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Abstract
This paper investigates the importance of the age composition in the Covid-19 pandemic. We
augment a standard SIR epidemiological model with individual choices on work and non-work
social distancing. Infected individuals are initially uncertain unless they are tested. We find
that older individuals socially distance themselves substantially in equilibrium. Confining the
old even more reduces their welfare. Confining the young extends the duration of the epidemic,
with negative consequences on the old if the epidemic cannot be controlled after confinement.
Testing and quarantines save lives, even if conducted just on the young, as does separation of
activities by age. Combining policies can increase the welfare of both the young and the old.
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1. Introduction

A striking feature of the Covid-19 pandemic is the difference in death rates by age:
those above 65 have a much higher chance of dying than those aged 20-65. This
raises a number of important points: How much social distancing do these different
individuals do? What are the externalities between these age groups? How does
that interact with policy; and should one target lockdown or testing to particular
subgroups? While we explore these questions in the context of the current Covid-19
pandemic, a similar age gradient can be observed in other outbreaks such as SARS
and the main insights should carry over more generally to fast-moving epidemics
in which certain groups face higher risk.

Our tool is a calibrated economic model of the pandemic that features age
heterogeneity and individual choice regarding risky labor and leisure activities,
embedded in an SIR epidemiological model with vaccine arrival at 1.5 years.
Initial symptoms leave individuals and the government with incomplete information
whether they have Covid, rendering testing valuable. We study the equilibrium
interaction between age groups and analyze policies such as confinement, testing,
quarantining, and limited mixing to curb the spread of the disease and its costs.
We also explore to which extent age-specific policies are promising.

The model predicts that older individuals shield themselves substantially in
equilibrium, especially at the peak of the pandemic. The young also reduce work
and outside leisure, but much less so due to a lower risk of dying and the need to
earn a living. Relative to a purely epidemiological model where individuals do not
adjust their behavior, this more than halves the overall death toll and cuts it by
more than 2/3 for the elderly, at a GDP reduction of 6%.

Perhaps surprisingly, there is a positive externality from the young to the old: if
the young become more cautious, the death rate of the old increases, though overall
deaths decline. This arises in a hypothetical experiment where the young believe
that they die at the same rate as the old. The reason is that the only recourse
from the disease in the benchmark is a vaccine, and without further intervention
the pandemic peaks prior to its arrival. More caution by the young extends the
duration of the pandemic, making it more costly for the old to shield themselves.
This externality has powerful consequences for policy.

Confinement of the population has to be well designed. Short and mild
lockdowns have little or even negative effects, as the disease rebounds before a
vaccine arrives. The old also find it more costly to shield themselves as the disease
lasts for longer. This leads to more deaths and depresses GDP. This happens when
all are mildly confined for short periods, and is exacerbated when confining just
the young. Harsher and longer lockdowns can save some lives by delaying the peak
and moving it closer to the vaccine arrival. But the number of lives saved is still
modest compared to the enormous economic cost of these policies. They tend to
reduce welfare for all, including the old who gain most in terms of lives saved.
If confinement lasts until the arrival of a vaccine, the old actually benefit both
in terms of saved lives and welfare, while for the young it saves lives but at a
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cost to utility due to lost income. No shelter-in-place policy alone raises average
welfare, but some come close which gives hope that combined with non-modelled
benefits (such as provision of masks, learning about better treatments) the best
confinement policies will be welfare enhancing.

A particular confinement policy that has attracted attention in other work
actually saves lives at no cost to GDP: confining only the elderly. These individuals
do not work but have a high risk of dying. While they are already very
careful voluntarily, further mandatory confinement of just the old saves additional
lives among this group, leaving the young virtually unaffected. While seemingly
attractive, we find that such interventions reduce the welfare of the elderly. The
reason is intuitive: what is optimal behavior for one elderly person remains optimal
for all elderly together unless their joint behavior affects aggregates such as the
overall risk of infection. But if the group is small, the latter effect is also small,
and one cannot improve upon their own choices. The elderly are a small group
precisely because they are so careful: they are 16% of population, but only 7% of
steady-state interaction because they do not need to work, and only 1.9% of social
interactions at the peak of the pandemic because of their additional precautions.

Most confinement scenarios - including confinement of the elderly - would be
preferred by individuals to a purely epidemiological scenario where the behavior is
fixed as in normal times. But relative to voluntary optimal behavior, confinements
are very costly and only beneficial when designed very carefully. So what are other
options? Separating some activities such as shopping times by age group does save
lives, but increases deaths among the young and reduces their labor supply because
they are operating in a riskier environment.

Testing on the other hand is very beneficial if carried out in large scale. If
one could test all individuals who are unsure of their Covid status with tests that
provide immediate results, this would reduce deaths by 35% even without further
interventions and with slight improvements to GDP. The reason is that individuals
that are told they have Covid have some partial altruism and reduce their social
interactions in our model. This frees up others to take more risk and increases their
labor supply and their demand for goods that complement outside leisure (e.g.,
restaurant meals). This requires a testing capacity of 5.6% of the population in
a week, though. If one additionally quarantines the infected, the same reductions
in deaths can be achieved by testing only half the population, requiring a test
capacity of 2.6%. If one could test everyone and apply quarantines, this would stop
the outbreak on its tracks, yielding hardly any deaths and GDP improvements of
6%, at a testing capacity of 5%. These are welfare-improving measures, though the
costs of testing capacity lies outside of the model and is not accounted for here.
Yet, we calculate the increase in GDP per test performed and find it is sizeable,
between 300 and 1500 dollars, which should easily cover the cost of the test. Further
note that the number of tests are an upper bound that could be reduced through
contact tracing. The benefits of testing are only minimally reduced if one just tests
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the young, as the old are few and careful and hardly affect the dynamics of the
disease.1

We also explore the impact of combined policies, particularly focusing on
milder versions of them that are probably more likely to be implemented. Such
combinations have strong effects on curtailing the number of deaths, even compared
to each policy in isolation. We find that combining partial but widespread testing
with a medium strength lockdown until vaccine arrival essentially eradicates the
disease. This policy benefits the old substantially but reduces the welfare of the
young who bear the majority of the costs compared to only testing. On the other
hand, combining the same amount of testing with an even milder lockdown that
also lasts until a vaccine arrives cuts deaths by 60% (or about 800,000 deaths
averted in the US). This combined policy in fact improves the welfare of both the
young and the old beyond testing alone.

The next section reviews the pre- and post-Covid literature. It makes clear
that there is little pre-Covid work on how to calibrate epidemiological models
with behavior. We draw on some experiences from Greenwood et al. (2019,
2017, 2013) for the HIV/AIDS epidemic. There are clearly many differences
and novel modelling choices in the current setting, however, so results need to
be viewed with caution. Regarding the Covid literature, most works focus on
homogeneous agents. Those papers that have age heterogeneity do not model
individual behavior, which is central to our benchmark and to the effects of our
policies. Few papers have testing, and only combine this with optimal behavior. We
differ by taking insights from epidemiology that agents have some altruism, which
changes some results, as well as having age heterogeneity. Section 3 outlines the
model, followed by the benchmark calibration (Section 4), baseline results (Section
5), and policy experiments (Section 6). The online appendix discusses alternative
scenarios without vaccine, with limited hospital beds, without altruism, and other
features. These affect the quantitative numbers, but leave most of the qualitative
insights unchanged. Section 7 concludes.

2. Literature Review

This paper contributes to the literature that combines epidemiological models in
the style of Kermack and McKendrick (1927) with equilibrium behavioral choice.
In economics, efforts to incorporate behavioral responses to disease progression
through equilibrium models have mostly been theoretical. Such works have long
pointed out a negative externality of too little prevention efforts by self-interested
agents; see, e.g., Kremer (1996) for SI models, Quercioli and Smith (2006)
for SIR models, and more recently Toxvaerd (2019). These studies consider

1. Obviously one might want to test the severely ill old to identify them correctly for treatment
as having Covid. We do not model this medical necessity.
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homogeneous populations, though Kremer (1996) also considers heterogeneous
preferences for risky activities and shows that increased activity of the low-activity
group can eradicate the disease. In our setting differences in activity are partially a
consequence of different death rates and we obtain very different results: increases
in activity of the more careful (i.e., at-risk) group increases deaths in a no-vaccine
setting.2

There are few quantitative economic models of disease transmission that
predate the Covid crisis. Greenwood et al. (2019) develop a heterogeneous-agent
choice-theoretic equilibrium model for the HIV/AIDS epidemic and use it to
analyze different mitigation policies. Within this framework, Greenwood et al.
(2017) explore particular channels of selective mixing by relationship type, while
Greenwood et al. (2013) allow for incomplete information in infection status. In
these works, the behavioral response of agents is crucial for the results of different
policies. Chan et al. (2016) argue in a structurally estimated model that behavioral
adjustments matter for the valuation of medical innovations. Keppo et al. (2020)
expand Quercioli and Smith (2006) to a calibrated homogeneous-agent model and
argue that a substantial behavioral elasticity is necessary to match the Swine Flu
and the Covid-19 pandemic.

In the great influx of recent economics papers studying different aspects
of Covid-19, most consider homogeneous populations. Some analyze optimal
containment policies that trade off economic well-being of living individuals versus
lost lives (Alvarez et al. (2020), Eichenbaum et al. (2020a), Farboodi et al. (2020),
Garobaldi et al. (2020), McAdams (2020)). Other papers introduce uncertainty
about one’s infection status and the role for testing (Berger et al. (2020), von
Thadden (2020), Piguillem and Shi (2020)). Only Eichenbaum et al. (2020b)
combine testing with individual choices about social distancing as in our paper.
Unlike our setting, however, infected individuals display no altruism and become
more reckless if tested, which renders testing counter-productive unless combined
with quarantines.

Our paper differs from these in its focus on a key heterogeneity: different ages
and, hence, different risk groups. The are a few other studies that incorporate
age differences: Favero et al. (2020) and Gollier (2020a) argue that re-opening
should focus on the young while shielding the old, Gollier (2020b) argues that herd
immunity has less deaths when built on the young, Glover et al. (2020) analyze
how a blanket lockdown affects young and old agents differently and how this leads
to disagreement on optimal policy, Alon et al. (2020b) argue that shielding the old

2. There are many differences between these papers: Kremer (1996) considers a steady-state SI
model without vaccine with standard incidence common in HIV papers, while ours is a dynamic
SIR model with mass action incidence common to Covid-19 papers and the comparable no-vaccine-
arrival case is a robustness check. Other work that considers heterogeneity includes Galeotti and
Rogers (2012) who study two identical populations but with non-random mixing patterns, and
work on transmission in networks where individuals occupy different positions (e.g., Acemoglu et al.
(2016)).
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while the young work is even more important in developing countries. Acemoglu
et al. (2020) characterize the optimal frontier between GDP and lives lost in a
model with three age groups and argue that the tension between lives saved vs
GDP lost can be best addressed with targeted group-specific policies.3 Except for
the latter, these papers do not consider uncertainty about the infection status nor
testing. They assume that individual behavior can be affected directly through
policy, but is otherwise fixed, and usually trade off lost production vs lives saved.
This implies large benefits to confinement of the elderly who are at risk but do
not produce. Our work focuses on voluntary behavioral change which has been
empirically found to be a large driver behind social distancing (e.g., Maloney and
Taskin (2020)) and how this interacts with age-specific policies. In our model the
elderly confine themselves voluntarily and further mandatory confinement lowers
their welfare.

On a more empirical side Kuhn and Bayer (2020) suggest differences in the
amount of interaction between old and young as a possible explanation for the
cross-country differences in death rates. We take up this idea about selective mixing
as part of our policy analysis.

3. Model

The general setup of our model is in discrete time. The economy is populated by
a continuum of ex-ante identical agents of two types: young y and old o, so that
age a ∈ {y, o}.4 Agents work, enjoy leisure outside the home and home hours. In
the presence of the coronavirus, denote the agent’s status by j. A healthy agent
is denoted by j = h. By spending time outside the house, the agent may catch
a disease, which may be Covid-19 or a common cold. Both lead to mild "fever"
symptoms. These agents can be tested for coronavirus with probability ξp(a), where
the subscript denotes that this is a "policy" choice of the government, which could
be time-dependent. With complementary probability they are not tested and are
therefore unsure about the source of their symptoms. Call this fever state j = f .
A tested individual knows for sure whether they are infected by Covid-19. For
simplicity, we also assume that infected individuals get to know their status after
one period of uncertainty in case they are not tested. If the agent knows he has
Covid-19, denote this by j = i. Conditional on being infected, they can develop

3. Brotherhood et al. (2020) extend our framework to study heterogeneity on income and housing
arrangements in developing countries (including slums). Fernández-Villaverde and Jones (2020)
study many countries and cities to analyze possible reopening scenarios. While there are no explicit
economic choices, behavioral adjustments are captured through an exogenous contact function
which changes over time as the disease spreads.
4. With minor notation changes the theoretical model can accommodate any number of age
groups, but for transparency we focus on just two. This is in line with Acemoglu et al. (2020) who
highlight large benefits from separately targeting the elderly and the working age population but
little further improvements in sub-dividing those who work.
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more serious symptoms, a status denoted by j = s. This happens with probability
α(a). If the agent develops serious symptoms, he can die with probability δt(a),
on top of the natural death probability δ(a) in the absence of the pandemic.5 The
Covid death rate is time-dependent because the death rate for individuals who
obtain a bed in an intensive care unit (δ̃1(a)) is lower than the death rate for those
who do not (δ̃2(a)), and intensive care bed shortages depend on the state of the
pandemic. The agent can recover from the disease with probability ϕ(j = s, a).
If the agent recovers, he becomes immune (or resistant) to future infections, a
status denoted by j = r.6 Thus, j ∈ {h, f, i, s, r}. Agents discount the future at
a common factor β̃, but since the natural survival probability ∆(a) = 1− δ(a) is
age-specific, their effective discount factor is β(a) = β̃∆(a).

