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Abstract
This paper studies the role of slums in shaping the economic and health dynamics of pandemics.
Using data from millions of mobile phones in Brazil, an event-study analysis shows that
residents of overcrowded slums engaged in less social distancing after the outbreak of Covid-
19. We develop a choice-theoretic equilibrium model in which individuals are heterogeneous
in income and some people live in high-density slums. The model is calibrated to Rio de
Janeiro. Slum dwellers account for a disproportionately high number of infections and deaths.
In a counterfactual scenario without slums, deaths increase in non-slum neighborhoods. Policy
simulations indicate that: reallocating medical resources cuts deaths and raises output and
the welfare of both groups; mild lockdowns favor slum individuals by mitigating the demand
for hospital beds, whereas strict confinements mostly delay the evolution of the pandemic;
and cash transfers benefit slum residents to the detriment of others, highlighting important
distributional effects.
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1. Introduction

Disease outbreaks can affect vulnerable people disproportionately, contributing to
the increase in health and economic disparities. Since its onset, the Covid-19
pandemic has affected places where most social interactions occur, as the new
coronavirus spreads mainly through close contact among people. Consequently,
health authorities recommend that people avoid crowded areas and practice social
distancing. Such measures can be challenging to put in practice in densely
populated areas, such as overcrowded slums in developing countries.1 Residents
of these neighborhoods are also poorer individuals whose incomes are likely to be
more adversely affected by lockdowns. Slums are prevalent in the majority of cities
in developing countries and more than 1 billion people in the world live in them
(United Nations (2020)). Despite their importance, to the best of our knowledge,
no paper in the growing literature on the economics of epidemics has addressed
the role of slums in shaping the economic and health dynamics of pandemics. This
paper fills this gap and makes three contributions.

Our first contribution is empirical. We use daily geo-localized data from millions
of mobile phones in Sao Paulo and Rio de Janeiro, the two largest cities in Brazil,
one of the countries most affected by the Covid-19 pandemic.2 Through an event-
study analysis, we show that social distancing increased significantly less in areas
with slums after the adoption of non-pharmaceutical interventions (NPIs)—such
as the closure of schools, restaurants and retail stores—in both of these cities.
We also find that areas with slums are associated with more hospitalizations and
fatalities.

The second contribution is theoretical. We build a model with heterogeneous
housing tenure and behavioral choices to address how the prevalence of slums
contributes to the spread of infectious diseases. Agents live in two localities: poorer
agents live in high-density places (slums), while richer agents do not. Slum residents
are also less likely to have access to intensive care units (ICUs) in hospitals, but
they are on average younger (as in the data). People leave their houses to work
or enjoy leisure outside and this can lead to infections. Individuals from different
locations interact when they leave their homes. The model allows for both negative
and positive externalities regarding social distancing. The risks that one group takes
might spill over onto others through increased transmission (negative externality),
but the point of herd immunity may be reached more quickly (positive externality).

The paper’s third contribution is quantitative. We parameterize the model to
be consistent with Covid-19 transmission and with key empirical moments of the
city of Rio de Janeiro, one of the epicenters of the pandemic in Brazil. The model

1. The definition of slums varies by country, but is always associated with deprivation-related
characteristics such as low-quality housing, lack of public services, overcrowding, and lack of tenure
security.
2. Inloco (www.inloco.com.br), a Brazilian technology company, shared the data on social
distancing. See Section 2 for details.

www.inloco.com.br
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reproduces our empirical finding that, after the outbreak of the pandemic, low-
income slum residents engage in less social distancing relative to individuals who
live in other neighborhoods. As they are poorer, they work relatively more hours
even though this means spending more time in crowded areas. This leads to worse
health outcomes for this group. Although slum dwellers correspond to 22% of Rio
de Janeiro’s population, they account for around 30% of the Covid-19 deaths in the
city. This group thus contributes more towards reaching herd immunity in society.
In a counterfactual world without slums, residents in other neighborhoods end up
catching the virus more and die in higher numbers, which illustrates important
distributional effects.

We use the model to simulate a variety of policy experiments: the reallocation
of existing medical resources, shelter-at-home policies, and cash-transfer schemes.
In developing countries, most poor individuals do not have private health insurance
and must rely on publicly provided health care that is often at capacity. We
investigate the pooling of all intensive care units in Rio de Janeiro into one group
that is offered to anyone who needs it, regardless of insurance. This alleviates the
capacity constraints and decreases the death burden of the disease among both
groups of the population. The total death rate is reduced by 28% relative to an
environment with no policies. In our simulations, this redistributive policy positively
impacts aggregate welfare and output.

Shelter-at-home policies act to delay the dynamics of the disease substantially.
In our model, though these policies buy time, the long-run death rate does not
change much. Interestingly, lighter policies can be more effective as they slowly
increase the number of infected, and this smooths the burden on hospital resources
and saves lives. On the other hand, very strict lockdowns contain the disease so
much that, when lifted, the health dynamics is quite similar to a no-policy scenario,
only delayed—if no improvement in health infrastructure takes place or a treatment
becomes available. In addition, strict lockdowns promote a deep economic downturn
in the short run. Confinement policies that shelter one particular group lead to a
redistribution of deaths from the sheltered group to the other. This actually leads
to the welfare of both groups decreasing: one faces more deaths and the other a
restriction on their movement.

Cash transfers are particularly important for the poorer individuals who live in
slums. When we implement a policy that hands over cash to the population, slum
dwellers can afford to become relatively more cautious. This decreases the number
of infections among this group and consequently increases this statistic among
those living in other neighborhoods. Once again, the resulting outcome highlights
important heterogeneous effects across groups.

This paper relates to the economics literature that adds behavioral choices
to epidemiological models in the tradition of Kermack and McKendrick (1927).
This effort has been mostly theoretical, e.g. Kremer (1996), Quercioli and Smith
(2006), and Toxvaerd (2019). There exists some quantitative articles in the context
of HIV/AIDS, such as Greenwood et al. (2017, 2019) and Chan et al. (2016). Our
paper shares the principle of modeling infectious diseases with a special attention to
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behavioral choices. We contribute to this literature by studying individual choices
in slums, which are an important feature in cities in the majority of developing
countries.3

There has recently been a great incursion of the economics literature into the
study of the Covid-19 pandemic. Some papers have looked at optimal confinement
policies that force stricter levels of social distancing beyond what individuals
endogenously choose, e.g. Farboodi et al. (2020) and Eichenbaum et al. (2020).
A few papers have added choices made by heterogeneous groups, like different
sectors (Kaplan et al. (2020)) or age groups (Brotherhood et al. (2020) and Favero
et al. (2020)). Our work is mostly related to Brotherhood et al. (2020) and Alon
et al. (2020). We expand the framework developed by Brotherhood et al. (2020)
by adding different locations (slums and other neighborhoods), poorer and richer
agents, and differential access to health care. Few quantitative papers focus on
studying the Covid-19 pandemic in developing countries. One notable exception is
Alon et al. (2020), but they do not model slums and the impact of high-density
environments as we do.

Our work also relates to two strands of the urban economics literature. First,
we connect to the papers on agglomeration economies aiming to understand the
advantages and disadvantages of density in cities (Duranton and Puga (2004);
Ahlfeldt et al. (2015); Henderson and Turner (2020)). Most of the papers in this
field focus on the advantages of density and increased physical proximity, such as
sharing ideas, fostering innovation, and faster technology adoption (Duranton and
Puga (2020)). We add to some recent papers studying the costs of agglomeration
(e.g., Combes et al. (2019)) by explicitly taking into account externalities of
physical proximity in the context of a pandemic. Second, we add to the strand
modeling the causes and consequences of slums (e.g., Brueckner and Selod (2009);
Monge-Naranjo et al. (2018); Cavalcanti et al. (2019); Henderson et al. (2020))
by taking into account the role of slums during disease outbreaks.

This paper is organized as follows. The next section presents an empirical
analysis regarding how the Covid-19 pandemic evolved differently in slums and
other areas in Brazil. Section 3 describes the model environment and Section
4 discusses its calibration. Section 5 presents our baseline results and Section 6
provides results for policy experiments. Section 7 concludes.

2. Empirical Motivation

Slums are densely populated areas with narrow alleys and small houses. Some
informal settlements lack adequate sanitation and piped water supply. Poverty is
widespread. According to the 2010 Brazilian Population Census, the population

3. From a historical perspective, the association between slums and pandemics goes well beyond
the Covid-19 pandemic, including the cholera outbreak in the 1850s in London’s slums (Smith
(1964)) and the Spanish Flu outbreak in slums in Philadelphia (Crosby (2003)).
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density in slums in the cities of Rio de Janeiro and Sao Paulo is approximately
five times larger than in other neighborhoods. In addition, per capita income of
households living in slums in these two cities is roughly one-third of the income of
those living in other areas. These features of slums imply that movement restrictions
are in general more costly for individuals living in slums compared with those living
in other neighborhoods. We hypothesize then that it is harder to adhere to social
distancing practices in slums.

To investigate how social distancing changed during the pandemic in areas with
and without slums, we use a social distancing index created and developed by Inloco
(www.inloco.com.br), a Brazilian technology company. The company collects
anonymized location data from millions of mobile phones in Brazil, tracking (with
a 3-meter precision) the devices’ location and movements to different places, but
ensuring user privacy.4 The company divides cities into non-overlapping “hexagons”
and measures the percentage of devices in a given hexagon that remained within
a radius of 450 meters of the location identified as home. The index is computed
daily and ranges from zero to one. We obtained the social distancing index for each
hexagon from February 1 to May 30, 2020 (120 days) for two cities: Rio de Janeiro
and Sao Paulo. Rio de Janeiro has 841 hexagons, Sao Paulo 1,301 (see Figures
A.1 and A.2 in Appendix A for more details on the non-overlapping hexagons).

We define slums as housing units in “subnormal agglomerations.” According to
the population census, a subnormal agglomeration satisfies three conditions: (i) it
consists of a group of at least 50 housing units, (ii) where land is occupied illegally
and (iii) is urbanized in a disordered pattern and/or lacks basic public services such
as sewage or electricity. Notice that there is a connection between housing units in
subnormal agglomeration and the notion of a “slum.” See online Appendix A for
more detail on data sources and definitions.
Fact 1: Social distancing increased after non-pharmaceutical interventions
(NPIs)

Figure 1 contains the daily average social distancing index for the cities of
Rio de Janeiro (Figure 1(a)) and Sao Paulo (Figure 1(b)). It shows that social
distancing increased in both cities after NPIs were implemented. The first NPI
affecting the city of Rio de Janeiro was announced on March 11. One can observe
a sharp increase in the social distancing index just a few days after this measure
was implemented. A similar pattern is observed for Sao Paulo, where the first NPI
was announced on March 13.5
Fact 2: In slums, social distancing increased less after the adoption of NPIs

4. See Peixoto et al. (2020) for more details on the Inloco data. Ajzenman et al. (2020) compare
Inloco’s and Google’s social distancing indexes for Brazil and show a high correlation between the
two measures.
5. In Sao Paulo, Decree 64,862, on March 13, suspended public events with more than 500 people
and public school classes (and recommended the same for private schools). In Rio de Janeiro, Decree
45,966, on March 11, stipulated the measures that would be adopted: isolation, quarantine, and
specific medical treatments.

www.inloco.com.br
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Figure 1: Social distancing index
Notes: The figure shows the evolution of the social distancing index for the cities of Rio de Janeiro
and Sao Paulo between February 1 and May 18. The first non-pharmaceutical intervention in Rio
de Janeiro was put in place on March 11 and in Sao Paulo on March 13.

