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Abstract
Bank complexity is often associated with risk, due to moral hazard and agency problems. At
the same time, complexity may be linked to diversification and scale economies, thus leading
to less risk. In this paper, we provide empirical evidence on the relationship between bank
complexity and risk-taking. We find a positive relationship between geographical complexity
and bank risk. Banks that operate in more countries, both through banks and non-banks,
have riskier balance sheets and more non-performing loans. Further, banks that operate in
Africa have higher risk levels due to larger volatility of returns. The link between structural
complexity and bank risk is weaker, but generally negative. Our results suggest that moral
hazard and agency problems may be more acute when banks operate in many geographies and
in emerging market economies. In contrast, the results are consistent with diversification and
scale benefits arising from operating in more business areas.
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1. Introduction

Bank complexity is perceived today as something negative for financial stability.
If a bank is too big, too opaque or too complex, monitoring it becomes much
more challenging. One of the lessons of the global financial crisis was that the
costs of living with the pervasive incentives facing too-big-to-fail banks could be
too-big-to-fund using taxpayers’ money. There were immediate calls to make sure
that these large (and complex) institutions would internalize the costs they might
impose on society through this too-big-to-fail problem. If banks become reckless
in their decisions due to the belief that they will be bailed out in case of a bad
outcome, then regulation should make sure that something breaks this costly moral
hazard problem. Regulation has thus moved in the direction of providing incentives
for banks to become smaller, more transparent, and simpler. This should allow
supervisors to better perform their jobs, as well as for depositors and other investors
to be more aware of the risks that they are exposed to.

Despite the regulatory changes, the link between banks’ complexity and the
risks they assume is not entirely clear. On the one hand, complexity may indeed
have a dark side and be associated with risk-taking behaviors. More complex banks
are more opaque and more difficult to manage and monitor, thus creating moral
hazard and agency problems (Morgan 2002; Dam and Koetter 2012; Duchin and
Sosyura 2014; Beck et al. 2017). Banks might also take too much risk because they
believe that they are too big to fail (Acharya et al. 2016; Cetorelli and Traina 2018)
or because of strategic complementarities (Farhi and Tirole 2012). On the other
hand, complexity may be necessary to achieve a certain operating scale and thus
be part of a bank’s business model without entailing more risk-taking (Cetorelli
et al. 2014; Cetorelli and Goldberg 2016). Complexity can be a different name
for diversification, which has well established benefits in finance (Markowitz 1952;
Laeven and Levine 2007; Buch et al. 2012; Berger et al. 2016).

Given the ambiguous predictions and findings in the literature, in this paper
we empirically analyze the relationship between complexity and risk in banks. We
consider two different concepts of bank complexity: geographical and structural.
The former refers to the complexity that might arise from the fact that a banking
group operates across many jurisdictions. The latter refers to the business structure
of the banking group, taking into account its internal organization through affiliates
and business types.

Using supervisory data on the activity and organization of Portuguese banking
groups, we estimate the relationship between these two dimensions of bank
complexity and bank risk. We consider several indicators of risk, to take on board
different aspects of risk in the banking business.

We find that banks that are more exposed to geographical complexity have more
risk. This positive relationship works through two channels. First, the number of
countries in which a bank operates, both through bank and non-bank activities, is
positively related with the riskiness of banks’ assets. Second, activities in emerging
markets increase banks’ risk through income volatility. This result is anchored on
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the fact that the geographical exposure of Portuguese banks is based on two pillars:
part of the cross-border activity refers to activity in other European countries, while
another important part refers to activity in Africa, notably in former Portuguese
colonies. The moral hazard and agency problems that explain a positive relationship
between complexity and risk may assume a different magnitude when banks operate
in countries that are very similar in terms of the legal, economic, governance,
regulatory and supervisory framework, or when they operate in countries in which
many of these dimensions may differ significantly. La Porta et al. (2000), Levine
et al. (2000), Beck et al. (2006), and Correa and Goldberg (2019) discuss the
importance of these differences in the activity of banks. Beck et al. (2011),
Demirgüç-Kunt and Klapper (2012), Beck and Cull (2013), and Beck (2015)
discuss in detail how banks operate in Africa and which challenges they face.

When it comes to structural complexity, the results are quite different. We
find a negative relationship between structural complexity and bank risk. This is
consistent with positive effects stemming from diversification and economies of
scale.

