moments according to the design,

et =

[
σ1t 0
0 σ2t

]
ηt; E (ηt) = 0, E

(
ηtη
′
t

)
=: Ωρ =

[
1 ρ
ρ 1

]
where ηt := (η1t, η2t)

′ is an i.i.d. vector drawn from either a multivariate Gaussian
distribution or a (heavy-tailed) multivariate Student-t distribution with 5 degrees of
freedom. The covariance matrix Ωρ depends on the contemporaneous correlation
coefficient ρ, ρ ∈ {0, 0.2, 0.4, 0.6, 0.8}. The conditional variances

{
σ2it
}
are driven

by (normalised) stationary GARCH(1,1) processes σ2it = (1− α− β) + αe2i,t−1 +

βσ2i,t−1, i = 1, 2 with α,β ≥ 0 and α+ β < 1, such that E
(
e2it
)

= 1. We consider
(α,β) ∈ {(0, 0), (0.1, 0.5), (0.1, 0.7), (0.1, 0.8), (0.1, 0.85)}. The case α = β = 0
corresponds to conditional homoskedasticity.

To simplify our discussion, we fix θ2 = 0 in all of the reported simulations
and vary θ1 among {−0.3,−0.25, ..., 0, ..., 0.25, 0.3}. Consequently, while the true
order of integration of {y2t} is always one, the true order of integration of {y1t} is
1 + θ1. The case where θ1 = 0 allows us to investigate the empirical size properties
of LMFGLS

d , while the cases where θ1 6= 0 allow us to investigate its finite
sample power against an alternative where one of the long memory parameters
deviates from the null hypothesis. For each of the parameter configurations
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(α,β, ρ, π1, π2, θ1) , the two sample lengths, and the two conditional distributions,
we compute LMFGLS

d and determine the empirical rejection frequencies [ERFs] at
the 5% nominal (asymptotic) level over 5, 000 replications.

We also benchmark the performance of LMFGLS
d against two alternative (but

related) tests. The first is the multivariate LM test of Nielsen (2004a, 2005)
discussed in Remark 10 above, denoted LMMLE

d in what follows, and the second is
the multivariate trace test of Breitung and Hassler (2002), which we denote BHd.
While LMFGLS

d corrects for stationary serial correlation in εt via lag augmentation
in (5), both LMMLE

d and BHd use a pre-whitening approach. Both LMMLE
d and

BHd require that {et} is i.i.d., and so neither allows for the presence of conditional
heteroskedasticity in {et}. Under these conditions, LMMLE

d has a limiting χ2
(k) null

distribution, while BHd has a limiting χ2
(k2) null distribution. Nielsen’s LMMLE

d

is designed to test the same null hypotheses as LMFGLS
d and so is the most

natural candidate to benchmark our test against. In contrast, the BHd test is for
the null hypothesis of a common order of integration between the elements of the
vector time series. Our simulation DGP is such that this condition holds under the
null hypothesis, but not under the alternative, so a comparison with this test is
appropriate.

4.1. ERFs with no Augmentation/Pre-whitening

Table 1 reports the empirical size properties (θ1 = θ2 = 0), for LMFGLS
d , LMMLE

d

and BHd where no short-run dynamics are present (π1 = π2 = 0), and where,
accordingly, no lag augmentation or pre-whitening is needed. This allows us to first
investigate the impact of GARCH effects, contemporaneous correlations, and the
conditional distribution of the innovations on each test.

The results show that LMFGLS
d displays ERFs close to the nominal asymptotic

5% level in almost all cases. Some mild over-sizing is seen for the smaller sample
size considered when the innovations are conditionally Student-t distributed with
relatively high GARCH persistence, α = 0.1 and β ≥ 0.80, and significant levels of
endogeneity, ρ ≥ 0.4. These distortions are largely ameliorated as the sample size
increases. Where the innovations are i.i.d. (α = β = 0), both LMMLE

d and BHd
display good finite sample size control regardless of the conditional distribution
or the degree of endogeneity. However, where the innovations exhibit conditional
heteroskedasticity a very different pattern emerges for both LMMLE

d and BHd.
These tests display a tendency to strong over-sizing, with these distortions being
larger (other things equal): the stronger the degree of persistent of the GARCH
process; the larger the degree of endogenous correlation |ρ|; and for innovations
drawn from a heavy-tailed distribution. Moreover, these size distortions are not
ameliorated as the sample size increases. To illustrate, for T = 500 and ρ= 0.8, the
ERFs of LMMLE

d and BHd with GARCH errors driven by (α,β) = (0.10, 0.85) and
Student-t innovations are 36% and 38.8%, respectively. In contrast, the LMFGLS

d

test is only slightly oversized at 7.1%. For T = 1000, the corresponding ERFs of
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LMMLE
d and BHd increase significantly to 48.3% and 52.8%, respectively, while

that of LMFGLS
d reduces to 6.1%.

4.2. ERFs with Augmentation/Pre-whitening

We now analyse the finite sample size and power properties of LMFGLS
d , LMMLE

d

and BHd in the case where the errors, εt, can display first-order stationary VAR
dynamics. Accordingly, we set p = 1 in (5) in relation to the LMFGLS

d test, while
analogously we use a VAR(1) for pre-whitening in connection with the LMMLE

d

and BHd tests. For εt we consider: (i) π1 = π2 = 0, so that augmentation/pre-
whitening is in fact unnecessary, and (ii) π1 = π2 = 0.4, so that the correct order
of augmentation/pre-whitening is employed.

Table 2 reports ERFs of the three tests in the Gaussian homoskedastic case
(α = β = 0). Results for the Student-t case are not reported as these are almost
identical to the results reported in Table 2. Also, to keep the size of the subsequent
tables to manageable proportions we will only report results for two values of
the correlation coefficient, namely ρ = 0 and ρ = 0.8. Corresponding results for
ρ ∈ {0.2, 0.4, 0.6} can be obtained on request.

Consider first the results for the case where θ1 = 0 so that the null hypothesis
holds. Here we see that the ERFs of the augmented LMFGLS

d test lie close to
the nominal asymptotic level throughout, even where the lag augmentation is
unnecessary. Pre-whitening also appears to be effective for the LMMLE

d and BHd
tests, with the exception of the case where ρ = 0.8 where these tests are somewhat
oversized for T = 1000.

Turning next to the empirical power results for θ1 6= 0, we see that LMFGLS
d

displays good finite sample power properties with power increasing, other things
equal, both as |θ1| increases and as T increases, as would be expected. Power is
also larger, other things equal, for ρ = 0.8 than for ρ = 0, illustrating the efficiency
benefits gained from multivariate modelling when the variables are cross-correlated.
In terms of a comparison between the three tests, overall the finite sample
power properties of LMFGLS

d and LMMLE
d seen in Table 2 are very similar for

alternatives where θ1 < 0, as might be expected given the asymptotic equivalence
of these tests when the innovations are i.i.d.; cf. Remark 10. For alternatives where
θ1 > 0 (i.e., when the process is more persistent than posited under the null)
LMFGLS

d can display somewhat higher power than LMMLE
d , particularly in the

case where the errors are first-order autocorrelated, π1 = π2 = 0.4; for example, for
π1 = π2 = 0.4, ρ= 0, T = 500, and θ1 = 0.3 the power of LMFGLS

d and LMMLE
d

are 57.4% and 32.3%, respectively. These differences are likely attributable to the
use of lag augmentation rather than pre-whitening in the construction of LMFGLS

d .
Both LMFGLS

d and LMMLE
d clearly dominate BHd on power; in the previous

example the power of BHd is only 26.3%. The power functions of all of the tests
are asymmetric in the sign of θ1, for a given DGP, such that a false null hypothesis
which leads to an over-differenced series (θ1 < 0) is seen to be more easily rejected
than an incorrect null which leads to an under-differenced series (θ1 > 0) where the
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magnitude of the under/over difference is the same. To illustrate, for π1 = π2 = 0.4,
ρ = 0 and T = 500, the power of LMFGLS

d to detect θ1 = 0.25 and θ1 = −0.25
is 49.6% and 72.0%, respectively. Breitung and Hassler (2002) report a similar
asymmetry in the power properties of their univariate tests.

Finally, we turn to the case where the innovations may display GARCH effects
and excess kurtosis. Table 3 (T = 500) and Table 4 (T = 1000) report the ERFs
for LMFGLS

d , LMMLE
d and BHd for both Gaussian and Student-t innovations

for π1 = π2 = 0.4, ρ ∈ {0, 0.8} , (α,β) ∈ {(0.10, 0.80) , (0.10, 0.85)}. The results
for θ1 = 0 show that the empirical size properties of the tests in the presence of
GARCH are similar to the corresponding results reported previously for the serially
uncorrelated case with no augmentation/prewhitening in Table 1. In particular,
while the empirical size of LMFGLS

d is reasonably close to the nominal asymptotic
5% level throughout (size departures are not greater than 1.6% for T = 500 and not
greater than 0.8% for T = 1000), incorrectly assuming conditional homoskedasticity
causes significant over-sizing in both LMMLE

d and BHd which is not ameliorated
by increasing the sample size. To illustrate, for ρ = 0.8, and (α,β) = (0.10, 0.85) ,
LMMLE

d and BHd, respectively, display ERFs of 9.2% and 8.7% for T = 500 and
10.4% and 9.9% for T = 1000 with Gaussian innovations, increasing to 28.2% and
32.4% for T = 500 and 40.4% and 46.2% for T = 1000 with Student-t innovations.

For non-zero values of θ1, we observe qualitatively similar patterns in relation to
the power properties of LMFGLS

d as were reported in Table 2 in the homoskedastic
case, albeit persistent GARCH-type behaviour in the innovations can be seen to
clearly lower the finite sample power of LMFGLS

d relative to the i.i.d. case, and
particularly so when the conditional distribution of the innovations is heavy-tailed.
This is of course consistent with Theorem 2 where it was shown that the asymptotic
local power function of the LMFGLS

d test depends on any nuisance parameters
arising from conditional heteroskedasticity in the innovations. To illustrate, from
Table 2 for π1 = π2 = 0.4, ρ = 0, T = 500, the power of LMFGLS

d to detect
θ1 = 0.3 (θ1 = −0.3) in the i.i.d. case is 57.4% (87.5%). However, from Table B.1,
under GARCH dependence with (α,β) = (0.10, 0.85) the respective probabilities
are 52.7% (75.7%) in the Gaussian case, and 37.3% (49.3%) in the Student-t case.
Similarly, for T = 1000 in the previous example power is seen from Table 3 to be
98.7% (99.9%) in the Gaussian case, and 71.6% (81.1%) in the Student-t case.
A comparison between the finite sample power of LMFGLS

d and that of LMMLE
d

and BHd is somewhat uninformative here because of the poor size control of the
latter two tests under conditional heteroskedasticity.

5. Long-run Dynamics in Volume and Volatility

Understanding the linkages between return volatility, liquidity and trading activity
has been an area of considerable research interest in the finance literature. We apply
the multivariate testing approach developed in this paper to perform joint inference
on the order of fractional integration of trading volume and return volatility for a
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sample of major stocks traded in the U.S. market. As part of this, we also investigate
the hypothesis that these variables exhibit the same order of fractional integration.

A number of previous studies have investigated this hypothesis in trading
volume and return volatility within a multivariate ARFIMA framework. No strong
consensus has emerged across these studies which are based on a variety of methods
of estimation and inference and employ a number of different observable variables
to proxy the latent return volatility process. Bollerslev and Jubinski (1999) and
Lobato and Velasco (2000) use semiparametric multivariate periodogram-based
estimators in the frequency domain, proxying return volatility by absolute-valued
returns. They conclude that, for most of the stocks analysed, the hypothesis that
trading volume and return volatility share the same order of fractional integration
cannot be rejected. However, Fleming and Kirby (2011) argue that the slow rate
of convergence of periodogram-based estimators raises concerns about estimation
efficiency. Consequently, they implement a parametric Gaussian quasi-maximum
likelihood (QML) approach as in Nielsen (2004a) to estimate a bivariate FIVAR
model, allowing for short-run dependencies, but under the assumption of conditional
homoskedasticity. Moreover, Fleming and Kirby (2011) proxy return volatility using
intra-day data with the aim of improving accuracy over the use of absolute-valued
returns and reject the hypothesis of a common long memory coefficient in most
cases.

Our testing procedure is expected to be useful here for two key reasons. First,
as shown in Theorem 1, the FGLS-based test achieves the usual

√
T rate of

convergence in parametric testing, and is therefore expected to yield improved
finite-sample power performance relative to periodogram-based estimators; see,
for example, Tanaka (1999). This consideration addresses concerns surrounding
efficiency raised by Fleming and Kirby (2011). Second, and arguably most
importantly, our testing approach is valid in the presence of stationary conditionally
time-varying second-order moments and heavy-tailed innovations, unlike the QML
approach of Nielsen (2004a) used by Fleming and Kirby (2011).

5.1. Data

Our analysis focuses on 30 major U.S. stocks from the DJI. We analyse data
sampled from 02/01/2003 to 31/12/2014. Unlike trading volume, return volatility
cannot be directly observed. The literature has suggested a number of different
estimation methods in increasing degree of accuracy, which we implement. The
simplest approach uses absolute-valued returns computed from close-to-close daily
prices. Unfortunately, this measure is known to be highly inefficient and subject
to large estimation errors. More accurate estimates can be constructed building
on intra-day information. Following Garman and Klass (1980), we also proxy daily
return variability as u2t/2− (2 ln 2− 1) c2t , where ut and ct are the differences in
the natural logarithms of the high and low, and of the closing and opening prices,
respectively. Such range-based estimators produce more efficient estimates than
absolute-valued returns computed from close-to-close prices (Parkinson (1980))
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and, as discussed in Andersen and Bollerslev (1998), can be as efficient a measure
of return volatility as realised volatility computed on the basis of three to four hour
returns. The last estimator we consider is a realised variance measure computed
from aggregating 5-minute squared continuously compounded returns over the
trading session. Daily share volumes and high, low, opening and closing prices are
obtained from CRSP. High-frequency prices necessary to compute realised variances
are obtained from the NYSE Trade and Quote (TAQ) database. As is customary
in this literature, we implement log-transforms in both trading volume and return
volatility variables. Standard descriptive statistics for the aforementioned variables
as well as a statistical analysis highlighting statistically significant evidence for the
presence of time-varying second order moments in the data are presented in Tables
C1 and C2 of the supplementary appendix.

5.2. Implementation Issues

In conducting our analysis of the long memory properties of log-trading volume
and log-return volatility, hereafter denoted as (d(vlm), d(σ))′, a number of key
implementation issues arise which we now detail.

First, we construct 99%, 95%, and 90% confidence sets for (d (vlm) , d (σ))′ by
inverting the non-rejection regions of the multivariate test in a discrete grid search
over the support Ψ = [−0.2, 1.2]× [−0.2, 1.2] (see Remark 7). More specifically,
we evaluate LMFGLS

d for any pair of values d1 and d2 in the grid sequence
{−0.2,−0.1, ..., 1.1, 1.2}. Point estimates of the long memory parameter vector
can also be obtained by minimising the value of LMFGLS

d over Ψ; notice this
estimate does not depend on the confidence level used. This method of point
estimation has been used in the univariate context; see, for example, Gil-Alaña
and Robinson (1997). We denote the resulting point estimates of the long memory
parameter for log-trading volume and log-volatility as d̂min (vlm) and d̂min (σ),
respectively.5

Second, to account for deterministic effects in the level of these series, we apply
the OLS-based demeaning procedure described in Remark 8. While most papers do
not consider deterministic trends as a stylised feature of return volatility, trading
volume is widely accepted to exhibit trending paths conformable with increasing
growth in the number of traders and trading activity; see Fleming and Kirby
(2011) and references therein. Consequently, for the log-volatility measures, our
main analysis is carried out by including a constant to capture a non-zero drift, as
in Hassler et al. (2016), while in the case of log-volume we allow for a quadratic
time trend polynomial of the form µt = µ0 +µ1 (t/T ) +µ2(t/T )2, as advocated by,
among others, Luu and Martens (2003) and Fleming and Kirby (2011). Parameters

5. Numerical experiments investigating the finite sample accuracy (bias and MSE) of these
estimates in the context of a bivariate model are reported in section B.2 of the supplementary
appendix.



18

in these functions are estimated through univariate OLS (see Remark 8), with the
multivariate fractional integration test then computed on the resultant residuals.

Third, as discussed in Remark 9, we determine the lag length according to
Schwert’s rule, p = b4(T/100)1/4c. Given the large sample size involved, Schwert’s
rule ensures a relatively long lag length, so that the short-run component of log-
volume and log-realised variance should be well captured in the auxiliary regression.
Andersen et al. (2003) also adopt a relatively long lag length in estimating their
FIVAR model for the realised volatility of exchange rates in order to maintain a
conservative approach.6

5.3. Main Results

For each stock and for each volatility measure, Table 5 reports the resulting point
estimates d̂min (vlm) and d̂min (σ). Table 5 also gives the upper and lower bounds
of the corresponding 95% confidence ellipsoids formed as the vertical and horizontal
projections of the confidence set onto the log-trading volume and log-volatility axes,
respectively.7 The columns headed “Common d” in Table 5 report the range of
values d for which the null hypothesis H0 : d(vlm) = d(σ) = d cannot be rejected at
the asymptotic 5% nominal significance level. If this region is non-empty, it shows
the set of values along the 45-degree line contained within the 95% confidence
ellipsoid; that is, those values of a common order of fractional integration for which
the null cannot be rejected. Notice that, by construction, the resulting interval
contains the true value of a common long memory parameter with an (asymptotic)
probability not smaller than 95%. In addition, given d̂min (vlm) and d̂min (σ), we
can compute the residuals from the multivariate FGLS regression and use these to
estimate the contemporaneous correlation between the innovations to log-volume
and a given return volatility measure; this estimate is denoted by ρ̂e in Table 5.
Large values of ρ̂e are supportive of the usefulness of the multivariate approach
we advocate. And, indeed, we see from Table 5 that this estimated correlation is
generally quite large and positive.