For production and leisure each agent is endowed with one unit of time per
period. This can be divided into work hours n, leisure outside the house ` and hours
at home d ("domestic" leisure). The agent time constraint is thus:

n+ `+ d = 1. (1)

The agent enjoys utility from consumption c, a composite leisure good when it
leaves home g, and hours spent at home d. The good g is produced using hours `
and buying “intermediate” goods x according to g = g(x, `). We normalize the
utility after death to zero and capture the bliss from being alive through the
parameter b. The utility function is given by:

u(c, g, d; j, a, p) = ln c+ γ ln g + b+ [λd + λ(j) + λp(j, a)] lnd.

The term λ(j) expresses an additional preference for staying at home when
being infected, and is a simple way of capturing altruism. We assume two levels:
λ(s) = λ(i) = λa and λ(r) = λ(h) = 0, so that individuals who transmit the virus
are altruistic and the others have no need for that.7 Individuals in the fever state
are unsure whether the are infected or not, and λ(f) is a weighted average of
these two levels, with weights equal to their belief of being infected with Covid.
We suppress the dependence on the belief for notational convenience. λp(j, a) has
a similar role, but from the point of view of the government.8 This captures simple
policies that confine everyone to staying at home (λp(j, a) = λ̄p), but can also

5. We do not add a birth process to the model as this is unlikely to be important over the time-
frame of the pandemic. The death rate is mainly included to account for differences in effective
discount factors between the young and the old.
6. While in reality permanent immunity is unlikely, immunity in the short run appears quite possible.
As long as immunity lasts until a vaccine is available, all our results go through.
7. This way of modeling partial altruism is of course a shortcut. We discuss in Section 4 how we
discipline this parameter.
8. Variables with an underscore “p” are policy instruments that can be used by the government.
With a slight abuse of notation, let pt denote the set of policies the government undertakes at
period t.
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capture age-dependent confinements (λp(j, a) = λ̄p(a)), quarantines of those who
have tested positive (λp(i, a) = λ̄p, λp(j, a) = 0 for j 6= i) and more.

The wage per unit of time worked is denoted by w. Old agents get a fixed
retirement income w̄. Total earnings are then defined as follows:

w(a, n) =

{
wn if a = y

w if a = o.

The budget constraint of the agent is thus given by:

c+ x = w(a, n). (2)

Infections happen to healthy people (j = h) when they leave their house. The
longer they spend outside, the riskier it gets. Per hour outside the house, the
transmission risk Πt(a) is time-varying and depends on the number of infected
people and how much time these people spend outside, as discussed later. So the
probability of getting infected this period is

π(n+ `,Πt(a)) = (n+ `)Πt(a).

Now, an agent might also catch a common cold, which happens with probability

π∗(n+ `) = (n+ `)Π∗.

The probability that the agent catches either disease is

πf (n+ `,Πt(a)) = π(n+ `,Πt(a)) + π∗(n+ `),

which implicitly assumes that these are mutually exclusive events.9 If this happens
and the agent is not tested (probability 1− ξp(a)), the agent is in the fever state
j = f for one period in which he cannot distinguish between the common cold and
Covid-19. He assigns probability Πt(a)/(Πt(a) + Π∗) to having Covid-19. If he is
tested (probability ξp(a)), he will know immediately whether he is infected (j = i)
or not (j = h). Otherwise he will learn at the end of the period whether the fever
symptoms were due to coronavirus or not.

Finally, assume that a vaccine comes along in period T ∗. With the vaccine,
nobody gets infected with Covid-19 anymore. That is, Πt(a) = 0, for t > T ∗.10

9. This is a good approximation when the probability of either event is sufficiently small, in which
the chance of getting both becomes negligible.
10. The results for the case case in which a vaccine never arrives are in Appendix D.2.
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The value functions for healthy agents that are susceptible to future infections
is given by:

Vt(h, a) = max
c,x,n,`,d

u(c, g(x, `), d;h, a, pt)+ (3)

β(a)[1− πf (n+ `,Πt(a)) + π∗(n+ `,Πt(a))ξpt(a)]Vt+1(h, a)+

β(a)ξpt(a)π(n+ `,Πt(a))Vt+1(i, a)+

β(a)(1− ξpt(a))πf (n+ `,Πt(a))Vt+1(f, a)

s.t. (1) and (2).

The first line captures the utility from consumption and leisure. If the agent has no
fever or has fever but is tested and healthy, he continues into the next period as a
healthy person, captured in the second line. The third line captures the continuation
for a feverish person who gets tested and had been infected, and the fourth line
corresponds to the fever state (fever symptoms and no test).

The value function for an agent who knows that he is infected with coronavirus
but has not developed severe symptoms is given by:

Vt(i, a) = max
c,x,n,`,d

u(c, g(x, `), d; i, a, pt) + β(a)ϕ(0, a)Vt+1(r, a)+ (4)

β(a)(1− ϕ(0, a))α(a)Vt+1(s, a)+

β(a)(1− ϕ(0, a))(1− α(a))Vt+1(i, a)

s.t. (1) and (2).

The last term in the first line captures the case in which the agent recovers from
the disease and becomes resistant to the virus. The second line gives the value for
the case in which the agent does not recover and develops serious symptoms. The
third line is the case in which the agent does not recover and does not develop
severe symptoms and, thus, remains infected.

To define the value for an agent in the fever state, it is convenient to denote
by Ṽt(c, x, n, `, d;h, a) the terms in lines two to four on the right hand side of
(3), and by Ṽt(c, x, n, `, d; i, a) the corresponding terms in (4). They represent the
continuation values conditional on choices made this period, both for the healthy
and the infected. Those in the fever state simply get their current utility and the
weighted average of these continuation values, weighted by their belief of being
infected with Covid:

Vt(f, a) = max
c,x,n,`,d

u(c, g(x, `), d; f, a, pt) + (5)

Π∗ Ṽt(c, x, n, `, d;h, a)

Πt−1(a) + Π∗
+

Πt−1(a) Ṽt(c, x, n, `, d; i, a)

Πt−1(a) + Π∗

s.t. (1) and (2).

For individuals with severe symptoms we set the flow utility equal to that of
death (i.e., to zero) to account for the harsh nature of the disease at this stage.
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Obviously they can enjoy the utility of normal life again if they recover. These
agents provide no labor (n = 0) but we assign an exogenous level of "outside" time
(` = ¯̀

s) to account for the infection burden that they impose onto their carers.
The value function for a person with symptoms is:

Vt(s, a) = β(a) [ϕ(1, a)Vt+1(r, a) + (1− ϕ(1, a))(1− δt(a))Vt+1(s, a)] (6)
s.t. (1) and (2).

This captures the case of recovery as well as the chance of remaining with severe
symptoms, and the continuation value after dying is set permanently to zero.

Finally, an agent who has already recovered and is resistant to the virus enjoys
utility:

Vt(r, a) = max
c,x,n,`,h

u(c, g(x, `), d; r, a, pt) + β(a)Vt+1(r, a) (7)

s.t. (1) and (2).

To define the laws of motion, denote the measure of agents of each type j of
age a in period t by Mt(j, a). LetMt be the set of these for all j and a. Further,
let nt(j, a) and `t(j, a) denote their times spent outside the house in equilibrium.
Let Nt be the set of these equilibrium time allocations in period t for all j and a.
The law of motion is a mapping from the state vector and equilibrium actions and
the infection rates in period t into the number of agents of each typeMt+1 in the
next period. Call this map T , so that

Mt+1 = T (Mt,Nt,Πt(o),Πt(y)). (8)

It simplifies the accounting to introduce two separate sub-states of the fever
state: j = fh for those with fever who are healthy (called fever-healthy) and j = fi
for those who are infected with Covid-19 (called fever-infected). Agents do not
know their sub-state, obviously, and therefore act identically in both states. We
continue to denote by state j = f all agents who have a fever, which encompasses
those in fi and fh.

As an example of the laws of motion for this economy, consider the number of
healthy agents next period, which is given by

Mt+1(h, a) (9)
= Mt(h, a)∆(a) [1− πf (nt(h, a) + `t(h, a),Πt(a)) + π∗(nt(h, a) + `t(h, a),Πt(a))ξpt(a)]

+Mt(fh, a)∆(a) [1− πf (nt(f, a) + `t(f, a),Πt(a)) + π∗(nt(f, a) + `t(f, a),Πt(a))ξpt(a)]

where the second line captures all situations in which healthy individuals from last
period remain alive and healthy, as explained in connection to value function (3).
The third line resembles the second except that it uses the time allocations of those
in the fever state. It accounts for those who entered the period fever-healthy and
continue to remain healthy during this period. The right hand side of (9) gives the
map Th for the healthy agents. Appendix A provides the analogous laws of motions
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Tj for agents in the other states j = fh, fi, f, i, s, r, and for completeness also for
Covid deaths and new infections. The aggregate mapping T is then the vector of
the Tj for all states j and ages a.

Aggregation: output, infectiousness, and death: Aggregate output in the
economy in a given period is given by the time young individuals spend at work in
equilibrium multiplied by their wage rate:

Qt =
∑
j

wnt(j, y)Mt(j, y). (10)

For many of the exercises we aggregate these weekly output measures to get overall
GDP measures for longer time periods (e.g. year).

To calculate the aggregate probability of getting infected per fraction of the
period spent outside, observe that the number of infected people times their average
time spent outside the house times an exogenous susceptible-infected transmission
rate Π0 yields a rate of infection of:

Π̂t(a) = Π0

∑
ã,j∈{fi,i,s}

(nt(j, ã) + `t(j, ã))Mt(j, ã) (11)

which we assume to be age-independent in light of no evidence to the contrary.
This can be rationalized by assuming a unit amount of common space in which
agents are distributed uniformly, so that within each subunit of space an individual
encounters the number of infected people represented by the sum in (11), and
each transmits the virus at the exogenous rate. Expression (11) then corresponds
to the probability of getting infected when this number is close to zero, which
happens if either the time-weighted number of infected people or the exogenous
transmission rate is low. A low number of infected people happens in particular
early in an pandemic. To match the basic reproductive number (R0), calibrations
tend to keep Π0 high, which can push (11) to exceed unity once infection levels
peak. This arises because (11) does not take into account the probability of getting
infected multiple times within a period, which is irrelevant if this rate is low but
becomes important at the peak. Shortening the period length is counter-productive
in our setting as this would also reduce the length of uncertainty of fever individuals
in our model.

Therefore we explicitly account for multiple infections within a period in a way
that keeps belief updating simple but keeps our infection probabilities in line with
other epidemiological models. Assume that the time outside the house represents
the probability of entering a common space where one can get infected, and with
the complementary probability the person is outside but in a safe space, but the
individual does not know which space he is in. If in the common space, interpret
(11) as a rate of encountering infections as in continuous time epidemiological
models. Conditional on being in common space, one can integrate to a (weekly)
unit of time the probability of having at least one encounter that leads to infection:

Πt(a) = 1− e−Π̂t(a). (12)
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When Π̂t(a) is small, this reduces approximately to Πt(a) ≈ Π̂t(a). This is
constructed under the standard random mixing assumption where everyone meets
everyone else with equal probability. In the policy analysis of Section 6 we study
government interventions that separate parts of the outside activities by age group,
leading to selective mixing and age-specific infection risk.

The probability that an agent with serious symptoms (j = s) dies of Covid-19,
δt(a), can vary over time. This may happen as the recovery probability depends on
the supply of hospital resources (e.g. ICU beds) versus the demand for treatment
(number of patients with serious symptoms). Let Z denote the total number of
hospital beds and Mt(s) the total number of agents with serious symptoms in
period t. Recall that δ̃1(a) denotes the probability of dying if one is allocated a
hospital bed and δ̃2(a) if not. Assume hospital beds are allocated randomly to
patients. Hence, the probability of dying δt(a) is given by:

δt(a) = δ̃1(a) min

{
Z

Mt(s)
, 1

}
+ δ̃2(a) max

{
Mt(s)− Z
Mt(s)

, 0

}
. (13)

A rational-expectations equilibrium in this economy with initial number
of agents M0(j, a) consists of a sequence of infection and death rates
{Πt(a), δt(a)}∞t=0 and equilibrium time allocations {nt(j, a), `t(j, a)}∞t=0 such that
these time allocations are part of the solutions to the individual optimization
problems (3) to (7), and the resulting law of motion (8) and their aggregation
in (12) and (13) indeed give rise to the sequence {Πt(a), δt(a)}∞t=0.

4. Calibration

This section describes how we discipline the parameters of the model. Let the time
period be one week. Regarding demographics, suppose the old people (who do not
work in the model) are those above 65 years old. According to the US Census
Bureau, this fraction is 0.16.

We start with the calibration of health-related parameters. These parameters
are summarized in Table 1, while Table 3 shows how the model fits the data
targets. Start with the common cold. According to Heikkinen and Järvinen (2003),
the average American has between two and four colds every year. Suppose an agent
in our model has an average of three colds per year. This implies a weekly infection
rate of 0.058.11 In the model, this implies Π∗ = 0.107.

The parameter Π0 controls how infectious Covid-19 is. We pick Π0 in order to
match the basic reproduction number (R0) of Covid-19. R0 represents the average
number of new infections that a random person who gets infected at the start of
the pandemic is expected to generate over the course of his disease. In our model,

11. For details, see Appendix B.1
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this is closely related to Π0.12 We thus pick this parameter to generate an R0 of
2.5. This falls within the range of values that Atkeson (2020) uses and close to the
range Remuzzi and Remuzzi (2020) report. The corresponding parameter value is
then Π0 = 11.56.