That said, the results obtained for structural complexity are generally weaker
than those obtained for geographical complexity. Risk seems to stem more from the
fact that banks are exposed to multiple geographies than from complexity measures
associated with their organizational structure and the reach of their activities in
terms of business sectors.

One important concern underlying these results is that it is challenging to
establish a causal relationship between complexity and risk. To mitigate endogeneity
concerns arising from reverse causality and omitted variables, we explore one
recent change in bank regulation that might affect banks’ complexity, without
necessarily directly affecting banks’ risk. Systemically important institutions in
each European country have to hold additional capital buffers, through the Other
Systemically Important Institutions capital buffer (O-SII buffer). This buffer is
calibrated by taking into account banks’ size, their importance for the economy,
their interconnection and, crucially, their complexity. As such, a bank that is
subject to this buffer may have incentives to decrease its complexity (Carmassi
and Herring 2016). We explore this exogenous change in regulation using an
instrumental variables approach. The results differ in several aspects when we use
this approach, but the most important conclusions remain valid. We confirm a
positive and robust relationship between geographical complexity and banks’ risk
and we obtain (weaker) evidence of a negative relationship between structural
complexity and risk.

Our paper contributes to the literature on banks’ complexity and risk. This
literature offers conflicting theoretical and empirical evidence on the relationship
between these two variables. Our analysis helps to understand whether more
complexity goes hand in hand with more risk, coming from agency problems and
moral hazard (Farhi and Tirole 2012; Dam and Koetter 2012; Duchin and Sosyura
2014; Acharya et al. 2016; Chernobai et al. 2020; Beck et al. 2017), or if complexity
is associated with diversification benefits, enhanced performance and risk resilience
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(Markowitz 1952; Laeven and Levine 2007; Buch et al. 2012; Cetorelli et al. 2014;
Cetorelli and Goldberg 2016; Berger et al. 2016).

Our results reconcile these two apparently contradictory hypothesis, showing
that bank complexity can be associated both with more and less risk. Operating
across many regions, notably in emerging market economies, is more likely to create
moral hazard and agency problems, thus leading to more risk. Having a complex
business structure and operating across different business types can allow for more
diversification and scale benefits, thus leading to lower risk levels.

2. Data

Our empirical analysis is based on quarterly bank-level data obtained from
supervisory reports, for the period between 2014 and 2018. These reports include
data on 17 banking holding companies (BHC). Standalone banks are excluded
from the analysis, given that most of the complexity indicators would not have a
meaningful interpretation.

The first building block of our analysis are the complexity measures. Bank
complexity is in itself a complex concept and we will rely on a broad set of indicators
to rank banks according to their complexity (Cetorelli et al. 2014; Goldberg and
Meehl 2019). Most of the measures are constructed using end-of-year data on the
activities of banking groups. The second pillar is the construction of bank-level
risk-taking indicators, also using supervisory data. Finally, to study the relationship
between complexity and risk, we need to control for relevant bank characteristics.
Below we describe in detail each of the data blocks.

2.1. Measuring bank complexity

We consider two broad concepts of bank complexity: geographical complexity and
structural complexity.

Geographical complexity describes how affiliate entities are spanned across
regions or countries. Arguably, operating across a larger set of geographies adds
complexity to the management of the banking groups. That said, this wider reach
also promotes diversification. The relationship between geographical complexity
and risk can thus be positive or negative.

To measure geographical complexity we start by considering the number of
countries in which a banking group operates. On average banks have activities in
5 different countries, but there is significant variation, as some banks operate only
in Portugal, while other are present in 16 countries (Table 1). These banks do not
hold vastly complex structures in their foreign operations, as the number of foreign
affiliates is only slightly larger: banks have, on average, 8.5 affiliates abroad. Not
all these foreign operations are related to banking. The average number of foreign
affiliates is 4, which means that when a banking group operates in another country,
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it typically does so only through one bank. The remaining affiliates may also be
financial institutions, but they are not deposit-taking institutions.