6. We also investigated the robustness of our main conclusions to the lag augmentation order
used in the FGLS regression and to the inclusion of a deterministic time trend in connection with
the return volatility measures. To that end, as in Fleming and Kirby (2011), we also looked at
the case where a linear time trend was allowed for in return volatility and a low-order VAR(p) was
fitted. Table C.3 in the supplementary appendix reports the main results from this analysis, focusing
directly on log-volume and log-realised variance, with p = 2 and both with and without a linear
time trend in return volatility. Here we also report the related results when p is chosen according to
Schwert’s rule and return volatility includes a deterministic time trend. While the results show some
sensitivity to these variations in the estimated model, the main qualitative picture that emerges is
essentially very similar to that discussed below.
7. These bounds (projections) define a rectangular approximation to the true confidence interval
ellipsoids, whose area cannot be smaller than that of the true ellipsoid. However, they have the
advantage that they provide a summary measure which can easily be tabulated. The full set
of confidence ellipsoids for each stock considered can be found in sections C.2.2-C.2.4 of the
supplementary appendix.
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Let us first discuss the results from the analysis of the joint dynamics of log-
volume and log absolute returns. Consistent with previous literature, we observe
that for most stocks considered our multivariate test rejects both the null hypothesis
that the order of integration of the bivariate series is I(0) (such that both variables
are weakly dependent) and the null hypothesis that it is I(1) (such that both
series admit an autoregressive unit root). The only exceptions are INTC (Intel)
and MSFT (Microsoft), for which the multivariate test cannot reject the null
hypothesis that log-volume is I(0) at the 5% level. Taking a simple average of the
estimates d̂min (vlm) and d̂min (σ) across all stocks considered yields 0.41 and 0.39,
respectively, essentially matching the “characteristic” value of 0.40 typically found
in literature; see, Andersen et al. (2003). While for many of the stocks considered
the point estimates of the vector of fractional exponents are below the non-
stationary threshold, we note that for most of the stocks the respective confidence
sets cover both the stationary and non-stationary regions of the parameter space,
preventing us from drawing clear conclusions on the stationarity of the underlying
series. This is a common finding in the realised-volatility modelling literature; see,
e.g., Kellard and Sarantis (2010).

Reflecting the strong similarities seen between the estimates of the two long
memory parameters in the bivariate system, the hypothesis that trading volume and
return volatility are driven by a FIVAR model with the same fractional exponent can
be rejected for only five of the stocks considered at the 5% level, which constitutes
about 20% of the stocks in our sample. This is, however, considerably higher
than the corresponding frequency found by Bollerslev and Jubinski (1999) who
only reject for 8% of the series they considered, but is the same as Lobato and
Velasco (2000) who also reject the null hypothesis of a common long memory
parameter for 20% of the series they consider.8 In their study of log-volume and
log absolute returns, Fleming and Kirby (2011) reject the common long memory
parameter null for 100% of the series they analyse. They attribute this to estimation
bias in the QML-based inference they use yielding systematically larger parameter
estimates for the long memory coefficient for trading volume, and conjecture that
departures from normality in log absolute returns may be causing a pervasive effect
on QML estimation; see Fleming and Kirby (2011, pp.1721-1722). Our Monte Carlo
simulations in section 4 accord with this conjecture suggesting that the combination
of persistent time-varying volatility and non-Gaussian features in the data can
introduce sizeable biases into the QML-based methods of Nielsen (2004a, 2005)
used by Fleming and Kirby (2011).

We now move to a discussion of the results relating to the use of the log-
range and log-realised proxies for return volatility. The overall picture that emerges

8. In making such comparisons it is important to note, however, that these authors use different
sample data than we do involving different stocks and different time periods. In particular, the
sample lengths considered in Lobato and Velasco (2000) are more than double those we consider
and our findings of the same frequency of rejections of a common exponent as they do may reflect
the greater efficiency of the methods used here.
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here is remarkably similar in both cases. Multivariate estimation provides even
stronger support for fractional integration in this context, with the I(0) and I(1)
null hypotheses both being rejected at the 5% level for all of the stocks considered.
For log trading volume, some changes are seen relative to the results discussed
previously relating to the use of log absolute returns.9 Overall, the average value
of d̂min (vlm) taken across all of the stocks considered for the log-range and log-
realised variance estimators is 0.45, reasonably similar to the 0.41 value reported
above in connection with the use of log absolute returns. In contrast, the estimates
of the order of integration of return volatility based on either the log-range or
log-realised variance measures show a marked increase compared to log absolute
returns. In both cases, the average value of d̂min (σ) is 0.58 and the overall evidence
is strongly suggestive that return volatility displays non-stationary dynamics over
the period because the lower bounds of the confidence ellipsoids are not smaller
than the 0.5 threshold for many of the stocks considered. Evidence of non-
stationary fractionally integrated dynamics in realised volatility over this period
(which includes the financial crisis) is consistent with the results reported by Hassler
et al. (2016); see also Bandi and Perron (2006). Consequently, and because the
persistence of log-realised variance tends to be greater than that of log-volume, the
hypothesis that both variables share a common fractional exponent is rejected at
the 5% level for a significantly larger proportion of the stocks considered, namely,
53.33% when using log-range and 63.33% when using log-realised variance.

It is well understood in the financial econometrics literature that measurement
errors in absolute returns can cause bias in (univariate) long memory parameter
estimation. Essentially, log absolute returns are subject to noisy additive
measurement errors with large variability, which will make the underlying process
appear less persistent than it really is, leading to downward-biased estimates
of the true order of fractional integration; see, among others, Bollerslev and
Wright (2000), Haldrup and Nielsen (2007), and Dalla (2015). This provides a
straightforward and plausible explanation for the systematic differences seen in the
long memory estimation results for the different return volatility measures reported
in Table 5.10 According to our results, the more efficient the estimate of return
volatility used the higher the percentage of the stocks for which the null hypothesis
of a common order of integration can be rejected. Essentially, downward biases in
the estimation of the long memory parameter on absolute returns biases the tests
to non-rejection of a common order of integration. Using more accurate return

9. Because we conduct joint estimation, and the innovations to the short-term component of
volume and return volatility are strongly positively correlated, as reported in the column ρ̂e in Table
5, the estimates of the long memory parameter of log-volume would be expected to be somewhat
sensitive to changes in the variable used as a proxy for return volatility.
10. An alternative explanation, put forward by a referee, is that the VAR dynamics may be
misspecified and, as a result, some of the high-frequency measurement error is picked up in the
estimate of the fractional exponent. However, the relatively long lag length used should mitigate
against this and, moreover, as discussed in footnote 6 the results appear relatively robust to the lag
order specified.
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volatility measures reduces this estimation bias and leads to increased evidence
that return volatility is more persistent than volume.

5.4. Fractional Cointegration

As noted in Remark 5, our FGLS-based LM test, like the LM test of Nielsen
(2005), assumes the absence of fractional cointegration between the variables, and
diverges if fractional cointegration is present. Given we reject the null hypothesis
of a common order of integration for trading volume and return volatility for most
of the stocks considered, we now also investigate the order of fractional integration
of the series using the semiparametric approach of Nielsen and Shimotsu (2007)
(NS henceforth), detailed in the supplementary appendix. NS’s procedure allows
us (under certain regularity conditions) to consistently estimate the cointegration
rank of the series and, using the approach of Robinson and Yajima (2002), to
test the null hypothesis that the elements of long memory vector, d, are equal
(although it is important to note that this is not a multivariate test as it is based
on the univariate estimates of the fractional exponents). Denoting the statistic for
the latter as T0, NS show that T0

p→ 0 when the cointegration rank, r, is greater
than zero (i.e., where the variables are cointegrated), whereas T0 ⇒ χ2

(1) when
r = 0 (where the variables are not cointegrated) and the null of an equal order
of integration holds on d. NS argue that large values of the test statistic provide
evidence against the hypothesis of a common order of integration, regardless of
whether the underlying series are fractionally cointegrated or not.

Given that the highest frequency of rejections of a common fractional exponent
occurred when using log-realised variances, we only report that case here.
Consistent with the analysis in Table 5, we account for a deterministic drift in
log-volatility and a polynomial time trend in log-volume by prior detrending of
the data, using the two-stage exact local Whittle estimator in Shimotsu (2010).
Following the empirical analysis in NS, we estimated d by setting mT = bT 0.6c
and compute T0 with sT = logT. Following NS we also use m1T = bT 0.55c and
vT = m−0.31T in the estimation of the cointegration rank. Table 6 reports the point
estimates and 95% asymptotic confidence level estimates of d, the T0 test statistic
and related p-values, the values of the function L (u) used in the model selection
procedure, and the estimates of the cointegration rank, r̂T . The column r̂∗T reports
the conditional estimates of r for the cases in which the hypothesis of a common
order of integration cannot be rejected at the 5% nominal size level.

Three key features arise from this analysis. First, the results based on the NS
test provide the same qualitative evidence as the tests based on FGLS estimation.
There exists strong evidence of fractional integration in both series which is
again suggestive that realised volatility is more persistent than trading volume.
Accordingly, the hypothesis of an equal order of integration is rejected at any of
the usual significance levels for the majority of the stocks in our sample. Second,
in most cases, the FGLS and the NS tests agree on whether to reject or not the
null hypothesis of a common order of fractional integration. In particular, all of
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the cases in which the FGLS test rejects at the 5% level correspond to stocks for
which the NS test also rejects at this level. There are, however, 5 stocks for which
NS rejects the null but the FGLS test does not, so the average rejection rate of
the NS test taken across all of the stocks considered is slightly higher at 76.67%.
Crucially, the p-values of the T0 test in three of these 5 cases are only slightly
below the 5% threshold, suggesting that the differences with the FGLS test are
caused by only marginal differences in significance. Finally, the estimates of the
cointegration rank suggest that volume and realised volatilty are not in general
cointegrated, supporting the suitability of FIVAR-type modelling. In particular,
fractional cointegration, indicated by r̂T = 1 or r̂∗T = 1, is found for only 13.33% of
the stocks, but crucially these are all stocks for which neither the NS T0 test nor our
FGLS-based tests reject the null hypothesis of a common order of integration; that
is, none of the rejections of a common order of integration seen with the FGLS-
based test in Table 5 are associated with a non-zero estimate of the cointegration
rank.

It is worth pointing out in conclusion that the assumptions on which the NS
approach are based include the requirement of conditional homoskedasticity. To
check how sensitive the NS test is to violations of this assumption, we conducted a
small Monte Carlo experiment using the sample simulation DGP as in section 4. For
samples of size T = 500 and T = 1000, ρ = 0.8 and persistent GARCH processes
with (α,β) = (0.1, 0.85), the ERFs of the T0 test under Gaussian innovations at
the 5% nominal asymptotic level were 3.10% and 4.30%, respectively, suggesting
approximately correct size. However, under Student-t innovations with 5 degrees of
freedom, the respective ERFs were 15.5% and 24.5%. Although clearly oversized,
these distortions are considerably smaller than those that were seen in the
corresponding results in section 4 for the QML-based test of Nielsen (2005). These
simulation results might help explain the differences seen between the results for
the FGLS and T0 tests in our empirical study whereby slightly more rejections of
the null of a common order of integration are obtained when using the T0 test,
given that this test has a tendency to be somewhat oversized when the data display
conditional heteroskedastcity and heavy-tailed behaviour, as is the case with the
data in our empirical study.

6. Conclusions

We have proposed a new test for fractional integration in the context of a
quite general FIVAR model which allows for conditional heteroskedasticity in the
innovations, does not require the order of integration of the elements of the
vector time series to coincide or to lie in a certain region (thereby allowing for
both stationary and non-stationary dynamics) and does not assume a particular
distribution for the innovations. To the best of our knowledge, none of the methods
in the extant literature has achieved this degree of flexibility. Our approach is
based on an LM-type test statistic using a heteroskedasticity-robust estimate of
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the variance matrix, and can be readily implemented using FGLS estimation in a
regression-based context. We have demonstrated that our proposed test statistic
has a standard χ2 asymptotic null distribution, that the test exhibits non-trivial
power to reject against a sequence of local alternatives, and that in the case of i.i.d.
Gaussian errors the test is asymptotically locally efficient. Monte Carlo analysis was
used to show that while our test is approximately correctly sized in finite samples
of data exhibiting conditional heteroskedasticity and heavy-tailed features, extant
tests in the literature which neglect conditional heteroskedasticity can be severely
over-sized even for very large samples.

In an empirical case study we have used our proposed testing procedure to
jointly infer the order of fractional integration of trading volume and return volatility
in a sample of major stocks traded in the U.S. market. Return volatility was proxied
by three different measures with increasing degrees of accuracy: absolute returns,
a range-based estimator, and a realised variance computed over 5-minute returns.
The evidence from the analysis based on the realised variance and range-based
estimates delivered similar conclusions, namely, that for many stocks in the sample
return volatility is more persistent than trading volume. On the other hand, the
analysis based on log absolute returns showed that volume and return volatility
share the same order of fractional integration. Because long memory estimation
in absolute returns is known to be downward-biased, measurement errors in the
data would seem to be a plausible explanation for the evidence from log absolute
returns.

For applied work it is of interest that our conclusions based on the realised
variance and range-based estimators of return volatility were very similar. While
the former is a more efficient estimate of conditional variability, the latter seems
to provide a reasonable enough level of accuracy such that the conclusions drawn
from the data are not markedly different. This might be a useful observation in
practice because for many applications the high-frequency intra-day data needed to
construct realised variance and related measures is often not available, for example
when considering small or illiquid markets. In the absence of intra-day data, but
when information on high and low prices are available, inference based on range-
based volatility estimates may still lead to reliable conclusions.

We finish with a suggestion for further research. Here we have proposed
parametric FGLS-based multivariate fractional integration tests which, unlike other
extant parametric tests, allow for conditionally heteroskedastic innovations. There
are relatively few semiparametric multivariate fractional integration tests in the
literature, most notably Lobato and Robinson (1998), Lobato (1999), Marinucci
and Robinson (2001) and Shimotsu (2007), all of which assume conditionally
homoskedastic innovations. Investigating whether or not these tests remain
asymptotically valid under conditional heteroskedasticity and, if so, comparing their
finite sample performance with the tests developed in this paper is beyond the scope
of the present paper but would constitute an interesting topic for further research.
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Table 1. Empirical rejection frequencies (empirical sizes) for θ1 = θ2 = 0 at the 5% nominal asymptotic significance level of the LMFGLS

d ,
LMMLE

d and BHd tests, for different values for the contemporaneous correlation parameter ρ, the GARCH parameters (α,β) , and sample
lengths T . The innovations are drawn from either a multivariate normal distribution or a multivariate Student-t distribution with 5 degrees of
freedom.

Gaussian Innovations Student-t Innovations

LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd
GARCH ρ T = 500 T = 1000 T = 500 T = 1000

α = 0, β = 0 0.0 0.051 0.045 0.050 0.048 0.048 0.048 0.053 0.049 0.048 0.051 0.047 0.048
0.2 0.050 0.047 0.050 0.047 0.048 0.048 0.056 0.050 0.048 0.051 0.046 0.048
0.4 0.053 0.050 0.050 0.044 0.045 0.048 0.056 0.050 0.048 0.050 0.043 0.048
0.6 0.055 0.051 0.050 0.047 0.045 0.048 0.055 0.052 0.048 0.046 0.044 0.048
0.8 0.055 0.050 0.050 0.048 0.049 0.048 0.056 0.052 0.048 0.047 0.043 0.048

α = 0.1, β = 0.5 0.0 0.054 0.071 0.065 0.049 0.070 0.067 0.060 0.180 0.163 0.056 0.187 0.183
0.2 0.053 0.072 0.065 0.048 0.068 0.066 0.060 0.179 0.165 0.056 0.189 0.179
0.4 0.054 0.072 0.064 0.049 0.068 0.066 0.061 0.181 0.169 0.055 0.192 0.187
0.6 0.055 0.074 0.065 0.049 0.071 0.067 0.059 0.189 0.175 0.057 0.204 0.197
0.8 0.056 0.075 0.066 0.052 0.075 0.067 0.064 0.199 0.186 0.059 0.213 0.207

α = 0.1, β = 0.7 0.0 0.053 0.080 0.070 0.048 0.080 0.071 0.060 0.219 0.196 0.056 0.238 0.228
0.2 0.054 0.080 0.071 0.047 0.077 0.072 0.060 0.218 0.199 0.055 0.243 0.233
0.4 0.054 0.080 0.070 0.048 0.079 0.073 0.058 0.221 0.205 0.054 0.247 0.240
0.6 0.055 0.080 0.073 0.050 0.081 0.075 0.059 0.233 0.221 0.056 0.256 0.256
0.8 0.056 0.080 0.074 0.054 0.084 0.077 0.063 0.242 0.246 0.060 0.269 0.276

α = 0.1, β = 0.8 0.0 0.052 0.088 0.076 0.048 0.092 0.081 0.062 0.269 0.249 0.055 0.332 0.316
0.2 0.052 0.088 0.079 0.047 0.088 0.079 0.059 0.275 0.255 0.053 0.334 0.322
0.4 0.052 0.089 0.079 0.045 0.089 0.080 0.061 0.281 0.270 0.058 0.332 0.336
0.6 0.056 0.091 0.082 0.049 0.095 0.085 0.065 0.296 0.294 0.057 0.347 0.362
0.8 0.055 0.093 0.086 0.051 0.097 0.089 0.069 0.306 0.322 0.059 0.366 0.395

α = 0.1, β = 0.85 0 0.053 0.103 0.089 0.050 0.113 0.093 0.064 0.337 0.319 0.056 0.475 0.450
0.2 0.050 0.104 0.089 0.049 0.114 0.094 0.063 0.346 0.327 0.057 0.473 0.447
0.4 0.054 0.103 0.090 0.048 0.117 0.096 0.066 0.350 0.342 0.056 0.468 0.467
0.6 0.056 0.107 0.096 0.049 0.124 0.104 0.068 0.353 0.362 0.059 0.473 0.489
0.8 0.058 0.114 0.105 0.052 0.121 0.111 0.071 0.360 0.388 0.062 0.483 0.528
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Table 2. Empirical rejection frequencies at the 5% nominal asymptotic level for θ2 = 0 and the values θ1 = 0 (empirical size) and |θ1| > 0

(empirical power) of the LMFGLS
d , LMMLE

d and BHd tests for the correlation coefficient ρ, and sample length T . The short-run errors in
the DGP obey VAR(1) dynamics with on-diagonal coefficients π1 and π2 and off-diagonal coefficients π12= π21= 0. The LMFGLS

d statistic
is computed from an augmented auxiliary regression with one lag of the dependent variable. LMMLE

d and BHd are computed from VAR(1)
residuals. The innovations are drawn from a multivariate Gaussian distribution.