Once the agent is infected with the coronavirus (j = i), there is a probability
of recovering from the disease (ϕ(0, a)), and if not recovered, a probability for
developing symptoms (α(a)). Set α(a) = 1 such that an infected agent spends
one week with mild symptoms and recovers (probability ϕ(0, a)) or develops more
serious symptoms (probability 1− ϕ(0, a)). These numbers are close to what the
WHO reports.13 The parameter ϕ(0, a) then also controls the fraction of agents
that move to an ICU. CDC (2020) reports age-specific hospitalization (including
ICU) rates for Covid-19 patients. A fraction of 3.33% of patients aged 20-64
required being moved to an ICU, whereas this number was 9.1% for those above
65 years. We thus set ϕ(0, y) = 0.967 and ϕ(0, o) = 0.909.

We treat agents with serious symptoms as those that are in an Intensive Care
Unit (ICU). As discussed above, we assume they cannot work and do not make
any decisions. We assume a flow utility level of 0, i.e. the same as death. These
individuals still interact with others (e.g. doctors and nurses) for a fraction ¯̀

s of
their time. Butler et al. (2018) estimate that patients in ICUs spend about 7.6
hours a day interacting with other people. As these patients are under carefully
controlled environments, we assume their infectiousness is half as much as others.
Thus, set ¯̀

s = (7.6/24)/2 = 0.158.
Agents with serious symptoms (j = s) may die (probability δ(a)) or recover

(ϕ(1, a)). Verity et al. (2020) reports that patients with severe symptoms were
discharged after an average of 24.7 days, or 3.52 weeks. This yields ϕ(1, a) =
1/3.52 = 0.284. CDC (2020) also reports age-specific death rates conditional on
being hospitalized in the ICU: 14.2% for those aged 20-64 and 65% for those above
65 years old. Given our time period of one week and the recovery rate, this yields
weekly death rates of δ(y) = 0.065 and δ(o) = 0.738.

For older agents, Arias and Xu (2019) report an annual survival rate for
individuals above 65 years old of 0.95. Thus, set the weekly survival rate for old
agents to ∆(o) = 0.951/52 = 0.999. For younger agents, set ∆(y) = 1.

Recall that a vaccine arrives after T ∗ periods. After this, nobody gets infected
with Covid-19 anymore. Set T ∗ = 78, such that a vaccine arrives after one year
and a half (78 weeks).14

Now turn to the preference parameters, see Table 2 for a summary. Let the
leisure goods g be produced according to g(x, `) = [θxρ + (1− θ)lρ]1/ρ. The

12. For details, see Appendix B.2.
13. See the Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19).
14. Of course there is uncertainty about when a vaccine will be available. Following the medical
discussion, our impression is that 1.5 is an optimistic but plausible scenario. See NYT, ‘’How Long
Will a Vaccine Really Take”, April 30, 2020 and Hanney et al. (2020). Modelling a stochastic vaccine
arrival instead, as Farboodi et al. (2020) do, would likely not change our qualitative results.
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Parameter Value Interpretation
0.16 Fraction of old in Population

Π∗ 0.107 Weekly infectiousness of common cold/flu
Π0 11.56 Infectiousness of Covid-19
α 1 Prob(serious symptoms | no recovery from mild)

ϕ(0, y) 0.983 Prob of recovering from mild Covid-19, young
ϕ(0, o) 0.954 Prob of recovering from mild Covid-19, old
ϕ(1, y) 0.284 Prob of recovering from serious Covid-19, young
ϕ(1, o) 0.284 Prob of recovering from serious Covid-19, old

¯̀ 0.158 Infections through the health care system
δ(y) 0.065 Weekly death rate (among critically ill), young
δ(o) 0.738 Weekly death rate (among critically ill), old
∆(y) 1 Weekly survival (natural causes), young
∆(o) 0.999 Weekly survival (natural causes), old
T∗ 78 One and a half year (78 weeks) to vaccine arrival

Table 1. Calibration – Disease Parameters

Parameter Value Interpretation
ρ -1.72 Elasticity of subst. bw leisure time and goods
θ 0.033 Production of leisure goods
γ 0.636 Rel. utility weight - leisure goods
λd 1.565 Rel. utility weight - leisure at home
λa 2.937 Rel. utility weight - leisure at home (infected)
b 6.5 Value of being alive
β̃ 0.961/52 Discount factor
w 1 Wage per unit of time
w 0.214 Retirement income

Table 2. Calibration – Economic & Preference Parameters

parameter ρ controls the elasticity of substitution between leisure time outside
the home and leisure goods. Following Kopecky (2011), set ρ = −1.72, which
implies an elasticity of 0.368 so that goods x and leisure time ` are complements.
The parameters γ (utility weight of leisure goods g), λd (utility weight of leisure
time at home) and θ are jointly chosen to match the following three data targets:
i) a 40-hour work week (n = 40/112 = 0.357), ii) 17.3 hours spent on non-working
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Moment Model Data (ranges)
Common colds per year 3 2-4
R0, Covid-19 2.5 1.6-4
% of infected in critical care, young 3.33 3.33
% of infected in critical care, old 9.10 9.10
% in critical care that dies, young 14.2 5-24
% in critical care that dies, old 65.0 40-73
Weeks in critical care, young 3.5 3-6
Weeks in critical care, old 3.5 3-6
Hours/day interacting while in ICU 3.8 7.6 (controlled)
Life expectancy (natural), young ∞ 79
Life expectancy (natural), old 20 20
Hours of work per week 40
Hours of outside activities per week 17.3 17.3
% of income on goods outside 12.5 11.1-16.1
% ↑ in time @ home - outset of Covid-19 15.7 15.7 (Sweden)
% ↑ in time @ home - mild symptoms 50 50 (H1N1)
Replacement rate - social security, % 60 46-64

Table 3. Moments – Model vs. Data

outside activities (` = 17.3/112 = .154),15 and iii) a fraction of income spent on
x equal to 12.5% (x/wn = .125).16 Set the discount factor to β̃ = 0.961/52.

The parameter λ(i) = λa denotes the increase in the marginal utility of staying
at home for agents that know that they are infected with Covid. Government
advice is clearly to stay at home, and this parameter captures to which extent
time at home actually increases absent further legal enforcement. Epidemiologists
have been interested in this during other epidemics such as swine flue (H1N1).
In their surveys the overwhelming majority is willing to comply voluntarily. Rizzo
et al. (2013) is the only study that also reports actual adherence, which averaged
roughly 50% across Italy, Finland and Romania. We therefore choose λa to match
an increase in time spent at home by 50%.17

In the model, the parameter b represents the value of being alive over and
above the value of consumption. This influences how ‘’afraid” agents are of dying.
In order to discipline this parameter, we look at how agents changed their behavior

15. This comprises the average hours per week spent on purchasing goods and services; caring for
and helping nonhousehold members; organizational, civic, and religious activities; socializing and
communicating; arts and entertainment (other than sports); sports, exercise and recreation; and
travel related to leisure and sports. The data comes from the American Time Use Survey (ATUS).
Note that, in our model, the old do not work. In our calibration, the old spend 23 hours in leisure
outside; i.e. more than the young. This is consistent with the data; the old spend 19.5 hours in
leisure outside. If we include the small reported time at work, this number rises to 25.2 hours per
week in the data.
16. This comprises expenditures on food away from home, public transportation, medical services
and entertainment. The fraction used comes from Consumer Expenditure Survey (CEX).
17. We analyze the case with no altruism (i.e. λa = 0) in Appendix C.1.
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Moment Model Data (ranges)
Infection fatality rate (IFR), % 0.71 0.5-14
Daily growth of infections, outset of Covid-19, % 15 15-50
Deaths, old/all, % 37 ≈80

Table 4. Non-Targeted Moments – Model vs. Data

at the outset of the pandemic. The issue is that, in most places, this coincides with
active policies by the government. In order to isolate this, we use Google mobility
data for Sweden, a country that did not implement severe mobility restrictions.18

We thus choose a value for b in order to generate the rise in time spent at home
in the beginning of the pandemic similar to that observed in Sweden, which was
about 15.7%.

Normalize the hourly wage to w = 1. According to Biggs and Springstead
(2008), the replacement rate for social security benefits for a median-income
household ranges between 46% and 64%. Set the replacement rate in the model
to 60%, a value towards the upper bound of the range since households may
have savings outside the official social security income. This implies w = .6wn =
.6× .357 = .214.

For now, assume that Z = 1, such that there are enough ICU beds to treat
everyone (but see Appendix D.1 for the analysis of bed constraints).

5. Baseline Results

Our baseline is an economy with Covid-19 but no policy interventions. We begin
with a word of caution. Data on many relevant dimensions of the model is still
scarce and, even if they exist, wide ranges are reported. We know especially little
about the infection fatality rate because it is unclear what fraction of the population
is already infected. We thus did not use some important dimensions as calibration
targets. Accordingly, all quantitative results should be interpreted with caution. To
give the reader a sense what our model implies along these important dimensions,
we start by reporting moments from our baseline model that were not targeted and
compare to empirical estimates, where available, see Table 4.

Most empirical estimates report the case fatality rate (CFR), i.e. the number
of deaths per confirmed Covid-19 case, which clearly differs from (and is lower
than) the infection fatality rate (IFR) if testing is imperfect. Estimates of CFR
vary immensely, ranging from 0.5 in Iceland to 14.5 in Italy as of June 27, 2020.19

18. For details, see Appendix B.3
19. See the University of Oxford’s ourworldindata.org. A recent study from Ischgl finds an IFR
as low as 0.24 based on testing 79% of the population for antibodies. See The Telegraph, “High
coronavirus immunity found in ’super-spreader’ Austrian ski resort,” June 25, 2020.
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Week 1 2 3 4 5 6 7 8
Deaths, old/all, % 70.24 67.42 65.73 64.24 62.04 58.30 52.98 47.06

Table 5. Deaths – Old vs. Young

We are clearly on the low side here. However, as more antibody tests become
available, it may turn out that many more people were already infected than is
currently believed, which would bring the case fatality rate down.

Second, the daily growth rate at the outset of the pandemic in the model is
15%. In the data, these numbers vary greatly. Countries like Australia report an
initial daily growth rate of 15%; whereas the counterpart for Spain is around 30%.
In countries like Italy and Norway, it reached 50%.20 Note that, though our model
generates a number in the lower range, in reality, the initial rise in the data was
probably partly due to a ramp-up in testing as well.

Third, in the benchmark only 37% of all deaths are accounted for by those over
65. Some of the available empirical estimates put this number much higher, as high
as 80%.21 Note that the 37% comes from the entire duration of the pandemic; in
our calibration, after one and a half year when the vaccine comes along. Table
5 reports the fraction of overall deaths accounted for by old agents for the first
weeks of the pandemic in the model. Note that in the first two weeks, more than
two thirds of deaths are of old individuals. After eight weeks, still roughly 50% of
deaths come from this group, even though they represent only 16% of the overall
population. Only as time goes by and the disease develops, more young people die
and it increases their relative death rate.

Table 6 reports our baseline results. Again, this concerns the economy with
Covid-19 but no policy intervention (Column Benchmark). Note that it takes about
14 weeks for an unchecked pandemic to reach its peak in terms of seriously ill
patients. Recall that a vaccine arrives after 78 weeks. As can be seen in Figure
1, by this time, the pandemic has essentially taken its course. The death count
is substantial: 3.93 deaths per 1,000 people. This number masks considerable
age heterogeneity: the death rate is 9.00 per 1,000 old individual and 2.96 for
the young.22 Note that most of these deaths happen within the first year of the
pandemic, related to the quickness with which it reaches its peak. In the long run,
about 54% of the population becomes immune to the disease; i.e. were infected at
some point and recovered.