We now present reduced-form evidence showing an association between social
distancing and slums. The unit of investigation is the hexagon provided by Inloco.
We build a dataset of socioeconomic characteristics for each hexagon based on
the census tracts of the 2010 Brazilian Population Census conducted by the
country’s statistical office (Instituto Brasileiro de Geografia e Estatística, IBGE)—
see Appendix A for more details—and combine this dataset with our social
distancing index. We then calculate the number of slum housing units in each
hexagon. We create a dummy variable that equals one if the hexagon has any slum
within its boundaries and zero otherwise. Rio de Janeiro has 510 hexagons with
slums; Sao Paulo has 598 (see Figure A.3 in online Appendix A for the location of
those hexagons). The “treated group” is composed of hexagons with slums, while
the comparison group is composed of hexagons without slums.

To investigate how social distancing evolved in slums compared to other areas
after the implementation of NPIs, we use the following event-study specification:

Yht =

L∑
τ=−K

βτ1{tt − t∗ = τ}+ ωh + δt + εht , (1)

where Yht is the social distancing index for hexagon h on day t. The hexagon fixed
effect ωh accounts for unobserved time-invariant determinants of social distancing,
while the inclusion of time fixed effects δt adjusts for aggregate shocks that are
common to all hexagons. The indicator variable 1{tt − t∗ = τ} takes the value of
one for hexagons with slums when τ periods (days) away from the day of the first
NPI (t∗), and zero otherwise. The parameter βτ is the dynamic treatment effect.
We set the coefficient on β−1 equal to zero to use the day before the first NPI as



7 Slums and Pandemics

the base date—March 10 in Rio de Janeiro and March 12 in Sao Paulo.6 As the
social distancing index is bounded between 0 and 1, each coefficient βτ should be
interpreted as a change in percentage points relative to the day before the first NPI.
We cluster the standard errors at the hexagon level and weight the observations by
the hexagon population in 2010.7 The identifying assumption is that in the period
of analysis, hexagons with slums would have had similar trends in social distancing
(compared to hexagons without slums) in the absence of NPIs.

Figure 2 shows the results of the event-study analysis. Hexagons with and
without slums evolved similarly during the period before the NPIs in both cities.
This suggests the absence of different pre-trends in social distancing and therefore
yields support for the main identifying assumption. After the first NPI, a sharp
decline in social distancing (of about 4–5 percentage points) follows in hexagons
with slums, compared to those without slums.8 Indeed, the results of a difference-
in-difference strategy in Table B.1 in online Appendix B show a (statistically
significant) average reduction of the social distancing index of 3.9 and 4.3
percentage points in slum areas in Rio de Janeiro and Sao Paulo, respectively.
This decline is relative to a social distancing index of about 0.30 before the first
NPI.9

The adherence of individuals to social distancing measures is quite different in
areas with and without slums. Interestingly, the magnitude of the treatment effect
is similar in both Rio de Janeiro and Sao Paulo, but the coefficients are more
precisely estimated for the latter.
Fact 3: More Covid-19 deaths occurred in areas with slums than in areas
without slums.

The risk of Covid-19 transmission is higher in overcrowded areas that lack
access to basic sanitation and running water. Those are precisely some of the
characteristics of urban slums. In addition, one might expect that health facilities
would be more congested in areas near slums. People in slums usually have less
access to private health providers.10 Therefore, we would expect more Covid-related
deaths in areas with slums than in other neighborhoods.

6. Since we have data for 120 days starting from February 1, there are 39 and 41 pre-treatment
periods in Rio de Janeiro and Sao Paulo, respectively.
7. Figure B.1 in Appendix B shows that results are qualitatively similar when we do not use
population weights, but the point regression coefficients are less precisely estimated.
8. Figure B.2 in Appendix ?? shows the results when we change the treatment dummy for the
share of slums in each hexagon. The qualitative implications are the same.
9. In column (III) of Table B.1 in Appendix B, we perform a “triple-difference" strategy and show
that the reduction in social distancing index was 0.43 percentage points lower in Rio de Janeiro
compared to Sao Paulo (but statistically not significant).
10. Approximately 15% and 22% of the overall population have access to private health insurance
in Rio de Janeiro and Sao Paulo, respectively.



8

-.0
6

-.0
4

-.0
2

0
.0

2
Ef

fe
ct

1-FEB 10-MAR 30-MAY
Days

(a) Rio de Janeiro

-.0
6

-.0
4

-.0
2

0
.0

2
Ef

fe
ct

3-FEB 12-MAR 30-MAY
Days

(b) Sao Paulo

Figure 2: Event-study Analysis: Effect of NPIs on social distancing in areas with slums
relative to those without slums
Notes: The figure shows the results for coefficients estimated from Equation (1). Coefficients should
be interpreted as a change in percentage points relative to the base period, which corresponds to
the day before each NPI. The “treated group" is composed of hexagons with at least one housing
unit in a slum. We use 841 hexagons in Rio de Janeiro and 1,301 hexagons in Sao Paulo. Data are
provided at the hexagon-day level. The dependent variable is the social distancing index for hexagon
h on day t. Standard errors clustered at the hexagon level. Confidence intervals: 95%.

Figure 3 provides descriptive evidence suggesting that places in Rio de Janeiro
and in Sao Paulo with more slums experienced more Covid-19 deaths.11 For the city
of Sao Paulo, we have geo-referenced data on hospitalizations and deaths caused
by Covid-19 and other acute respiratory diseases (see Appendix A). We matched
the geo-referenced data into hexagons to check the correlation between slums and

11. Figure 3 uses Covid-19 death data at the neighborhood level (which is a group of hexagons),
as this is the most disaggregated level officially reported by both cities.
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hospitalizations/deaths. Due to constraints on the availability of data, we could
not conduct this analysis using the event-study specification. We then used the
following cross-sectional specification:

Yh = α+ γIh + εh,

where Yh is the outcome variable (hospitalizations or deaths) for each hexagon
h and Ih equals one for hexagons with slums and zero otherwise. The results
reveal statistically significant and positive correlations: hexagons with slums have
11% more hospitalizations and 10% more deaths by Covid-19—and 36% more
hospitalizations and 7% more deaths by other respiratory diseases (see Table B.2
in Appendix B).12

3. Model

In this section, we present the model to study the role of slums in shaping the
economic and health dynamics of the Covid-19 pandemic. Assume a model economy
that evolves in discrete time.13 Suppose there are two groups of agents in this
economy: those who live in slums (or favelas), g = f , and others who do not,
g = o. Agents work, enjoy leisure outside their home, and home hours. Home
hours can also be seen as a proxy for home production. In the presence of the new
coronavirus, denote the agent’s status by j. A healthy agent is denoted by j = h.
By spending time outside the house, the agent may catch Covid-19. If the agent
becomes infected, he is denoted by j = i. Conditional on being infected, the agent
may either recover (with probability ϕ(0, g)) or develop more serious symptoms
(with probability α(g)). Denote an agent with serious symptoms by j = s. Someone
with serious symptoms may either recover (with probability ϕ(1, g)) or die (with
probability δt(g)). The death probability is time varying as it may depend on the
usage of scarce hospital resources. Such resources may also be different across the
two groups. Moreover, we assume that the average slum resident is younger (as in
the data). This reflects different recovery and death probabilities across groups. If
an individual recovers (j = r), he is assumed to be immune to the disease forever.
Agents discount the future with factor β ∈ (0, 1).

An individual is endowed with one unit of time per period that may be used
for work n, leisure outside the house `, and hours at home d (‘’domestic” hours).
The time constraint thus reads:

n+ `+ d = 1. (2)

12. Serological tests in Brazilian slums support the claim that Covid-19 infections are higher in
slums and exceed official data (Prefeitura Rio de Janeiro (2020)). Due to data restrictions, excess
mortality data cannot be analyzed at the intra-city level in Brazil.
13. Our model builds on the framework developed by Brotherhood et al. (2020).
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(a) Rio de Janeiro

(b) Sao Paulo

Figure 3: Slums and Covid-19 deaths
Notes: The figure shows Covid-19 deaths for the cities of Rio de Janeiro on June 14 and Sao Paulo
on May 25. The percentage of slums in each area is from the 2010 census.

An individual derives utility from consumption c, a composite leisure good when
he leaves home a, and domestic hours d. The good a is produced using hours `
and buying “intermediate” goods x according to the function a = a(x, `). We
normalize the utility after death to zero and capture the bliss from being alive
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through a parameter b. The utility function is given by:

u(c, a, d; j, g, p) = ln c+ γ lna+ [λd + λ(j) + λp(j, g)] ln(d) + b.

The term λ(j) expresses an additional preference for staying at home when infected
and is supposed to capture some partial altruism. This variable can take two levels:
λ(s) = λ(i) = λa and λ(r) = λ(h) = 0, so that individuals who can transmit
the virus are partially altruistic and the others have no need for that; λp(j, g)
has a similar role, but from the point of view of the government.14 This captures
simple policies that confine all groups to staying at home (λp(j, g) = λ̄p) but can
also capture group-specific confinements (λp(j, g) = λ̄p(g)) and even condition on
infection status.

An individual’s income consists of two terms. The first is labor income w(g)n.
Note that the wage per unit of time can vary by group. The second term corresponds
to government transfers and can be time dependent. Denote it by wp(g). The
budget constraint of the agent is given by:

c+ x = wp(g) +w(g)n. (3)

A healthy individual (j = h) may become infected when he strays from home.
The longer one spends outside, the more likely it is that an infection takes place.
For each hour spent outside the house, the transmission risk is given by Πt(g). Note
that this is time varying as it depends on two aggregate variables: (i) the fraction
of infected people in the economy and (ii) the time infected people spend outside
their houses. It can also be group specific as individuals from different groups may
be more exposed to one group versus the other, due to differences in the density in
their neighborhoods, for instance. This will be elaborated on later. The probability
of catching the virus in a given period t is given by

π(n+ `,Πt(g)) = (n+ `)Πt(g). (4)

We turn now to decision making. The problem of a healthy individual is
described by the following maximization problem:

Vt(h, g) = max
c,x,n,`,d

u(c, a(x, `), d;h, g, pt)+ (5)

β{[1− π(n+ `,Πt(g))]Vt+1(h, g) + π(n+ `,Πt(g))Vt+1(i, g)}
subject to (2) and (3).

The first line in this problem corresponds to the instantaneous utility from
consumption and leisure. The second line spells out the continuation value. The
first term in curly brackets represents the situation in which the individual does not
get infected this period and continues life as a healthy person in the next period.

14. The subscript p denotes that λp(j, g) is a policy instrument.
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The second term denotes the case in which the agent gets infected today and
continues life as an infected individual in the next period.