π1 = π2 = 0 π1 = π2 = 0.4
LMFGLS

d LMMLE
d BHd LMFGLS

d LMMLE
d BHd LMFGLS

d LMMLE
d BHd LMFGLS

d LMMLE
d BHd

θ1 ρ T = 500 T = 1000 T = 500 T = 1000
-0.30 0.0 1.000 0.999 0.994 1.000 1.000 1.000 0.875 0.876 0.777 0.997 0.998 0.990
-0.25 0.0 0.987 0.982 0.946 1.000 1.000 0.999 0.720 0.718 0.591 0.967 0.972 0.932
-0.20 0.0 0.899 0.879 0.781 0.999 0.999 0.990 0.496 0.486 0.374 0.835 0.855 0.748
-0.15 0.0 0.644 0.626 0.493 0.941 0.934 0.868 0.289 0.288 0.214 0.558 0.590 0.465
-0.10 0.0 0.338 0.321 0.239 0.609 0.601 0.478 0.154 0.147 0.123 0.271 0.284 0.213
-0.05 0.0 0.118 0.112 0.091 0.183 0.179 0.134 0.074 0.070 0.067 0.099 0.098 0.085
0 0.0 0.057 0.051 0.054 0.052 0.050 0.049 0.053 0.045 0.053 0.050 0.048 0.046

0.05 0.0 0.121 0.112 0.091 0.179 0.174 0.142 0.080 0.079 0.069 0.100 0.097 0.083
0.10 0.0 0.321 0.311 0.243 0.584 0.569 0.472 0.145 0.143 0.119 0.267 0.270 0.205
0.15 0.0 0.600 0.581 0.498 0.888 0.876 0.814 0.272 0.254 0.198 0.479 0.454 0.360
0.20 0.0 0.812 0.788 0.701 0.983 0.978 0.957 0.392 0.321 0.265 0.674 0.597 0.507
0.25 0.0 0.926 0.895 0.831 0.998 0.996 0.988 0.496 0.358 0.296 0.793 0.652 0.576
0.30 0.0 0.969 0.942 0.902 1.000 0.999 0.997 0.574 0.323 0.263 0.859 0.613 0.546

-0.30 0.8 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999 0.997 1.000 1.000 1.000
-0.25 0.8 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.990 0.969 1.000 1.000 1.000
-0.20 0.8 1.000 1.000 0.999 1.000 1.000 1.000 0.908 0.925 0.848 1.000 1.000 1.000
-0.15 0.8 0.983 0.981 0.945 1.000 1.000 0.999 0.678 0.705 0.572 1.000 1.000 0.999
-0.10 0.8 0.757 0.738 0.621 0.920 0.954 0.909 0.350 0.360 0.271 0.920 0.954 0.909
-0.05 0.8 0.243 0.234 0.179 0.369 0.463 0.369 0.124 0.124 0.098 0.369 0.463 0.369
0 0.8 0.058 0.050 0.054 0.053 0.088 0.080 0.057 0.056 0.053 0.053 0.088 0.080

0.05 0.8 0.245 0.233 0.180 0.372 0.448 0.370 0.117 0.125 0.100 0.372 0.448 0.370
0.10 0.8 0.712 0.700 0.596 0.906 0.929 0.884 0.324 0.339 0.253 0.906 0.929 0.884
0.15 0.8 0.951 0.943 0.904 0.996 0.997 0.995 0.567 0.559 0.464 0.996 0.997 0.995
0.20 0.8 0.994 0.993 0.982 1.000 1.000 1.000 0.743 0.692 0.594 1.000 1.000 1.000
0.25 0.8 0.999 0.998 0.997 1.000 1.000 1.000 0.845 0.774 0.691 1.000 1.000 1.000
0.30 0.8 1.000 1.000 0.999 1.000 1.000 1.000 0.898 0.756 0.679 1.000 1.000 1.000
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Table 3. Empirical rejection frequencies at the 5% nominal asymptotic level for θ2 = 0 and θ1 = 0 (empirical size) and |θ1| > 0 (empirical power)
of the LMFGLS

d , LMMLE
d and BHd tests for the correlation coefficient ρ. The short-run errors follow a VAR(1) model with π1 = π2 = 0.4

and GARCH innovations with parameters α and β. The LMFGLS
d test statistic is computed from an augmented auxiliary regression with one

lag of the dependent variable. LMMLE
d and BHd are computed from VAR(1) residuals. The sample length is T = 500.

GARCH: α = 0.1, β = 0.8 GARCH: α = 0.1, β = 0.85
T = 500 Gaussian Student-t Gaussian Student-t

θ1 ρ LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd
-0.30 0.0 0.795 0.859 0.766 0.568 0.840 0.776 0.757 0.855 0.768 0.493 0.836 0.784
-0.25 0.0 0.625 0.718 0.599 0.419 0.724 0.644 0.591 0.716 0.612 0.365 0.730 0.673
-0.20 0.0 0.419 0.512 0.398 0.295 0.579 0.508 0.398 0.521 0.417 0.259 0.615 0.557
-0.15 0.0 0.250 0.328 0.251 0.192 0.434 0.384 0.240 0.341 0.268 0.165 0.490 0.450
-0.10 0.0 0.142 0.182 0.152 0.124 0.310 0.282 0.136 0.199 0.162 0.113 0.385 0.362
-0.05 0.0 0.076 0.102 0.084 0.073 0.218 0.207 0.074 0.121 0.098 0.074 0.294 0.291
0 0.0 0.051 0.072 0.066 0.056 0.186 0.180 0.048 0.083 0.076 0.057 0.252 0.257

0.05 0.0 0.074 0.102 0.085 0.074 0.202 0.192 0.074 0.117 0.097 0.070 0.265 0.272
0.10 0.0 0.136 0.164 0.127 0.118 0.241 0.232 0.131 0.173 0.137 0.105 0.306 0.310
0.15 0.0 0.251 0.266 0.213 0.192 0.321 0.291 0.241 0.277 0.222 0.162 0.360 0.351
0.20 0.0 0.358 0.334 0.278 0.284 0.391 0.350 0.345 0.344 0.281 0.242 0.420 0.409
0.25 0.0 0.461 0.377 0.312 0.377 0.432 0.395 0.449 0.381 0.318 0.310 0.456 0.436
0.30 0.0 0.543 0.346 0.284 0.463 0.418 0.388 0.527 0.353 0.294 0.373 0.447 0.430

-0.30 0.8 0.992 0.998 0.994 0.839 0.977 0.971 0.984 0.997 0.992 0.744 0.961 0.957
-0.25 0.8 0.954 0.981 0.961 0.729 0.931 0.916 0.928 0.973 0.950 0.614 0.902 0.896
-0.20 0.8 0.836 0.901 0.839 0.576 0.837 0.804 0.794 0.892 0.831 0.466 0.810 0.786
-0.15 0.8 0.588 0.693 0.583 0.371 0.658 0.610 0.545 0.686 0.587 0.294 0.642 0.632
-0.10 0.8 0.300 0.378 0.295 0.212 0.461 0.426 0.279 0.390 0.307 0.172 0.478 0.493
-0.05 0.8 0.121 0.159 0.128 0.096 0.271 0.276 0.112 0.176 0.150 0.086 0.325 0.367
0 0.8 0.054 0.077 0.0670 0.061 0.202 0.221 0.055 0.092 0.087 0.066 0.282 0.324

0.05 0.8 0.103 0.152 0.120 0.102 0.249 0.256 0.098 0.165 0.137 0.085 0.302 0.339
0.10 0.8 0.296 0.351 0.277 0.214 0.377 0.371 0.278 0.355 0.288 0.169 0.410 0.424
0.15 0.8 0.519 0.550 0.464 0.363 0.549 0.513 0.492 0.546 0.469 0.282 0.544 0.542
0.20 0.8 0.696 0.689 0.604 0.521 0.658 0.619 0.662 0.680 0.604 0.410 0.615 0.608
0.25 0.8 0.809 0.763 0.689 0.640 0.714 0.694 0.775 0.751 0.682 0.514 0.677 0.682
0.30 0.8 0.870 0.735 0.676 0.719 0.705 0.703 0.846 0.725 0.674 0.586 0.660 0.687
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Table 4. Empirical rejection frequencies at the 5% nominal asymptotic level for θ2 = 0 and θ1 = 0 (empirical size) and |θ1| > 0 (empirical power)
of the LMFGLS

d , LMMLE
d and BHd tests for the correlation coefficient ρ. The short-run errors follow a VAR(1) model with π1 = π2 = 0.4

and GARCH innovations with parameters α and β. The LMFGLS
d test statistic is computed from an augmented auxiliary regression with one

lag of the dependent variable. LMMLE
d and BHd are computed from VAR(1) residuals. The sample length is T = 1000.

GARCH: α = 0.1, β = 0.8 GARCH: α = 0.1, β = 0.85
T = 1000 Gaussian Student-t Gaussian Student-t

θ1 ρ LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd LMFGLS
d LMMLE

d BHd
-0.30 0.0 0.983 0.993 0.983 0.753 0.961 0.949 0.967 0.991 0.979 0.603 0.947 0.930
-0.25 0.0 0.916 0.959 0.920 0.632 0.915 0.884 0.891 0.956 0.914 0.481 0.904 0.879
-0.20 0.0 0.744 0.841 0.744 0.457 0.811 0.754 0.702 0.836 0.742 0.324 0.817 0.774
-0.15 0.0 0.471 0.597 0.481 0.287 0.645 0.592 0.437 0.603 0.489 0.219 0.688 0.655
-0.10 0.0 0.237 0.316 0.248 0.155 0.457 0.415 0.220 0.332 0.269 0.135 0.550 0.524
-0.05 0.0 0.093 0.132 0.107 0.080 0.302 0.286 0.093 0.150 0.124 0.073 0.446 0.424
0 0.0 0.051 0.072 0.066 0.058 0.243 0.237 0.053 0.089 0.083 0.056 0.397 0.387

0.05 0.0 0.091 0.122 0.098 0.077 0.262 0.247 0.084 0.139 0.112 0.073 0.398 0.391
0.10 0.0 0.246 0.284 0.220 0.176 0.385 0.353 0.226 0.293 0.228 0.131 0.472 0.456
0.15 0.0 0.437 0.461 0.376 0.288 0.508 0.470 0.414 0.464 0.384 0.213 0.558 0.539
0.20 0.0 0.635 0.603 0.523 0.434 0.607 0.557 0.607 0.607 0.531 0.322 0.631 0.596
0.25 0.0 0.756 0.653 0.576 0.588 0.670 0.625 0.729 0.652 0.578 0.433 0.668 0.639
0.30 0.0 0.830 0.620 0.559 0.673 0.664 0.623 0.811 0.621 0.555 0.516 0.659 0.649

-0.30 0.8 1.000 1.000 1.000 0.929 0.998 0.999 1.000 1.000 1.000 0.811 0.991 0.994
-0.25 0.8 1.000 1.000 1.000 0.877 0.999 0.992 0.997 1.000 1.000 0.715 0.974 0.980
-0.20 0.8 0.988 0.998 0.993 0.752 0.965 0.965 0.977 0.995 0.992 0.545 0.926 0.929
-0.15 0.8 0.893 0.951 0.906 0.555 0.876 0.860 0.846 0.940 0.898 0.387 0.833 0.838
-0.10 0.8 0.535 0.658 0.554 0.295 0.670 0.635 0.491 0.655 0.560 0.203 0.665 0.679
-0.05 0.8 0.164 0.228 0.180 0.112 0.386 0.391 0.155 0.254 0.207 0.091 0.488 0.535
0 0.8 0.058 0.083 0.080 0.057 0.271 0.296 0.058 0.104 0.099 0.058 0.404 0.462

0.05 0.8 0.175 0.228 0.180 0.113 0.349 0.352 0.162 0.246 0.196 0.088 0.441 0.487
0.10 0.8 0.510 0.578 0.477 0.307 0.591 0.569 0.471 0.574 0.485 0.206 0.584 0.611
0.15 0.8 0.822 0.848 0.780 0.542 0.771 0.760 0.781 0.839 0.768 0.366 0.711 0.725
0.20 0.8 0.940 0.940 0.908 0.714 0.873 0.860 0.916 0.928 0.897 0.504 0.806 0.816
0.25 0.8 0.977 0.969 0.949 0.819 0.911 0.903 0.964 0.961 0.943 0.632 0.833 0.856
0.30 0.8 0.993 0.958 0.943 0.885 0.900 0.908 0.987 0.946 0.930 0.716 0.840 0.867
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Table 5. Results from the implementation of the FGLS multivariate test on log-volume and log-volatility (proxied by log-absolute returns,
log-range estimator, and log-realised variance) for each stock in the sample. The columns headed: ‘d̂min (vlm)’ and ‘d̂min (σ)’ denote the values
which minimise the test statistic; ‘95% CI’ denote the bounds of the 95% confidence ellipsoid for the long memory parameter; when non-empty,
‘Common d’ reports the values along the 45 degree line contained in the 95% confidence ellipsoid (if empty, no common value is detected); ‘ρ̂e’
reports the sample cross-correlation coefficient of the residuals from the FGLS auxiliary regression given the values d̂min (vlm) and d̂min (σ) .