The cross-border activity of Portuguese banks hinges on two pillars. Part of their
operations refers to activity in other European countries, while another important
part refers to activity in Africa, notably in former Portuguese colonies. In terms of
complexity, these two universes may be quite different. While in Europe most of
the regulatory and supervisory framework is common (or very similar), in African
emerging economies there are important differences not only in these frameworks,
but also on the design and effectiveness of the legal system or on corporate
governance (La Porta et al. 2000; Levine et al. 2000; Beck et al. 2006, 2011; Correa
and Goldberg 2019). Furthermore, the risks that banks are exposed to might also
be different in these two geographies. In order to examine how banks’ exposures to
emerging markets may shape the relationship between complexity and risk, we add
to the set of geographical complexity the number of affiliates each banking group
has in Africa. We find that, on average, each banking group has one affiliate in
Africa. However, there is a lot of heterogeneity in this variable. Only 40% of the
banking groups actually have operations in Africa through affiliates.

The second concept of complexity that we explore is not related to geography,
but rather to business complexity. In this dimension, we consider a set of indicators
that capture the structural complexity of a banking group by looking into how
the group is organized through affiliates and business types. The simplest indicator
that we consider is the number of affiliates of each banking group. This number
ranges from 1 to 91 affiliates in each group. The median number of affiliates in
each group is 16.

Another dimension of structural complexity derives from the number of
activities carried out within each banking group. Bank holding companies can
operate in non-banking financial activities, such as insurance, mutual funds or
advisory services, as well as on non-financial activities. Some banking groups in our
sample have operations in a broad set of sectors, such as tourism, real estate or
health care. One of the indicators we use to capture this complexity is the share of
non-financial business types, defined as the percentage of the group’s non-financial
activities.

On average, only 45% of the types of business carried out by the banking
groups in our sample refer to the financial sector. Once more, there is considerable
heterogeneity. Some groups are highly focused on financial activities, with a share
of non-financial business types of 33%. Other groups are highly diversified and
non-financial activities account for 91% of their operations.

We also consider the number of business activities within each banking group.
On average, each group engages in 3.5 activities, but this number varies from 1
to 11. Finally, we also compute the Herfindahl-Hirschman Index (HHI) for business
types, which equals 0 when a group operates only in one business type. On average,
the HHI stands at 0.66.
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Taken together, these indicators show that Portuguese banks operate in
several geographies and engage in diversified activities, though there is significant
dispersion across banks.

When we consider the evolution of complexity indicators during the sample
period, we see that most of the indicators showed a downward trend from 2014 to
2018 (Figures 1 and 2). That said, the decrease was concentrated in the first two
years of our analysis. This reflects the adjustment of the Portuguese banking sector
in the aftermath of the euro area sovereign debt crisis. Regulatory and supervisory
changes, such as the implementation of systemic buffers or the creation of the Single
Supervisory Mechanism (SSM), might have provided incentives for a decrease in
complexity. The only exception to this broad-based decrease in complexity comes
from the HHI for business types, which increased throughout most of the sample
period.

To better characterize the heterogeneity within the banking sector, in Table 2
we compare the complexity indicators for the 6 largest banking groups with the
smaller banking groups. These 6 largest banking groups are classified as systemically
important institutions in Portugal, being subject to the O-SII buffer foreseen in
the European regulation. This buffer is calibrated using a systemic risk score
that depends on each bank’s size, importance for the economy, interconnection,
potential contagion, and complexity. The complexity metrics used to calibrate the
O-SII buffer are the notional value of OTC derivatives, cross-jurisdictional liabilities
and cross-jurisdictional claims. Even though these metrics differ from the ones used
in our analysis, we would expect them to be significantly correlated.

The statistics reported in Table 2 confirm this. The 6 largest banks in Portugal
operate in more countries, and have more foreign affiliates. Most of them have
activities in Africa, while most of the smaller banks do not. They also rank higher
in terms of structural complexity: they have more affiliates and operate in more
types of business activities.

2.2. Measuring bank risk

Risk is part of a bank’s business and there are many ways to measure it. Some
indicators focus on specific risk dimensions, such as credit risk. Others are more
encompassing, but sometimes not focused only on risk. Given the challenges in
measuring risk, we consider four different indicators, which we summarize in Table
3.

The first indicator is a measure of financial risk designed to capture the banks’
risk of default, by taking into account the volatility of returns and the bank’s
leverage (ln z_score). It is computed as the logarithm of the inverse of the
average return on assets in a given period plus the equity to assets ratio of the
bank, divided by the standard deviation of the return on assets (in the last eight
quarters). The higher the z-score, the higher the risk. According to this indicator,
risk increased slightly in 2015, in the aftermath of the bail-in of one of the largest
Portuguese banks (Beck et al. 2020). After that year, the z-score for Portuguese
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banks showed a sustained decrease, although with substantial heterogeneity across
banks. Nonetheless, this trend in risk reduction seems to have been halted in 2018.