The value function for an infected person who has not developed severe
symptoms of the disease is given by

Vt(i, g) = max
c,x,n,`,d

u(c, a(x, `), d; i, g, pt) + βϕ(0, g)Vt+1(r, g)+ (6)

β(1− ϕ(0, g))[α(g)Vt+1(s, g) + (1− α(g))Vt+1(i, g)]

subject to (2) and (3).

The first line captures the instantaneous utility from consumption and leisure and
the situation in which the agent recovers from the disease. The second line is the
continuation value in which the agent either develops serious symptoms (first term
in square brackets) or continues life as an infected person (second term).

Set the flow utility for an individual with serious symptoms (j = s) to the
same as death (i.e., zero). These individuals may still recover and enjoy utility
from consumption, leisure, and bliss of life later. These agents do not work, but
we assume they interact with people in the hospital and may thus infect others.
Set an exogenous amount of time they interact with their carers to ` = ¯̀

s. Their
value function thus reads as follows:

Vt(s, g) = β [ϕ(1, g)Vt+1(r, g) + (1− ϕ(1, g))(1− δt(g))Vt+1(s, g)] (7)

This value function consists of two scenarios: the first term corresponds to the
patient recovering from his symptoms and the second term represents the case in
which he continues life in the hospital. With the remaining probability, he dies and
his utility is normalized to zero.

Finally, an agent who has already recovered and is resistant to the virus enjoys
utility:

Vt(r, g) = max
c,x,n,`,h

u(c, a(x, `), d; r, g, pt) + βVt+1(r, g) (8)

subject to (2) and (3).

It is important to keep track of the number of agents who find themselves in
each of the situations described earlier. Denote the measure of agents of each type
j of group g in period t by Mt(j, g). LetMt be the set of these for all js and gs.
Moreover, let nt(j, g) and `t(j, g) denote the policy function for hours worked and
outside leisure, respectively, for each agent. Let the equilibrium time allocations
in period t across all j and g be summarized in Nt. The law of motion from one
period to the next is represented by the mapping T :

Mt+1 = T (Mt,Nt,Πt(o),Πt(f)). (9)

The law of motion for healthy people of a group g reads as follows:

Mt+1(h, g) = Mt(h, g) [1− π(nt(h, g) + `t(h, g),Πt(g))] . (10)
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That is, the measure of healthy people next period consists of those who are healthy
today and did not catch the virus. The right-hand side of (10) thus describes the
mapping Th for healthy individuals. The corresponding equations for the other
groups are provided in Appendix C. The aggregate mapping in (9) is given by the
collection of all Tj .

Aggregate output in this economy is given by all the work supplied by agents
of the different groups and infection statuses multiplied by their wages:

Qt =
∑
j,g

w(g)nt(j, g)Mt(j, g). (11)

Turn now to the calculation of the probability of getting infected per unit of
time spent outside. First, let Π0 represent an exogenous transmission rate from
infected to susceptible. Now, assume that, when outside their homes, both groups
(those who live or do not live in favelas) spend a fraction 1− ζ of their time in a
common space shared by everyone. The remaining ζ fraction of their time is spent
only among members of the same group (f or o). These group-specific activities
are undertaken within separate areas for each group. Denote by ξg the fraction of
the space that is assigned to group g. This is supposed to represent the fact that
slums have a much higher density than the rest of a city. Slum dwellers thus have
to interact in much more confined spaces, and this contributes to a faster spread
of the virus. We then have the following:

Π̂t(g) = (1− ζ)Π0

∑
g̃∈{f,o},j∈{i,s}

(nt(j, g̃) + `t(j, g̃))Mt(j, g̃) (12)

+ζΠ0

∑
j∈{i,s}

1

ξg
(nt(j, g) + `t(j, g))Mt(j, g).

Note that when ζ = 0, this expression reduces to a pure random-mixing situation.
The parameter Π0 is usually calibrated to match a basic reproduction number

(R0) at the outbreak of the epidemic. This number can be high enough such that
it drives equation (12) to more than 1 because we do not control for the possibility
of multiple infections in a given period. To avoid this, we take a continuous-time
approximation that yields:

Πt(g) = 1− e−Π̂t(g). (13)

If Π̂t(g) is small, then Πt(g) ≈ Π̂t(g).
We now define the probability that an agent with serious symptoms (j = s) dies,

δt(g). This is time varying, as it depends on the supply of scarce hospital resources
(e.g., ICU beds) and the demand by sick patients. Suppose there are two networks
of medical services: a public one to which everyone has access and a private one.
Only individuals with health insurance can access the private network. Let Zpub
and Zpriv be the number of beds in the public and private hospitals, respectively.
Assume also that no slum dweller (f) has access to health insurance and therefore
to private hospitals. For the others (o), a fraction ψ has health insurance.
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Let Upub and Upriv be the number of users in the public and private networks,
respectively. These are given by

Upub = Mt(s, f) + (1− ψ)Mt(s, o), (14)
Upriv = ψMt(s, o),

where Mt(s, g) is the number of type-g agents who have serious symptoms.
Assume that an individual with serious symptoms who has access to a hospital

bed dies with probability δ̃1(g). Those without access to a hospital bed die with
probability δ̃2(g).15 The death probability for individuals living or not living in slums
is given by the following two equations:

δ(f) = δ̃1(f) min

{
Zpub
Upub

, 1

}
+ δ̃2(f) max

{
Upub − Zpub

Upub
, 0

}
,

δ(o) = ψ

[
δ̃1(o) min

{
Zpriv
Upriv

, 1

}
+ δ̃2(o) max

{
Upriv − Zpriv

Upriv
, 0

}]
(15)

+ (1− ψ)

[
δ̃1(o) min

{
Zpub
Upub

, 1

}
+ δ̃2(o) max

{
Upub − Zpub

Upub
, 0

}]
.

The first line spells out the probability of death for a slum dweller with serious
symptoms. This only depends on the excess demand for hospital beds in the
public network. The second and third lines show the same for other agents. Now,
with probability ψ, they have access to the private network through their health
insurance. With complementary probability, they use the public hospital network.

A rational-expectations equilibrium in this economy with initial number
of agents M0(j, g) consists of a sequence of infection and death rates
{Πt(g), δt(g)}∞t=0 and equilibrium time allocations {nt(j, g), `t(j, g)}∞t=0 such that
these time allocations are part of the solutions to the individual optimization
problems (5) to (8), and the resulting law of motion (9), and their aggregation
in (13) and (15) indeed gives rise to the sequence {Πt(g), δt(g)}∞t=0.

4. Fitting the Model to the Data

To analyze the role of slums in the Covid-19 pandemic, we must assign values to
the model parameters. There are 28 parameters to be set. Some (22 parameters)
are externally calibrated and others (6 parameters) are chosen such that certain
model moments match their empirical counterparts. We focus our analysis on the
city of Rio de Janeiro. Given that this is a framework to understand social behavior
during a pandemic, we set the model period to one week.
City parameters: According to the 2010 Brazilian census, 22% of Rio de Janeiro’s
population live in slums (or favelas). We normalize the area of the model city

15. We assume the death probabilities to be group specific to reflect different age structures across
the two neighborhoods. See Section 4 for details.
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to one. Then, given the share of the population living in slums (22%) and the
population density in areas with slums relative to those without slums (4.05), we
have the fraction of space assigned to slums as ξf = 0.065.16

The proportion of time individuals spend with members of their same group is
given by ζ. We set ζ = 0.334. This corresponds to the fraction of time spent outside
that is not work related. The implicit assumption is that work-related activities take
place across all groups whereas leisure outside is separate for each group.

We normalize the wage rate of individuals who do not live in slums to one,
that is, w(o) = 1. We then set the wage rate of agents who live in slums to
w(f) = 0.277. Therefore, the relative hourly wage per capita of individuals who
live in slums to those who do not is 27.7%, which is the number observed in the
2010 census data for Rio de Janeiro.

Panel A of Table 1 reports the values of the parameters related to Rio de
Janeiro. The third column (“Interpretation") contains a comment on how each
parameter was set.
Disease transmission and development:We now turn to parameters that control
the transmission and disease development of Covid-19. To discipline how infectious
the disease is, we target the basic reproduction number, R0. Appendix D.1 describes
how we can compute this statistic in the model. The parameter Π0 determines the
per-period transmission rate in the model and is intimately related to R0. We thus
pick Π0 to target a value of 2.5 for the basic reproduction number. This lies within
the range used by Atkeson (2020). Ferguson et al. (2020) use R0 = 2.4 while Zhang
et al. (2020) estimate it to be 2.28. Remuzzi and Remuzzi (2020) report values
between 2.76 and 3.25. This yields Π0 = 11.43.

We set α(g) = 1 for both groups. This implies that an individual who is
infected with Covid-19 spends one week with mild symptoms and then either
recovers or becomes critically ill. To determine the probabilities of recovery, we
turn to medical data. CDC (2020) reports age-specific transition rates between
infection and ICU care, and from ICU to death. We aggregate these using Rio de
Janeiro’s population pyramids for both slums and other areas, which come from
the 2010 Brazilian census. This yields a 2.1% chance that someone in a slum
who is infected ends up with serious symptoms; the counterpart for other areas
is 2.9%. Moreover, the probability of death conditional on being critically ill is
15.5% for slum residents and 22.9% for other individuals. The lower probabilities
for hospitalization and death for slum residents is a consequence of a younger
population living in these neighborhoods. We turn these probabilities into weekly
rates to conform with our chosen model period.17 Moreover, Verity et al. (2020)
report that a critically ill patient is discharged from the ICU after around 24.7 days,
or 3.52 weeks. We assume the same length of treatment for both groups. This

16. The population density in areas with and without slums in the city of Rio de Janeiro is from
the 2010 census data. Population density in Rio de Janeiro’s slums is about 25,701.18 individuals
per square kilometer and in areas without slums it is 6,344.46. The difference is a factor of four.
17. See Appendix D.2.
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Parameter Value Interpretation
Panel A: City parameters (6 parameters)∑

jM0(j, f) 0.222 Fraction of people living in slums (calibrated)
w(o) 1 Wage rate of non-slum agents (calibrated)
w(f) 0.277 Wage rate of slum agents (calibrated)
ξf 0.065 Frac. of space assigned to slums (calibrated)
ξo 0.934 Frac. of space assigned to areas wo slums (calibrated)
ζ 0.334 Prop. of time spent within group (calibrated)

Panel B: Disease parameters (15 parameters)
Π0 11.43 Infectiousness of Covid-19 (internatlly estimated)

α(o), α(f) 1 Prob. (serious symptoms | no recovery from mild) (calibrated)
ϕ(0, o) 0.971 Prob. of recovery from mild Covid-19, other (calibrated)
ϕ(0, f) 0.979 Prob. of recovery from mild Covid-19, slum (calibrated)

ϕ(1, o), ϕ(1, f) 0.284 Prob. of recovery from serious Covid-19 (calibrated)
δ̃1(o) 0.118 Wkly death rate, other; critically ill with ICU (calibrated)
δ̃1(f) 0.073 Wkly death rate, slum; critically ill with ICU (calibrated)

δ̃2(o), δ̃2(f) 1.0 Wkly death rate; critically ill wo ICU (calibrated)
¯̀ 0.158 Infections through the health care system (calibrated)
ψ 0.152 Prop. non-slum agents with priv. insurance (calibrated)

Zpub 8.12e-5 Measure of beds in public system (calibrated)
Zpriv 4.9e-4 Measure of beds in private system (calibrated)

Panel C: Preference parameters (7 parameters)
ρ -1.72 Elast. of subst. bw leisure time and goods (calibrated)
θ 0.108 Production of leisure goods (internally estimated)
γ 1.089 Rel. utility weight–leisure goods (internally estimated)
λd 2.453 Rel. utility weight–leisure at home (internally estimated)
λa 1.995 Rel. utility weight–leisure at home; infected (calibrated)
β 0.961/52 Discount factor (calibrated)
b 8.575 Value of being alive (internally estimated)

Table 1. Calibration and estimation of model parameters: City of Rio de Janeiro

yields weekly probabilities of recovery from mild symptoms of ϕ(0, f) = 0.979 and
ϕ(0, o) = 0.971, weekly probabilities of recovering from the ICU of ϕ(1, g) = 0.284
for all g, and weekly death probabilities conditional on being in the ICU of
δ̃1(f) = 0.073 and δ̃1(o) = 0.118. We assume the death probability of a patient
with serious symptoms who does not have access to an ICU bed to be δ̃2(g) = 1
for all g.