Log Absolute Returns Log Range Log RV
Stock d̂min (vlm) 95% CIB d̂min (σ) 95% CIB Common d ρ̂e d̂min (vlm) 95% CIB d̂min (σ) 95% CIB Common d ρ̂e d̂min (vlm) 95% CIB d̂min (σ) 95% CIB Common d ρ̂e
AAPL 0.62 [0.52,0.71] 0.38 [0.31,0.45] - 0.41 0.65 [0.56,0.73] 0.59 [0.52,0.67] [0.56,0.67] 0.63 0.66 [0.57,0.74] 0.64 [0.55,0.72] [0.58,0.71] 0.62
AXP 0.49 [0.39,0.58] 0.46 [0.37,0.56] [0.40,0.55] 0.37 0.53 [0.45,0.62] 0.61 [0.53,0.69] [0.55,0.60] 0.53 0.53 [0.45,0.60] 0.61 [0.51,0.70] [0.54,0.56] 0.49
BA 0.34 [0.23,0.44] 0.30 [0.22,0.39] [0.25,0.39] 0.39 0.41 [0.30,0.50] 0.57 [0.48,0.66] - 0.52 0.40 [0.30,0.51] 0.58 [0.46,0.69] - 0.52
CAT 0.42 [0.29,0.54] 0.41 [0.32,0.50] [0.32,0.50] 0.43 0.45 [0.33,0.56] 0.56 [0.46,0.65] [0.49,0.55] 0.53 0.48 [0.37,0.59] 0.61 [0.50,0.70] - 0.58
CSCO 0.35 [0.23,0.45] 0.38 [0.29,0.49] [0.29,0.44] 0.36 0.39 [0.27,0.49] 0.57 [0.48,0.65] - 0.48 0.41 [0.31,0.51] 0.58 [0.49,0.66] - 0.53
CVX 0.52 [0.40,0.63] 0.37 [0.29,0.45] - 0.30 0.50 [0.41,0.59] 0.53 [0.43,0.64] [0.44,0.59] 0.47 0.50 [0.41,0.59] 0.57 [0.47,0.68] [0.47,0.58] 0.43
DD 0.36 [0.22,0.48] 0.40 [0.30,0.50] [0.30,0.47] 0.32 0.38 [0.26,0.50] 0.55 [0.44,0.64] - 0.47 0.39 [0.28,0.50] 0.57 [0.46,0.68] - 0.46
DIS 0.32 [0.18,0.45] 0.40 [0.30,0.52] [0.31,0.45] 0.37 0.38 [0.26,0.50] 0.62 [0.52,0.71] - 0.47 0.38 [0.27,0.49] 0.59 [0.49,0.68] - 0.42
GE 0.47 [0.37,0.58] 0.40 [0.32,0.49] [0.38,0.48] 0.42 0.52 [0.43,0.61] 0.58 [0.49,0.67] [0.49,0.61] 0.54 0.52 [0.43,0.61] 0.59 [0.48,0.68] [0.48,0.59] 0.51
GS 0.52 [0.39,0.65] 0.40 [0.31,0.48] [0.40,0.44] 0.38 0.57 [0.47,0.68] 0.62 [0.53,0.71] [0.53,0.68] 0.58 0.55 [0.46,0.65] 0.58 [0.48,0.68] [0.48,0.65] 0.58
HD 0.54 [0.44,0.63] 0.43 [0.34,0.53] [0.45,0.52] 0.35 0.57 [0.47,0.65] 0.61 [0.54,0.69] [0.54,0.65] 0.46 0.56 [0.47,0.63] 0.62 [0.52,0.70] [0.52,0.63] 0.47
IBM 0.36 [0.24,0.47] 0.30 [0.20,0.41] [0.24,0.41] 0.38 0.39 [0.29,0.48] 0.54 [0.42,0.64] - 0.47 0.41 [0.31,0.50] 0.55 [0.44,0.65] - 0.47
INTC 0.18 [-0.03,0.34] 0.41 [0.30,0.54] - 0.36 0.28 [0.10,0.42] 0.64 [0.53,0.73] - 0.46 0.29 [0.12,0.42] 0.60 [0.51,0.69] - 0.50
JNJ 0.44 [0.32,0.54] 0.35 [0.22,0.51] [0.32,0.51] 0.36 0.46 [0.37,0.56] 0.58 [0.48,0.67] - 0.49 0.46 [0.37,0.55] 0.62 [0.50,0.72] - 0.44
JPM 0.56 [0.45,0.65] 0.47 [0.37,0.56] [0.47,0.56] 0.38 0.59 [0.52,0.67] 0.62 [0.55,0.69] [0.55,0.67] 0.56 0.58 [0.51,0.66] 0.61 [0.53,0.70] [0.53,0.66] 0.56
KO 0.44 [0.30,0.57] 0.38 [0.29,0.47] [0.32,0.47] 0.38 0.44 [0.30,0.56] 0.58 [0.50,0.66] - 0.51 0.46 [0.33,0.58] 0.61 [0.52,0.69] - 0.47
MCD 0.38 [0.25,0.52] 0.44 [0.33,0.56] [0.33,0.51] 0.33 0.40 [0.29,0.52] 0.63 [0.55,0.71] - 0.49 0.42 [0.30,0.54] 0.62 [0.53,0.70] - 0.46
MMM 0.30 [0.11,0.47] 0.36 [0.25,0.46] [0.28,0.45] 0.37 0.35 [0.20,0.48] 0.52 [0.42,0.61] - 0.49 0.37 [0.24,0.50] 0.55 [0.45,0.65] - 0.47
MRK 0.35 [0.17,0.50] 0.35 [0.27,0.44] [0.27,0.44] 0.39 0.43 [0.24,0.56] 0.55 [0.46,0.64] [0.48,0.56] 0.50 0.43 [0.28,0.55] 0.55 [0.45,0.64] [0.48,0.54] 0.50
MSFT 0.16 [-0.11,0.37] 0.43 [0.35,0.54] - 0.36 0.25 [0.03,0.44] 0.58 [0.47,0.68] - 0.49 0.25 [0.06,0.43] 0.52 [0.41,0.62] - 0.50
NKE 0.41 [0.27,0.53] 0.37 [0.28,0.47] [0.30,0.47] 0.35 0.38 [0.26,0.49] 0.53 [0.44,0.62] - 0.46 0.39 [0.28,0.50] 0.55 [0.46,0.63] - 0.44
PFE 0.32 [0.04,0.52] 0.35 [0.26,0.46] [0.26,0.46] 0.36 0.39 [0.21,0.55] 0.53 [0.42,0.64] [0.48,0.54] 0.50 0.36 [0.19,0.52] 0.54 [0.42,0.66] - 0.45
PG 0.38 [0.20,0.53] 0.36 [0.27,0.46] [0.27,0.45] 0.34 0.40 [0.24,0.53] 0.47 [0.36,0.57] [0.36,0.53] 0.45 0.39 [0.24,0.52] 0.50 [0.40,0.61] [0.43,0.52] 0.43
TRV 0.40 [0.24,0.54] 0.45 [0.33,0.59] [0.34,0.53] 0.27 0.47 [0.34,0.59] 0.66 [0.52,0.80] - 0.42 0.47 [0.36,0.59] 0.62 [0.50,0.76] - 0.43
UNH 0.26 [0.06,0.42] 0.35 [0.26,0.44] [0.27,0.41] 0.37 0.39 [0.20,0.54] 0.59 [0.51,0.67] - 0.54 0.39 [0.22,0.53] 0.61 [0.52,0.70] - 0.52
UTX 0.43 [0.30,0.54] 0.37 [0.28,0.46] [0.31,0.46] 0.30 0.45 [0.34,0.55] 0.57 [0.47,0.65] - 0.46 0.44 [0.34,0.53] 0.57 [0.48,0.67] - 0.44
V 0.73 [0.62,0.83] 0.43 [0.33,0.53] - 0.30 0.71 [0.61,0.81] 0.62 [0.54,0.71] [0.62,0.69] 0.42 0.73 [0.63,0.83] 0.63 [0.55,0.72] [0.64,0.70] 0.44
VZ 0.40 [0.24,0.54] 0.41 [0.30,0.53] [0.31,0.50] 0.32 0.44 [0.27,0.58] 0.60 [0.51,0.69] - 0.48 0.46 [0.31,0.58] 0.61 [0.50,0.70] - 0.42
WMT 0.38 [0.24,0.51] 0.37 [0.29,0.47] [0.29,0.46] 0.40 0.44 [0.32,0.55] 0.54 [0.45,0.63] [0.49,0.53] 0.50 0.44 [0.30,0.55] 0.57 [0.47,0.66] - 0.51
XOM 0.48 [0.33,0.60] 0.30 [0.21,0.40] - 0.30 0.50 [0.38,0.60] 0.53 [0.41,0.64] [0.41,0.60] 0.47 0.49 [0.37,0.59] 0.52 [0.39,0.64] [0.39,0.59] 0.46
Average 0.41 0.39 0.36 0.45 0.58 0.49 0.45 0.58 0.48
Rejection rate 20.00% 53.33% 63.33%
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Table 6. Results from the the Nielsen and Shimotsu (2007)-based approach. The columns
headed: ‘d̂ (vlm)’ and ‘d̂ (σ)’ report point estimates from the two-stage univariate exact
local Whittle estimator in Shimotsu and Phillips (2005); ‘T0’ and ‘p-value’ report the
test statistic for the null of a common order of integration and related p-values; ‘L(u)’,
u = 0, 1, report the objective function used to infer the cointegration rank in a model
selection procedure; finally, ‘r̂T ’ reports the estimated cointegration rank resulting from
this criterion, and ‘r̂∗T ’ reports the conditional estimates of r for the cases in which the null
hypothesis of a common order of integration cannot be rejected at 5% level.

Nielsen-Shimotsu Testing Approach
Stock d̂ (vlm) 95% CI d̂ (σ) 95% CI T0 p-value L(0) L(1) r̂

T
r̂∗T

AAPL 0.62 [0.53,0.71] 0.48 [0.40,0.57] 5.37 0.02 -1.465 -1.337 0 -
AXP 0.52 [0.43,0.61] 0.63 [0.54,0.72] 3.90 0.05 -1.465 -1.444 0 -
BA 0.37 [0.28,0.46] 0.57 [0.48,0.66] 11.41 0.00 -1.465 -1.366 0 -
CAT 0.40 [0.31,0.48] 0.56 [0.47,0.65] 8.74 0.00 -1.465 -1.419 0 -
CSCO 0.34 [0.25,0.42] 0.52 [0.44,0.61] 10.46 0.00 -1.465 -1.416 0 -
CVX 0.52 [0.43,0.61] 0.61 [0.52,0.70] 2.78 0.10 -1.465 -1.455 0 0
DD 0.35 [0.26,0.44] 0.55 [0.46,0.64] 12.08 0.00 -1.465 -1.378 0 -
DIS 0.38 [0.29,0.47] 0.61 [0.52,0.70] 14.55 0.00 -1.465 -1.408 0 -
GE 0.55 [0.46,0.64] 0.60 [0.51,0.69] 0.90 0.34 -1.465 -1.468 1 1
GS 0.53 [0.44,0.62] 0.56 [0.47,0.65] 0.35 0.56 -1.465 -1.482 1 1
HD 0.60 [0.51,0.69] 0.57 [0.48,0.66] 0.33 0.57 -1.465 -1.380 0 0
IBM 0.39 [0.31,0.48] 0.58 [0.49,0.66] 10.83 0.00 -1.465 -1.460 0 -
INTC 0.19 [0.10,0.28] 0.54 [0.45,0.63] 33.64 0.00 -1.465 -1.301 0 -
JNJ 0.41 [0.33,0.50] 0.60 [0.51,0.69] 10.86 0.00 -1.465 -1.452 0 -
JPM 0.59 [0.50,0.68] 0.62 [0.53,0.71] 0.31 0.58 -1.465 -1.530 1 1
KO 0.40 [0.31,0.49] 0.61 [0.52,0.70] 13.03 0.00 -1.465 -1.350 0 -
MCD 0.35 [0.26,0.44] 0.60 [0.51,0.69] 16.74 0.00 -1.465 -1.258 0 -
MMM 0.36 [0.27,0.45] 0.54 [0.45,0.63] 10.87 0.00 -1.465 -1.447 0 -
MRK 0.33 [0.24,0.41] 0.52 [0.43,0.61] 11.35 0.00 -1.465 -1.368 0 -
MSFT 0.22 [0.14,0.31] 0.48 [0.39,0.56] 16.50 0.00 -1.465 -1.351 0 -
NKE 0.39 [0.30,0.48] 0.52 [0.43,0.60] 4.45 0.03 -1.465 -1.326 0 -
PFE 0.37 [0.28,0.46] 0.53 [0.44,0.62] 7.52 0.01 -1.465 -1.332 0 -
PG 0.36 [0.27,0.45] 0.48 [0.39,0.57] 3.89 0.05 -1.465 -1.323 0 -
TRV 0.41 [0.30,0.51] 0.59 [0.49,0.69] 7.34 0.01 -1.426 -1.399 0 -
UNH 0.33 [0.24,0.41] 0.56 [0.47,0.65] 16.39 0.00 -1.465 -1.338 0 -
UTX 0.41 [0.32,0.50] 0.58 [0.49,0.67] 9.01 0.00 -1.465 -1.420 0 -
VZ 0.39 [0.30,0.48] 0.57 [0.48,0.66] 8.22 0.00 -1.465 -1.248 0 -
V 0.64 [0.55,0.74] 0.62 [0.53,0.72] 0.11 0.73 -1.452 -1.305 0 0
WMT 0.40 [0.32,0.49] 0.57 [0.48,0.66] 7.82 0.01 -1.465 -1.392 0 -
XOM 0.47 [0.38,0.56] 0.53 [0.44,0.62] 1.06 0.30 -1.465 -1.493 1 1

Average 0.42 0.56 13.33% 13.33%
Rejection 95% 76.67%
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3 Return Volatility and Trading Volume

Summary of Contents

This supplement to our paper “Multivariate Fractional Integration Tests allowing
for Conditional Heteroskedasticity with an Application to Return Volatility and
Trading Volume” has three main parts. The first part, Appendix A, contains a
number of preparatory lemmas and their proofs which are used to prove the main
results, together with proofs of Theorems 1 and 2 in the paper. The second part,
Appendix B, contains additional Monte Carlo results. The third part, Appendix C,
includes additional data analysis related to the empirical application in section 5
of the paper.

Equation references (A.n), (B.n) and (C.n) for n ≥ 1 refer to equations in
in Appendices A, B and C, respectively, of this supplementary appendix. Other
equation references are to the main paper. Additional references are included at
the end of section A.2 of the supplement.
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Appendix A - Technical Appendix

A.1. Preliminary Results

Before presenting the proofs of the main results in the paper, we first need to
state and prove some preparatory Lemmas. To this end, consider the following
additional notation. For an (n× 1) vector A, ||A|| denotes the Euclidean vector
norm, such that ||A||2 = A′A. For an (n × m) matrix A, ||A|| denotes the
Euclidean matrix norm, ||A||2 = tr (A′A) . The constants K and C are used
throughout the proofs to refer to some generic strictly positive constant which
does not depend on the sample size. The notation a.s.→ denotes almost surely
convergence of a random sequence as the sample length is allowed to diverge
to +∞. Finally, throughout the proofs, we will use the superscripts ‘∗’ and ‘∗∗’ to
denote truncated processes and their non-truncated counterpart, respectively, such
as the truncated and non-truncated processes z∗s,t−1,ds :=

∑t−1
l=1 l

−1εs,t−l,ds and
z∗∗s,t−1,ds :=

∑∞
l=1 l

−1εs,t−l,ds , respectively. This distinction is necessary because,
while the statistics computed in the paper are constructed from the truncated
variables, the asymptotic theory is developed with respect to the corresponding non-
truncated processes. Lemmas A2 and A3 below show that the distinction between
the two is asymptotically negligible so far as the limiting distribution theory for the
statistics considered in this paper are concerned.

Lemma A1. Let x∗∗s,t−1,d :=
(
z∗∗s,t−1,ds ,ε

′
t−1,d, ...,ε

′
t−p,d

)′
, with z∗∗s,t−1,ds :=∑∞

l=1 l
−1εs,t−l,ds , and εs,t,ds denoting the s-th element of εt,d, 1 ≤ s ≤ k.

Let νij be the (i,j)-th element of Σ−1. Under Assumption 1 and H0 : θ =

0, νij
(
X ′∗∗i,−1,dX

∗∗
j,−1,d

)
/T

a.s.→ ΩAij , with ΩAij := νijE
(
x∗∗i,t−1,dx

′∗∗
j,t−1,d

)
bounded, and bounded away from zero if νij 6= 0.

Proof of Lemma A1. Denote λt−1,d :=
(
ε′t−1,d, ...,ε

′
t−p,d

)′
, such that for any

1 ≤ i, j ≤ k we have

T−1X ′∗∗i,−1,dX
∗∗
j,−1,d =

[
T−1

∑T
t=p∗+1 z

∗∗
i,t−1,diz

∗∗
j,t−1,dj T−1

∑T
t=p∗+1 z

∗∗
i,t−1,diλ

′
t−1,d

T−1
∑T
t=p∗+1 λt−1,dz

∗∗
j,t−1,dj T−1

∑T
t=p∗+1 λt−1,dλ

′
t−1,d

]
.
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Under Assumption 1, H0 : θ = 0, and for any 1 ≤ s ≤ k,
{
X∗∗s,−1,d

}
is a

measurable function of a strictly stationary and ergodic process and is therefore
also a strictly stationary and ergodic process, and so is

{
X ′∗∗s,−1,dX

∗∗
s,−1,d

}
.

The required result then follows from the Ergodic Theorem because x∗∗s,t−1,d
is (uniformly) L2-bounded, so the elements in

{
x∗∗s,t−1,dx

′∗∗
s,t−1,d

}
have finite

absolute expected values. To see this, first note that for any 1 ≤ s ≤ k, there exists
some finite K > 0 such that E

(
z2∗∗s,t−1,ds

)
=
∑∞
l=1 ω

2
slE

(
e2s,t−l

)
< K, because

ωsl =O (1/l) and {et} is uniformly L2-bounded under Assumption (A2). From this
result, it follows from the Cauchy-Swcharz inequality that E

(
|z∗∗i,t−1,diz

∗∗
j,t−1,dj |

)
≤√

E
(
z2∗∗i,t−1,di

)√
E
(
z2∗∗j,t−1,dj

)
< K, 1 ≤ i, j ≤ k. Similarly, because λt−1,d

is uniformly L2-bounded under Assumption (A2), there exists some finite C >

0 for which E
∥∥∥λ′t−1,dz∗∗s,t−1,ds∥∥∥ ≤ √

E||λt−1,d||2
√
E
(
z2∗∗s,t−1,ds

)
< C and

E
∥∥∥λt−1,dλ′t−1,d∥∥∥ ≤ E ‖λt−1,d‖2 < C. Consequently, the Ergodic Theorem

ensures that νij
(
X ′∗i,−1,dX

∗
j,−1,d

)
/T

a.s.→ νijE
(
x∗∗i,t−1,dx

′∗∗
j,t−1,d

)
. Finally, due

to stationarity, x∗∗s,t−1,d =
∑∞
l=1 Γslej−l with ||Γsl|| = O (1/l) , so ΩAij =

νij
∑∞
l=1 Γil Σ Γ′jl < ∞. Clearly, the condition Σ > 0 rules out the degenerate

case E
(
x∗∗i,t−1,dx

′∗∗
i,t−1,d

)
= 0, from which the required results follow. Furthermore,

for i = j, ΩAij = νii
∑∞
l=1 Γil Σ Γ′il, and so ΩAij is positive definite (Davidson,

2000, Corollary 14.2.10, p.216). �

Lemma A2. Under Assumption 1 and H0 : θ = 0, for 1≤ i, j ≤ k, it follows that,
i) T−1

∥∥∥X ′∗∗i,−1,dX∗∗j,−1,d −X ′∗i,−1,dX∗j,−1,d∥∥∥ = Op
(
T−1/2

)
;

ii) T−1/2
∥∥∥(X ′∗∗i,−1,d −X ′∗i,−1,d)uj∥∥∥ = Op

(√
logT√
T

)
.

Proof of Lemma A2. For i), we can write T−1
(
X ′∗∗i,−1,dX

∗∗
j,−1,d −X ′∗i,−1,dX∗j,−1,d

)
as

 T−1
∑T
t=p∗+1

(
z∗∗i,t−1,di

z∗∗j,t−1,dj
− z∗i,t−1,di

z∗j,t−1,dj

)
T−1

∑T
t=p∗+1 λ

′
t−1,d

(
z∗∗it−1,di

− z∗it−1,di

)
T−1

∑T
t=p∗+1 λt−1,d

(
z∗∗j,t−1,dj

− z∗j,t−1,dj

)
0kp×kp

 .
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Because E
(
z∗∗s,t−1,ds − z

∗
s,t−1,ds

)2
= O (1/t) (cf. Demetrescu et al. 2008, Lemma

B.1.), we have from the Cauchy-Schwarz inequality that,

E

∥∥∥∥∥∥T−1
T∑

t=p∗+1

λ′t−1,d
(
z∗∗s,t−1,ds − z

∗
s,t−1,ds

)∥∥∥∥∥∥
≤ T−1

T∑
t=p∗+1

√
E (||λt−1,d||2)

√
E
(
|z∗∗s,t−1,ds − z

∗
s,t−1,ds |

2
)

= O

T−1 T∑
t=p∗+1

1√
t

 = O
(
T−1/2

)
.