We can also capture risk by using granular information on the banks’ exposures.
To do that, we consider the logarithm of the average default probability of the loans
granted to firms by each bank, using the output of an in-house firm-level credit
scoring model (Antunes et al. 2016). The average default probability of firms in the
portfolio of the banks between 2014 and 2018 is 7%. This relatively high number
reflects the protracted recovery of the Portuguese economy in the aftermath of the
euro area sovereign debt crisis. Further, while the z-score started to decrease only
in 2016, the default probability of banks’ corporate portfolios decreased markedly
already in 2015. Again, there is considerable dispersion in the average default
probability in each banks’ corporate loan book, reflecting a diversified exposure in
terms of risk profiles.

Another way to capture banks’ risk-taking is to consider the evolution of
non-performing loans (NPL). We consider a flow indicator (New NPL / Assets),
which captures the flow of impairments and provisions recorded in each year, as
a percentage of total assets. The variation within the sample is substantial. On
average, new non-performing loans in each year represent 0.52% of banks’ assets,
but this ratio ranges from -1.43 to 2.66%. The flow of non-performing loans has
been steadily declining since 2014, reflecting a consistent effort to improve the
quality of banks’ assets in the aftermath of the financial assistance program to the
Portuguese economy (Bonfim et al. 2020).

Finally, a broad way to capture the risks taken by a financial institution is to
consider the ratio between risk-weighted assets and total assets (RWA / Assets). A
bank with high risk-weighted assets to total assets has high risk weights attached to
its assets. While this could mean that the bank has more prudent risk management
policies, the fact that only three banks in Portugal use internal credit risk models to
estimate regulatory capital requirements suggests instead that higher risk weights
reflect higher risk-taking levels. The sample average ratio is 0.61, but it ranges
from 0.4 to 0.94, confirming that there is substantial variety in risk profiles in the
Portuguese banking sector. This indicator also decreased towards less risk during
the period analyzed.

If we jointly consider the evolution of complexity and risk indicators, we observe
that both have been declining in the last years, for most of the indicators considered.
Still, these aggregate time trends might hide important cross-sectional variation.
When we compute pairwise correlations between the complexity and risk indicators,
the positive relationship is generally confirmed.

2.3. Bank characteristics

The apparent positive unconditional correlation between risk and complexity
indicators might be hiding the role of other bank characteristics that also influence
bank risk and bank complexity. It is thus crucial to control for potentially relevant
bank characteristics in a multivariate setting.
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In Table 4 we report the summary statistics for a set of bank characteristics.
Bank size, captured by the logarithm of total assets (ln Assets), is often associated
with risk-taking, as larger banks might be perceived as too-big-to-fail (Demirgüç-
Kunt and Huizinga 2013). The implicit belief of a bailout might lead to excessive
risk (Gropp et al. 2011).

We also control for the ratio between loans and assets. This indicator captures
banks’ specialization in lending, thus reflecting the banks’ business model. Banks
with a larger fraction of total assets linked to loans to customers have a more
traditional intermediation profile, which is often associated with less risk. There is
substantial variation in our sample, with a minimum of 1.8% and a maximum of
96%, showing that there are different business models. On average, slightly more
than half of the banks’ total assets refer to bank loans.

Bank profitability might also be a relevant control variable. In the sample, banks’
return on assets (ROA) is on average 0.76%, showing a gradual improvement during
the sample period. Many banks still recorded losses during part of the sample
period, mainly due to the recognition of impairments in their loan books in the
aftermath of the euro area sovereign debt crisis.

We also control for bank efficiency, captured by the cost-to-income ratio. On
average this ratio stood at 60.5, showing a persistent improvement since 2016.
This improvement reflects both the growth in income mentioned above and the
adoption of cost-cutting measures, such as massive branch closures (Bonfim et al.
2019).

Finally, we also control for the effects of bank capital on risk. Better capitalized
banks are expected to take less risks, as shareholders have more skin in the game
(Berger and Bouwman 2013; Peek and Rosengren 2005; Blattner et al. 2019).
Banks’ Tier 1 ratio was on average 16.1% and showed a significant improvement
during the period analyzed.