We compare the benchmark results to an epidemiological version of the model
(Column Epidem. in Table 6), which assumes there is no change in behavior

20. Again, see the University of Oxford’s ourworldindata.org website.
21. See https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm
22. Note that our (realistic) assumption that the old may also die from natural causes does play
a role here. Without this assumption, the old would be even more careful leading to a death rate
of only 5.9 per 1,000 instead.
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Benchmark Epidem. Age ext. partial Age ext. general No disease
Wks to peak srsly ill (yng) 14.00 12.00 13.00 14.00 –
Wks to peak srsly ill (old) 12.00 12.00 12.00 12.00 –
Srsly ill p/ 1,000 @ peak (yng) 4.03 12.84 1.97 1.27 –
Srsly ill p/ 1,000 @ peak (old) 0.59 10.78 0.59 0.42 –
Dead p/ 1,000 1year (yng) 2.81 4.04 1.92 1.71 –
Dead p/ 1,000 1year (old) 7.81 30.07 7.81 7.28 –
Dead p/ 1,000 1year (all) 3.61 8.21 2.87 2.61 –
Dead p/ 1,000 LR (yng) 2.96 4.04 2.13 2.16 –
Dead p/ 1,000 LR (old) 9.00 30.07 9.00 9.68 –
Dead p/ 1,000 LR (all) 3.93 8.21 3.23 3.37 –
Immune in LR (yng), % 62.46 85.24 44.92 45.70 –
Immune in LR (old), % 12.00 39.45 12.00 13.00 –
Immune in LR (all), % 54.38 77.90 39.64 40.46 –
GDP at peak - rel to BM 1.00 1.21 0.48 0.83 1.22
GDP 1year - rel to BM 1.00 1.05 0.81 0.85 1.06
Cost p/ life saved, million $ – – 12.42 13.30 –
Hrs @ home (yng) - peak 65.49 54.77 92.99 73.48 54.77
Hrs @ home (old) - peak 107.60 88.98 107.60 101.93 88.98
Hrs @ home (yng) - 6m 58.88 54.77 74.01 70.40 54.77
Hrs @ home (old) - 6m 100.73 88.98 100.73 99.80 88.98
Value - healthy (yng) 3740.80 3736.30 1610.30 1615.50 3753.35
Value - healthy (old) 1802.00 1770.60 1802.00 1803.30 1825.47
Value - healthy (all) 3430.20 3421.40 1641.00 1645.60 3444.50

Table 6. Benchmark Results
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Figure 1: Aggregate variables (Benchmark equilibrium)

compared to a world without the disease (last column in Table 6).23 We find
that people adjust their behavior quite a bit, i.e. the individual risk of dying leads
people to increase their time at home substantially (see left panel in Figure 2).
This happens especially for the old, who do not need to work but are also more

23. Recall that infected agents are partially altruistic. We explore the behavioral responses in a
world without altruism in Appendix C.1. Altruism here means that a young agent who knows he
is infected would spend 82 hours at home per week. At the peak of the disease, the unsure fever
agents spend 77 hours.
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Figure 2: Choices of healthy agents (Benchmark equilibrium)

likely to die if they get infected.24 The young cut both time at work and leisure
outside (again, see Figure 2). This reduces the overall number of infected people
in the long run by a little over 20 percentage points. The total death rate declines
by slightly more than half, but markedly more so among the old (see the middle
lower panel in Figure 1). The timing of the disease does not change much, but
the peak is much lower (see Figure 1). The economic costs of this self-preservation
is sizeable: GDP for the first year of the pandemic is reduced by 6% relative to
a no-disease world (see Table 6 and Figure 1 for the time path of GDP). The
no-pandemic scenario has a GDP 22% higher than the baseline at the peak of the
disease. In other words, voluntary reductions in activity reduce GDP substantially
at the peak of the disease.25

As described in the previous paragraph, the young have more incentives to leave
their house because of work. They can then contribute more to the spread of the
disease; and the burden will fall more heavily on the old. In order to get a sense of
this externality, we run two counterfactuals. Suppose the preferences of the young
feature the same death and symptoms probabilities as those of the old (keeping
the actual transition rates at their true levels). That is, the young, who still need
to work for their income, believe they are subject to the same risks as the old. One
counterfactual (second to last column in Table 6) runs such scenario in a partial
equilibrium sense: we observe the difference in behavior of the young assuming
they cannot affect the aggregate infection rates. The other counterfactual performs
the same thought experiment in general equilibrium (last column in Table 6). In
partial equilibrium, the young become substantially more careful and considerably
increase their hours at home. This lowers the infections among this group and they
consequently die in much lower numbers. One might expect this effect to reduce

24. Belot et al. (2020) find that the individuals aged 65 or older report engaging in less social
interactions in several countries, including the US.
25. A decline in GDP of 6% may appear small compared to an estimate provided by Hall et al.
(2020). Using a similar mortality rate and a simple utilitarian welfare function, they estimate people’s
willingness to pay to avoid Covid-19 deaths to be 18% of annual consumption. This is a similar
order of magnitude to what we find in some of our shelter-at-home experiments discussed in the
next section.
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the infection burden on the old. However, when we put these modified preferences
into general equilibrium (again keeping the transition rates at their true levels), we
find that the old are dying more. The reason is that, with a swifter pandemic (such
as in the benchmark), the old can shield themselves by staying at home during the
peak before the disease dies out because of herd immunity, which is mostly driven
by the young. If the young are more cautious, but the herd immunity level is not
substantially changed, then the old find it harder to wait out the disease and end
up catching it more. This shows that keeping the young longer at home in this
model might not help the old.

The channel described in the previous paragraph continues to exist even if
hospital beds are scarce. In this case, however, not only do the young affect
the transmission of the virus to the old, but they also start blocking recovery
options that the old would have needed. This additional channel alters some of the
conclusions (see Appendix D.1).

6. Policy Experiments

In this section we will use our baseline calibration to perform a series of
policy experiments, namely: shelter-in-place policies, testing, test and quarantine,
selective mixing, and combined policies. Appendix D provides results for alternative
scenarios. Interestingly these affect the quantitative numbers, but leave most of the
broad qualitative insights unchanged.

6.1. Shelter-in-Place Policies

Start with government-mandated shelter-in-place policies; i.e. lockdowns. We
investigate such policies applied to the young, the old, or all, for various lengths of
time or strictness.26 Table 7 has the results for several constellations of the policy.
First, a clarification on the labels: The column labeled "SH25-a-4" represents a
situation in which agents need to shelter at home for an extra 25% of their time
(the "SH25" part), this applies to all ages ("a") and this lasts for four weeks ("4").
Another example is "SH90-o-26", in which only the old have to shelter at home for
an extra 90% of their time during 26 weeks and so on.

Start with the mildest case (SH25-a-4) in Table 7. The universal month-long
lockdown only requires a relatively small increase in time at home: 25%. The effects
on the statistics related to the disease are small. The disease slows a bit with the

26. Recall from the model description that λp is a policy instrument with which the government
can increase the agent’s proclivity to stay at home. See Section 3 for details. Computationally, we
calibrate λp such that we generate the desired rise in time at home for the young in a steady state
with no disease. We then feed in this calibrated λp to both the young and the old throughout
the duration of the policy. The utility achieved by the individual under this scenario, however, is
computed using his own private λd. The same is done for the quarantine policies discussed in
Section 6.3.
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Benchmark SH25-a-4 SH25-a-26 SH25-y-26 SH75-a-12 SH75-a-35 SH90-a-26 SH90-o-26
Wks to peak srsly ill (yng) 14.00 16.00 34.00 34.00 33.00 66.00 54.00 14.00
Wks to peak srsly ill (old) 12.00 14.00 33.00 33.00 32.00 64.00 53.00 30.00
Srsly ill p/ 1,000 @ peak (yng) 4.03 4.04 2.34 2.27 3.96 3.50 3.78 4.02
Srsly ill p/ 1,000 @ peak (old) 0.59 0.59 0.48 0.47 0.57 0.51 0.54 0.30
Dead p/ 1,000 1year (yng) 2.81 2.79 2.48 2.49 2.46 0.00 0.32 2.80
Dead p/ 1,000 1year (old) 7.81 7.64 7.52 8.12 5.71 0.00 1.07 4.39
Dead p/ 1,000 1year (all) 3.61 3.56 3.29 3.39 2.98 0.00 0.44 3.06
Dead p/ 1,000 LR (yng) 2.96 2.95 2.87 2.87 2.87 2.23 2.62 2.96
Dead p/ 1,000 LR (old) 9.00 8.93 9.76 10.34 8.10 4.64 6.35 5.73
Dead p/ 1,000 LR (all) 3.93 3.91 3.97 4.07 3.71 2.62 3.22 3.40
Immune in LR (yng), % 62.46 62.31 60.60 60.60 60.57 47.15 55.33 62.47
Immune in LR (old), % 12.00 11.93 13.14 13.89 10.98 6.43 8.74 7.70
Immune in LR (all), % 54.38 54.24 53.00 53.12 52.63 40.62 47.86 53.70
GDP at peak - rel to BM 1.00 1.00 1.08 1.08 1.00 0.97 0.98 1.00
GDP 1year - rel to BM 1.00 0.98 0.88 0.88 0.83 0.55 0.58 1.00
Cost p/ life saved, million $ – 40.40 – – 29.63 13.53 23.28 0.00
Hrs @ home (yng) - peak 65.49 65.36 62.57 62.43 65.18 67.19 66.08 65.33
Hrs @ home (old) - peak 107.60 107.60 105.68 105.57 107.55 107.41 107.53 110.12
Hrs @ home (yng) - 6m 58.88 59.57 70.59 70.58 57.56 95.85 104.06 58.76
Hrs @ home (old) - 6m 100.73 101.80 102.74 101.00 101.76 106.14 109.09 109.42
Value - healthy (yng) 3740.80 3740.40 3738.50 3738.40 3727.00 3702.70 3685.10 3740.80
Value - healthy (old) 1802.00 1802.00 1799.80 1800.00 1799.50 1799.00 1789.40 1792.60
Value - healthy (all) 3430.20 3429.90 3427.90 3427.90 3418.20 3397.70 3381.40 3428.70

Table 7. Policy Experiments: Shelter in Place

peak being achieved two weeks later. The death rate declines slightly for the old
but is almost constant for the young. The economic costs, on the other hand, are
non-trivial: yearly GDP goes down by 2% relative to the baseline. This implies that
the economic cost for each life saved is about $40 million dollars.27

Milder policies can even be counter-productive in the sense of increasing the
death rate (see columns SH25-a-26 and SH25-y-26 in Table 7). A six-months
lockdown for the young slows the spread of the disease and the peak now is reached
only after 34 weeks. The overall death rate, however, is even higher now. In the
long run, it rises by about 3.5%. Why does this happen? This policy protects the
young for a while; and indeed the death rate among them declines a bit. However,
this has a detrimental effect on the old. As the disease takes longer to disappear
and the old are not sheltered, there is more time for them to catch the virus and
eventually die.

Now consider stricter and longer policies, in particular the last two columns in
Table 7. They report the results for extremely strict policies: individuals need to
spend an extra 90% of their time at home for 26 weeks. When this policy is applied
to all (SH90-a-26), the peak of the disease is much delayed. It is reached after 54
weeks, even though the policy lasts only 26 weeks. As Figure 3 shows, though the
peak occurs at a much later date, the height of the peak is very similar to the
benchmark. Deaths in the first year drop considerably. Even the long-run death toll
is still 18% lower than in the no-policy baseline, mostly because this policy gets us

27. The cost of a life saved in the model is computed as the total output lost relative to
the benchmark divided by the decrease in deaths from the benchmark to a specific policy. For
comparison, the US Environmental Protection Agency (EPA) uses a value of statistical life around
$9.5 million in 2019 dollars. This measure does not take into account remaining years of life or
quality-adjusted life year.
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Figure 3: Aggregate variables (Shelter in place, 90%, 26 weeks)
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Figure 4: Choices of healthy agents (Shelter in place, 90%, 26 weeks)

close to the arrival of the vaccine.28 In other words, the main effect of lockdown
policies is that they buy time at a sizeable economic cost. There is a very deep
recession in the first year caused by the shelter-in-place policy (see Figure 3). Note
that GDP drops again in the second year in parallel with the peak of the pandemic.
This is due to the decline in labor supply caused by the endogenous response of
agents that refrain from working in order to protect themselves at the peak of the
disease (see Figure 4).

To avoid the large economic costs of lockdowns it has been widely suggested to
focus on shielding the old instead. Consider a policy that forces the old to increase
their time at home by 90% for 26 weeks (last column of Table 7). Note that the

28. The longer a lockdown is, the more it delays the disease, which in our world with vaccine arrival
prevents some deaths. This effect can be clearly seen by comparing SH75-a-12 with SH75-a-35 in
Table 7. A harsh 35-week long lockdown cuts death by about a third, while the same policy for only
12 weeks reduces deaths by less than 6%. In a world without vaccine arrival, these policies hardly
save any lives at all, as we show in Appendix D.2.
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Figure 5: Aggregate variables (Shelter in place for the old, 90%, 26 weeks)

peak of the disease among the young is achieved at the same week as in the no-
policy benchmark. Since this peak is reached around 14 weeks, the old are still
sheltered at that time. So, at the most dangerous stages of the pandemic, they
are protected. This leads to a 36% lower death rate among the old compared to
the benchmark. Note, however, that the peak of the disease among the old only
happens after the policy is lifted (see Figure 5). This generates two peaks of the
disease for the old (the second one, at 30 weeks, being higher). The first peak
arises together with the peak among the young. As the old still interact a bit while
sheltered, this generates a wave of infections among this group. As the policy is
lifted and the old leave their homes more, there are still sick youngsters around and
this gives rise to the second wave. Despite these two waves of infection, the old still
die less compared to the benchmark. However, even though the death rate among
the old is lower than in the baseline, their welfare falls.29 This happens since the
old are required to stay home for longer than they would have chosen to, and the
externality amongst them is not sufficient to justify this level of protection in their
view.30

Some of the longer policies discussed above lead to less deaths. What if a
shelter-in-place policy was implemented until a vaccine arrives (i.e. for 78 weeks
in our model)? Table 8 provides the results for two such policies: shelter-in-place

29. Belot et al. (2020) find that individuals 65 or older experience worse negative non-financial
effects from lockdowns. Andersson et al. (2020) report that the old in Sweden are willing to pay
more to avoid confinement.
30. In fact, we never found a policy (including several not reported) that shelters only the old
and that improves the welfare of this group. They do not influence much the overall path of the
disease. They are a small group (only 16% of the population) and they spend less time outside. In
a no-disease steady state, their hours outside correspond to only 7.1% of the total. At the peak,
since the endogenously protect themselves more, this number falls to 1.9%.
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Benchmark SH25-a-78 SH50-a-78 SH50-y-78 SH50-o-78
Wks to peak srsly ill (yng) 14.00 23.00 4.00 4.00 14.00
Wks to peak srsly ill (old) 12.00 21.00 2.00 3.00 13.00
Srsly ill p/ 1,000 @ peak (yng) 4.03 1.17 0.01 0.01 3.99
Srsly ill p/ 1,000 @ peak (old) 0.59 0.32 0.00 0.01 0.47
Dead p/ 1,000 1year (yng) 2.81 1.39 0.00 0.00 2.78
Dead p/ 1,000 1year (old) 7.81 4.95 0.01 0.03 5.39
Dead p/ 1,000 1year (all) 3.61 1.96 0.00 0.01 3.20
Dead p/ 1,000 LR (yng) 2.96 1.64 0.00 0.00 2.92
Dead p/ 1,000 LR (old) 9.00 6.11 0.02 0.04 5.97
Dead p/ 1,000 LR (all) 3.93 2.36 0.01 0.01 3.40
Immune in LR (yng), % 62.46 34.64 0.08 0.10 61.54
Immune in LR (old), % 12.00 8.20 0.02 0.05 7.94
Immune in LR (all), % 54.38 30.40 0.07 0.09 52.96
GDP at peak - rel to BM 1.00 0.86 0.63 0.63 1.00
GDP 1year - rel to BM 1.00 0.77 0.55 0.55 1.00
Cost p/ life saved, million $ – 9.23 7.34 7.35 -0.01
Hrs @ home (yng) - peak 65.49 71.66 82.17 82.17 65.53
Hrs @ home (old) - peak 107.60 103.22 101.10 89.21 108.45
Hrs @ home (yng) - 6m 58.88 71.40 82.15 82.15 58.92
Hrs @ home (old) - 6m 100.73 102.62 101.05 88.99 104.69
Value - healthy (yng) 3740.80 3737.90 3720.80 3720.80 3740.90
Value - healthy (old) 1802.00 1807.30 1815.60 1825.40 1796.60
Value - healthy (all) 3430.20 3428.60 3415.60 3417.10 3429.50