Hence,

T−1
T∑

t=p∗+1

λ′t−1,d
(
z∗∗it−1,di − z

∗
it−1,di

)
= Op

(
T−1/2

)
and

T−1
T∑

t=p∗+1

λt−1,d

(
z∗∗j,t−1,dj − z

∗
j,t−1,dj

)
= Op

(
T−1/2

)
by the Markov inequality. Next, write z∗∗s,t−1,ds = z∗s,t−1,ds + bs,t−1, with bs,t−1 :=∑∞
l=t ωsles,t−l. Because ωsl = O (1/l) and bs,t−1 = Op

(
1/
√
t
)
, it follows that,

z∗∗i,t−1,diz
∗∗
j,t−1,dj =

(
z∗i,t−1,di + bi,t−1

)(
z∗j,t−1,dj + bj,t−1

)
= z∗i,t−1,diz

∗
j,t−1,dj + rij,t−1

with rij,t−1 = Op
(
1/
√
t
)
defined implicitly. Therefore,

E

∥∥∥∥∥∥T−1
T∑

t=p∗+1

(
z∗∗i,t−1,diz

∗∗
j,t−1,dj − z

∗
i,t−1,diz

∗
j,t−1,dj

)∥∥∥∥∥∥
≤ T−1

T∑
t=p∗+1

E|rij,t−1| = O
(
T−1/2

)
= o (1)

and the required result holds from the Markov inequality. For part b), note that
the first element of the column vector

(
X ′∗∗i,−1,di −X

′∗
i,−1,di

)
uj is given by

T−1/2
∑T
t=p∗+1 bi,t−1ej,t, while all of the remaining elements are zero. Owing

to the MDS property of {et} and the stationarity condition in Assumption (A3),
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together with the moment conditions in Assumptions (A2) and (A4) it follows that,

E

T−1/2 T∑
t=p∗+1

bi,t−1ej,t

2

= T−1
T∑

t=p∗+1

E
(
b2i,t−1e

2
j,t

)

= T−1
T∑

t=p∗+1

∞∑
l1=t

∞∑
l2=t

ωil1ωil2E
(
e2j,tei,t−l1ei,t−l2

)

= O

(
logT

T

)
because

∞∑
l1=t

∞∑
l2=t

ωil1ωil2E
(
e2j,tei,t−l1ei,t−l2

)
=

∞∑
l1=t

ω2
il1E

(
e2j,te

2
i,t−l1

)

+
∞∑
l1=t

∞∑
l2=t
l2 6=l1

ωil1ωil2E
(
e2j,tei,t−l1ei,t−l2

)

= O

( ∞∑
l1=t

1

l21

)
+ o

 ∑
l1=t,l2=t
l2 6=l1

1

l21l
2
2

 = O (1/t)

given that E
(
e2j,te

2
i,t−l1

)
≤
(
E
(
e4j,t
)
E
(
e4i,t
))1/2

< K for all t, and Assumption
(A4) which implies that E

(
e2j,tei,t−l1ei,t−l2

)
≤ E (|ej,tejtei,t−l1ei,t−l2 |) =

o
(

1
l1l2

)
for any l1, l2 > 0, l1 6= l2 under absolute summability; see Lemmas B.1i)

and B.5 in Hassler et al. (2009). The required result then holds from the Markov
inequality. �

Lemma A3. Let Σ̃ = {σ̃ij} denote the OLS estimator of Σ = {σij}, namely,
σ̃ij = T−1ũ′iũj , ũs := Ys,ds −X∗s,−1,dβ̃s, with β̃s denoting the OLS estimator
of βs in the corresponding equation. Then, under Assumption 1 and H0 : θ = 0,
i) Σ̃

p→ Σ;

ii) T−1
∥∥∥X ′∗∗−1,d [(Σ̃−1 −Σ−1

)
⊗ IT−p∗

]
X∗∗−1,d

∥∥∥ = Op
(
T−1/2

)
;

iii) T−1/2X ′∗∗−1,d

[(
Σ̃−1 −Σ−1

)
⊗ IT−p∗

]
u

p→ 0.
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Proof of Lemma A3. Part i) follows from the consistency of the equation-by-
equation OLS estimator, β̃s, under Assumption 1 and H0 : θ = 0, which can be
proved along the same lines as in Demetrescu et al. (2008). Part ii) follows from
√
T -consistency in i) because X∗∗−1,d is uniformly L2-bounded. Finally, for part

iii), note that

T−1/2X ′∗∗−1,d

[(
Σ̃−1 −Σ−1

)
⊗ IT−p∗

]
u=



∑k
s=1 T

−1/2 (ν̃1s − ν1s)
(

1
TX

′∗∗
1,−1,dus

)
∑k
s=1 T

−1/2 (ν̃2s − ν2s)
(

1
TX

′∗∗
2,−1,dus

)
...∑k

s=1 T
−1/2 (ν̃ks − νks)

(
1
TX

′∗∗
k,−1,dus

)


and the required result follows noting that T−1/2 (ν̃ij − νij) = Op (1) for all
1 ≤ i, j ≤ k from i) above, while X ′∗∗i,−1,duj/T

a.s.→ 0 from the Ergodic Theorem,
because

{
X ′∗∗i,−1,dus

}
is a strictly stationary and ergodic vector MDS, and

E||X ′∗∗i,−1,dus|| ≤
√
E||X ′∗∗i,−1,d||2E||us||2 < ∞ under Assumption 1 and H0 :

θ = 0. �

Lemma A4. Define Drsij := er,tes,tx
∗∗
i,t−1,dx

′∗∗
j,t−1,d, for all 1 ≤ r, s, i, j ≤ k.

Under Assumption 1 and H0 : θ = 0, E||Drsij || <∞.

Proof of Lemma A4. The proof follows from the Cauchy-Schwarz inequality given
that ei,tx∗∗j,t−1,d is (uniformly) L2-bounded for any 1 ≤ i, j ≤ k.

E
∥∥ei,tx∗∗j,t−1,d∥∥2 = E ‖ei,tλt−1,d‖2 +E

(
e2i,tz

2∗∗
j,t−1,dj

)
< K

because for some finite C > 0,

E ‖ei,tλt−1,d‖ ≤
√
E
(
e2i,t

)
E ‖λt−1,d‖2 < C

and

E
(
e2i,tz

2∗∗
j,t−1,dj

)
=

∞∑
l1=1

∞∑
l2=1

ωjl1ωjl2E
(
e2i,tej,t−l1ej,t−l2

)
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=
∞∑
l1=1

ω2
jl1E

(
e2i,tej,t−l1ej,t−l1

)
+
∞∑
l1=1

∞∑
l2=1
l2 6=l1

ωjl1ωjl2E
(
e2i,tej,t−l1ej,t−l2

)

where E
(
e2i,tej,t−l1ej,t−l1

)
≤ E(e4i,t)

1/4 ×E
(
e4j,t
)3/4

< K and, as in Lemma A2,

∞∑
l1=1

∞∑
l2=1
l2 6=l1

ωjl1ωjl2E
(
e2i,tej,t−l1ej,t−l2

)
= O

( ∞∑
l1=t

1

l21

)
+ o

 ∞∑
l1=1,l2=1
l2 6=l1

1

l21l
2
2


= O (1) .

Consequently, E
∥∥∥er,tes,tx∗∗i,t−1,dx′∗∗j,t−1,d∥∥∥≤√E ∥∥∥er,tx∗∗i,t−1,d∥∥∥2

√
E
∥∥∥er,tx∗∗j,t−1,d∥∥∥2 <

∞. �

A.2. Proofs of Main Results

Proof of Theorem 1. Under Assumption 1 and H0 : θ = 0, the FGLS estimator
of β can be written as

β̂ = β0 +
(
X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗−1,d

)−1 (
X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
u
)
.

Using Lemmas A2 and A3, we therefore have that,

√
T
(
β̂ − β0

)
=

(
1

T
X ′∗∗t−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗∗−1,d

)−1(
1√
T
X ′∗∗−1,d

[
Σ−1 ⊗ IT−p∗

]
u

)
+ op (1) . (A.1)

Recall that νij denotes the (i, j)-th element of Σ−1, and define A∗∗T :=

1
TX

′∗∗
−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗∗−1,d, noting that A∗∗T can be represented as a

partitioned matrix with ij-block A∗∗Tij = νijX
′∗∗
i,−1,dX

∗∗
j,−1,d/T. From Lemma A2,

νijX
′∗∗
i,−1,dX

∗∗
j,−1,d/T

a.s.→ ΩAij for all 1 ≤ i, j ≤ k. Consequently, A∗∗T
a.s.→ Aβ,

where Aβ is a partitioned matrix with ij-th submatrix given by ΩAij . Noting that
the columns of Aβ cannot be written as linear combinations of the other elements,
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det(Aβ) > 0, and consequently(
1

T
X ′∗∗−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗∗−1,d

)−1
a.s.→ A−1β

by Slutsky’s Theorem. We now discuss the asymptotic behaviour of the second term
in (A.1). To this end, define the column vector w∗∗−1,d :=X ′∗∗−1,d

[
Σ−1 ⊗ IT−p∗

]
u,

noting that

w∗∗−1,d =

(
k∑
s=1

ν1sX
′∗∗
1,−1,dus,

k∑
s=1

ν2sX
′∗∗
2,−1,dus, ...,

k∑
s=1

νksX
′∗∗
k,−1,dus

)′

with us := (es,p+1, ..., es,T )′ under H0 : θ = 0. Given that E
(
w∗∗−1,d|Ft−1

)
=

0 and w∗∗−1,d is a measurable function of {et} ,
{
w∗∗−1,d,Ft

}
is a strictly

stationary and ergodic vector MDS. The covariance matrix of w∗∗−1,d is Bβ :=

E
(
w∗∗−1,dw

′∗∗
−1,d

)
, which can be represented as a partitioned matrix with ij-th

block ΩBij given by

ΩBij :=
k∑
r=1

k∑
s=1

νirνisE
(
er,tes,tX

′∗∗
i,−1,dX

∗∗
j,−1,d

)
.

From Lemma A4, E||er,tes,tx∗∗i,t−1,dx′∗∗j,t−1,d|| <∞, and consequently ΩBij <∞

for all 1 ≤ i, j ≤ k, so Bβ < ∞. Furthermore, the condition that Σ is positive
definite trivially rules out the degenerate case ||ΩBii|| = 0, and so Bβ is
bounded away from zero. Consequently, the Central Limit Theorem (CLT) for
MDS (Davidson, 2000, Theorem 24.3) and the Cramér-Wold device deliver the
result that

1√
T
X ′∗∗−1,d

[
Σ−1 ⊗ IT−p∗

]
u⇒N (0,Bβ) ,

and so we may conclude that,

√
T
(
β̂ − β0

)
⇒N

(
0,A−1β BβA

−1
β

)
as required. �

Proof of Theorem 2. We first prove the stated convergence result under the
null hypothesis, which follows directly from Theorem 1 and the consistency of
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Ω̂β := A∗−1T B∗TA
∗−1
T , with A∗T := 1

TX
′∗
−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗−1,d and B∗T :=

1
T ŵ
∗
−1,dŵ

′∗
−1,d, ŵ

∗
−1,d := X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
û, û := Yt,d −X∗−1,dβ̂. As

discussed previously, A∗∗T
a.s.→ Aβ, and so Lemma A2 and the Asymptotic

Equivalence Lemma (AEL) allow us to conclude that A∗T
p→ Aβ. Using the

√
T -

consistency result from Theorem 1, û := u+Op
(
T−1/2

)
and, therefore, ŵ∗−1,d :=

X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
u + Op

(
T−1/2

)
. Then, after consecutive application of

Lemmas A2 and A3, we can write B∗T = B∗∗T + op (1) , where B∗∗T :=

w∗∗−1,dw
′∗∗
−1,d/T can be represented as a partitioned matrix with ij-th block

B∗∗Tij :=
k∑
r=1

k∑
s=1

νirνis

[
1

T
X ′∗∗i,−1,duru

′
sX
∗∗
j,−1,d

]

such that

E
(
B∗∗Tij

)
=

k∑
r=1

k∑
s=1

νirνis

T−1 T∑
t=p+1

E
(
er,tes,tx

∗∗
i,t−1,dx

′∗∗
j,t−1,d

) = ΩBij

from the stationarity and the MDS property of {et}. Because
{
w∗∗−1,dw

′∗∗
−1,d

}
is

strictly stationary, ergodic, and L2-bounded by Lemma A6, the Ergodic Theorem
ensures that B∗∗T

a.s.→ Bβ, so the AEL implies B∗T
p→ Bβ. By Slutsky’s Theorem,

√
TRβ̂⇒N (0,RΩβR

′) , and sinceRΩβR
′ is symmetric and nonnegative, there

exists an upper triangular matrix L such that RΩβR
′ = L′L. Consequently,

√
TL−1′Rβ̂⇒N (0,Ik) , and, hence,

LMd = T
[
Rβ̂
]′ (
RΩβR

′)−1 [Rβ̂]+Op

(
T−1/2

)
= T

[
L′−1Rβ̂

]′ [
L′−1Rβ̂

]
⇒ χ2

(k).

We now establish the corresponding asymptotic convergence result under the
local alternative Hc : θ = c/

√
T , where at least one element of c is non-

zero. Under Assumption 1 and Hc, we have that Yt,d = X∗−1,dβ0 + uθ where
uθ ≡ (u′θ1, ...,u

′
θk) , uθs := us + 1√

T
X∗s,−1,d+θψcs, and

ψcs :=
(
cs,−πs1 � c′, ...,−πsp � c′

)′
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for 1 ≤ s ≤ k; see Tanaka (1999). In this context, the FGLS estimator is given by

β̂ = β0 +
(
X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗−1,d

)−1 (
X ′∗−1,d

[
Σ̃−1 ⊗ IT−p∗

]
uθ

)
+ op (1) .

Lemma A3i) applies under the alternative hypothesis because, although the OLS
estimator is no longer consistent, it still follows that ûs = us +Op

(
T−1/2

)
and,

hence, ν̂ij = νij +O
(
T−1/2

)
. Consequently,

√
T
(
β̂ − β0

)
=

(
1

T
X ′∗−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗−1,d

)−1(
1√
T
X ′∗−1,d

[
Σ−1 ⊗ IT−p∗

]
uθ

)
+op (1) .

Define ψc := (ψ′c1, ...,ψ
′
ck)
′
. Then,

1√
T
X ′∗−1,d

[
Σ−1 ⊗ IT−p∗

]
uθ =

1

T
X ′∗−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗−1,d+θψc

+
1√
T
X ′∗−1,d

[
Σ−1 ⊗ IT−p∗

]
u

where we can show that,

1

T
X ′∗−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗−1,d+θψc

p→ Aβψc

which follows from the Ergodic Theorem and the AEL because

T−1
∥∥(X ′∗−1,d −X ′∗∗−1,d+θ) [Σ−1 ⊗ IT−p∗] (X∗−1,d+θ −X∗∗−1,d+θ)∥∥=Op

(
logT√
T

)
= op (1) .

Similarly,
1√
T
X ′∗∗−1,d

[
Σ−1 ⊗ IT−p∗

]
u⇒N (0,Bβ) .

from the CLT for MDS, given that

T−1/2
∥∥(X ′∗∗−1,d −X ′∗∗−1,d+θ) [Σ−1 ⊗ IT−p∗]u∥∥ = Op

(
logT√
T

)
and, finally,

1

T
X ′∗−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗−1,d

p→ Aβ.
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Consequently, under Assumption 1 and Hc : θ = c/
√
T ,

√
T
(
β̂ − β0

)
⇒N (ψc,Ωβ) . (A.2)

This combined with the result that A∗T
p→ ΩA ensures that û = u+Op

(
T−1/2

)
and B∗T

p→ ΩB. Finally, from (A.2) we have that
√
TRβ̂ ⇒ N (c,RΩβR

′) and,
hence,

√
T
[
L′−1Rβ̂

]
⇒N

(
L′−1c,Ik

)
, and so the result that Ω̂T

p→Ωβ implies
that

LMd = T
[
L′−1Rβ̂

]′ [
L′−1Rβ̂

]
+Op

(
T−1/2

)
⇒ χ2

(k,ξ)

with ξ := (L′−1c)′(L′−1c), as required. �

Additional Reference

.