3. Complexity and risk-taking

3.1. Empirical strategy

Our main goal is to understand whether complexity is associated with more or less
bank risk. On the one hand, more complex banks are less transparent and so may
be more prone to take risk. On the other hand, more complex banks are also more
diversified, which may be linked to less risk.

To explore the direct link between complexity and risk-taking of Portuguese
banks, we estimate the following model:

Riskit = β0 + β1Complexityi,t−1 + δXi,t−1 + γt + εit (1)
where i denotes an individual bank and t denotes time. The term Risk will capture
banks’ risk-taking and Complexity is the set of bank complexity indicators, which
enter the model one at a time. In these regressions we will control for bank-specific
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time-varying characteristics captured by the vector Xi,t−1 and time fixed effects
γt.1 The independent variables are lagged by one period. The term εit is an error
term with the conventional statistical properties. This specification allows us to
contribute to the debate on the link between risk and complexity. As discussed
above, the evidence available in the literature is mixed regarding the expected sign
of β1. Complexity may be a synonym for diversification, thus implying less risk,
or for opacity, having an opposite effect. With this specification we can better
understand the (non-causal) relationship between these two dimensions.

3.2. Main results

3.2.1. Geographical complexity and risk. In Table 5 we report the results for the
estimation of Equation (1) for the relationship between geographical complexity
and the most encompassing risk indicator in our analysis, the logarithm of banks’
z-scores. The z-score is the inverse of the average return on assets in a given period
plus the equity to assets ratio of the bank, divided by the standard deviation of the
return on assets in the last 8 quarters. This means that a higher z-score is associated
with more risk through the combination of more leverage and more volatility of
returns (Boyd et al. 1993). Both dimensions are by themselves important signs
of bank fragility. Their combination renders banks especially vulnerable, as a high
leveraged bank coping with volatile returns will find it much harder to withstand
negative shocks.

We estimate the relationship between banks’ z-score and each one of the
five geographical complexity indicators: Number of countries, Number of foreign
affiliates, Number of foreign bank affiliates, Number of affiliates in Africa, Dummy
variable for affiliates in Africa. None of the first three dimensions shows a
statistically significant relationship with banks’ z-scores. Banking groups operating
in more countries, with more foreign bank and non-bank affiliates do not have
significantly different z-scores from banks that have less geographical complexity.

However, we find a significant positive relationship between the indicators that
capture geographical complexity through exposure to emerging market economies
(namely to Africa). Banks that have more affiliates in Africa show higher z-scores.
The relationship is stronger when we consider only the effect of having or not
exposure to Africa through local affiliates.

The higher risk associated with operations in Africa captured by the z-score
might be related to the higher volatility of returns in these economies. The most
significant part of the exposure refers to Angola, an oil-exporting economy. This
means that banks’ operations in this country are affected by fluctuations in oil
prices and exchange rates, leading to larger volatility in their returns (IMF 2016).

1. We do not consider bank fixed effects in the estimated models because of the short time span
of the dataset.



10

In Table 6, we report the results of geographical complexity on the average
default probability in banks’ corporate loan portfolio (ln PD). This indicator
captures a very different dimension of bank’s risk. While the z-score considers
the capital structure and volatility of returns, this indicator zooms in on one of
the main sources of bank losses: corporate loans. Using an in-house credit scoring
model with granular loan and firm information (Antunes et al. 2016), we compute
the average default probability in each bank’s corporate loan book.

The results are very different when we use this indicator. Now we find that
the first three geographical complexity measures (Number of countries, Number
of foreign affiliates, Number of foreign bank affiliates) are positively related with
the risk banks take in their corporate loan book. It is important to note that the
default probabilities are computed only for domestic firms. This means that banks
that have stronger activity abroad, both through banks and through other activities,
are exposed to more corporate risk domestically. One possible explanation for this
result might be related to higher risk tolerance for the banks that choose to expand
abroad. That said, the results do not point to any link between activities in Africa
and risk in banks’ domestic corporate loan book.

The results for the third risk indicator, new NPLs over total assets, are broadly
consistent with those obtained with the average default probabilities (Table 7 ).
Banks that operate in more countries, both through banking and non-banking
activities, show higher increases in NPLs. Once more, this relationship does not
hold for activities in Africa.