Note that we assumed that a patient who is being treated in the ICU does
not work or enjoy leisure but still interacts with others and may infect them. The
amount of time in the model during which this interaction takes place is given by ¯̀.
Butler et al. (2018) estimate ICU patients interact with doctors, nurses, and other
people around 7.6 hours a day. Since this is a controlled environment, we use half
this number to determine infections. This yields ¯̀= 0.158.

Panel B of Table 1 summarizes the calibrated values of the parameters related
to the Covid-19 pandemic.
Preference parameters:We assume that the composite leisure good a is produced
according to the following function: a = [θxρ + (1− θ)`ρ]1/ρ. Following Kopecky
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(2011), we set ρ = −1.72. This yields an elasticity of substitution between leisure
and goods of 0.368, which means they are complements.

We set the preference parameters θ, γ, and λd to target three data moments
related to time use and expenditures in Brazil. First, we target the fraction of
income spent on goods consumed outside the home.18 According to the Brazilian
expenditure survey (POF), individuals in Rio de Janeiro spend on average 27.82%
of their income on goods outside the home.19 Second, we target the average weekly
hours at work. According to the 2019 national household survey (PNAD-C), Rio de
Janeiro residents spend 34.2 hours per week at work.20 Assuming an endowment
of 112 non-sleeping weekly hours, this yields the fraction 0.306 for their time spent
at work. Third, we target the leisure time outside. In Brazil, the average person
spends around 17.2 hours a week outside, which corresponds to the fraction 0.154
of their endowment of non-sleeping hours.21

The parameter λa denotes the increase in the marginal utility of staying at
home for agents who are infected with Covid. This parameter is related to the
extra amount of time an individual spends at home without any influence from the
government. To identify this parameter, we turn to how agents behave when they
contract influenza. Akazawa et al. (2003) report that the average American worker
takes 1.3 days of sick leave when infected with influenza. Given a 40-hour workweek,
this implies an average of 10.4 hours. We assume that the same would happen with
Covid. As the disease lasts an average of one week (absent development of serious
symptoms), this implies a 26% decline in work time. We assume the same number
for Brazilian workers. Suppose that leisure outside declines by the same amount.
We then choose λa to match an increase in time spent at home by 26% compared
with a world without Covid-19.

For the preference discount factor, we assume that agents discount the future
at roughly 4% per year and set β = 0.961/52. The average real interest rate in
Brazil was approximately 4.9% from 2005.1 to 2020.5 and 3.5% from 2009.1 to
2020.5.22

18. As do Brotherhood et al. (2020), we classify the following items of the consumption basket
as goods consumed outside: food away from home, public transportation, medical services, and
entertainment.
19. The expenditure survey POF is the Pesquisa de Orçamento Familiar for 2008–09.
20. The national household survey PNAD-C is the Pesquisa Nacional por Amostra de Domicílios
Contínua. We get the average hours worked per week and multiply by the share of people who have
a job or are self-employed.
21. The total hours of leisure outside are computed adding time spent commuting Pereira and
Schwanen (2013) and activities related to socializing and cultural and sport activities. These data
come from the 2009 PNAD-C and the test pilot time-use survey.
22. This is the monthly Over/Selic interest rate (Brazilian Central Bank rate) minus the inflation
rate measured by the IGP-DI (general price index from Vargas Foundation). We annualized the
monthly average real interest rate and inflation. These two variables can be downloaded from
www.ipeadata.gov.br.

www.ipeadata.gov.br
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Moment Model Data (ranges)
Share of individuals living in slums 22% 22%
Pop. density in slums/Pop. density in non-slum areas 4.5 4.5
Relative hourly labor income of individuals in slums 27.7% 27.7%
R0, Covid-19 2.5 1.6-4
% of infected in critical care 3.6 3.6
Weeks in critical care 3.5 3-6
% in critical care who die 20.24 10.6-31.8
Hours/day interacting while in ICU 3.8 7.6 (controlled)
Hours of work per week 34.2 34.2
Hours of outside activities per week 17.2 17.2
% of income on goods outside 27.28 27.28
% ↑ in time @ home – mild symptoms 26 26 (Influenza)
% ↑ in time @ home – outset of Covid-19 15.7 15.7
% of non-slum agents with priv. insurance 15.21 15.21

Table 2. Moments – model vs. data

Finally, we must set a value for b, the per-period value of being alive. Note
that a higher value for this parameter implies that an individual will engage in
more cautious behavior to avoid death. We thus pick b to generate an increase
in time at home as the one observed at the outbreak of the Covid-19 pandemic.
The issue is that most countries adopted lockdowns at the same time. We thus
look at Sweden, a country that did not implement severe restrictions. Brotherhood
et al. (2020) report an increase of 15.7% in time at home in Sweden in week 8 of
the epidemic. As slums are not an important factor in Sweden, we use this 15.7%
hike as the target of a version of our model without slums. This yields a value of
b = 8.575.

Panel C of Table 1 contains the calibrated preference parameters. Table 2
summarizes some targeted moments of the model and their data counterpart. The
model matches the moments of Rio de Janeiro quite well.23

5. Baseline Results

This section presents our baseline results. Our main focus is to understand the role
of slums in the pandemic. We first describe the path of our baseline economy when
there is an outbreak of Covid-19 and no policy intervention. Different policies are
investigated in the next section.

Figure 4 shows the masses of individuals in different health states: healthy,
infected, with serious symptoms, recovered, and deceased. The blue lines describe
the dynamics of individuals who live in slums, while the orange lines represent

23. Appendix E provides sensitivity analysis with respect to the model parameters. The baseline
results are similar to the ones obtained with the benchmark calibration.
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Figure 4: Aggregate variables, baseline

those who are not slum dwellers.24 The solid lines display our economic model
with equilibrium social distancing, and the dashed lines show, for comparison, the
counterfactual epidemiological model, in which behavior is unchanged relative to
a world without the pandemic. The last graph in this figure displays aggregate
output. Along with this figure, Table 3 summarizes key moments of the pandemic
in our baseline model (first column) and in a typical epidemiological model (second
column), where behavior is kept constant by assumption.

The total duration of the unchecked epidemic is about a year (when herd
immunity becomes strong enough to essentially prevent further contagion), and
the peak in terms of seriously ill individuals is reached in about 11 weeks. As
the virus spreads, social distancing endogenously rises as evidenced by the hike in
hours at home by both groups. The number of infected people is thus reduced
relative to the typical epidemiological model. This also translates into a lower
death toll in the benchmark. Notice that GDP at the peak is substantially higher
in the epidemiological model relative to the baseline. With the rising risk of getting
infected and possibly dying, agents cut time spent outside their home and sharply
reduce their working hours.

Turning now to the role of slums in shaping health and economic dynamics,
Table 3 shows that the benchmark economy features a much higher death toll in
slums relative to other areas. The total death rate is 7.35 per 1,000 individuals,
but in slums it is roughly 10 per 1,000 residents. Though slum dwellers represent
only 22% of the city’s population, they account for 30% of the overall deaths.
This can be explained by the higher population density in slums and therefore
more contagion, as well as more congestion of intensive care units—more on these

24. In our calibration, 22% of individuals live in slums. Thus, any change in the figure is relative
to this initial mass. Non-slum dwellers thus correspond to 78% of all individuals.
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Homog. Homog. Homog.
Benchmark Epidem. No slum densities wage rates age struct.

Wks to peak srsly ill (slum) 10.00 9.00 – 15.00 10.00 10.00
Wks to peak srsly ill (other) 11.00 10.00 14.00 14.00 11.00 11.00
Srsly ill p/ 1,000 @ peak (slum) 1.88 5.09 – 0.66 1.19 2.18
Srsly ill p/ 1,000 @ peak (other) 0.77 6.02 0.65 0.68 0.74 0.75
Dead p/ 1,000 1year (slum) 10.04 13.78 – 6.32 8.87 13.49
Dead p/ 1,000 1year (other) 6.35 15.43 6.87 6.86 6.78 6.57
Dead p/ 1,000 1year (all) 7.16 15.06 6.87 6.74 7.25 8.11
Dead p/ 1,000 LR (slum) 10.11 13.78 – 6.53 9.07 13.68
Dead p/ 1,000 LR (other) 6.57 15.43 7.47 7.30 7.13 6.83
Dead p/ 1,000 LR (all) 7.35 15.06 7.47 7.13 7.56 8.34
Immune in LR (slum), % 74.33 91.60 – 51.78 70.11 72.37
Immune in LR (other), % 39.69 77.66 46.01 44.72 43.03 40.76
Immune in LR (all), % 47.36 80.75 46.01 46.28 49.03 47.76
GDP at peak - rel to BM 1.00 1.82 1.48 1.23 1.29 1.03
GDP 1year - rel to BM 1.00 1.14 1.17 1.00 1.17 0.99
Hrs @ home (slum) - peak 80.95 60.48 – 69.19 86.38 83.22
Hrs @ home (other) - peak 86.28 60.48 78.00 80.00 82.26 84.90
Hrs @ home (slum) - 6m 66.03 60.48 – 65.35 74.38 68.93
Hrs @ home (other) - 6m 69.40 60.48 72.42 72.82 70.79 70.12
Value - healthy (slum) 1968.10 1962.10 – 1976.60 4305.90 1960.20
Value - healthy (other) 4317.40 4283.10 4315.00 4315.30 4315.60 4316.50
Value - healthy (all) 3797.00 3769.00 4315.00 3797.20 4313.50 3794.50

Table 3. Baseline results
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Figure 5: Choices of healthy agents

issues later—but also by differences in the individual choices of slum and non-slum
residents.