. Davidson, J. (2000) Stochastic Limit Theory (3rd Ed). Oxford University Press:
Oxford.
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Appendix B - Additional Monte Carlo Results

To provide further insights into the finite sample performance of the tests we
again focus on the bivariate (k = 2) case where yt ≡ (y1t, y2t)

′, and consider the
simulation DGP, (1− L)d1 0

0 (1− L)d2

 (yt −µ) = εtI(t ≥ 1), t = 1, ..., T. (B.1)

Without loss of generality we set d1 = 0.3 and d2 = 0.6, which correspond to
a (marginally) stationary and a nonstationary long-memory process, respectively,
and report results for samples of length T ∈ {500, 1000}. We set µ = 0 for all
experiments, except for those in Section B.3. With the exception of the results in
section B.1 where unconditional heteroskedasticity is allowed for, the innovations
{εt} are generated to exhibit time-varying conditional second-order moments
according to the design

εt =

 σ1t 0

0 σ2t

ηt; E (ηt) = 0, E
(
ηtη

′
t

)
=: Ωρ =

 1 ρ

ρ 1

 (B.2)

where ηt ≡ (η1t, η2t)
′ is an i.i.d. vector drawn from either a multivariate Gaussian

distribution or a (heavy-tailed) multivariate Student-t distribution with 5 degrees of
freedom. The covariance matrix Ωρ depends on the contemporaneous correlation
coefficient ρ, whose value we vary among ρ ∈ {0, 0.2, 0.4, 0.6, 0.8}. The
conditional variances

{
σ2it
}

are driven by (normalised) stationary GARCH(1,1)
processes characterised by:

σ2it = (1− α− β) + αe2i,t−1 + βσ2i,t−1, i = 1, 2 (B.3)

with α,β ≥ 0 and α + β < 1, such that E
(
e2it
)

= 1. For simplicity, we impose
the same GARCH dynamics on the two series, focusing on GARCH parameter
configurations that allow for varying degrees of persistence in the conditional
variances as measured by α+β, namely, (α,β) ∈ {(0, 0), (0.1, 0.5), (0.1, 0.7), (0.1,

0.8), (0.1, 0.85)}. The case α= β = 0 corresponds to conditional homoskedasticity.
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Non-zero values of these parameters induce serial dependencies in the short-run
dynamics of the process, while ρ 6= 0 introduces cross sectional dependence in the
innovations. Applied work with financial data routinely suggests both the presence
of heavy tailed behaviour in the innovations and high persistence in the fitted
GARCH model with α + β generally estimated to be relatively close to one. All
reported simulation results are based on 5000 Monte Carlo replications.
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B.1. Unconditional Heteroskedasticity

In Table B.1 we report results for the case where the innovations are homoskedastic,
DGP1: σ21t = σ22t = 1, and for the case where there is a contemporaneous one-
time break of equal magnitude in the variances of εt. Regarding the latter, two
heteroskedastic cases are considered: (i) an upward change in variance such that
DGP2: σ21t = σ21t = 1I(t ≤ bτT c) + 4I(t > b(1 − τ)T c), and (ii) a downward
change where DGP3: σ21t = σ22t = 1I(t ≤ bτT c) + 1

4I(t > b(1 − τ)T c), where
in each case I(·) denotes the indicator function, taking the value one when its
argument is true and zero otherwise, and τ ∈ {1/3, 1/2, 2/3} corresponds to the
break fraction. DGP2 and DGP3 allow us to examine the impact of unconditional
heteroskedasticity, both in isolation and in its interaction with ρ, on the finite
sample size of the tests. In each of DGP2 and DGP3 a fourfold change in variance
is seen which is likely to be of considerably larger magnitude than we might expect
to see in practice, but serves to illustrate how the tests behave in the presence of
large changes in unconditional volatility.
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Normal Student-t(5)
DGP ρ τ = 1/3 τ = 1/2 τ = 2/3 τ = 1/3 τ = 1/2 τ = 2/3

T = 500
DGP1 0 0.053 0.050 0.056 0.055 0.056 0.054

0.2 0.055 0.051 0.047 0.049 0.056 0.057
0.4 0.051 0.049 0.048 0.048 0.051 0.057
0.6 0.052 0.056 0.056 0.054 0.054 0.056
0.8 0.055 0.056 0.051 0.054 0.053 0.059

DGP2 0 0.056 0.053 0.054 0.048 0.054 0.052
0.2 0.057 0.054 0.055 0.058 0.058 0.046
0.4 0.056 0.062 0.054 0.060 0.053 0.054
0.6 0.053 0.054 0.050 0.059 0.052 0.053
0.8 0.056 0.063 0.056 0.053 0.049 0.058

DGP3 0 0.060 0.052 0.058 0.049 0.052 0.056
0.2 0.054 0.053 0.063 0.058 0.051 0.053
0.4 0.057 0.062 0.053 0.055 0.056 0.051
0.6 0.055 0.054 0.055 0.055 0.054 0.056
0.8 0.056 0.052 0.058 0.051 0.059 0.050

T = 1000
DGP1 0 0.047 0.048 0.052 0.056 0.052 0.050

0.2 0.049 0.049 0.051 0.057 0.054 0.057
0.4 0.050 0.053 0.053 0.049 0.055 0.051
0.6 0.049 0.051 0.053 0.050 0.049 0.056
0.8 0.057 0.055 0.047 0.047 0.053 0.049

DGP2 0 0.049 0.053 0.057 0.052 0.049 0.051
0.2 0.054 0.056 0.057 0.051 0.047 0.054
0.4 0.052 0.055 0.054 0.053 0.051 0.051
0.6 0.053 0.047 0.051 0.053 0.052 0.054
0.8 0.049 0.053 0.055 0.057 0.052 0.058

DGP3 0 0.055 0.057 0.053 0.053 0.051 0.048
0.2 0.052 0.050 0.055 0.047 0.053 0.053
0.4 0.052 0.052 0.053 0.049 0.050 0.053
0.6 0.055 0.053 0.055 0.059 0.048 0.050
0.8 0.049 0.049 0.055 0.050 0.048 0.052

Table B.1. Empirical rejection frequencies of LMFGLS
d under the null hypothesis and

unconditional variance breaks

B.2. Estimation Accuracy

To illustrate the gains that can be obtained by using the FGLS approach over
equation-by-equation OLS estimation (we thank a referee for suggesting these
experiments) we have performed a detailed Monte Carlo analysis into the finite
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sample bias and mean squared error [MSE] of the estimates of the fractional
integration parameter vector d := (d1, d2)′, computed as described in section 5.2
and in Hassler et al. (2009, Remark 2.7). The simulation DGP is as described
in (B.1)-(B.3) with d1 = 0.3 and d2 = 0.6, with 5000 Monte Carlo replications.
Tables B.1 and B.2 report the empirical average (taken across the 5000 Monte
Carlo replications) of the estimates of the long memory parameters, computed as
d̄ki := 1

5000

∑5000
j=1 d̂

k
i,j , together with the corresponding empirical MSEs computed

as,

MSEki :=
1

5000

5000∑
j=1

(d̂ki,j − di)2, (B.1)

where in each case i = 1, 2 and k = FGLS,OLS, and where d̂ki,j denotes the
estimate of di in the jth, j = 1, ..., 5000, Monte Carlo replication based on
either FGLS estimation (k = FGLS) or equation-by-equation OLS estimation
(k = OLS).
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ρ d̄1
FGLS

d̄1
OLS

d̄2
FGLS

d̄2
OLS

MSEFGLS1 MSEOLS1 MSEFGLS2 MSEOLS2

i.i.d. errors
0 0.2979 0.2976 0.5978 0.5978 0.0013 0.0013 0.0013 0.0013

0.2 0.2981 0.2945 0.5984 0.5998 0.0013 0.0014 0.0012 0.0012
0.4 0.2980 0.2839 0.5987 0.6043 0.0013 0.0017 0.0013 0.0012
0.6 0.2979 0.2603 0.5984 0.6121 0.0013 0.0033 0.0013 0.0013
0.8 0.2986 0.2020 0.5985 0.6336 0.0013 0.0119 0.0013 0.0022

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.2976 0.2973 0.5978 0.5979 0.0015 0.0015 0.0015 0.0015

0.2 0.2980 0.2942 0.5986 0.6002 0.0015 0.0016 0.0014 0.0014
0.4 0.2979 0.2838 0.5984 0.6038 0.0015 0.0019 0.0015 0.0014
0.6 0.2976 0.2601 0.5982 0.6119 0.0015 0.0035 0.0015 0.0014
0.8 0.2986 0.2033 0.5981 0.6328 0.0015 0.0118 0.0015 0.0023

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.2971 0.2969 0.5968 0.5968 0.0015 0.0015 0.0016 0.0016

0.2 0.2980 0.2945 0.5978 0.5990 0.0015 0.0016 0.0015 0.0015
0.4 0.2975 0.2835 0.5978 0.6035 0.0015 0.0019 0.0015 0.0015
0.6 0.2990 0.2618 0.5980 0.6119 0.0016 0.0034 0.0015 0.0015
0.8 0.2981 0.2015 0.5979 0.6323 0.0016 0.0123 0.0015 0.0023

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.2971 0.2969 0.5981 0.5982 0.0016 0.0016 0.0016 0.0016

0.2 0.2983 0.2949 0.5988 0.6003 0.0016 0.0017 0.0015 0.0015
0.4 0.2971 0.2833 0.5973 0.6028 0.0016 0.0020 0.0016 0.0015
0.6 0.2966 0.2602 0.5970 0.6110 0.0017 0.0037 0.0016 0.0015
0.8 0.2974 0.2040 0.5968 0.6311 0.0015 0.0118 0.0016 0.0023

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.2972 0.2970 0.5981 0.5981 0.0018 0.0018 0.0017 0.0017

0.2 0.2971 0.2935 0.5991 0.6002 0.0017 0.0018 0.0016 0.0016
0.4 0.2973 0.2832 0.5979 0.6031 0.0017 0.0021 0.0017 0.0016
0.6 0.2972 0.2627 0.5973 0.6105 0.0017 0.0035 0.0017 0.0016
0.8 0.2976 0.2061 0.5970 0.6301 0.0018 0.0117 0.0017 0.0024

Table B.1. Empirical Average and MSE of fractional exponent estimates. DGP (B.1)-(B.3),
T = 500.
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ρ d̄1
FGLS

d̄1
OLS

d̄2
FGLS

d̄2
OLS

MSEFGLS1 MSEOLS1 MSEFGLS2 MSEOLS2

i.i.d. errors
0 0.2987 0.2985 0.5987 0.5987 0.0006 0.0006 0.0006 0.0006

0.2 0.2988 0.2952 0.5990 0.6004 0.0006 0.0007 0.0006 0.0006
0.4 0.2982 0.2830 0.5994 0.6049 0.0006 0.0010 0.0006 0.0006
0.6 0.2993 0.2593 0.5991 0.6130 0.0006 0.0025 0.0006 0.0007
0.8 0.2986 0.1901 0.5991 0.6341 0.0006 0.0136 0.0006 0.0017

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.2989 0.2987 0.5986 0.5986 0.0007 0.0007 0.0007 0.0007

0.2 0.2989 0.2952 0.5996 0.6009 0.0007 0.0008 0.0007 0.0007
0.4 0.2983 0.2834 0.5990 0.6046 0.0007 0.0011 0.0007 0.0007
0.6 0.2990 0.2585 0.5990 0.6129 0.0008 0.0028 0.0007 0.0008
0.8 0.2987 0.1921 0.5986 0.6333 0.0007 0.0131 0.0007 0.0017

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.2985 0.2984 0.5986 0.5986 0.0007 0.0007 0.0008 0.0008

0.2 0.2992 0.2957 0.5988 0.6000 0.0007 0.0008 0.0008 0.0007
0.4 0.2985 0.2834 0.5992 0.6047 0.0008 0.0011 0.0008 0.0007
0.6 0.2986 0.2587 0.5996 0.6136 0.0007 0.0028 0.0008 0.0009
0.8 0.2993 0.1933 0.5988 0.6332 0.0008 0.0129 0.0008 0.0017

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.2988 0.2987 0.5984 0.5984 0.0008 0.0008 0.0008 0.0008

0.2 0.2988 0.2952 0.5995 0.6007 0.0008 0.0009 0.0008 0.0008
0.4 0.2983 0.2835 0.5991 0.6045 0.0008 0.0012 0.0008 0.0008
0.6 0.2986 0.2593 0.5987 0.6123 0.0008 0.0028 0.0008 0.0009
0.8 0.2986 0.1945 0.5985 0.6324 0.0008 0.0128 0.0008 0.0017

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.2985 0.2984 0.5982 0.5982 0.0008 0.0008 0.0009 0.0009

0.2 0.2986 0.2953 0.5994 0.6005 0.0009 0.0009 0.0009 0.0009
0.4 0.2980 0.2839 0.5989 0.6041 0.0009 0.0012 0.0009 0.0008
0.6 0.2984 0.2603 0.5987 0.6118 0.0009 0.0028 0.0009 0.0009
0.8 0.2983 0.1972 0.5987 0.6314 0.0009 0.0123 0.0009 0.0018

Table B.2. Empirical Average and MSE of fractional exponent estimates. (B.1)-(B.3),
T = 1000.
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We also computed the empirical MSE of the parameter estimates of βi, i = 1, 2

in (6) resulting from a multivariate linear regression model as in (5) with p = 0,
using FGLS and equation-by-equation OLS. Notice that in this restricted framework
(p = 0) the βi, i = 1, 2 can be seen as indicators of over (βi < 0) or under
differencing (βi > 0) of the time series induced by the null hypothesis, as the null
hypothesis implies that ϕ = 0 in (5) which in the restricted case is equivalent to
βi = 0, i = 1, 2.

ρ MSEFGLS
β̂1

MSEOLS
β̂1

MSEFGLS
β̂2

MSEOLS
β̂2

MSEFGLS
β̂1

MSEOLS
β̂1

MSEFGLS
β̂2

MSEOLS
β̂2

T = 500 T = 1000

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.0027 0.0027 0.0024 0.0024 0.0013 0.0013 0.0013 0.0013

0.2 0.0026 0.0027 0.0025 0.0026 0.0013 0.0013 0.0013 0.0013
0.4 0.0024 0.0027 0.0022 0.0025 0.0012 0.0013 0.0012 0.0013
0.6 0.0021 0.0026 0.0020 0.0025 0.0010 0.0013 0.0011 0.0013
0.8 0.0017 0.0027 0.0017 0.0026 0.0008 0.0013 0.0008 0.0013

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.0029 0.0029 0.0028 0.0028 0.0016 0.0016 0.0016 0.0016

0.2 0.0029 0.0030 0.0027 0.0028 0.0015 0.0016 0.0015 0.0015
0.4 0.0027 0.0030 0.0025 0.0028 0.0015 0.0016 0.0014 0.0016
0.6 0.0023 0.0029 0.0022 0.0027 0.0013 0.0017 0.0012 0.0015
0.8 0.0020 0.0029 0.0019 0.0028 0.0011 0.0016 0.0011 0.0016

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.0036 0.0036 0.0034 0.0034 0.0021 0.0021 0.0021 0.0021

0.2 0.0034 0.0035 0.0034 0.0035 0.0021 0.0022 0.0020 0.0020
0.4 0.0034 0.0038 0.0032 0.0035 0.0019 0.0021 0.0020 0.0021
0.6 0.0029 0.0036 0.0028 0.0034 0.0018 0.0022 0.0017 0.0021
0.8 0.0024 0.0035 0.0025 0.0034 0.0016 0.0022 0.0015 0.0021

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.0042 0.0043 0.0041 0.0041 0.0029 0.0029 0.0029 0.0029

0.2 0.0042 0.0043 0.0042 0.0042 0.0031 0.0031 0.0030 0.0030
0.4 0.0039 0.0042 0.0039 0.0042 0.0030 0.0032 0.0027 0.0029
0.6 0.0036 0.0043 0.0036 0.0043 0.0027 0.0031 0.0026 0.0030
0.8 0.0032 0.0044 0.0031 0.0042 0.0023 0.0031 0.0023 0.0031

Table B.3. Empirical MSE of the parameter estimates of the βi, i = 1, 2 in (6), β̂i, i = 1, 2,
computed by FGLS and OLS

B.3. The Impact of Nonzero Means

To illustrate the impact of nonzero means on the finite sample size performance
of the test procedure, we consider the following three cases: µ = 0,5,10 which
correspond to 2× 1 vectors of common elements (0, 5 and 10, respectively), and
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we use three different demeaning approaches: i) no demeaning (which we denote as
µ0); ii) demeaning only (which we denote as µ1); and iii) demeaning and detrending
(which we denote as µ2).

Specifically, to account for a non-zero deterministic mean in the level of the
series we use the demeaning process described in Robinson (1994); Demetrescu et
al. (2008) and Hassler et al. (2016). Hence, to account for the nonzero means in
(B.1) we regress the differences (1− L)di+ yit :=

∑t−1
j=0 λj (di) yit−j on the variable

ht,di :=
∑t−1
j=0 λj (di) , t = 2, ..., T, with {λj (di)} as defined in (4) of the paper.

Denote the resulting estimates µ̃i, i = 1, 2, and the corresponding residuals as
ε̃it,di := (1− L)di+ yit − µ̃iht,di . One then redefines the ith element of the vector
εt,d to be ε̃it,di , i = 1, 2, and then proceeds as before to compute the respective
test statistics; see Remark 8 for further details.

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ2

LMFGLS
d,µ2

LMFGLS
d,µ2

ρ µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.057 1.000 1.000 0.059 0.059 0.059 0.065 0.065 0.065

0.2 0.068 1.000 1.000 0.060 0.060 0.060 0.069 0.069 0.069
0.4 0.058 1.000 1.000 0.060 0.060 0.060 0.069 0.069 0.069
0.6 0.059 1.000 1.000 0.062 0.062 0.062 0.067 0.067 0.067
0.8 0.058 1.000 1.000 0.066 0.066 0.066 0.066 0.066 0.066

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.056 1.000 1.000 0.060 0.060 0.060 0.066 0.066 0.066

0.2 0.055 1.000 1.000 0.060 0.060 0.060 0.068 0.068 0.068
0.4 0.056 1.000 1.000 0.061 0.061 0.061 0.069 0.069 0.069
0.6 0.058 1.000 1.000 0.061 0.061 0.061 0.065 0.065 0.065
0.8 0.059 1.000 1.000 0.066 0.066 0.066 0.069 0.069 0.069

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.054 1.000 1.000 0.058 0.058 0.058 0.067 0.067 0.067

0.2 0.056 1.000 1.000 0.060 0.060 0.060 0.067 0.067 0.067
0.4 0.058 1.000 1.000 0.064 0.064 0.064 0.070 0.070 0.070
0.6 0.058 1.000 1.000 0.066 0.066 0.066 0.069 0.069 0.069
0.8 0.059 1.000 1.000 0.066 0.066 0.066 0.069 0.069 0.069

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.055 1.000 1.000 0.057 0.057 0.057 0.066 0.066 0.066

0.2 0.059 1.000 1.000 0.063 0.063 0.063 0.069 0.069 0.069
0.4 0.062 1.000 1.000 0.065 0.065 0.065 0.072 0.072 0.072
0.6 0.059 1.000 1.000 0.066 0.066 0.066 0.071 0.071 0.071
0.8 0.060 1.000 1.000 0.068 0.068 0.068 0.071 0.071 0.071

Note: LMFGLS
d,µi

, i = 0, 1, 2 correspond to statistics computed from data which has
not been demeaned (µ0), data that has been demeaned (µ1) and data which has been
demeaned and detrended (µ2).