The consistency between the results obtained with average default probabilities
and new NPLs is not unexpected. Most of the loan losses recorded in the Portuguese
banking sector during the euro area sovereign debt crisis were in the corporate loan
book (Marques et al. 2020). Banks with a portfolio of riskier borrowers are thus
expected to also be those with more NPLs.

Finally, we examine the relationship between geographical complexity and the
risk-weighted assets ratio (Table 8). This indicator offers an encompassing view
of the riskiness of the entire portfolio of bank assets. The higher the risk weights
assigned to banks’ assets, the higher the risk in the balance sheet. The results
show that there is also a positive relationships between geographical complexity
and this risk indicator. However, this relationships occurs only through the number
of countries and the number of foreign affiliates. The number of foreign bank
affiliates does not seem have a significant relationship with risk as measured by
the risk-weighted ratio, suggesting that the link exists mainly through non-bank
activities abroad which might, in some cases, have higher risk weights attached.
Finally, operations in Africa do not have a statistically significant relationship with
the risk weighted assets ratio.

In sum, we find a significant positive relationship between geographical
complexity and banks’ risk. This relationship has two main dimensions. First, banks
more exposed to Africa show higher risk as captured by z-scores. This possibly
reflects the volatility in returns generated by these exposures. Second, the number
of countries in which a bank operates, including both bank and non-bank activities,
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is positively related with the riskiness of banks’ assets, captured by corporate default
probabilities, non-performing loans and risk-weights.

3.2.2. Structural complexity and risk. Geographical and structural complexity
refer to different dimensions of complexity. While some banks have complex internal
structures and also operate in a wide set of regions, other banks, often smaller, have
very simple structures and operate dominantly in the domestic market. That said,
most banks are somewhere in the middle of these extremes, ranking high in one of
the dimensions but not in the other. For this reason, we repeat the analysis of the
previous sub-section, but now looking into four indicators of structural complexity:
number of affiliates, share of non-financial business types, number of business types,
and HHI for business types.

In Table 9 we report the results for the estimation of Equation (1) using
structural complexity indicators for the first bank risk indicator, the z-score. We
find a negative significant relationship between the number of affiliates a bank has
and the z-score. Banks with more complex internal structures reflected in a larger
number of affiliates show lower levels of risk. This result contrasts with the positive
relationship between risk and geographical complexity. One possible explanation
for this result might be that banks with more affiliates are more diversified, which
allows them to mitigate the volatility of their income stream (Baele et al. 2007;
Goddard et al. 2008).

The negative relationship between structural complexity and risk, captured by
the z-score, works through the number of affiliates, but not through the other three
indicators that capture complexity through the composition of activities carried out
by these affiliates. Having a larger share of non-financial activities, a larger number
of business types or a higher HHI in business types is not positively nor negatively
related with our broader measure of risk, the z-score.

In Tables 10, 11, and 12, we report the relationship of the four structural
complexity indicators with the remaining three bank risk indicators: the average
default probability of the corporate loan book, new NPLs over total assets and the
risk-weighted assets ratio. We cannot find any statistically significant relationship
between structural complexity and banks’ risk-taking in any of these estimations.

While for geographical complexity we could document a consistently positive
relationship between complexity and risk, with structural complexity we find a
negative relationship between the number of affiliates and risk measured by the z-
score, but not for any other complexity or risk indicator. This suggests that the link
between structural complexity and risk is weaker than for geographical complexity.

3.3. Complexity, risk and regulation: an instrumental variables approach

The results presented so far do not allow us to establish a causal relationship
between complexity and risk. The link between these two dimensions may be
endogenous for a number of different reasons, including reverse causality and
omitted variables. For instance, banker managers’ (time-varying) risk tolerance
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may shape decisions both on the level of geographical and structural complexity
and on the riskiness of assets held.

To help us in getting closer to a causal analysis, we explore one recent
change in bank regulation: the announcement of the Other Systemically Important
Institutions capital buffer (O-SII buffer).