Figure 5 displays the time spent at home, at work, and with leisure outside.
Social distancing (the increase in time at home relative to an epidemiological model
with no behavioral change) is lower for slum dwellers than for other individuals.
Since they are poorer, slum residents decrease the number of hours worked by less
than non-slum individuals even though they have a higher chance of catching the
virus. Figure 6 shows the difference in social distancing between the two groups
at the outbreak of the pandemic. At the peak of the disease, social distancing is
about 10 percentage points lower for slum residents compared with others. This is
qualitatively consistent with our event-study analysis using mobile phones in Rio
de Janeiro, displayed in Figure 2. Quantitatively, the unchecked epidemic generates
a larger effect on the difference in social distancing between slum and non-slum
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Figure 6: Difference in protection behavior between slum and non-slum agents

individuals.25 Recall that in our model this is an unchecked epidemic, while the
data includes NPIs. We will discuss the effects of NPIs in our model in the next
section.

To further assess the role of slums in the pandemic, we run a counterfactual in
which we set the measure of slum individuals to zero and keep all other parameters
at their baseline values. See the third column of Table 3. For the non-slum residents
(the only ones in this hypothetical world), the death rate is now higher than the
baseline: 7.47 per 1,000 in the counterfactual versus 7.35 in the benchmark. There
are two reasons for this. First, in the baseline, close to 75% of slum residents are
immune in the long run. That is, they contribute a lot to reach herd immunity.
In the benchmark, only 40% of non-slum individuals are infected throughout the
pandemic. Without slums, this number rises to 46%. The second reason is that
with a safer environment in the non-slum world, other individuals are less cautious.
For instance, at the peak, they spend about eight fewer hours at home. In the end,
residents from other areas end up with a lower welfare in this scenario without
slums.

In our model environment, slum dwellers are different in four important
characteristics: they live in denser areas, their wage rate is lower, they are on average
younger, and it is harder for them to be admitted to an ICU. We now investigate
the role of the first three factors in shaping the dynamics of the pandemic. Easier
access to ICU beds will be assessed in our policy section.

The fourth column of Table 3 contains statistics for a counterfactual in which
ξf = 0.22, which implies that the population density in slums is the same as that
observed in other areas. All other parameters are kept at their baseline values. The
pandemic lasts longer now since the spread of the virus is reduced, and it takes
more time to reach herd immunity. Relative to the baseline, the death rate of slum

25. We should interpret with caution the comparison of our theoretical social distancing measure
with the empirical index based on mobile phones. The theoretical measure is an intensive margin
proxy for social distancing, while the index constructed by Inloco is an extensive margin measure.
If we interpret in the model the home time as the fraction of households that stay at home, then
the model and the empirical counterpart would be equivalent.
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dwellers is reduced from 10.11 to 6.53 per 1,000 individuals—a 35% reduction. The
death rate of other individuals rises from 6.57 to 7.30—a rise of about 11%. That
is, living in a neighborhood with higher density is crucial to generating more deaths
among slum residents. With less contagion due to a lower population density in
slums, individuals expose themselves more by spending less time at home, offsetting
in part the direct effect of a lower population density in slums.

In the fifth column of Table 3, we increase the wage of slum dwellers and
equate it to the wage of other agents; that is, wf = 1. All other parameters remain
at their baseline values. Relative to the benchmark, since they are now richer,
individuals who live in slums spend more time at home. As these agents are now
more cautious, their death rate is reduced from 10.11 to 9.07, a reduction of 10%.
Given that a lower number of slum dwellers are infected now, the economy can only
reach herd immunity with a higher fraction of non-slum residents being infected.
This also translates into a higher death toll among the latter group, an increase
from 6.57 to 7.13 per 1,000. As non-slum residents account for a larger fraction of
the population, the overall death rate slightly increases.

Recall that slum dwellers are on average younger, and this translates into lower
hospitalization and death rates for members of this group. The last column in Table
3 reports the results of a counterfactual in which we equate these rates across the
two groups. To be more precise, the thought experiment is that slum residents now
face the same (worse) recovery and death probabilities as individuals from other
areas. Note that, even though the infection rates are similar to the benchmark,
death numbers are about 13% higher in this scenario. Therefore, ignoring the fact
that individuals living in slums are younger can lead to misleading conclusions about
the number of fatalities in these communities. As life is now riskier in slums, this
group becomes more cautious and spends more time at home. With a lower supply
of labor, GDP goes down even further compared to the baseline.

In sum, in our unchecked pandemic calibrated to Rio de Janeiro, slums have
a nontrivial role in shaping the effects of Covid-19. First of all, the death rate in
slums is higher than in other areas. Slum dwellers’ share in total deaths is much
higher than their fraction in the overall population of the city. In addition, the very
high population density in slums compared with other parts of the city seems to
be a key feature in explaining the high death rate observed in slums. Interestingly,
the presence of slums decreases significantly the time to reach herd immunity
and protects individuals who live in other neighborhoods, generating important
distributional effects. Policies that aim to curb the Covid-19 pandemic in societies
with a high fraction of their population living in slums must then take this fact
into account. The next section explores the effects of a variety of such policies.

6. Policy Experiments

In this section, we assess the impact of NPIs to control the health and economic
impact of the pandemic in our model economy. We evaluate three policies: the



23 Slums and Pandemics

All beds
Benchmark public

Wks to peak srsly ill (slum) 10.00 10.00
Wks to peak srsly ill (other) 11.00 11.00
Srsly ill p/ 1,000 @ peak (slum) 1.88 2.84
Srsly ill p/ 1,000 @ peak (other) 0.77 1.07
Dead p/ 1,000 1year (slum) 10.04 6.84
Dead p/ 1,000 1year (other) 6.35 4.82
Dead p/ 1,000 1year (all) 7.16 5.27
Dead p/ 1,000 LR (slum) 10.11 6.85
Dead p/ 1,000 LR (other) 6.57 4.86
Dead p/ 1,000 LR (all) 7.35 5.30
Immune in LR (slum), % 74.33 77.03
Immune in LR (other), % 39.69 42.89
Immune in LR (all), % 47.36 50.46
GDP at peak - rel to BM 1.00 1.02
GDP 1year - rel to BM 1.00 1.04
Hrs @ home (slum) - peak 80.95 80.26
Hrs @ home (other) - peak 86.28 85.01
Hrs @ home (slum) - 6m 66.03 62.61
Hrs @ home (other) - 6m 69.40 65.91
Value - healthy (slum) 1968.10 1974.90
Value - healthy (other) 4317.40 4325.80
Value - healthy (all) 3797.00 3805.10

Table 4. All hospital beds used by the public system

government requisition of private hospital intensive care units to increase capacity
to meet the demand for Covid-19–related treatment, lockdown interventions to
increase social distancing (shelter-at-home orders), and financial aid policies to
help people stay at home.

6.1. Public Hospital Beds

In Rio de Janeiro, approximately 15% of individuals have private health insurance
and therefore access to private hospital beds. Intensive care units in public and
private hospitals have 510 and 3,079 beds, respectively (in a city of about 6.3
million people).

In our calibration, we assume that slum dwellers have no health insurance
and approximately 19% of the individuals who do not live in slums have private
insurance. We should expect that congestion of health services is therefore
greater in slum areas. In this policy intervention, we investigate the impact of
a counterfactual experiment in which the ICUs in private hospitals could be used
to treat all individuals in need of critical care.26

26. We abstract from any financial and political economy barriers to implement such a policy.
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6-week late
Immediate lockdown lockdown

25%, all 25%, slums 25%, non-slum 75%, all 25%, all
Benchmark 26 weeks 26 weeks 26 weeks 35 weeks 26 weeks

Wks to peak srsly ill (slum) 10.00 14.00 13.00 11.00 66.00 11.00
Wks to peak srsly ill (other) 11.00 16.00 14.00 12.00 67.00 12.00
Srsly ill p/ 1,000 @ peak (slum) 1.88 1.07 1.11 1.86 1.88 1.10
Srsly ill p/ 1,000 @ peak (other) 0.77 0.48 0.71 0.57 0.77 0.48
Dead p/ 1,000 1year (slum) 10.04 9.21 9.13 10.00 0.00 8.68
Dead p/ 1,000 1year (other) 6.35 5.84 6.92 5.28 0.00 5.26
Dead p/ 1,000 1year (all) 7.16 6.58 7.41 6.33 0.00 6.02
Dead p/ 1,000 LR (slum) 10.11 9.51 9.29 10.19 10.10 9.29
Dead p/ 1,000 LR (other) 6.57 6.48 7.22 5.91 6.56 6.34
Dead p/ 1,000 LR (all) 7.35 7.15 7.68 6.86 7.35 7.00
Immune in LR (slum), % 74.33 73.58 70.96 76.68 74.36 73.29
Immune in LR (other), % 39.69 40.32 42.96 38.18 39.67 40.57
Immune in LR (all), % 47.36 47.69 49.16 46.71 47.35 47.82
GDP at peak - rel to BM 1.00 0.96 1.12 0.86 0.99 0.95
GDP 1year - rel to BM 1.00 0.87 0.98 0.89 0.47 0.87
Hrs @ home (slum) - peak 80.95 83.18 84.40 79.79 80.19 83.76
Hrs @ home (other) - peak 86.28 85.87 81.83 89.56 85.95 86.16
Hrs @ home (slum) - 6m 66.03 78.32 79.22 63.80 105.84 77.22
Hrs @ home (other) - 6m 69.40 79.79 70.83 78.39 105.84 78.36
Value - healthy (slum) 1968.10 1964.40 1964.20 1968.20 1863.20 1964.40
Value - healthy (other) 4317.40 4312.90 4315.30 4314.80 4213.00 4313.30
Value - healthy (all) 3797.00 3792.70 3794.50 3795.00 3692.50 3793.10

Table 5. Shelter-at-home policies

Table 4 shows that the total death rate is reduced by approximately 28% with
this policy. Although slum dwellers are the ones who benefit the most from this
policy, individuals who live in non-slum areas are also positively affected since only
a small fraction of them have private health insurance. Observe that most of the
agents decrease social distancing with this intervention as time at home decreases.
But the difference is not quantitatively so different from the unchecked epidemic.
The decrease in the death rate is mainly explained by the direct effect of reducing
congestion in access to public hospital care units rather than by indirect effects of
changing behavior. In the long run, more individuals of both groups survive and
become immune to the disease. Note also that this policy increases GDP and the
welfare of both groups.

6.2. Shelter-at-home Policies

We now investigate stay-at-home orders that can be implemented with the closing
of nonessential businesses and schools, among other interventions. Table 5 displays
results for different lockdown restrictions.

The first column in Table 5 reports moments related to the baseline unchecked
pandemic for comparison. The second column shows the same statistics for a
scenario in which a shelter-at-home policy covers 26 weeks from the start of the
health crisis. During the duration of this policy, individuals are required to increase
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Figure 7: Aggregate variables (lockdown, 25% increase in time at home, all groups, 26
weeks)
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Figure 8: Choices of healthy agents (lockdown, 25% increase in time at home, all groups,
26 weeks)

their time at home by 25% relative to an environment without the pandemic.27

As we can also see in Figure 7, the lockdown (solid lines) flattens out the infected
and critically ill curves relative to the unchecked pandemic (dashed lines). The
total death rate decreases, mainly among slum dwellers. There is less congestion of
public beds with the lockdown, which is a more binding issue for individuals living
in slums. The total death rate among slum dwellers decreases by approximately 6%
while the overall death rate is reduced by 3%.