Table B.1. Impact of µ on finite sample size performance. Normally distributed innovations.
T = 500.
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LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ2

LMFGLS
d,µ2

LMFGLS
d,µ2

ρ µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.060 1.000 1.000 0.058 0.058 0.058 0.067 0.067 0.067

0.2 0.058 1.000 1.000 0.058 0.058 0.058 0.066 0.066 0.066
0.4 0.055 1.000 1.000 0.057 0.057 0.057 0.065 0.065 0.065
0.6 0.054 1.000 1.000 0.056 0.056 0.056 0.062 0.062 0.062
0.8 0.051 1.000 1.000 0.058 0.058 0.058 0.056 0.056 0.056

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.059 1.000 1.000 0.058 0.058 0.058 0.067 0.067 0.067

0.2 0.059 1.000 1.000 0.057 0.057 0.057 0.065 0.065 0.065
0.4 0.054 1.000 1.000 0.056 0.056 0.056 0.064 0.064 0.064
0.6 0.052 1.000 1.000 0.056 0.056 0.056 0.061 0.061 0.061
0.8 0.054 1.000 1.000 0.061 0.061 0.061 0.057 0.057 0.057

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.057 1.000 1.000 0.058 0.058 0.058 0.063 0.063 0.063

0.2 0.055 1.000 1.000 0.056 0.056 0.056 0.064 0.064 0.064
0.4 0.056 1.000 1.000 0.057 0.057 0.057 0.060 0.060 0.060
0.6 0.053 1.000 1.000 0.057 0.057 0.057 0.059 0.059 0.059
0.8 0.050 1.000 1.000 0.059 0.059 0.059 0.059 0.059 0.050

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.053 1.000 1.000 0.056 0.056 0.056 0.060 0.060 0.060

0.2 0.054 1.000 1.000 0.054 0.054 0.054 0.060 0.060 0.060
0.4 0.054 1.000 1.000 0.056 0.056 0.056 0.060 0.060 0.060
0.6 0.051 1.000 1.000 0.056 0.056 0.056 0.056 0.056 0.056
0.8 0.052 1.000 1.000 0.060 0.060 0.060 0.058 0.058 0.058

Note: See note under Table B.1

Table B.2. Impact of µ on finite sample size performance. Normally distributed innovations.
T = 1000.
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LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ2

LMFGLS
d,µ2

LMFGLS
d,µ2

ρ µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.065 1.000 1.000 0.066 0.066 0.066 0.070 0.070 0.070

0.2 0.063 1.000 1.000 0.064 0.064 0.064 0.073 0.073 0.073
0.4 0.064 1.000 1.000 0.066 0.066 0.066 0.076 0.076 0.076
0.6 0.062 1.000 1.000 0.065 0.065 0.065 0.075 0.075 0.075
0.8 0.061 1.000 1.000 0.070 0.070 0.070 0.071 0.071 0.071

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.060 0.998 1.000 0.065 0.065 0.065 0.069 0.069 0.069

0.2 0.062 0.997 1.000 0.063 0.063 0.063 0.072 0.072 0.072
0.4 0.063 0.997 1.000 0.064 0.064 0.064 0.073 0.073 0.073
0.6 0.064 0.998 1.000 0.063 0.063 0.063 0.073 0.073 0.073
0.8 0.064 0.999 1.000 0.068 0.068 0.068 0.070 0.070 0.070

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.063 0.970 0.997 0.064 0.064 0.064 0.067 0.067 0.067

0.2 0.065 0.969 0.996 0.063 0.063 0.063 0.070 0.070 0.070
0.4 0.065 0.969 0.995 0.065 0.065 0.065 0.072 0.072 0.072
0.6 0.069 0.973 0.995 0.065 0.065 0.065 0.070 0.070 0.070
0.8 0.069 0.982 0.997 0.072 0.072 0.072 0.074 0.074 0.074

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.057 0.627 0.870 0.059 0.059 0.059 0.064 0.064 0.064

0.2 0.060 0.621 0.862 0.061 0.061 0.061 0.065 0.065 0.065
0.4 0.059 0.620 0.860 0.062 0.062 0.062 0.069 0.069 0.069
0.6 0.064 0.641 0.868 0.063 0.063 0.063 0.068 0.068 0.068
0.8 0.064 0.699 0.892 0.065 0.065 0.065 0.069 0.069 0.069

Note: See note under Table B.1

Table B.3. Impact of µ on finite sample size performance. Student-t distributed innovations
(5 degrees of freedom). T = 500.
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LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ2

LMFGLS
d,µ2

LMFGLS
d,µ2

ρ µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.052 1.000 1.000 0.056 0.056 0.056 0.059 0.059 0.059

0.2 0.053 1.000 1.000 0.056 0.056 0.056 0.057 0.057 0.057
0.4 0.057 1.000 1.000 0.058 0.058 0.058 0.059 0.059 0.059
0.6 0.056 1.000 1.000 0.058 0.058 0.058 0.056 0.056 0.056
0.8 0.051 1.000 1.000 0.059 0.059 0.059 0.053 0.053 0.053

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.057 0.998 1.000 0.059 0.059 0.059 0.063 0.063 0.063

0.2 0.053 0.998 1.000 0.056 0.056 0.056 0.057 0.057 0.057
0.4 0.054 0.998 1.000 0.056 0.056 0.056 0.058 0.058 0.058
0.6 0.055 0.999 1.000 0.059 0.059 0.059 0.057 0.057 0.057
0.8 0.055 0.999 1.000 0.058 0.058 0.058 0.059 0.059 0.059

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.059 0.962 0.997 0.064 0.064 0.064 0.065 0.065 0.065

0.2 0.062 0.959 0.997 0.063 0.063 0.063 0.064 0.064 0.064
0.4 0.057 0.961 0.996 0.061 0.061 0.061 0.063 0.063 0.063
0.6 0.059 0.965 0.997 0.059 0.059 0.059 0.061 0.061 0.061
0.8 0.060 0.979 0.998 0.063 0.063 0.063 0.065 0.065 0.065

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.065 0.508 0.774 0.065 0.065 0.065 0.067 0.067 0.067

0.2 0.067 0.502 0.769 0.066 0.066 0.066 0.068 0.068 0.068
0.4 0.062 0.507 0.768 0.064 0.064 0.064 0.065 0.065 0.065
0.6 0.062 0.519 0.776 0.061 0.061 0.061 0.063 0.063 0.063
0.8 0.063 0.576 0.803 0.062 0.062 0.062 0.062 0.062 0.062

Note: See note under Table B.1

Table B.4. Impact of µ on finite sample size performance. Student-t distributed innovations
(5 degrees of freedom). T = 1000.
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Figure B.1: Power of test when data is not demeaned or detrended, when data is demeaned and when data is demeaned and detrended using the
approach described in Remark 8, and for µ = {0,5,10} and sample size T = 500.
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B.4. Performance Under Fractional Cointegration

The data generation process (DGP) considered for investigating the impact of
fractional cointegration is the same as that used in Nielsen (2005); that is,

y1t = y2t + ut (B.1)[
(1− L)d−θ 0

0 (1− L)d

][
ut

y2t

]
= εtI(t ≥ 1) (B.2)

where

εt ∼ i.i.d. N

 0

0

 ,

 1 ρ

ρ 1

 .

For ρ = 0, y2t is strictly exogenous whereas for ρ 6= 0, y2t is endogenous. We
consider ρ ∈ {0, 0.4, 0.8}.

Table B.1 reports empirical rejection frequencies for the LMFGLS
d , LMMLE

d

and the BHd tests for data generated from (B.1)–(B.2) with d = 0.6 (without loss
of generality) and for θ ∈ {0,−0.01,−0.02, ...,−0.2}. The parameter θ measures
the degree of fractional cointegration, with the case of no fractional cointegration
corresponding to θ = 0. All of the tests are run at the nominal 5% level.
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θ ρ LMFGLS

d LMMLE
d BHd ρ LMFGLS

d LMMLE
d BHd ρ LMFGLS

d LMMLE
d BHd ρ LMFGLS

d LMMLE
d BHd ρ LMFGLS

d LMMLE
d BHd

0.00 0 0.052 0.049 0.051 0.20 0.052 0.048 0.048 0.40 0.051 0.048 0.046 0.60 0.054 0.051 0.047 0.80 0.055 0.045 0.044
-0.01 0 0.055 0.057 0.051 0.20 0.062 0.064 0.054 0.40 0.056 0.060 0.059 0.60 0.055 0.064 0.054 0.80 0.064 0.075 0.066
-0.02 0 0.057 0.083 0.064 0.20 0.073 0.081 0.062 0.40 0.071 0.084 0.065 0.60 0.076 0.098 0.075 0.80 0.087 0.136 0.090
-0.03 0 0.079 0.113 0.081 0.20 0.082 0.130 0.090 0.40 0.083 0.134 0.097 0.60 0.092 0.158 0.109 0.80 0.117 0.242 0.165
-0.04 0 0.095 0.178 0.125 0.20 0.095 0.165 0.109 0.40 0.096 0.191 0.124 0.60 0.119 0.246 0.155 0.80 0.172 0.391 0.271
-0.05 0 0.123 0.245 0.154 0.20 0.115 0.239 0.160 0.40 0.139 0.275 0.177 0.60 0.172 0.350 0.233 0.80 0.247 0.566 0.416
-0.06 0 0.143 0.321 0.210 0.20 0.149 0.325 0.211 0.40 0.170 0.363 0.244 0.60 0.218 0.465 0.329 0.80 0.341 0.735 0.586
-0.07 0 0.188 0.431 0.291 0.20 0.189 0.434 0.291 0.40 0.218 0.501 0.340 0.60 0.273 0.606 0.459 0.80 0.434 0.854 0.728
-0.08 0 0.219 0.513 0.355 0.20 0.235 0.548 0.386 0.40 0.258 0.603 0.433 0.60 0.332 0.722 0.561 0.80 0.545 0.930 0.838
-0.09 0 0.263 0.625 0.446 0.20 0.287 0.647 0.463 0.40 0.328 0.709 0.530 0.60 0.415 0.839 0.690 0.80 0.664 0.974 0.924
-0.10 0 0.335 0.728 0.552 0.20 0.353 0.745 0.565 0.40 0.388 0.799 0.641 0.60 0.498 0.902 0.786 0.80 0.762 0.993 0.967
-0.11 0 0.400 0.811 0.641 0.20 0.405 0.826 0.652 0.40 0.466 0.876 0.741 0.60 0.588 0.952 0.869 0.80 0.828 0.998 0.989
-0.12 0 0.459 0.871 0.729 0.20 0.465 0.886 0.741 0.40 0.521 0.924 0.809 0.60 0.660 0.978 0.924 0.80 0.898 0.999 0.997
-0.13 0 0.532 0.923 0.800 0.20 0.553 0.932 0.829 0.40 0.611 0.961 0.888 0.60 0.739 0.992 0.960 0.80 0.929 1.000 0.999
-0.14 0 0.593 0.956 0.861 0.20 0.613 0.968 0.885 0.40 0.688 0.981 0.926 0.60 0.802 0.997 0.981 0.80 0.968 1.000 1.000
-0.15 0 0.651 0.978 0.913 0.20 0.667 0.978 0.928 0.40 0.749 0.993 0.961 0.60 0.852 0.999 0.991 0.80 0.984 1.000 1.000
-0.16 0 0.723 0.987 0.944 0.20 0.738 0.993 0.956 0.40 0.805 0.996 0.977 0.60 0.899 1.000 0.997 0.80 0.994 1.000 1.000
-0.17 0 0.777 0.995 0.973 0.20 0.811 0.997 0.975 0.40 0.851 0.999 0.990 0.60 0.939 1.000 0.999 0.80 0.997 1.000 1.000
-0.18 0 0.822 0.996 0.980 0.20 0.851 0.999 0.990 0.40 0.891 1.000 0.996 0.60 0.956 1.000 0.999 0.80 0.999 1.000 1.000
-0.19 0 0.871 0.999 0.993 0.20 0.885 1.000 0.994 0.40 0.918 1.000 0.998 0.60 0.975 1.000 1.000 0.80 0.999 1.000 1.000
-0.20 0 0.906 0.999 0.995 0.20 0.914 1.000 0.998 0.40 0.945 1.000 0.999 0.60 0.984 1.000 1.000 0.80 1.000 1.000 1.000

Table B.1. Empirical Rejection Frequencies under Fractional Cointegration - T = 500
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Appendix C - Empirical Results

C.1. Implementation of the Nielsen and Shimotsu (2007) Procedure

For a bivariate system, the NS test statistic, T0, for testing the null hypothesis of
equality in the long memory coefficients is defined as

T0 := mT

(
S d̂T

)′(1

4
S D−1T (GT �GT )D−1T S′ +

1

sT

)−1 (
S d̂T

)
(C.1)

where S := (1,−1)′ , d̂T denotes an√mT−consistent estimate of the long memory
parameter vector,GT = {ĝij} , i, j ∈ {1, 2} , is a consistent estimate of the spectral
density of εt at the origin, DT := diag (ĝ11, ĝ22) , and mT and sT are positive
sequences that diverge at a suitable rate as T →∞.

The cointegration rank can be consistently estimated through a model
selection procedure based on the eigenvalues δ̂∗i of the correlation matrix PT :=

D
∗−1/2
T G∗TD

∗−1/2
T , with G∗T denoting an estimate of the spectral density of

∆d∗T (L)yt := εt (d∗T ) at the origin, with d∗T denoting a k-vector with all entries
equal to the sample mean of d̂T , andD∗T defined analogously toDT . In particular,
G∗T :=

∑m1T

j=1 <
[
Iεt(d∗) (λj)

]
/m1T , where Iu (λj) is the periodogram of u

evaluated at the fundamental frequencies λj := 2πj/T , m1T is a bandwidth
parameter, and <[·] denotes the real part of the argument. Given the eigenvalues δ̂∗i
and a suitable bandwith parameter vT , the cointegration rank can be determined
as

r̂T = arg min
u=0,1

L (u) , L (u) := vT (2− u)−
2−u∑
i=1

δ̂∗i . (C.2)

C.2. Additional Empirical Results

C.2.1. Descriptive statistics and robustness checks
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Table C.1. Descriptive statistics (mean, standard deviation, minimum, maximum, skewness and kurtosis) and Engle’s LM test for ARCH effects,
for the log-volume, log absolute returns, log range estimator and log-realized variance for each stock series considered.

Log Trading Volume Log Absolute Returns
Ticker Company Mean StdDev Max Min Skew. Kurt. LM(1) LM(5) Mean StdDev Max Min Skew. Kurt. LM(1) LM(5)

AAPL Apple 16.70 0.74 19.06 14.14 -0.44 3.00 18.91∗∗∗ 32.79∗∗∗ -4.62 1.16 -1.72 -10.98 -1.01 4.73 0.06 0.95
AXP Amex 15.65 0.62 18.32 13.70 0.63 3.32 16.92∗∗∗ 17.89∗∗∗ -4.87 1.23 -1.58 -9.15 -0.56 3.51 0.58 1.14
BA Boeing Co 15.32 0.45 17.61 13.13 0.34 3.67 2.56 5.22 -4.83 1.11 -1.87 -10.20 -0.90 4.24 0.20 7.65
CAT Caterpillar 15.47 0.64 18.03 12.87 -0.14 2.90 1.06 3.88 -4.78 1.17 -1.92 -9.34 -0.87 4.05 1.82 3.60
CSCO Cisco Systems 17.69 0.41 20.15 15.78 0.25 4.92 76.00∗∗∗ 82.54∗∗∗ -4.81 1.11 -1.82 -9.76 -0.69 3.55 0.01 1.53
CVX Chevron 15.79 0.56 17.69 13.52 -0.35 3.00 34.83∗∗∗ 36.16∗∗∗ -4.97 1.10 -1.57 -9.47 -0.91 4.35 3.56∗ 4.05
DD DuPont Co. 15.41 0.47 17.26 13.35 0.19 3.04 6.01 8.18 -4.96 1.13 -2.17 -8.81 -0.74 3.64 0.21 3.27
DIS Walt Disney Co. 16.01 0.44 18.56 14.20 0.44 4.05 20.03∗∗∗ 20.68∗∗∗ -4.91 1.10 -1.83 -9.11 -0.66 3.48 0.00 1.16
GE General Electrics 17.45 0.65 20.44 15.44 0.56 3.24 13.85∗∗∗ 15.61∗∗∗ -4.97 1.11 -1.62 -9.02 -0.45 3.30 0.11 4.97
GS Goldman Sachs 15.51 0.70 18.56 13.46 0.73 3.54 8.78∗∗∗ 9.59∗ -4.77 1.21 -1.33 -9.97 -0.85 4.25 1.79 2.52
HD Home Depot 16.16 0.53 18.36 14.41 0.29 2.89 22.61∗∗∗ 29.70∗∗∗ -4.92 1.12 -1.96 -9.00 -0.66 3.39 0.02 3.96
IBM IBM 15.55 0.44 17.24 14.16 0.29 3.29 31.17∗∗∗ 40.61∗∗∗ -5.16 1.12 -2.16 -9.92 -0.84 4.18 1.81 4.91
INTC Intel Corporation 17.79 0.43 19.55 16.26 -0.21 3.59 65.84∗∗∗ 68.98∗∗∗ -4.74 1.08 -2.09 -12.43 -0.86 4.52 0.20 4.22
JNJ Johnson & Johnson 16.06 0.42 18.40 14.06 0.33 3.85 39.50∗∗∗ 41.20∗∗∗ -5.45 1.14 -2.10 -9.29 -0.73 3.58 0.06 2.69
JPM JPMorgan Chase & Co. 16.81 0.75 19.20 14.11 0.30 2.51 6.41∗∗ 7.74 -4.80 1.22 -1.38 -8.73 -0.50 3.41 3.43∗ 5.99
KO The Coca-Cola Co. 15.97 0.49 18.41 13.89 0.16 3.07 12.08∗∗∗ 15.27∗∗∗ -5.30 1.07 -1.97 -8.90 -0.61 3.40 0.03 3.06
MCD McDonald’s Corporation 15.63 0.44 18.28 13.96 0.47 4.00 22.89∗∗∗ 26.32∗∗∗ -5.15 1.12 -2.37 -10.35 -0.84 3.92 0.43 2.73
MMM 3M Co. 14.97 0.43 17.01 13.39 0.52 3.88 3.72∗ 15.75∗∗∗ -5.18 1.15 -2.31 -9.69 -0.75 3.81 1.64 2.46
MRK Merck & Co., Inc. 16.25 0.51 18.79 14.45 0.38 3.62 8.65∗∗∗ 10.84∗ -4.99 1.09 -1.32 -8.70 -0.63 3.61 1.15 4.19
MSFT Microsoft Corporation 17.83 0.42 20.20 16.22 0.11 4.08 18.08∗∗∗ 20.07∗∗∗ -4.98 1.11 -1.68 -9.19 -0.63 3.42 0.10 5.40
NKE Nike 14.67 0.57 16.89 12.74 0.03 3.14 24.61∗∗∗ 43.40∗∗∗ -4.98 1.12 -2.07 -9.19 -0.70 3.81 1.21 4.27
PFE Pfizer Inc. 17.31 0.50 19.49 15.18 0.26 3.23 16.91∗∗∗ 26.21∗∗∗ -5.02 1.04 -2.19 -8.44 -0.58 3.25 0.07 3.31
PG Procter & Gamble Co. 15.93 0.55 18.09 13.15 -0.26 3.51 30.12∗∗∗ 34.28∗∗∗ -5.37 1.09 -2.28 -9.86 -0.69 3.65 0.35 0.83
TRV Travelers Companies Inc 14.97 0.53 17.14 13.15 0.12 2.79 8.92∗∗∗ 9.56∗ -5.01 1.21 -1.36 -9.25 -0.57 3.55 1.57 7.19
UNH UnitedHealth Group Inc 15.56 0.63 17.76 13.38 -0.01 2.85 5.62∗∗ 8.59 -4.84 1.16 -1.06 -9.18 -0.79 3.95 0.01 2.94
UTX United Technologies Corporation 15.10 0.49 16.86 12.82 0.03 3.14 8.73∗∗∗ 11.46∗∗ -5.06 1.15 -1.99 -9.34 -0.82 3.80 4.34∗∗ 7.80
VZ Verizon Communications Inc. 16.31 0.50 20.24 14.47 0.37 4.67 16.11∗∗∗ 29.33∗∗∗ -5.09 1.08 -1.92 -8.52 -0.66 3.36 3.42∗ 4.73
V Visa Inc 14.39 1.47 18.25 10.52 -0.45 2.10 52.43∗∗∗ 65.75∗∗∗ -4.75 1.13 -1.90 -10.01 -0.84 4.20 0.77 4.49
WMT Wal-Mart Stores Inc 16.23 0.52 18.39 14.56 0.23 2.92 15.58∗∗∗ 15.88∗∗∗ -5.23 1.09 -2.20 -9.32 -0.78 3.78 0.76 1.56
XOM Exxon Mobil Corporation 16.69 0.47 18.59 15.24 0.34 3.04 23.21∗∗∗ 24.30∗∗∗ -5.05 1.12 -1.76 -9.15 -0.90 4.20 0.91 1.30