Table 8. Shelter in Place that lasts for 78 weeks

policies that last for 78 weeks that are applied to all individuals and require them
to spend either an extra 25 or 50% more time at home. Both policies reduce deaths
considerably: the milder policy (SH25) decreases deaths by 40%, while the stricter
policy (SH50) essentially eliminates deaths altogether. The young are never better
off with such policies, but the welfare of the old rises.31

All shelter-in-place policies discussed so far were implemented at the very start
of the outbreak. What happens if such a policy is implemented only after the
disease is developing. Consider a shelter-in-place policy that applies to everyone
and requires individuals to stay an extra 90% of the time at home, but only starts
8 weeks after the outbreak and lasts for 12 weeks. The results are in Figures C.1
and C.2 in Appendix C.2. As the disease develops in the first 8 weeks, a wave of
infections develops. With the shelter-in-place policy, infections decline substantially.
When the policy is lifted after 12 weeks, a second wave appears. After both waves,
the long-run death toll is almost the same as in the benchmark with no policy: only
a 4.4% decline in total deaths.

In sum, shelter-in-place policies only work in decreasing the death toll of the
pandemic if they last for a long time, until close to an arrival of a vaccine. In this
case, some policies can make the old better off, but the welfare of the young never
increases. Neither does average welfare across groups. Any shelter-in-place policy

31. We also implement the stricter policies for each age group separately (last two columns in
Table 8). A policy that targets the young only is just as effective as the universal one. In this case,
the welfare of the old rises even more as they are not confined. A policy that shelters the old only
is not nearly as effective (though deaths still decline by 13.5%). In contrast to the other policies,
the welfare of the old declines.
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Benchmark Testing all Testing young Testing old Q90-a-50t Q90-a-100t Q90-y-100t
Wks to peak srsly ill (yng) 14.00 24.00 24.00 14.00 22.00 3.00 4.00
Wks to peak srsly ill (old) 12.00 23.00 22.00 12.00 20.00 3.00 3.00
Srsly ill p/ 1,000 @ peak (yng) 4.03 1.97 1.98 4.03 1.29 0.01 0.01
Srsly ill p/ 1,000 @ peak (old) 0.59 0.42 0.42 0.59 0.34 0.01 0.01
Dead p/ 1,000 1year (yng) 2.81 1.81 1.82 2.80 1.50 0.00 0.00
Dead p/ 1,000 1year (old) 7.81 5.62 5.68 7.76 5.38 0.01 0.02
Dead p/ 1,000 1year (all) 3.61 2.42 2.44 3.59 2.12 0.00 0.01
Dead p/ 1,000 LR (yng) 2.96 1.86 1.88 2.94 1.71 0.00 0.00
Dead p/ 1,000 LR (old) 9.00 5.88 6.00 8.86 6.45 0.01 0.02
Dead p/ 1,000 LR (all) 3.93 2.50 2.54 3.89 2.47 0.00 0.01
Immune in LR (yng), % 62.46 39.30 39.80 62.05 36.20 0.06 0.07
Immune in LR (old), % 12.00 7.84 8.00 11.80 8.63 0.02 0.02
Immune in LR (all), % 54.38 34.26 34.70 54.00 31.79 0.06 0.06
Max. n. of tests in a week, % 0.00 5.58 5.41 0.35 2.66 4.94 4.59
GDP at peak - rel to BM 1.00 1.08 1.08 1.00 1.13 1.22 1.22
GDP 1year - rel to BM 1.00 1.01 1.01 1.00 1.02 1.06 1.06
Cost p/ life saved, million $ – -0.48 -0.48 -0.05 -0.42 -0.65 -0.65
GDP gain per test, 1year, $ – 373.13 394.44 – 870.61 1410.28 1515.77
Hrs @ home (yng) - peak 65.49 61.58 61.50 65.58 58.92 54.87 54.87
Hrs @ home (old) - peak 107.60 103.95 103.95 107.61 100.81 89.42 89.41
Hrs @ home (yng) - 6m 58.88 60.96 60.67 58.93 58.41 54.77 54.77
Hrs @ home (old) - 6m 100.73 103.03 102.73 100.77 99.61 88.98 88.98
Value - healthy (yng) 3740.80 3745.60 3745.50 3740.80 3746.00 3753.30 3753.30
Value - healthy (old) 1802.00 1811.20 1810.90 1802.30 1811.20 1825.40 1825.40
Value - healthy (all) 3430.20 3435.70 3435.60 3430.30 3436.10 3444.50 3444.50

Table 9. Policy Experiments: Testing

that directly impacts the young (either universal or young-specific lockdowns) come
with substantial economic costs as the young must cut their labor supply. And if
the policies on the young are in place for too short, they can even increase the
total number of deaths in the long run. Lockdowns that target the old only, even if
they manage to decrease the number of deaths within this group, do not increase
old individuals’ welfare. This happens because they are a small group that already
protects itself substantially due to the higher risk they face. All such policies,
however, buy time as they postpone the peak of the disease. If time is need to
set up production of means to avoid infections (e.g. masks), maybe infections stay
low after the lockdown even though activities resume to some extent. Also, time
may be needed to set up infrastructure for testing. As we will see in the next few
sections, testing can be a powerful policy.

6.2. Testing

Health authorities around the world emphasize the importance of testing.
Accordingly, many countries have been vastly ramping up their testing capacities
since the start of the pandemic. But what exactly is the benefit of testing? Does
it work by itself or only in combination with quarantines? In the limit, if everyone
was tested every day and, if found Covid-19 positive, immediately quarantined,
the pandemic would stop almost immediately. Yet such a policy is clearly not
very realistic. So what is the benefit of partial testing? What about imperfect
quarantines? This section and the next consider various combinations of testing
and quarantining policies to assess their effect on deaths and GDP.
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Figure 6: Aggregate variables (Testing all)

We start with policies that only test individuals without further quarantines. In
our baseline calibration, upon infection with the coronavirus, individuals remain one
week in the "fever" state, unsure whether they have Covid-19 or a common cold.
By testing them, this uncertainty disappears earlier. Since the agents are partially
altruistic, they are more cautious about leaving their homes.

Table 9 provides the results of testing all individuals (column Testing all), only
the young (Testing young) or only the old (Testing old). Start with the universal
policy. Figure 6 shows that, with universal testing, the mass of infected agents
that are unsure whether they have the disease (Mfi) goes to zero. Instead, agents
now know they are infected (Mi) and thus act according to their partial altruism.
This leads the disease to develop at a slower pace; i.e. flattening the curve. The
peak now takes about ten weeks longer to arrive and is less pronounced (see Figure
6). This translates into fewer deaths for both age groups. Fewer people catch the
disease overall as can be seen from the lower immunity rates in the long run. Note
that this universal testing policy is a massive undertaking: in the week in which
the disease hits its peak, about 5.6% of the population is tested. In the US, this
implies about 18 million tests in a single week. This is accompanied by a rise in
GDP compared to the baseline due to a milder pandemic. In the end of the first
year, this translates to about 373 dollars in extra GDP per test performed.

Table 9 also reports age-specific testing policies. First, testing exclusively the
old causes only minor changes to the development of the disease. Since this group
comprises a minority of the population and they protect themselves more, their
partial altruism is not strong enough to generate considerable changes in the
economy. Testing the young has the opposite effect. As this group consists of 84%
of the population and they protect themselves less, the results are quite similar to
those obtained with a universal policy.
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While we find that testing works quite well, and testing with quarantine even
better (as we will see below), implementing this policy faces some hurdles.32 First,
in the model we test a fraction of those with fever. In reality, one needs to know
who to test. One possibility is to focus on contact tracing. A second issue is that
our model assumes instantaneous test results, while in reality this is not the case.
However, some rapid test that deliver results within an hour exists by now. They
are not widely available yet, but testing technology is rapidly evolving.33 Finally,
unlike in our model, in reality testing involves costs. Scaling up the current test
methods to the quantities needed is not easy. Even if scaling up testing comes at
a substantial cost, these costs are likely worth paying, especially since our analysis
has shown that there are substantial gains in GDP per test performed, which should
be more than enough to cover the costs.

6.3. Test and Quarantine

The previous section discussed the impact of testing policies that rely on individual’s
altruism to curb the spread of the disease. On top of testing people, one could
quarantine those that tested positive (which most countries try to do). The last
three columns of Table 9 report results of three such experiments.

Consider a policy where 100% of those with a fever are tested, and those that
test positive are forced to quarantine by increasing the time at home by 90% (see
column “Q90-a-100t”). This policy leads the young to spend 92% of their time
at home (the old even more).34 So while it is a relatively strict quarantine, it is
not 100%. This captures the fact that enforcement of quarantines is never perfect
in reality. It can be thought of as people still escaping from their quarantine 8%
of the time (about 8h/week), or that 8% of agents are not complying at all. This
policy is extremely effective. In the long run, less than a tenth of one percent of the
population catches the disease and are thus immune. The death count is almost
zero. With the lower burden of the disease, GDP goes up by 6% in the first year
of the pandemic. Given that the number of immune individuals is low in the long
run, this may be a drawback of this policy: in the event of a new outbreak, the
economy would be far from the herd immunity level.

Consider a test-and-quarantine policy that focuses on the young only (the
"Q90-y-100t" column in Table 9). Since the young comprise the lion’s share of
the population and spend more time outside, testing this group only is essentially
as effective as testing the entire population. In fact, if one factors in that tests cost
some money, then this is the better policy since fewer people are tested, which

32. See The Economist, April 25, 2020 “Test of Reason” for difficulties of scaling up testing.
33. For example, a new test with results in 16 minutes was announced in Germany on July 7.
34. Technically, the quarantines are achieved by increasing the marginal utility of time at home,
as in the shelter-in-place policies of Section 6.1, but only for those that test positive. That is, we
increase λp(i, a) for all a.
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Figure 7: Aggregate variables (Test and Quarantine, 50%)

increases the GDP gain per test to more than $1,500. Alternatively, a testing
policy that applied to the old only (not shown) would not be as useful.

In our model, we assume immediate test results. This is not true in reality, as
the results usually take a few days. Focus then on a test-and-quarantine policy that
targets 50% of the population. Alternatively, this could be thought of as testing
with results delayed to the middle of the week of infection. The results are in the
column "Q90-a-50t" in Table 9. With only half of those with a fever are being
tested, some agents will move from the unsure "fever" state (Mfi) to the infected
state (Mi), but not all. See Figure 7. Compared to the benchmark, the peak occurs
at a later date and is lower; i.e. the curve is flattened (see Figure 7). There will
thus be a much lower fraction of seriously ill individuals (Ms) at the peak. Relative
to the baseline, the number of deaths declines by about 37% to 2.47 per 1,000
people. This decline is steeper among younger individuals (a drop of about 42% for
this group). The total number of Covid-19 cases in the long run falls from almost
55% of the population in the benchmark to around 32%. GDP goes up in the first
year by about 2% relative to the baseline. This represents around 870 extra dollars
in GDP per test carried out.

Even though around a third of the population catches Covid-19 with a 50%
test-and-quarantine policy (Q90-a-50t), agents change their behavior and engage
in more risk. At the peak of the disease, the young spend about six and a half hours
per week longer outside the home compared to the benchmark. Older individuals,
who are more affected by the disease, also spend less time at home: seven fewer
hours per week relative to the baseline. This risk compensation acts to dampen the
effect of the policy.35

35. See Greenwood et al. (2019) for a discussion of the quantitative impact of risk-compensation
effects on policies that aim to curb the HIV/AIDS epidemic.
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Benchmark Sel. mix.
Wks to peak srsly ill (yng) 14.00 13.00
Wks to peak srsly ill (old) 12.00 12.00
Srsly ill p/ 1,000 @ peak (yng) 4.03 4.61
Srsly ill p/ 1,000 @ peak (old) 0.59 0.50
Dead p/ 1,000 1year (yng) 2.81 2.95
Dead p/ 1,000 1year (old) 7.81 5.75
Dead p/ 1,000 1year (all) 3.61 3.40
Dead p/ 1,000 LR (yng) 2.96 3.07
Dead p/ 1,000 LR (old) 9.00 6.43
Dead p/ 1,000 LR (all) 3.93 3.61
Immune in LR (yng), % 62.46 64.89
Immune in LR (old), % 12.00 8.55
Immune in LR (all), % 54.38 55.86
GDP at peak - rel to BM 1.00 0.97
GDP 1year - rel to BM 1.00 1.00
Cost p/ life saved, million $ – 0.10
Hrs @ home (yng) - peak 65.49 66.79
Hrs @ home (old) - peak 107.60 105.82
Hrs @ home (yng) - 6m 58.88 58.88
Hrs @ home (old) - 6m 100.73 97.09
Value - healthy (yng) 3740.80 3740.20
Value - healthy (old) 1802.00 1809.80
Value - healthy (all) 3430.20 3431.00

Table 10. Selective mixing

Policies that involve quarantines require infected agents to stay longer at home,
even if this is against their best interest. However, this can be a welfare-improving
policy. The last three rows of Table 9 report the lifetime utility for a healthy
person at the outset of the disease, for the young, the old and the weighted
average (as seen by a utilitarian planner). The thought experiment is whether
a healthy individual would like to go through the pandemic with or without the
policy being implemented. The welfare for both young and old agents is higher
with the quarantine policies in place though they know they might be required to
quarantine themselves if they catch the disease.