Notice that GDP during the first year of the pandemic decreases by 13%
relative to the no-policy baseline. The strong impact on the economy comes from
a reduction in the time spent at work. Figure 8 reports the choice of the agents
with a 26-week shelter-at-home policy (solid lines), as well as the benchmark
(dashed lines). Individuals stay longer at home with this lockdown policy than
in the baseline, reducing the peak of infection but increasing the duration of the
health crisis.

27. We implement this by increasing λp(j, g) to the necessary value to induce agents to follow the
lockdown policy. Appendix D.3 reports the calibrated values for all counterfactuals in this section.
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Figure 9: Difference in protection behavior between slum and non-slum agents (lockdown,
25% increase in time at home, all groups, 26 weeks)

Notice that the time spent at home increases by about 20 percentage points
relative to the baseline before the outset of the disease (left panel of Figure 8). This
is approximately the average percentage point change in the social distancing index
observed in the city of Rio de Janeiro (recall Figure 1 in Section 2). In addition, the
model implies a difference in social distancing between slum and non-slum dwellers
of around five percentage points (Figure 9). This is similar to those reported in our
event-study analysis in Figure 2 of Section 2.

To understand the role of slums in shaping the dynamics of the pandemic under
a lockdown, we also investigate the effects of targeted shelter-at-home orders: a
policy of increased social distancing applied only to individuals living in slums (third
column of Table 5) and one applied only to those who live in other areas (fourth
column of Table 5). Interestingly, the shelter-at-home policy in slums only increases
the long-run death rate for non-slum individuals because the fraction of non-slum
dwellers necessary to reach herd immunity would need to rise to compensate for the
lower transmission in slums. As the non-slum group is larger, this translates into a
higher overall death rate. This policy ends up lowering the welfare of both groups:
slum residents are worse off because they are sheltered (even though deaths among
this group decrease) and the others suffer a worse health shock.

We also implement a more extreme lockdown policy (fifth column of Table
5) in which we target a rise in 75% in the time spent at home relative to the
baseline. This policy lasts for 35 weeks or approximately 8 months. Almost no
deaths occur in the first year of the pandemic, which now lasts much longer.
Therefore, a stricter lockdown is an effective strategy to delay the peak and to
control temporarily the number of infected individuals and deaths. This might be
an important policy while waiting to build public infrastructure (e.g., hospital beds)
and/or define a future plan of action to control the virus, including waiting for a
possible treatment or vaccine. Without improvements in infrastructure, treatment,
or a vaccine, however, the total number of deaths with or without an extreme
lockdown is roughly the same: when the extreme lockdown is relaxed, the numbers
of infections and seriously ill patients rise sharply leading to similar deaths compared
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Only financial aid Aid and 25% lockdown for all
300R$, all 300R$, slums 600R$, slums 300R$, all 300R$, slums 600R$, slums

Benchmark 26 weeks 26 weeks 26 weeks 26 weeks 26 weeks 26 weeks
Wks to peak srsly ill (slum) 10.00 15.00 14.00 32.00 32.00 32.00 32.00
Wks to peak srsly ill (other) 11.00 16.00 15.00 19.00 33.00 33.00 33.00
Srsly ill p/ 1,000 @ peak (slum) 1.88 0.77 0.80 1.16 1.51 1.23 1.61
Srsly ill p/ 1,000 @ peak (other) 0.77 0.50 0.63 0.52 0.67 0.58 0.63
Dead p/ 1,000 1year (slum) 10.04 8.99 8.94 8.81 9.01 8.96 9.07
Dead p/ 1,000 1year (other) 6.35 6.40 6.94 6.89 5.49 5.98 5.88
Dead p/ 1,000 1year (all) 7.16 6.97 7.39 7.31 6.27 6.64 6.59
Dead p/ 1,000 LR (slum) 10.11 9.28 9.16 9.15 9.54 9.40 9.58
Dead p/ 1,000 LR (other) 6.57 6.91 7.30 7.36 6.48 6.72 6.70
Dead p/ 1,000 LR (all) 7.35 7.43 7.71 7.76 7.15 7.32 7.34
Immune in LR (slum), % 74.33 71.90 70.69 70.33 73.58 72.44 72.27
Immune in LR (other), % 39.69 41.95 43.41 43.96 40.35 41.39 41.55
Immune in LR (all), % 47.36 48.58 49.45 49.80 47.71 48.27 48.36
GDP at peak - rel to BM 1.00 1.16 1.24 1.30 1.10 1.20 1.12
GDP 1year - rel to BM 1.00 0.94 0.99 0.98 0.84 0.89 0.91
Hrs @ home (slum) - peak 80.95 78.61 80.46 77.55 78.85 77.99 80.36
Hrs @ home (other) - peak 86.28 77.74 77.99 80.32 83.88 82.00 84.49
Hrs @ home (slum) - 6m 66.03 73.96 74.77 80.16 82.24 83.64 87.05
Hrs @ home (other) - 6m 69.40 71.91 70.83 70.03 77.57 77.49 72.87
Value - healthy (slum) 1968.10 1985.60 1985.70 1998.80 1982.40 1982.60 1996.70
Value - healthy (other) 4317.40 4322.20 4315.70 4315.60 4320.70 4315.10 4316.70
Value - healthy (all) 3797.00 3804.60 3799.60 3802.40 3802.80 3798.50 3802.80

Table 6. Financial aid policies

with the case without the policy. The extreme shelter-at-home policy clearly causes
a deep economic downturn.

Our shelter-at-home policies so far were implemented in the beginning of the
pandemic, when congestion of public goods is not necessarily binding. In the last
column of Table 5, we implement a lockdown policy similar to the one in the second
column, but that is imposed in week 6 of the pandemic, instead of week 1. This
later lockdown is more effective in saving lives. The total death rate is reduced by
5% instead of 3%, as in the lockdown that is implemented in week 1. The economic
effects of both shelter-at-home policies are similar.

6.3. Financial Aid

We now turn to study the effects of an emergency measure designed to compensate
individuals for income losses due to a rise in social distancing. Table 6 contains such
counterfactual experiments. Again for comparison, the first column of this table
contains the moments of the unchecked pandemic. The second column displays
the same statistics for the case in which the government transfers 300 Brazilian
Reais (R$) per month for all individuals in the first 26 weeks of the pandemic.28

This corresponds to 44% and 12% of the monthly income of slum and non-slum
dwellers, respectively.

Figure 10 shows that this policy flattens out the infection curves. This effect is
more pronounced in slums. The income effect is stronger for slum dwellers than for
those individuals who live in other areas (time at home at the peak is essentially the
same across the two groups). This implies that individuals living in slums increase
social distancing much more than in the benchmark. The total death rate among

28. This amount is approximately 60 US dollars in July 2020.
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Figure 10: Aggregate variables (300R$ financial aid for 26 weeks, all groups)
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Figure 11: Choices of healthy agents (300R$ financial aid for 26 weeks, all groups)

individuals living in slums is reduced by 8% relative to the baseline. Given that
the threshold for herd immunity rises for non-slum dwellers, their total death rate
ends up increasing by 5% during the pandemic. The overall death rate rises since
the measure of individuals not living in slums is large. Notice that this composition
effect on death rates becomes more pronounced when only slum dwellers receive the
financial aid—third column of Table 6—or when the financial aid is more generous
(600 R$ for 26 weeks instead of 300 R$)—fourth column of Table 6.

We now combine cash transfers lasting 26 weeks with stay-at-home orders that
cover the same period (we target a rise in 25% in the time spent at home relative
to the baseline by rising λp, see Appendix D.3). Such a combination of policies was
implemented in several countries including Brazil.29 Start with a transfer of 300
R$. The combined policy extends the duration of the pandemic, much longer than
when each of the policies is implemented separately. When the policy is relaxed,
infections rise rapidly and the overall death rate is only 3% below the baseline.

29. In 2020, Brazilian informal workers received 600 R$ per month for three months during the
pandemic (“Emergency Assistance") as a compensation for their confinement. There were several
issues related to the timing of the policy and to the bureaucracy involved in receiving this cash
transfer.



29 Slums and Pandemics

Notice, however, that the death rate among slum dwellers is higher than in the case
of only cash transfers or only the lockdown. Welfare with transfers and lockdown
is of course higher than in the case with only lockdown. Targeting the transfer to
slum dwellers exacerbates the differences across groups, as it decreases infections
and deaths in slums and increases these statistics in other areas.

7. Conclusions

More than one billion people in the world live in slums. These are usually crowded
neighborhoods where social distancing is hard to implement. Infectious diseases can
thus spread rapidly in such areas. This paper studies the role of slums in shaping
the health and economic dynamics of pandemics. Using rich data gathered from
millions of mobile phones in Brazil, we show that social distancing increased less
in slums at the outset of the Covid-19 pandemic.

We build and calibrate a model where poor agents live in high-density slums
and richer individuals live in other areas. The former have a harder time accessing
health care due to capacity constraints in public hospitals, but they are on average
younger. We fit our model to match key moments of Rio de Janeiro, where 22%
of individuals live in slums. Our simulations suggest that a disproportionately high
number of deaths occur in slums. In a counterfactual scenario without slums, a
higher fraction of residents from other areas catches the disease, as the burden to
achieve herd immunity falls only on this group, illustrating important distributional
effects.

Using the model to explore a variety of policy experiments highlights the
importance of taking this heterogeneity into account. Reallocating private ICUs
into a single pool helps all groups, decreasing the death toll significantly. Very
stringent shelter-at-home orders buy time but only delay deaths if no other policy
is put in place. If lockdowns shelter a particular group, the other group suffers worse
health outcomes, and the welfare of both groups declines. Cash transfers have a
disproportional impact on slum residents and, as they can now afford to cut their
labor supply, infections fall more heavily on the other group. In sum, policies can
have contrasting effects across different groups in society.

Though our framework has considerable heterogeneity that allows for an array
of policy experiments, we have abstracted from potentially important margins. For
instance, individuals in our model are assigned a place of residence and cannot
move. Perhaps long-lasting pandemics may lead them to relocate, and health
considerations may then affect the very structure of the city. Additionally, temporary
cuts in labor supply may have enduring effects on job prospects. Being more likely
to have informal jobs, slum dwellers may suffer more from such displacements.
These and other issues are left for future research.
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Online Appendix

Appendix A: Data Sources and Definitions

In this appendix, we detail the data used in the empirical motivation discussion
(Section 2) and in the model calibration (Section 4).
Population census: We use data from the 2010 Brazilian Population Census
carried out by IBGE (Brazilian Bureau of Statistics) to obtain information on
households and people living inside and outside slums. In the paper, we define slums
as housing units in “subnormal agglomeration.” According to the 2010 census, a
subnormal agglomeration satisfies three conditions: (i) it consists of a group of at
least 50 housing units, (ii) where land is occupied illegally and (iii) is urbanized in a
disordered pattern and/or lacks basic public services such as sewage or electricity.