Note: ***, ** and * indicate significance at the 1%, 5% and 10% significance level, respectively; and LM(1) and LM(5), correspond to Engle’s
LM test results for ARCH effects using 1 and 5 lags of the squared residuals of an ARFIMA, respectively.
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Table C.2. Descriptive statistics (mean, standard deviation, minimum, maximum, skewness and kurtosis) and Engle’s LM test for ARCH effects,
for the log-volume, log absolute returns, log range estimator and log-realized variance for each stock series considered.

Log Range Log Realised Variance
Ticker Company Mean StdDev Max Min Skew. Kurt. LM(1) LM(5) Mean StdDev Max Min Skew. Kurt. LM(1) LM(5) Obs.
AAPL Apple -8.51 1.06 -3.40 -12.65 0.15 3.35 5.69∗∗ 7.92 -8.01 1.04 -3.78 -11.34 0.39 3.61 27.76∗∗∗ 27.87∗∗∗ 3008
AXP Amex -8.91 1.29 -3.35 -12.81 0.69 3.55 2.70∗ 3.35 -8.33 1.25 -2.75 -11.41 0.77 3.49 9.46∗∗∗ 16.26∗∗∗ 3000
BA Boeing Co -8.89 0.96 -4.65 -11.69 0.45 3.59 0.04 2.74 -8.33 0.95 -3.18 -10.75 0.84 4.32 5.81∗∗ 8.34 3013
CAT Caterpillar -8.71 1.00 -3.81 -11.23 0.55 3.68 8.26∗∗∗ 10.25∗ -8.14 1.01 -4.14 -10.77 0.80 3.83 29.20∗∗∗ 30.47∗∗∗ 3009
CSCO Cisco Systems -8.73 0.94 -4.61 -12.35 0.26 3.61 1.22 11.94∗∗ -8.12 0.92 -3.79 -10.92 0.74 4.27 110.06∗∗∗ 110.81∗∗∗ 2976
CVX Chevron -9.15 0.97 -4.50 -11.94 0.62 4.36 25.95∗∗∗ 30.13∗∗∗ -8.54 0.96 -4.02 -11.37 0.66 3.95 16.64∗∗∗ 24.03∗∗∗ 3009
DD DuPont Co. -8.99 1.00 -4.65 -11.91 0.59 3.71 4.87∗∗ 11.68∗∗ -8.43 0.98 -4.21 -11.04 0.77 3.80 11.22∗∗∗ 11.69∗∗ 2998
DIS Walt Disney Co. -9.00 1.00 -4.65 -12.09 0.54 3.85 0.93 3.01 -8.40 0.98 -2.74 -10.82 0.90 4.37 35.89∗∗∗ 39.85∗∗∗ 2988
GE General Electrics -9.13 1.17 -3.67 -12.36 0.80 4.15 3.46∗ 22.30∗∗∗ -8.47 1.12 -3.18 -11.11 1.04 4.56 38.61∗∗∗ 43.33∗∗∗ 2968
GS Goldman Sachs -8.68 1.10 -2.89 -11.77 0.94 4.81 33.66∗∗∗ 39.78∗∗∗ -8.15 1.06 -2.81 -10.68 1.04 4.59 24.55∗∗∗ 37.32∗∗∗ 3013
HD Home Depot -8.87 1.03 -3.74 -12.13 0.57 3.73 1.32 6.04 -8.28 1.00 -3.63 -10.84 0.80 3.93 26.33∗∗∗ 24.40∗∗∗ 2994
IBM IBM -9.44 0.95 -5.27 -12.90 0.67 4.37 9.22∗∗∗ 17.09∗∗∗ -8.80 0.94 -3.64 -11.22 0.94 4.52 14.19∗∗∗ 20.07∗∗∗ 3011
INTC Intel Corporation -8.71 0.90 -5.03 -11.77 0.31 3.49 3.08∗∗ 19.55∗∗∗ -8.08 0.90 -3.96 -10.77 0.69 3.83 36.79∗∗∗ 39.49∗∗∗ 2982
JNJ Johnson & Johnson -9.83 0.96 -4.85 -12.98 0.54 3.82 2.51 19.80∗∗∗ -9.18 0.92 -4.75 -11.68 0.81 4.21 9.99∗∗∗ 18.23∗∗∗ 2991
JPM JPMorgan Chase & Co. -8.73 1.21 -3.80 -12.10 0.69 3.67 5.84∗∗ 10.67∗ -8.17 1.18 -3.65 -10.96 0.82 3.60 22.66∗∗∗ 29.72∗∗∗ 3001
KO The Coca-Cola Co. -9.62 0.92 -5.09 -13.29 0.64 4.31 3.42∗ 15.68∗∗∗ -9.00 0.91 -4.09 -11.64 1.00 4.98 6.90∗∗∗ 8.38 2980
MCD McDonald’s Corporation -9.38 1.03 -3.67 -12.52 0.36 3.44 5.26∗∗ 13.32∗∗ -8.75 1.00 -3.30 -11.59 0.68 4.12 14.50∗∗∗ 17.97∗∗∗ 2998
MMM 3M Co. -9.39 0.96 -3.20 -12.20 0.58 4.31 1.07 4.38 -8.79 0.96 -4.17 -11.28 0.82 4.26 6.91∗∗∗ 9.67∗ 2999
MRK Merck & Co., Inc. -9.02 1.02 -4.15 -12.13 0.58 3.99 1.56 2.25 -8.45 0.95 -3.79 -10.82 0.92 4.51 5.63∗∗ 6.48 2999
MSFT Microsoft Corporation -9.06 0.95 -4.29 -12.01 0.62 3.98 4.81∗∗ 7.50 -8.46 0.92 -4.25 -10.88 0.84 4.13 25.01∗∗∗ 25.26∗∗∗ 2978
NKE Nike -9.02 0.99 -4.47 -11.59 0.63 3.81 3.06 4.08 -8.48 0.96 -3.93 -10.86 0.97 4.34 53.62∗∗∗ 63.74∗∗∗ 3004
PFE Pfizer Inc. -9.10 0.92 -4.31 -11.91 0.60 4.25 1.03 2.99 -8.44 0.87 -3.42 -10.77 0.90 4.83 2.12 5.37 2976
PG Procter & Gamble Co. -9.72 0.95 -2.23 -12.88 0.78 5.62 2.82∗ 16.19∗∗∗ -9.07 0.88 -4.66 -11.39 0.99 4.86 4.87∗∗ 7.02 2989
TRV Travelers Companies Inc -9.08 1.27 -3.47 -11.98 0.86 3.88 13.77∗∗∗ 20.93∗∗∗ -8.47 1.25 -3.40 -11.26 0.81 3.63 39.47∗∗∗ 44.31∗∗∗ 1963
UNH UnitedHealth Group Inc -8.68 1.07 -3.33 -12.01 0.69 3.83 7.45∗∗∗ 10.43∗∗ -8.16 1.03 -3.69 -10.63 0.88 3.96 8.23∗∗∗ 8.87 3002
UTX United Technologies Corporation -9.21 0.95 -4.50 -12.02 0.46 3.91 1.94 4.79 -8.61 0.94 -3.74 -11.01 0.93 4.65 28.97∗∗∗ 37.35∗∗∗ 3008
VZ Verizon Communications Inc. -9.20 0.99 -4.17 -11.99 0.58 3.78 0.45 3.33 -8.61 0.95 -3.99 -11.28 0.75 4.09 21.79∗∗∗ 33.75∗∗∗ 2595
V Visa Inc -8.97 1.14 -4.67 -12.26 0.63 3.48 17.82∗∗∗ 23.87∗∗∗ -8.26 1.05 -4.04 -11.37 0.68 3.30 12.72∗∗∗ 19.08∗∗∗ 2990
WMT Wal-Mart Stores Inc -9.46 0.93 -4.64 -12.74 0.46 4.04 5.04 7.43 -8.83 0.93 -3.82 -11.33 0.84 4.21 12.36∗∗∗ 28.28∗∗∗ 3000
XOM Exxon Mobil Corporation -9.28 0.96 -4.43 -12.04 0.58 4.34 1.80 10.45∗ -8.64 0.92 -4.05 -11.10 0.85 4.67 132.51∗∗∗ 141.60∗∗∗ 3001

Note: ***, ** and * indicate significance at the 1%, 5% and 10% significance level, respectively; and LM(1) and LM(5), correspond to Engle’s
LM test results for ARCH effects using 1 and 5 lags of the squared residuals of an ARFIMA, respectively.
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Table C.3. Robustness checks in the joint analysis on log-volume and log-realised variance against the choice of p and the inclusion of a time
trend in volatility. Auxiliary regressions are augmented with p lags, with either p=2 or p determined according to Schwert’s rule.

p = 2, no linear trend p = 2, linear trend Schwert’s rule, linear trend
Stock 95 % CI VLM 95 % CIB RV Common d ρ̂e 95 % CIB VLM 95 % CIB RV Common d ρ̂e 95 % CIB 95 % CIB Common d ρ̂e
AAPL [0.49,0.57] [0.45,0.53] [0.49,0.53] 0.62 [0.49,0.57] [0.43,0.51] - 0.62 [0.56,0.73] [0.51,0.70] [0.56,0.70] 0.62
AXP [0.38,0.47] [0.44,0.52] [0.45,0.47] 0.48 [0.38,0.47] [0.44,0.51] [0.45,0.47] 0.48 [0.45,0.60] [0.50,0.70] [0.52,0.57] 0.49
BA [0.27,0.40] [0.40,0.49] - 0.52 [0.27,0.39] [0.39,0.48] - 0.52 [0.29,0.49] [0.43,0.67] - 0.52
CAT [0.34,0.46] [0.41,0.48] [0.42,0.46] 0.58 [0.34,0.45] [0.41,0.48] [0.42,0.45] 0.58 [0.36,0.59] [0.50,0.69] - 0.58
CSCO [0.28,0.40] [0.38,0.46] - 0.53 [0.27,0.39] [0.36,0.44] [0.38,0.39] 0.53 [0.30,0.49] [0.45,0.63] - 0.53
CVX [0.38,0.48] [0.43,0.51] [0.43,0.48] 0.43 [0.38,0.48] [0.42,0.51] [0.43,0.48] 0.43 [0.41,0.59] [0.47,0.68] [0.47,0.58] 0.43
DD [0.39,0.47] [0.30,0.41] - 0.45 [0.30,0.41] [0.39,0.47] - 0.45 [0.29,0.49] [0.45,0.66] - 0.46
DIS [0.28,0.39] [0.40,0.49] - 0.42 [0.27,0.39] [0.39,0.48] - 0.42 [0.26,0.48] [0.46,0.67] - 0.42
GE [0.38,0.47] [0.43,0.52] [0.45,0.46] 0.50 [0.37,0.47] [0.43,0.52] [0.44,0.46] 0.50 [0.42,0.60] [0.46,0.67] [0.46,0.59] 0.51
GS [0.41,0.51] [0.43,0.50] [0.43,0.50] 0.58 [0.41,0.51] [0.42,0.50] [0.42,0.49] 0.58 [0.46,0.64] [0.47,0.67] [0.48,0.64] 0.58
HD [0.36,0.47] [0.42,0.49] [0.43,0.47] 0.46 [0.35,0.46] [0.40,0.48] [0.41,0.46] 0.47 [0.45,0.62] [0.48,0.68] [0.49,0.62] 0.47
IBM [0.31,0.41] [0.39,0.47] - 0.46 [0.30,0.41] [0.38,0.47] - 0.46 [0.30,0.49] [0.42,0.64] - 0.47
INTC [0.23,0.38] [0.38,0.46] - 0.50 [0.23,0.38] [0.37,0.45] - 0.50 [0.12,0.40] [0.47,0.66] - 0.50
JNJ [0.31,0.42] [0.41,0.50] - 0.44 [0.30,0.42] [0.40,0.49] - 0.44 [0.35,0.54] [0.45,0.71] - 0.44
JPM [0.41,0.49] [0.44,0.51] [0.44,0.49] 0.55 [0.40,0.49] [0.43,0.51] [0.44,0.49] 0.55 [0.50,0.65] [0.51,0.69] [0.51,0.65] 0.56
KO [0.32,0.44] [0.40,0.48] [0.41,0.44] 0.46 [0.32,0.44] [0.39,0.47] [0.40,0.44] 0.46 [0.33,0.57] [0.51,0.68] - 0.47
MCD [0.28,0.41] [0.38,0.46] - 0.45 [0.26,0.40] [0.34,0.42] [0.36,0.40] 0.45 [0.28,0.53] [0.45,0.67] - 0.46
MMM [0.26,0.40] [0.37,0.45] - 0.46 [0.26,0.40] [0.37,0.45] - 0.46 [0.23,0.50] [0.44,0.65] - 0.47
MRK [0.31,0.44] [0.38,0.46] [0.38,0.44] 0.50 [0.31,0.44] [0.37,0.45] [0.37,0.44] 0.50 [0.27,0.55] [0.44,0.63] [0.46,0.54] 0.50
MSFT [0.22,0.39] [0.39,0.47] - 0.50 [0.22,0.39] [0.39,0.46] - 0.50 [0.41,0.61] [0.05,0.43] - 0.50
NKE [0.28,0.39] [0.38,0.46] - 0.43 [0.28,0.39] [0.38,0.46] - 0.43 [0.28,0.50] [0.45,0.63] - 0.44
PFE [0.30,0.43] [0.39,0.48] [0.42,0.43] 0.45 [0.30,0.43] [0.39,0.48] [0.41,0.43] 0.45 [0.19,0.51] [0.40,0.66] - 0.45
PG [0.28,0.42] [0.38,0.47] [0.40,0.41] 0.43 [0.28,0.42] [0.38,0.47] [0.39,0.41] 0.43 [0.24,0.52] [0.39,0.60] [0.41,0.52] 0.43
TRV [0.35,0.49] [0.45,0.56] - 0.43 [0.34,0.48] [0.41,0.54] [0.43,0.47] 0.43 [0.38,0.73] [0.33,0.50] [0.59,0.70] 0.43
UNH [0.28,0.42] [0.40,0.48] - 0.52 [0.28,0.42] [0.40,0.48] - 0.52 [0.22,0.53] [0.52,0.70] - 0.52
UTX [0.31,0.42] [0.41,0.49] - 0.44 [0.31,0.42] [0.40,0.49] - 0.44 [0.34,0.53] [0.46,0.66] - 0.44
V [0.51,0.60] [0.43,0.51] - 0.44 [0.50,0.59] [0.41,0.49] - 0.44 [0.61,0.82] [0.49,0.70] - 0.44
VZ [0.32,0.46] [0.44,0.52] - 0.41 [0.32,0.46] [0.42,0.51] - 0.42 [0.31,0.58] [0.47,0.68] [0.48,0.57] 0.42
WMT [0.28,0.40] [0.36,0.44] - 0.51 [0.27,0.39] [0.34,0.42] [0.36,0.39] 0.51 [0.29,0.54] [0.42,0.62] [0.44,0.53] 0.51
XOM [0.33,0.45] [0.38,0.48] [0.39,0.45] 0.45 [0.33,0.45] [0.38,0.48] [0.38,0.45] 0.45 [0.36,0.59] [0.37,0.64] [0.38,0.59] 0.46
Average 0.48 0.48 0.48
Rejection Rate 56.67% 46.67% 56.67%
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