6.4. Selective Mixing

Now consider a government that reserves some common spaces for a particular
age group only. This could entail that certain hours in supermarkets are reserved
for a particular age group, or that some parks or leisure centers are dedicated to
a particular age group. This leads to selective mixing where agents are more likely
to meet those of their own type. Suppose a fraction ζ of people’s time outside
can be separated into the different age groups and a fraction ϑa of the common
space is allocated for age group a. Conditional on being outside, some infections
now occur only within groups. The details are provided in Appendix C.3. In order
to generate quantitative results, assume half of the time outside can be separated
(ζ = 1/2) between the two groups. Moreover, assume the common space is divided
(ϑa) according to the relative sizes of each group.

Table 10 reports the results. First note that the overall death rate falls, both
within the first year of the pandemic as well as in the long run, where deaths
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Q90-a-25t Q90-a-50t
SH25-a-78 SH25-a-78 SH10-a-78

Benchmark ζ = 0 ζ = 0.25 ζ = 0.5 ζ = 0 ζ = 0

Wks to peak srsly ill (yng) 14.00 36.00 33.00 30.00 6.00 33.00
Wks to peak srsly ill (old) 12.00 35.00 31.00 29.00 3.00 31.00
Srsly ill p/ 1,000 @ peak (yng) 4.03 0.43 0.54 0.67 0.01 0.53
Srsly ill p/ 1,000 @ peak (old) 0.59 0.15 0.14 0.13 0.01 0.18
Dead p/ 1,000 1year (yng) 2.81 0.59 0.74 0.89 0.01 0.74
Dead p/ 1,000 1year (old) 7.81 2.45 2.38 2.03 0.05 3.08
Dead p/ 1,000 1year (all) 3.61 0.89 1.00 1.07 0.02 1.12
Dead p/ 1,000 LR (yng) 2.96 0.86 1.01 1.15 0.01 1.01
Dead p/ 1,000 LR (old) 9.00 3.56 3.25 2.64 0.06 4.18
Dead p/ 1,000 LR (all) 3.93 1.30 1.37 1.39 0.02 1.52
Immune in LR (yng), % 62.46 18.23 21.37 24.38 0.28 21.27
Immune in LR (old), % 12.00 4.81 4.39 3.56 0.08 5.64
Immune in LR (all), % 54.38 16.08 18.65 21.04 0.25 18.77
Max. n. of tests in a week, % 0.00 1.01 0.98 0.98 2.44 2.26
GDP at peak - rel to BM 1.00 0.90 0.89 0.88 0.93 1.06
GDP 1year - rel to BM 1.00 0.79 0.78 0.78 0.80 0.93
Cost p/ life saved, million $ – 5.28 5.50 5.61 3.36 2.02
Hrs @ home (yng) - peak 65.49 69.79 70.12 70.46 68.51 62.04
Hrs @ home (old) - peak 107.60 99.29 99.18 98.70 95.63 97.43
Hrs @ home (yng) - 6m 58.88 69.59 70.01 70.44 68.47 61.95
Hrs @ home (old) - 6m 100.73 98.87 99.04 98.69 95.48 97.26
Value - healthy (yng) 3740.80 3741.60 3740.90 3740.20 3745.90 3747.60
Value - healthy (old) 1802.00 1814.60 1815.40 1816.90 1823.10 1815.90
Value - healthy (all) 3430.20 3432.90 3432.40 3432.10 3437.80 3438.10

Table 11. Combination of policies

fall by almost 10%. This result masks an important heterogeneity across the two
groups though: the death rate for the old is reduced by almost 30%, while the
young die about 4% more compared to the benchmark. With partially separated
spaces, the old interact more among themselves, a group that naturally protects
itself more. The opposite happens to the young. Life is now riskier for this group
and they behave accordingly. At the peak of the disease, the young spend more
time at home compared to the benchmark. The overall effects on the young are
small and their labor supply hardly changes, keeping the GDP in the first year of
the pandemic essentially the same as in the no-policy baseline.

6.5. Combining Policies

The previous sections reported results for different policies in isolation. Some of the
policies were quite strict (e.g. sheltering everyone for more than 90% of their time)
or a bit unrealistic (e.g. 100% testing of fever agents). We now turn to combining
different policies at the same time. We particularly focus on combining milder
versions of the policies that are probably more realistic to be implemented. A key
question here is whether the effects of different policies simply add up, reinforce
one another or crowd each other out.

Start with the first three counterfactuals in Table 11. They all test 25% of
the fever agents and quarantine the positive cases (Q90-a-25t) and maintain a
shelter-in-place policy that requires all individuals to spend an extra 25% of their
time at home and lasts until a vaccine becomes available (SH25-a-78). The first
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of these contain no selective mixing (ζ = 0). The death toll is substantially lower
than the benchmark, by about 2/3. Compared to a similar lockdown implemented
in isolation (see Table 8), the death toll is 45% lower. Note also that the amount of
tests is lower than other experiments in Sections 6.2 and 6.3: only about 1% of the
population would need to be tested at the peak of the disease. If we impose selective
mixing on top of the two other policies (ζ ∈ {0.25, 0.5}), an inter-generational
"redistribution" of deaths appears: fewer old individuals die at the expense of more
deaths among the young.

Consider now ramping up testing to 50% of the fever individuals (the last two
columns in Table 11). Maintaining the same lockdown as the previous scenarios
(SH25) essentially eradicates the disease. Recall that the test-and-quarantine policy
in isolation (Table 9) decreased the number of deaths, but not as dramatically.
Interestingly, lives saved are larger than the sum of those saved under each policy
separately.36 In this policy, since the young are partially sheltered, GDP decreases
by about 20% compared to the benchmark. Comparing the welfare of both groups
with the test-and-quarantine policy in Table 9, we notice that the old are better
off while the young are just slightly worse off, even though their labor supply is
substantially reduced (as reflected in the GDP numbers). What happens then when
we slacken the lockdown a bit? This is reported in the last column of Table 11. In it,
we impose a lockdown that requires individuals to spend only an extra 10% of time
at home. The death toll is 1.5 per 1,000 people (more than 60% lower compared
to the benchmark). It is also more than 40% lower than the test-and-quarantine
policy in isolation (again, Table 9). GDP is substantially higher (13 percentage
points) than the stricter lockdown described in the previous paragraph. Compared
to the test-and-quarantine policy alone, adding the mild lockdown increases the
welfare of both age groups.

7. Conclusions

This paper provides a first path to study the link between age heterogeneity,
incomplete information/testing of the disease status, and the behavioral
adjustments that individuals make to protect themselves during the Covid-19
pandemic. These seem to be first order in the spread of the infections and the
deadliness of the disease. We embed these elements in an otherwise standard SIR
model of disease transmission, calibrate it, investigate the externalities between
age groups in the benchmark equilibrium, and study policy interventions, both in
general and targeted to particular age groups.

Especially the old protect themselves during the crisis, which is beneficial
because they have a higher chance of dying. Imposing limits on mobility affects

36. The SH25-a-78 policy alone averts 1.57 deaths per 1,000, while the Q90-a-25t policy averts
1.46, summing up to 3.03. The combined policy averts 3.91, so substantially higher.
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especially the young, as the old already shelter themselves substantially. Imposing
shelter-at-home policies on the old reduces deaths, but also reduces their utility.
Imposing shelter-at-home policies only on the young can in some cases even lead
to more deaths in the long run. Strong shelter-at-home policies for everyone have
to stay in place sufficiently close to the time a vaccine is in place, as otherwise
the disease rebounds too quickly and the policies have negligible impact on deaths.
Testing and quarantine are excellent ways of reducing the disease if feasible, even
if just concentrated on the young. Separating activities across age groups also
decreases the number of deaths, especially among the old. Finally, we explore
combination policies and find that adding a mild but long shelter-at-home policy
on top of widespread but partial testing leads to welfare gains of all age groups,
even beyond testing alone.

Clearly there remain caveats to these results, in terms of calibration inputs,
outputs and model assumptions. Estimates of the reproductive number and of
the fatality rate per infection vary widely. Better estimates of the infectiousness
of the disease will provide more clarity on the infection probabilities and the
transitions from infection to hospitalization, including their age gradient. Further,
the predictions of the calibrated model regarding preventive behavior over the
course of the pandemic arise from plausible specifications of the utility function
that have been useful in other settings, but have yet to be validated by surveys on
the behavior of individuals during the Covid-19 pandemic. The model is richer than
many existing counterparts, but potentially important margins are still missing. The
possibility of teleworking may render shelter-in-place policies less costly in terms of
lost output.37 We explore policies that impose selective mixing but individuals may
endogenously choose to interact with different groups. The economic impact of the
lockdowns differs along other important dimensions such as education, sectors, and
gender and that the cost on children in form of closed schools may be particularly
large.38 Adding other forms of heterogeneity beyond age may thus be interesting.
These extensions are part of a broader set of topics that warrant attention in future
research.
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Appendix A: Laws of Motion

In the main text, equation (8) describes the overall laws of motion, and (9) describes
the sub-part that determines the transitions for healthy agents. The following
contains the transitions for all other types. It also includes the accounting of Covid-
deaths and new infections.

The number of fever-healthy agents who have a fever and are not tested but
are truly healthy is given by

Mt+1(fh, a) (A.1)

= Mt(h, a)∆(a)(1− ξpt(a))πf (nt(h, a) + `t(h, a),Πt(a))
Π∗

Πt(a) + Π∗

+Mt(fh, a)∆(a)(1− ξpt(a))πf (nt(f, a) + `t(f, a),Πt(a))
Π∗

Πt(a) + Π∗
.

It includes in the first line healthy people from last period who got fever but were
not tested, and are truly healthy. The second line again accounts for those in the
fever-healthy state, as they can again catch another fever while truly remaining
healthy.

A similar logic applies to those in the fever-infected state:

Mt+1(fi, a) (A.2)

= Mt(h, a)∆(a)(1− ξpt(a))πf (nt(h, a) + `t(h, a),Πt(a))
Πt(a)

Πt(a) + Π∗

+Mt(fh, a)∆(a)(1− ξpt(a))πf (nt(f, a) + `t(f, a),Πt(a))
Πt(a)

Πt(a) + Π∗
.

The total number of individuals in the fever state is then

Mt+1(f, a) = Mt+1(fh, a) +Mt+1(fi, a) (A.3)

To account for infected people one counts those who started last period healthy
or fever-healthy and get infected and tested this period, but also those who started
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last period infected or fever-infected who neither develop severe symptoms nor
recover:

Mt+1(i, a) = Mt(h, a)∆(a)ξpt(a)π(nt(h, a) + `t(h, a),Πt(a)) (A.4)

+Mt(fh, a)∆(a)ξpt(a)π(nt(f, a) + `t(f, a),Πt(a))

+ [Mt(fi, a) +Mt(i, a)] ∆(a)(1− ϕ(0, a))(1− α(a))

People with severe symptoms comprise those who entered last period infected or
fever-infected and do not recover but instead develop more severe symptoms, as
well as severely symptomatic individuals from the previous period who neither die
nor recover:

Mt+1(s, a) = [Mt(fi, a) +Mt(i, a)] ∆(a)(1− ϕ(0, a))α(a) (A.5)

+Mt(s, a)∆(a)(1− δt(a))(1− ϕ(1, a))

The total number of individuals with serious symptoms is then

Mt(s) =
∑
a

Mt(s, a) (A.6)

Recovered and therefore resistant individuals comprise those who were infected
or fever-infected and recover, those with severe symptoms who do not die but
recover, and resistant individuals from the previous period:

Mt+1(r, a) = [Mt(fi, a) +Mt(i, a)] ∆(a)ϕ(0, a) (A.7)

+Mt(s, a)∆(a)ϕ(1, a) + ∆(a)Mt(r, a)

The right hand sides of equations (A.1) to (A.7) gives the map Ts for states
s = fh, fi, f, i, r.

For accounting purposes, the measure of deceased agents as a result of Covid-19
is given by new Covid deaths and those who died of it in previous periods:

Mt+1(deceased, a) = Mt(deceased, a) + (1− ϕ(1, a))δt(a)Mt(s, a)∆(a),
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Week Frac recovered Frac still infected Frac w/ symptoms
1 ϕ(0) (1− ϕ(0))(1− α) (1− ϕ(0))α

2 (1− ϕ(0))(1− α)ϕ(0) [(1− ϕ(0))(1− α)]2 (1− ϕ(0))(1− α)(1− ϕ(0))α

3 [(1− ϕ(0))(1− α)]2 ϕ(0) [(1− ϕ(0))(1− α)]3 [(1− ϕ(0))(1− α)]2 (1− ϕ(0))α
4 ... ... ...

while the number of newly infected people is given by healthy or fever-healthy
agents who get infected

Nt+1(i, a) = Mt(h, a)∆(a)π(nt(h, a) + `t(h, a),Πt(a))

+Mt(fh, a)∆(a)π(nt(f, a) + `t(f, a),Πt(a)).