The 2010 census interviewed all households in the country (“universe
questionnaire”) and also executed more detailed interviews on a 5% random sample
of households (“sample questionnaire”). We use data from both the universe and
sample questionnaires, as detailed here.

From the universe questionnaire, we obtained information on the characteristics
of people and households at the census tract level (Setor censitário). Apart from
obtaining information on the total number of people and households in each
census sector, we are able to identify whether or not sectors are slums (subnormal
agglomeration). Using this information, we constructed the following variables for
the cities of Rio de Janeiro and Sao Paulo:
• Total population
• Total number of households
• Number of people living in slums
• Number of households that are in slums
• Average population density of each census tract, where the density is number

of inhabitants divided by the area of the tract in Km2

• Average population density of slums
• Average number of people in households
• Average number of people in households located in slums

From the sample questionnaire, we collected data on the average labor income
per capita as well as the average age of the population. However notice that,
different from the results of the universe of the Brazilian census, the sample dataset
does not identify whether the household lives in a slum. Hence, we constructed a
proxy to identify whether or not each household lived in a slum. More precisely,
a household is considered to live in a slum if any of the following conditions is
met: it does not have a toilet; it has a lack of essential public services and utilities
(sewage, electricity, garbage collection, or piped water); there are more than four
people per bedroom. After classifying housing units as slums, we tabulated the
aforementioned income and demographic variables.
Covid RADAR — June/2020 — (www.covidradar.org.br): Covid Radar is a
collective of more than 40 companies and organizations that coordinate efforts
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to build a reliable dataset on Covid-19 in Brazil. We use this website to collect
municipality (city) data on the number of private and public intensive care units
(ICUs) in Brazil.
ANS — Agência Nacional de Saúde Complementar — March/2020: From
the ANS (National Supplementary Health Agency)—which provides legal and
administrative regulation of the private health insurance market—we obtained
municipality (city) data on the number of people covered by private health insurance
in Brazil.
Expenditures: IBGE’s Brazilian Consumer Expenditure Survey (2008–2009)
provides data on expenditure on goods. To calculate the fraction of income
spent on goods consumed outside the home, we use the following items of the
consumption basket: food away from home, public transportation, medical services,
and entertainment.
Social distancing: Inloco (www.inloco.com.br), a Brazilian technology
company, collects anonymized location data from 60 million mobile phones in
Brazil. By tracking with 3-meter precision the device’s location and movements
to different places (while ensuring user privacy), the company calculates the social
distancing index for cities (municipalities) in Brazil, including the municipalities
of Rio de Janeiro and Sao Paulo. For each municipality, the index calculates the
percentage of devices that remained within a radius of 450 meters of the location
identified as home. The index is computed daily and ranges from zero to one.

The company also measures the social distancing index for nonoverlapping areas
within the municipalities of Rio de Janeiro and Sao Paulo, called “hexagons.” Each
hexagon in Rio de Janeiro measures between 756,000 square meters and 760,000
square meters. In Sao Paulo, hexagons have between 738,000 square meters and
745,000 square meters. Rio de Janeiro has 841 hexagons and Sao Paulo 1,301.
The methodology to calculate the index for hexagons is similar: the percentage of
devices in each hexagon that remained within a radius of 450 meters of the location
identified as home.
Census tracts to hexagons: The spatial unit of analysis in Section 2 (stylized fact
2) is the hexagon provided by Inloco. To compute the number of slum dwellers and
the number of housing units in slums for each hexagon, we needed to match those
hexagons’ boundaries to the boundaries of the census tracts. Notice that each city
has more census tracks than hexagons—9,853 and 17,990 census tracts in Rio de
Janeiro and Sao Paulo, respectively. When aggregating census tracts into hexagons,
we consider that the population and households are uniformly distributed within
each census tract. Hence, we calculate the characteristic of the hexagon as the
weighted average of the census tracks’ characteristics that intersect the hexagon,
weighted by the fraction of the census track’s area that intersects the hexagon
area. See Figures A.1 and A.2 for the location of census tracks and hexagons in
Rio de Janeiro and Sao Paulo, respectively. Figure A.3 shows the location of the
510 hexagons with slums in Rio de Janeiro, and the 598 with slums in Sao Paulo.
Covid-19 data at the neighborhood level: We obtained the neighborhood-level
number of Covid-19 cases and deaths from the following websites:

www.inloco.com.br
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(a) 9,853 Census tracts in Rio de Janeiro

(b) 842 hexagons in Rio de Janeiro

Figure A.1: Rio de Janeiro: Census tracts and hexagons
Notes: The figure shows the census tracts and the hexagons for the city of Rio de Janeiro.

• www.data.rio/
• www.prefeitura.sp.gov.br/cidade/secretarias/upload/saude/COVID19_

Relatorio_SItuacional_SMS_20200529.pdf

Covid-19 data at the hexagon level: Geo-referenced data on hospitalizations and
deaths (until May 18, 2020) caused by Covid-19 and other acute respiratory diseases
for the city of Sao Paulo are from the following website: https://labcidadefau.
carto.com/. We use the cross-sectional geo-referenced data to create hexagon-
level information on Covid-19 hospitalizations and deaths.

www.data.rio/
www.prefeitura.sp.gov.br/cidade/secretarias/upload/saude/COVID19_Relatorio_SItuacional_SMS_20200529.pdf
www.prefeitura.sp.gov.br/cidade/secretarias/upload/saude/COVID19_Relatorio_SItuacional_SMS_20200529.pdf
https://labcidadefau.carto.com/
https://labcidadefau.carto.com/
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(a) 17,990 Census Tracts in São Paulo

(b) 1,301 Hexagons in São Paulo

Figure A.2: São Paulo: Census Tracts and Hexagons
Notes: The figure shows the census tracts and the hexagons for the city of Sao Paulo.
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(a) Rio de Janeiro: Hexagons with slums (in red)

(b) São Paulo: : Hexagons with slums (in red)

Figure A.3: Rio de Janeiro and São Paulo: Hexagons with slums (in red)
Notes: The figures show the location of the hexagons (in red) with slums. There are 510 hexagons
with slums in Rio de Janeiro, and the 598 with slums in Sao Paulo.
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Appendix B: Additional Tables and Figures
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Figure B.1: Event-study analysis (results without weights): Rio de Janeiro and Sao
Paulo
Note:The figure shows the results for coefficients estimated from Equation (1) without weighting
for population. Coefficients should be interpreted as a change in percentage points relative to the
base period, which corresponds to the day before each NPI. The “treated group" is composed of
hexagons with at least one housing unit in a slum. We use 841 hexagons in Rio and 1,301 hexagons
in Sao Paulo. Data are provided at the hexagon-day level. The dependent variable: social distancing
index for hexagon h on day t. Standard errors clustered at hexagon level. Confidence intervals: 95%.
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Figure B.2: Event-study analysis (share of slums as the treatment dummy): Rio de
Janeiro and Sao Paulo
Note:The figure shows the results for coefficients estimated from Equation (1). The treatment is the
share of slums in each hexagon. Coefficients should be interpreted as a change in percentage points
relative to the base period, which corresponds to the day before each NPI. Analysis at the hexagon-
day level (841 hexagons in Rio and 1,301 hexagons in Sao Paulo). The dependent variable: social
distancing index for hexagon h on day t. Standard errors clustered at hexagon level. Confidence
intervals: 95%.
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Dependent variable: Social distancing index

(i) (ii) (iii)

Post × Slum Dummy -0.0386*** -0.0429*** -0.0429***
(0.0050) (0.0021) (0.0021)

Post × Slum Dummy × Rio Dummy 0.0043
(0.0054)

Control group mean 0.2989 0.2820 0.2903

Hexagon FE Yes Yes Yes
Time FE Yes Yes Yes
Time FE × Rio Dummy - - Yes
Observations 97,684 151,504 249,188
Number of Hexagons 841 1,301 2,142
City Rio de Janeiro Sao Paulo Rio de Janeiro

& Sao Paulo

Table B.1. Difference-in-differences: Average impact of NPIs on social distancing
Notes: Each column displays the results from a separate regression. This table presents results from
the estimation of the following difference-in-difference specification: Yht = β Post × Slum Dummy
+ ωh + δt + εht, where Yht is the social distancing index for hexagon h on day t, ωh is the
hexagon fixed effect, and δt is the time fixed effects. The unit of observation is a hexagon-day. The
“treated group” is composed of hexagons with slums, while the comparison group is composed of
hexagons without slums. The treated dummy "Post × Slum Dummy" equals one for hexagons with
at least one housing unit in a slum for the days after implementation of the first NPI, and is zero
otherwise. There are 841 hexagons in Rio de Janeiro and 1,301 hexagons in Sao Paulo. Robust
standard errors (in parentheses) are clustered at the hexagon level. Observations are weighted by
the hexagon population in 2010. The value for the control group mean is for the day before the
implementation of the first NPI for each city. The regressions are for 120 days (from February 1
to May 30, 2020). Coefficients should be interpreted as a change in percentage points. Column (I)
shows the results for the hexagons of Rio de Janeiro, while column (II) presents the results for Sao
Paulo. Column (III) shows the results of a triple difference specification with all the hexagons of Rio
de Janeiro and Sao Paulo (2,142 in total), where Rio Dummy equals one if the hexagon belongs
to the city of Rio de Janeiro. The “Post × Slum Dummy × Rio Dummy" equals one for hexagons
in Rio de Janeiro with at least one housing unit in a slum for the days after the implementation of
the first NPI.
** p<0.01, ** p<0.05, * p<0.1
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Dependent variable: Covid-19 Acute respiratory disease

in logs Hospitalization Death Hospitalization Death

(i) (ii) (iii) (iv)

Slum Dummy 0.1115** 0.1010*** 0.3588*** 0.0731**
(0.0463) (0.0378) (0.0435) (0.0339)

Observations 1,301 1,301 1,301 1,301
Number of hexagons 1,301 1,301 1,301 1,301
City Sao Paulo Sao Paulo Sao Paulo Sao Paulo

Table B.2. Cross-section analysis: Correlation between slums and hospitalizations/deaths
Notes: Each column displays the results from a separate cross-section regression. This table presents
results from the estimation of the following specification: Yh = α + γIh + εh, where Yh is the
outcome variable (hospitalizations and deaths) for each hexagon h and the “Slum Dummy” Ih
equals one for hexagons with slums and zero otherwise. The unit of observation is a hexagon. There
are 1,301 hexagons in Sao Paulo. Robust standard errors (in parentheses). The dependent variables
in the regressions are the total (accumulated) number of hospitalizations and the total number of
deaths (from January 2020) until May 18, 2020. See Appendix A for more details on the data.
** p<0.01, ** p<0.05, * p<0.1

Appendix C: Laws of Motion

In the main body equation (9) describes the overall laws of motion, and equation
(10) describes the sub-part that determines the transitions for the healthy agents.
The following contains the transitions for all other types.

To account for infected people, one counts those who started the last period
healthy and get infected this period, but also those who started the last period
infected who neither develop severe symptoms nor recover:

Mt+1(i, g) = Mt(h, g)π(nt(h, g) + `t(h, g),Πt(g)) (C.1)
+Mt(i, g)(1− ϕ(0, g))(1− α(g))

People with severe symptoms include those who entered the last period infected
and do not recover but instead develop more severe symptoms, as well as severely
symptomatic individuals from the previous period who neither die nor recover:

Mt+1(s, g) = Mt(i, g)(1− ϕ(0, g))α(g) (C.2)
+Mt(s, g)(1− δt(g))(1− ϕ(1, g))

Recovered and therefore resistant individuals include those who were infected
and recover, those with severe symptoms who do not die but recover, and resistant
individuals from the previous period:

Mt+1(r, g) = Mt(i, a)ϕ(0, g) +Mt(s, g)ϕ(1, g) +Mt(r, g) (C.3)

The right-hand sides of equations (C.1) to (C.3) give the map Tj for states
j = i, s, r.
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For accounting purposes, the measure of deceased agents as a result of Covid-19
is given by new Covid deaths and those who died of it in previous periods:

Mt+1(deceased, g) = Mt(deceased, g) + (1− ϕ(1, g))δt(g)Mt(s, g),

while the number of newly infected people is given by healthy agents who get
infected:

Nt+1(i, g) = Mt(h, g)π(nt(h, g) + `t(h, g),Πt(g)).

Appendix D: Details on Calibration

D.1. Basic Reproduction Number — R0

The probability that an infected agent leaves such state is ϕ(0) + (1 − ϕ(0))α.
This is the probability of recovery and the probability that the agent switches to
the serious symptoms case. Hence, the expected amount of time one stays in state
i is

Ti =
1

ϕ(0) + (1− ϕ(0))α
.

The probability that an agent with serious symptoms leaves such state is
ϕ(1) + (1 − ϕ(1))δ. This is the probability of recovery and the death-because-
of-Covid probability. Hence, the expected amount of time one stays in state s is

Ts =
1

ϕ(1) + (1− ϕ(1))δ
.

Now, the probability that one moves from the i state to the s state is given by:

Ps =
(1− ϕ(0))α

1− (1− ϕ(0))(1− α)
.

Note that these expressions should be functions of one’s group g, but we have
suppressed this for notational convenience.

Let ñ(g) denote the amount of time an infected person of group g spends
outside. Let ` be the interaction time for people with serious symptoms. Finally,
let n̄ be the average (across groups) amount of time people spend outside. At the
outset of the disease, a measure 1 of the population is healthy.

Then, R0(g) (i.e., for an infected person of group g) is given by

R0(g) =
[
ñ(g)Ti(g) + `Ps(g)Ts(g)

]
n̄Π0.

This is the average number of people someone infects (for a person of a given
group). The economy’s R0 will be the weighted average across groups:

R0 =
∑
a

ω(g)R0(g),

where ω(g) is the weight of group g in the population.
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D.2. Computing Weekly Rates

Consider an agent who is infected with Covid-19. He may recover with probability
ϕ(0) or develop serious symptoms with probability α. These are functions of g also,
but we suppress this dependence for notational convenience. The following table
gives what happens to a measure 1 of agents who are infected right now over the
course of the next few weeks:

Week Frac. recovered Frac. still infected Frac. w/ symptoms
1 ϕ(0) (1− ϕ(0))(1− α) (1− ϕ(0))α

2 (1− ϕ(0))(1− α)ϕ(0) [(1− ϕ(0))(1− α)]2 (1− ϕ(0))(1− α)(1− ϕ(0))α

3 [(1− ϕ(0))(1− α)]2 ϕ(0) [(1− ϕ(0))(1− α)]3 [(1− ϕ(0))(1− α)]2 (1− ϕ(0))α
4 ... ... ...

Thus, the fraction of people who will develop symptoms Fs is given by

Fs = (1− ϕ(0))α+ (1− ϕ(0))(1− α)(1− ϕ(0))α+ [(1− ϕ(0))(1− α)]2 (1− ϕ(0))α+ ...

= (1− ϕ(0))α
[
1 + (1− ϕ(0))(1− α) + [(1− ϕ(0))(1− α)]2 + ...

]
= (1− ϕ(0))α

1

1− (1− ϕ(0))(1− α)
.

Solving out for α gives
α =

Bϕ(0)

1−B(1− ϕ(0))
,

where B = Fs/(1− ϕ(0)). With ϕ(0) given by the average time for recovery, one
can use the preceding formula to get α.

We can do similarly for agents with symptoms to figure out at what rate they
die. Here is the table:
Week Frac. recovered Frac. still w symptoms Frac. dead
1 ϕ(1) (1− ϕ(1))(1− δ) (1− ϕ(1))δ

2 (1− ϕ(1))(1− δ)ϕ(1) [(1− ϕ(1))(1− δ)]2 (1− ϕ(1))(1− δ)(1− ϕ(1))δ

3 [(1− ϕ(1))(1− δ)]2 ϕ(1) [(1− ϕ(1))(1− δ)]3 [(1− ϕ(1))(1− δ)]2 (1− ϕ(1))δ
4 ... ... ...

Using the same steps as earlier and denoting the fraction who die by Fd, we
get

δ =
Aϕ(1)

1−A(1− ϕ(1))
,

where A = Fd/(1− ϕ(1)).

D.3. Implementing Lockdowns in the Model

In Section 6.2, we implement a variety of shelter-at-home policies. We achieve the
desired lockdown by setting the policy parameter λ(j, g) to the value necessary to
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induce the agent to comply with the policy. The next table reports the calibrated
values of λ(j, g) for each policy:

Lockdown λp

intensity Noninfected Infected
25% 1.88 0
50% 6.45 4.46
75% 33.4 31.45

Appendix E: Sensitivity Analysis

Table E.1 provides results of sensitivity analysis in which we perturb each parameter
by 1%. We then report results for the modified benchmark and the counterfactual
with no slums. Note that the results are quite similar to the ones obtained with
our baseline parameters; see Table 3.

Table E.1 provides results of sensitivity analysis in which we perturb each
parameter by 1%. The results for the modified benchmark and the counterfactual
with no slums are quite similar to the ones obtained in our baseline (Table 3).
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ζ Π0 ϕ(0, o) ϕ(0, f) ϕ(1, o), ϕ(1, f)

Bench. No slum Bench. No slum Bench. No slum Bench. No slum Bench. No slum
Wks to peak srsly ill (slum) 10.00 – 10.00 – 10.00 – 10.00 – 10.00 –
Wks to peak srsly ill (other) 11.00 14.00 11.00 14.00 11.00 15.00 11.00 14.00 11.00 14.00
Dead p/ 1,000 LR (slum) 10.13 – 10.18 – 9.77 – 5.67 – 10.06 –
Dead p/ 1,000 LR (other) 6.56 7.47 6.65 7.58 4.68 5.00 6.15 7.47 6.53 7.43
Dead p/ 1,000 LR (all) 7.35 7.47 7.43 7.58 5.81 5.00 6.05 7.47 7.31 7.43
Immune in LR (slum), % 74.46 – 74.75 – 72.97 – 77.56 – 74.34 –
Immune in LR (other), % 39.63 46.01 40.16 46.54 42.20 46.87 38.05 46.01 39.71 46.03
Immune in LR (all), % 47.35 46.01 47.82 46.54 49.01 46.87 46.80 46.01 47.38 46.03
GDP 1year - rel to BM 1.00 1.17 1.00 1.17 1.00 1.18 1.00 1.16 1.00 1.17

δ̃1(o) δ̃1(f) ¯̀ ψ Zpub

Bench. No slum Bench. No slum Bench. No slum Bench. No slum Bench. No slum
Wks to peak srsly ill (slum) 10.00 – 10.00 – 10.00 – 10.00 – 10.00 –
Wks to peak srsly ill (other) 11.00 14.00 11.00 14.00 11.00 14.00 11.00 14.00 11.00 14.00
Dead p/ 1,000 LR (slum) 10.10 – 10.11 – 10.11 – 10.11 – 10.10 –
Dead p/ 1,000 LR (other) 6.57 7.48 6.57 7.47 6.57 7.48 6.56 7.47 6.56 7.46
Dead p/ 1,000 LR (all) 7.35 7.48 7.35 7.47 7.35 7.48 7.35 7.47 7.34 7.46
Immune in LR (slum), % 74.33 – 74.33 – 74.34 – 74.33 – 74.34 –
Immune in LR (other), % 39.68 46.00 39.69 46.01 39.71 46.03 39.69 46.01 39.70 46.02
Immune in LR (all), % 47.36 46.00 47.36 46.01 47.38 46.03 47.37 46.01 47.38 46.02
GDP 1year - rel to BM 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17

Zpriv ρ θ γ b

Bench. No slum Bench. No slum Bench. No slum Bench. No slum Bench. No slum
Wks to peak srsly ill (slum) 10.00 – 10.00 – 10.00 – 10.00 – 10.00 –
Wks to peak srsly ill (other) 11.00 14.00 11.00 14.00 11.00 14.00 11.00 14.00 11.00 14.00
Dead p/ 1,000 LR (slum) 10.11 – 10.11 – 10.11 – 10.18 – 10.05 –
Dead p/ 1,000 LR (other) 6.57 7.47 6.57 7.47 6.57 7.47 6.63 7.56 6.56 7.44
Dead p/ 1,000 LR (all) 7.35 7.47 7.35 7.47 7.35 7.47 7.41 7.56 7.33 7.44
Immune in LR (slum), % 74.33 – 74.34 – 74.34 – 74.67 – 74.14 –
Immune in LR (other), % 39.69 46.01 39.68 46.01 39.68 46.01 39.96 46.36 39.75 45.98
Immune in LR (all), % 47.36 46.01 47.36 46.01 47.36 46.01 47.65 46.36 47.37 45.98
GDP 1year - rel to BM 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17

λa λd w(o) ξf
∑

jM0(j, f)

Bench. No slum Bench. No slum Bench. No slum Bench. No slum Bench. No slum
Wks to peak srsly ill (slum) 10.00 – 10.00 – 10.00 – 10.00 – 10.00 –
Wks to peak srsly ill (other) 11.00 14.00 11.00 14.00 11.00 14.00 11.00 14.00 11.00 14.00
Dead p/ 1,000 LR (slum) 10.07 – 10.08 – 10.11 – 10.07 – 10.13 –
Dead p/ 1,000 LR (other) 6.52 7.42 6.54 7.44 6.56 7.47 6.57 7.47 6.55 7.47
Dead p/ 1,000 LR (all) 7.31 7.42 7.33 7.44 7.35 7.47 7.35 7.47 7.35 7.47
Immune in LR (slum), % 74.12 – 74.20 – 74.34 – 74.15 – 74.48 –
Immune in LR (other), % 39.42 45.72 39.55 45.85 39.67 46.01 39.73 46.01 39.59 46.01
Immune in LR (all), % 47.11 45.72 47.23 45.85 47.35 46.01 47.35 46.01 47.40 46.01
GDP 1year - rel to BM 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17

Table E.1. Sensitivity analysis
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