Appendix B: Details on Calibration

B.1. Computing Weekly Rates

Let C be the fraction of the population that catches the common cold every year.
Then, the weekly infection rate Π∗ is given by:

Π∗ = 1− (1−C)1/52.

Now, consider an agent that is infected with Covid-19. He may recover with
probability ϕ(0) or develop serious symptoms with probability α. The following
table gives what happens to a measure 1 of agents that are infected right now over
the course of the next few weeks.

Thus, the fraction of people that will develop symptoms Fs is given by

Fs = (1− ϕ(0))α+ (1− ϕ(0))(1− α)(1− ϕ(0))α+ [(1− ϕ(0))(1− α)]2 (1− ϕ(0))α+ ...

= (1− ϕ(0))α
[
1 + (1− ϕ(0))(1− α) + [(1− ϕ(0))(1− α)]2 + ...

]
= (1− ϕ(0))α

1

1− (1− ϕ(0))(1− α)
.

Solving out for α gives

α =
Bϕ(0)

1−B(1− ϕ(0))
,
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Week Frac recovered Frac still w symptoms Frac dead
1 ϕ(1) (1− ϕ(1))(1− δ) (1− ϕ(1))δ

2 (1− ϕ(1))(1− δ)ϕ(1) [(1− ϕ(1))(1− δ)]2 (1− ϕ(1))(1− δ)(1− ϕ(1))δ

3 [(1− ϕ(1))(1− δ)]2 ϕ(1) [(1− ϕ(1))(1− δ)]3 [(1− ϕ(1))(1− δ)]2 (1− ϕ(1))δ
4 ... ... ...

where B = Fs/(1− ϕ(0)). With ϕ(0) given by the average time for recovery, one
can use the formula above to get α.

We can do something similar for agents with symptoms to figure out at what
rate they die. Here is the table:

Using the same steps above and denoting the fraction that die by Fd, we get:

δ =
Aϕ(1)

1−A(1− ϕ(1))
,

where A = Fd/(1− ϕ(1)).

B.2. Basic Reproduction Number - R0

The probability that an infected agent leaves such state is: [ϕ(0) + (1− ϕ(0))α] ∆ +

(1−∆). The squared brackets term is the probability of recovery and the probability
that the agent switches to the serious symptoms case, conditional on surviving
natural causes (probability ∆). The last term is death due to natural causes. Hence,
the expected amount of time one stays in state i is:

Ti =
1

[ϕ(0) + (1− ϕ(0))α] ∆ + (1−∆)
.

The probability that an agent with serious symptoms leaves such state is:
[ϕ(1) + (1 − ϕ(1))δ]∆ + (1 −∆). The squared brackets term is the probability
of recovery and the death-because-of-Covid probability, conditional on surviving
natural causes (probability ∆). The last term is death due to natural causes. Hence,
the expected amount of time one stays in state s is:

Ts =
1

[ϕ(1) + (1− ϕ(1))δ] ∆ + (1−∆)
.

Now, the probability that one moves from the i state to the s state is given by:

Ps =
(1− ϕ(0))α∆

1− (1− ϕ(0))(1− α)∆
.
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Note that the expressions above should be functions of one’s age a, but we
have supressed this for notational convenience.

Let ñ(a) denote the amount of time an infected person of age a spends outside.
Let ` be the interaction time for people with serious symptoms. Finally, let n̄ be
the average (across ages) amount of time people spend outside. At the outset of
the disease, a measure 1 of the population is healthy.

Then, R0(a) (i.e. for an infected person of age a) is given by:

R0(a) =
[
ñ(a)Ti(a) + `Ps(a)Ts(a)

]
n̄Π0.

This is the average number of people someone infects (for a person of a given
age). The economy’s R0 will be the weighted average across ages:

R0 =
∑
a

ω(a)R0(a),

where ω(a) is the weight of age a in the population.

B.3. Google’s Mobility Data

Google provides Covid-19 Community Mobility Reports and the corresponding
data.39 By tracking mobile phones, the company provides the change in time people
spend in different places: home, work, parks, transit stations, etc. As explained in
text, we use this data for Sweden to calibrate the utility of living b.

We match the rise in residential time in the eighth week of the pandemic
in the model to the data. The first cases of community spread in Sweden were
diagnosed in early March. We thus average the last 14 days in April to represent
the "eighth" week. Google reports a rise of 7.78% in residential time during this
period. According to our calibration, in a no-disease steady state, individuals spend
57.3 hours per week outside; or 24× 7− 57.3 = 110.7 hours at home. The increase
in residential time in late April then corresponds to 8.6 hours. In our model, agents
spend 54.7 of their weekly non-sleeping hours at home. This then translates to

39. See https://www.google.com/covid19/mobility/
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a 15.7% rise in non-sleeping time at home.40 This is the target we use in our
calibration.

Appendix C: Additional Results

This section provides additional details and results for the following scenarios:
a world without altruism (Section C.1), shelter-in-place policy with a late start
(Section C.2), and details on the model with selective mixing (C.3).

C.1. No Altruism

Table C.1 compares the benchmark version of the model with no altruism (λa = 0)
versus the epidemiological version with no behavioral adjustments. The qualitative
results are very similar to the original baseline results. The main difference is
that, without altruism, the death toll is higher. This is due to the fact that, as
infected agents do not change their behavior, they end up infecting more people.
Note that this world is riskier for healthy people, who behave more cautiously in
response. Note that the hours at home for healthy agents are higher compared to
the benchmark with altruism.

C.2. Late Shelter-in-Place Policy

This section provides results for a shelter-in-place policies that starts 8 weeks after
the outbreak of the disease and lasts for 12 weeks. See Figures C.1 and C.2.

C.3. Selective Mixing - Details

In order to model selective mixing across age groups, assume that only a fraction
1− ζ of activities remain common and take up a corresponding fraction 1− ζ of
the outside space. But a fraction ζ of activities can be separated into age-groups,
and for this purpose a fraction ϑa of the remaining space is dedicated only to

40. Note that Google reports a larger drop (in absolute value) in work time: 22.9%.
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Benchmark Epidem.
Wks to peak srsly ill (yng) 12.00 12.00
Wks to peak srsly ill (old) 12.00 12.00
Srsly ill p/ 1,000 @ peak (yng) 9.22 12.84
Srsly ill p/ 1,000 @ peak (old) 1.24 10.78
Dead p/ 1,000 1year (yng) 3.51 4.04
Dead p/ 1,000 1year (old) 8.11 30.07
Dead p/ 1,000 1year (all) 4.24 8.21
Dead p/ 1,000 LR (yng) 3.51 4.04
Dead p/ 1,000 LR (old) 8.11 30.07
Dead p/ 1,000 LR (all) 4.24 8.21
Immune in LR (yng), % 74.02 85.24
Immune in LR (old), % 10.67 39.45
Immune in LR (all), % 63.87 77.90
GDP at peak - rel to BM 1.00 1.18
GDP 1year - rel to BM 1.00 1.02
Cost p/ life saved, million $ – –
Hrs @ home (yng) - peak 67.71 54.77
Hrs @ home (old) - peak 109.11 88.98
Hrs @ home (yng) - 6m 55.13 54.77
Hrs @ home (old) - 6m 90.87 88.98
Value - healthy (yng) 1644.60 1644.00
Value - healthy (old) 881.10 866.51
Value - healthy (all) 1522.30 1519.50

Table C.1. No altruism
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individuals of this specific age group. Those spend T (ϑa) ≤ 1 of their remaining
time there, the rest of the time is lost as individuals arrive in situations where the
desired space happens to be dedicated to the other group. Conditional on being in
common space where one can get infected, the infection rate now becomes

Π̂t(a) = (1− ζ)Π0

∑
ã,j∈{fi,i,s}

(nt(j, ã) + `t(j, ã))Mt(j, ã) (C.1)

+ζT (ϑa)Π0

∑
j∈{fi,i,s}

T (ϑa)

ϑa
(nt(j, a) + `t(j, a))Mt(j, a).

The first line reflects the 1 − ζ of a person’s time spent in the unrestricted
space where everything is unchanged from equation (11) in the main text: other
individuals spend 1− ζ of their time across 1− ζ of the space which leaves the
number per area unchanged. The second line reflects the fraction ζ of a person’s
time spent on age-restricted activities, of which T (ϑa) is lost, where he only meets
others of the same age who spend T (ϑa)ζ of their time on ϑaζ parts of the space.
The expression reduces to the random mixing rate (11) if selectivity is ζ = 0. It
also reduces to random mixing rate independent of selectivity ζ if young and old
would be completely identical and space is divided up such according to group
size (ϑy =

∑
j(M(a, j))/

∑
a,jM(a, j), say, in steady state) and there is no loss

of time due to separation (T (ϑa) = 1). If a particular part of time is lost (i.e.,
T (ϑa) = ϑ

1/2
a ) then ϑa cancels in (C.1) and the expression reduces to "preferred

matching" in Jacquez et al (1988) and Kremer (1996), only that infected agents
are here weighted by their activity outside the house.

The cost of selective mixing is that at some times some of the common space
is no longer available to a person who would like to use it. That is, there is a time
loss of (1− T (ϑa))ζ > 0 per time unit spent outside, which acts as a tax on both
labor time n and outside leisure time `, which are reduced by this as this time
is lost and neither brings income nor utility. The simplest version is T (ϑa) = ϑa,
where each unit of space dedicated to the other group is lost.

In order to generate quantitative results for the selective-mixing scenario, we
must pick values for ζ and ϑ. We suppose ζ = 1/2 so that half of the activities can
be divided among the two age groups. Moreover, we set ϑo = 0.16 and ϑy = 0.84.
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The latter divides the space up according to the relative sizes of each group in the
overall population. As explained above, this leaves a priori no reason for efficiency
costs (i.e., if the groups were identical, the infections would not change).

Appendix D: Alternative Scenarios

This section explores alternative assumptions for the baseline specification. In
particular, we explore scarce medical supplies (Section D.1), a world with no vaccine
(Section D.2), and different hospitalization and death rates as provided by Ferguson
et al. (2020) (Section D.3).

D.1. Hospital Bed Constraints

In this section, we explore the effects of scarce hospital resources. The American
Hospital Association reports the existence of 84,555 intensive care beds excluding
neonatal units, implying a per-capita number of Z = 0.032607% ICUs.41 We set
δ̃2(a) = 1, so that the death for an agent with serious symptoms and no hospital
beds is certain to occur.

In the no-policy equilibrium (Table D.1), since agents without hospital beds
die with certainty, the number of deaths increases considerably compared to the
previous calibration (about three times larger). The age externality works differently
now. Take the case in which young agents behave more cautiously, as they think
they face the death probabilities of the old. In general equilibrium there would be
less infections per period, and less hospital beds would be occupied, leading to a
smaller number of deaths for both age groups. Note that this is the opposite of
what happens in the model without hospital constraints. There, in the long run,
the level of deaths is linked to the age composition of the cases necessary for herd
immunity and lower activity by the young shifts this age composition towards the
old. This effect is still present, but is now overpowered by effects on recovery rates.

41. See https://www.aha.org/statistics/fast-facts-us-hospitals
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Tables D.2 and D.3 present the results of the shelter-in-place and testing
and quarantine policies, respectively. Qualitatively, the insights from the previous
sections remain. One difference is that now shelter-in-place policies no longer
backfire. Sheltering spreads the demand for hospital beds across time, yielding
benefits that are not captured in the original setting.

Benchmark Epidem. Age ext. partial Age ext. general
Wks to peak srsly ill (yng) 11.00 11.00 11.00 12.00
Wks to peak srsly ill (old) 12.00 12.00 12.00 12.00
Srsly ill p/ 1,000 @ peak (yng) 2.02 6.42 2.02 1.99
Srsly ill p/ 1,000 @ peak (old) 1.34 9.19 1.34 1.33
Dead p/ 1,000 1year (yng) 11.21 18.99 11.07 10.78
Dead p/ 1,000 1year (old) 15.21 31.97 15.20 14.82
Dead p/ 1,000 1year (all) 11.85 21.07 11.73 11.43
Dead p/ 1,000 LR (yng) 11.32 18.99 11.19 10.93
Dead p/ 1,000 LR (old) 16.14 31.97 16.14 15.98
Dead p/ 1,000 LR (all) 12.09 21.07 11.98 11.73
Immune in LR (yng), % 63.51 82.88 62.92 62.26
Immune in LR (old), % 20.41 38.40 20.41 20.24
Immune in LR (all), % 56.61 75.75 56.11 55.53
GDP at peak - rel to BM 1.00 1.20 1.00 1.00
GDP 1year - rel to BM 1.00 1.03 0.99 0.99
Cost p/ life saved, million $ – – 3.90 1.17
Hrs @ home (yng) - peak 64.57 54.77 64.74 64.69
Hrs @ home (old) - peak 100.56 88.98 100.56 100.47
Hrs @ home (yng) - 6m 56.67 54.77 58.55 58.26
Hrs @ home (old) - 6m 93.58 88.98 93.58 93.28
Value - healthy (yng) 559.80 555.08 240.45 240.58
Value - healthy (old) 405.07 399.50 405.07 405.18
Value - healthy (all) 535.01 530.15 266.82 266.95

Table D.1. Benchmark results (hospital constraints)

Benchmark SH25-a-4 SH25-a-26 SH25-y-26 SH75-a-12 SH75-a-35 SH90-a-26 SH90-o-26
Wks to peak srsly ill (yng) 11.00 14.00 32.00 32.00 31.00 64.00 52.00 12.00
Wks to peak srsly ill (old) 12.00 14.00 33.00 33.00 32.00 64.00 52.00 30.00
Srsly ill p/ 1,000 @ peak (yng) 2.02 2.03 1.19 1.15 2.02 1.95 2.01 2.01
Srsly ill p/ 1,000 @ peak (old) 1.34 1.33 0.92 0.87 1.30 1.19 1.25 0.48
Dead p/ 1,000 1year (yng) 11.21 11.18 9.58 9.60 10.82 0.00 2.56 10.85
Dead p/ 1,000 1year (old) 15.21 15.01 13.79 15.17 12.42 0.00 2.44 6.46
Dead p/ 1,000 1year (all) 11.85 11.79 10.26 10.50 11.08 0.00 2.54 10.15
Dead p/ 1,000 LR (yng) 11.32 11.31 9.95 9.97 11.24 10.31 10.98 10.99
Dead p/ 1,000 LR (old) 16.14 16.07 16.41 17.68 15.30 10.69 13.24 7.76
Dead p/ 1,000 LR (all) 12.09 12.08 10.99 11.20 11.89 10.37 11.34 10.47
Immune in LR (yng), % 63.51 63.43 62.55 62.52 62.35 51.21 58.13 63.76
Immune in LR (old), % 20.41 20.37 21.21 22.80 19.68 13.90 17.22 10.19
Immune in LR (all), % 56.61 56.53 55.92 56.16 55.52 45.23 51.58 55.18
GDP at peak - rel to BM 1.00 1.00 1.09 1.09 1.00 0.99 1.00 1.01
GDP 1year - rel to BM 1.00 0.98 0.89 0.89 0.83 0.54 0.58 1.00
Cost p/ life saved, million $ – 38.14 4.17 5.16 30.90 9.85 21.17 -0.03
Hrs @ home (yng) - peak 64.57 64.94 61.29 61.07 64.70 64.96 65.03 64.64
Hrs @ home (old) - peak 100.56 100.63 97.77 97.57 100.63 100.83 100.81 109.43
Hrs @ home (yng) - 6m 56.67 57.39 69.82 69.85 57.01 95.85 104.06 56.58
Hrs @ home (old) - 6m 93.58 94.22 97.92 93.50 94.12 106.14 109.09 109.18
Value - healthy (yng) 559.80 559.43 558.05 558.02 545.73 519.62 502.99 560.00
Value - healthy (old) 405.07 404.99 404.23 404.81 401.04 394.72 388.05 390.47
Value - healthy (all) 535.01 534.69 533.41 533.47 522.55 499.61 484.58 532.84

Table D.2. Testing (hospital constraints)
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Benchmark Testing all Testing young Testing old Q90-a-50t Q90-a-100t Q90-y-100t
Wks to peak srsly ill (yng) 11.00 22.00 21.00 12.00 19.00 3.00 4.00
Wks to peak srsly ill (old) 12.00 22.00 21.00 12.00 19.00 3.00 3.00
Srsly ill p/ 1,000 @ peak (yng) 2.02 1.12 1.15 2.01 0.84 0.01 0.01
Srsly ill p/ 1,000 @ peak (old) 1.34 0.78 0.80 1.33 0.56 0.01 0.01
Dead p/ 1,000 1year (yng) 11.21 6.43 6.64 11.13 4.56 0.00 0.00
Dead p/ 1,000 1year (old) 15.21 9.36 9.59 15.05 8.37 0.01 0.02
Dead p/ 1,000 1year (all) 11.85 6.90 7.11 11.75 5.17 0.00 0.01
Dead p/ 1,000 LR (yng) 11.32 6.46 6.68 11.23 4.75 0.00 0.00
Dead p/ 1,000 LR (old) 16.14 9.53 9.79 15.89 9.42 0.01 0.02
Dead p/ 1,000 LR (all) 12.09 6.95 7.17 11.98 5.50 0.00 0.01
Immune in LR (yng), % 63.51 40.41 41.49 62.82 38.33 0.06 0.07
Immune in LR (old), % 20.41 12.17 12.49 20.08 12.27 0.02 0.02
Immune in LR (all), % 56.61 35.89 36.84 55.97 34.16 0.06 0.06
Max. n. of tests in a week, % 0.00 6.03 5.74 0.40 2.82 4.95 4.60
GDP at peak - rel to BM 1.00 1.10 1.09 1.00 1.13 1.21 1.21
GDP 1year - rel to BM 1.00 1.02 1.02 1.00 1.02 1.05 1.05
Cost p/ life saved, million $ – -0.18 -0.18 -0.09 -0.15 -0.19 -0.19
Hrs @ home (yng) - peak 64.57 60.22 60.40 64.52 57.96 54.80 54.80
Hrs @ home (old) - peak 100.56 96.53 96.70 100.54 93.97 89.08 89.08
Hrs @ home (yng) - 6m 56.67 58.87 58.50 56.64 56.89 54.77 54.77
Hrs @ home (old) - 6m 93.58 95.24 94.93 93.54 92.90 88.98 88.98
Value - healthy (yng) 559.80 563.28 563.13 559.86 564.01 567.54 567.54
Value - healthy (old) 405.07 408.53 408.37 405.20 408.74 412.93 412.93
Value - healthy (all) 535.01 538.49 538.34 535.08 539.13 542.77 542.77

Table D.3. Shelter in Place (hospital constraints)

D.2. A World with no Vaccine

In our baseline calibration, a vaccine arrives after 78 weeks. After this, nobody gets
infected with Covid-19 anymore. In this section, we explore the effects of a scenario
in which a vaccine never comes along; i.e. T ∗ =∞. The benchmark is very similar
with slightly more deaths (4% more). The age externality the young impose on the
old works in the same way but is stronger now: the overall death toll increases.42

The main difference comes with longer shelter-in-place policies. Without a vaccine,
the long-run death count is very similar to the no-policy benchmark. Now, after the
policy is lifted, the pandemic restarts and ends up killing almost the same number
of people as there is no vaccine to prevent this.

42. This is not the case with no vaccine and hospital bed constraints (not shown). As the young
become more careful, they free up scarce medical resources and this decreases the number of deaths.
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Benchmark Epidem. Age ext. partial Age ext. general
Wks to peak srsly ill (yng) 14.00 12.00 13.00 14.00
Wks to peak srsly ill (old) 12.00 12.00 12.00 12.00
Srsly ill p/ 1,000 @ peak (yng) 4.10 12.84 2.02 1.56
Srsly ill p/ 1,000 @ peak (old) 0.60 10.78 0.60 0.48
Dead p/ 1,000 1year (yng) 2.82 4.04 1.94 1.94
Dead p/ 1,000 1year (old) 7.83 30.07 7.83 8.00
Dead p/ 1,000 1year (all) 3.62 8.21 2.89 2.91
Dead p/ 1,000 LR (yng) 3.03 4.04 2.24 2.88
Dead p/ 1,000 LR (old) 9.71 30.07 9.71 14.12
Dead p/ 1,000 LR (all) 4.10 8.21 3.44 4.68
Immune in LR (yng), % 64.07 85.24 47.37 60.83
Immune in LR (old), % 13.01 39.45 13.01 19.42
Immune in LR (all), % 55.89 77.90 41.87 54.19
GDP at peak - rel to BM 1.00 1.21 0.49 0.85
GDP 1year - rel to BM 1.00 1.05 0.81 0.88
Cost p/ life saved, million $ – – 12.15 20.53
Hrs @ home (yng) - peak 65.28 54.77 92.71 72.66
Hrs @ home (old) - peak 107.61 88.98 107.61 102.58
Hrs @ home (yng) - 6m 58.70 54.77 73.38 68.87
Hrs @ home (old) - 6m 100.60 88.98 100.60 99.95
Value - healthy (yng) 3740.50 3736.30 1608.60 1603.30
Value - healthy (old) 1800.90 1770.60 1800.90 1795.20
Value - healthy (all) 3429.80 3421.40 1639.40 1634.10

Table D.4. Benchmark results (no vaccine)

Benchmark SH25-a-4 SH25-y-26 SH75-a-12 SH75-a-35 SH90-a-26 SH90-o-26
Wks to peak srsly ill (yng) 14.00 16.00 34.00 33.00 66.00 54.00 14.00
Wks to peak srsly ill (old) 12.00 14.00 33.00 32.00 64.00 53.00 30.00
Srsly ill p/ 1,000 @ peak (yng) 4.10 4.11 2.31 4.10 4.10 4.11 4.09
Srsly ill p/ 1,000 @ peak (old) 0.60 0.60 0.48 0.59 0.57 0.57 0.30
Dead p/ 1,000 1year (yng) 2.82 2.80 2.52 2.50 0.00 0.34 2.81
Dead p/ 1,000 1year (old) 7.83 7.67 8.27 5.81 0.00 1.12 4.39
Dead p/ 1,000 1year (all) 3.62 3.58 3.44 3.03 0.00 0.46 3.06
Dead p/ 1,000 LR (yng) 3.03 3.03 3.03 3.03 3.03 3.03 3.04
Dead p/ 1,000 LR (old) 9.71 9.69 11.72 9.51 9.18 9.30 6.50
Dead p/ 1,000 LR (all) 4.10 4.10 4.42 4.07 4.01 4.03 3.59
Immune in LR (yng), % 64.07 64.07 63.93 64.03 63.94 63.98 64.20
Immune in LR (old), % 13.01 13.02 15.87 12.99 12.95 12.97 8.81
Immune in LR (all), % 55.89 55.89 56.23 55.85 55.77 55.81 55.33
GDP at peak - rel to BM 1.00 1.00 1.08 1.00 1.00 1.00 1.00
GDP 1year - rel to BM 1.00 0.98 0.88 0.83 0.55 0.58 1.00
Cost p/ life saved, million $ – 43.00 – 32.05 15.80 26.48 -0.01
Hrs @ home (yng) - peak 65.28 65.12 62.02 64.70 65.22 64.95 65.09
Hrs @ home (old) - peak 107.61 107.61 105.54 107.56 107.61 107.60 110.12
Hrs @ home (yng) - 6m 58.70 59.36 70.46 57.36 95.85 104.06 58.58
Hrs @ home (old) - 6m 100.60 101.68 100.94 101.65 106.14 109.09 109.41
Value - healthy (yng) 3740.50 3740.10 3737.90 3726.40 3699.80 3683.60 3740.50
Value - healthy (old) 1800.90 1800.80 1797.80 1797.20 1790.20 1784.20 1791.30
Value - healthy (all) 3429.80 3429.40 3427.10 3417.40 3393.90 3379.30 3428.20

Table D.5. Shelter-in-place policies (no vaccine)

D.3. Alternative Calibration - Based on Ferguson et al. (2020)

An influential study was conducted by researchers at the Imperial College London:
Ferguson et al. (2020). Their results have been used to calibrate recent models in
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Parameter Bench. calibration Ferguson et al. (2020)
ϕ(0, y) 0.983 0.991
ϕ(0, o) 0.954 0.893
ϕ(1, y) 0.284 0.284
ϕ(1, o) 0.284 0.284
δ(y) 0.065 0.373
δ(o) 0.738 0.371

Table D.6. Parameters - baseline calibration and Ferguson et al. (2020)

the economics literature.43 In this section, we recalibrate the disease parameters in
our model to reflected those provided by this study. The main differences relative
to those from CDC (2020) is that the the young (the old) are less (more) likely to
end up in an ICU. On the other hand, the young (the old) are more (less) likely
to die, conditional on being in an ICU. In the end, the resulting death probabilities
are very similar. The results, therefore, are very close to those obtained with our
benchmark calibration.

The main differences between Ferguson et al. (2020) and CDC (2020) are
between the transition rates from mild to severe symptoms, and from severe
symptoms to death. However, the resulting overall death probability for each are
very similar across both studies. We take the age-dependent transition rates from
Ferguson et al. (2020) and aggregate to our two age groups (20-64 and 65-plus)
using the relative population weights for the US. This yields the following weekly
probability of recovery from mild symptoms: ϕ(0, y) = 0.991 and ϕ(0, o) = 0.893.
The age-dependent weekly death rates are: δ(y) = 0.373 and δ(o) = 0.371. Table
D.6 compares these parameters with the ones from the benchmark calibration.
Table D.7 provides the results for this calibration.

43. E.g. Acemoglu et al. (2020).
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Benchmark Epidem.
Wks to peak srsly ill (yng) 12.00 12.00
Wks to peak srsly ill (old) 13.00 12.00
Srsly ill p/ 1,000 @ peak (yng) 0.75 2.58
Srsly ill p/ 1,000 @ peak (old) 1.13 16.89
Dead p/ 1,000 1year (yng) 2.52 3.60
Dead p/ 1,000 1year (old) 7.18 25.94
Dead p/ 1,000 1year (all) 3.27 7.18
Dead p/ 1,000 LR (yng) 2.64 3.60
Dead p/ 1,000 LR (old) 8.26 25.94
Dead p/ 1,000 LR (all) 3.54 7.18
Immune in LR (yng), % 62.41 84.87
Immune in LR (old), % 12.70 39.29
Immune in LR (all), % 54.45 77.57
GDP at peak - rel to BM 1.00 1.20
GDP 1year - rel to BM 1.00 1.05
Cost p/ life saved, million $ – –
Hrs @ home (yng) - peak 64.44 54.77
Hrs @ home (old) - peak 107.24 88.98
Hrs @ home (yng) - 6m 58.20 54.77
Hrs @ home (old) - 6m 99.49 88.98
Value - healthy (yng) 3742.10 3738.20
Value - healthy (old) 1804.40 1777.90
Value - healthy (all) 3431.70 3424.10

Table D.7. Alternative calibration - based on Ferguson et al. (2020)
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