The systemic risk buffer was one of the solutions put forth by the Basel
Committee in the aftermath of the global financial crisis to mitigate banks’
contribution to systemic risk due to their size and complexity. Global banks that
are considered systemic have to hold additional capital buffers, thus contributing to
a better alignment of incentives. At the European level, the Capital Requirements
Directive allows national macroprudential authorities to impose capital buffers on
banks that are systemically relevant in each jurisdiction (Budrys et al. 2018).
Banco de Portugal adopted this framework in 2015, initially front-loading some of
the implementation foreseen in international regulation. Six of the largest banking
groups have been classified as O-SII, based on a set of criteria related to each bank’s
size, its importance for the economy, its interconnection and potential connection
and, finally, its complexity.2 These six banks can be subject to additional capital
requirements, ranging from 0 to 2% of the total risk exposure amount.3 If this
capital buffer is a binding constraint for the banks’ desired or optimal capital level,
banks may choose to react in three different ways: i) they may increase their Core
Tier 1 capital (CET1) to meet the new requirements; ii) they may reduce risk-
weighted assets (RWA); or iii) they may decrease their contribution to systemic
risk, thus reducing their O-SII buffer in the future. While the first two adjustment
mechanisms are similar to those seen after the implementation of any capital
requirement, the last one is specific to this buffer. Indeed, the third adjustment
mechanism is deeply intertwined with complexity, as this is one of the ingredients
in the calibration of the O-SII score. According to the guidelines of the European
Banking Authority (EBA), the score is computed using four categories of indicators:
size, importance, complexity and interconnectedness. Each one of these categories
has a weight of 25% on the computation of the score, which can then be fine-
tuned using supervisory judgment. Complexity is captured by the (notional) value
of OTC derivatives, cross-jurisdictional claims and cross-jurisdictional liabilities.
Though these metrics differ from the complexity indicators used in this paper, we
expect them to be significantly correlated.

Given that these buffers create an exogenous incentive for banks to decrease
their complexity levels, we explore this regulatory shock in an instrumental variables
setting. We examine how bank complexity affects banks’ risk taking behaviors
by exploring an exogenous shock coming from a regulatory tool that targets
the complexity of banks, thus exploring the idea that regulation might have an

2. Methodological details on the calibration of O-SII buffers can be found in
https://www.bportugal.pt/sites/default/files/anexos/doc_osii_en_0.pdf.
3. In Table 2 we report the complexity indicators for banks that are classified as O-SIIs and for
the other banks in the sample.
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important role in shaping the link between complexity and risk in banking (Laeven
and Levine 2009; DeYoung et al. 2013; Brandao-Marques et al. 2018).

We re-estimate Equation 1 in a two-stage least square framework, where the O-
SII buffer is an instrumental variable for banks’ complexity. The first stage equation
can be written as follows:

Complexityit = β0 + β1O − SIIi,t−1 + δXi,t−1 + γt + εit (2)
This empirical specification allows us to explore the intensity of the treatment,

given that the buffer is calibrated individually for each banking group, depending
on its contribution to systemic risk. As such, this empirical strategy allows to
explore the time-series and cross-sectional variation in the calibration of systemic
risk buffers for Portuguese banks.

3.3.1. Results. In Tables 13 to 20 we repeat the estimations reported in Tables 5
to 12 using the instrumental variables approach. Part of the results are consistent,
but there are also some noteworthy differences.

In Table 13 we report the results of the effects of geographical complexity
on banks’ z-score. When we use an instrumental variables approach to mitigate
endogeneity concerns, the results still support a positive relationship between
geographical complexity and bank’s risk captured by the z-score. However, while in
the OLS approach the results were statistically significant only for the exposures to
Africa, with this estimation strategy we continue to obtain a positive relationship
between presence in Africa and risk (though only for the number of affiliates in
Africa) but we also find a (marginally) statistically significant relationship for the
number of countries in which a bank operates, as well as for the number of foreign
affiliates. The results for the first-stage of the estimation confirm that the O-SII
buffer is a valid instrument, except for the binary variable that refers to exposures
in Africa.

When we consider the effects of geographical complexity on the average
corporate default probability of banks, the statistically significant positive effects
we obtained in the OLS specification are no longer valid (Table 14). This positive
relationship was possibly affected by omitted variables which simultaneously
influence banks’ complexity and risk, such as bank manager’s risk preferences.

In contrast, the effects of geographical complexity on new non-performing loans
become stronger with the instrumental variables approach (Table 15). Banks that
operate in more countries, both through bank and non-bank affiliates, have larger
NPL flows (the coefficients are more precisely estimated). Further, the effect of the
number of affiliates in Africa becomes statistically significant in the instrumental
variables approach.

Finally, the effect of geographical complexity on banks’ risk as measured by the
risk weighted ratio is not significant in the instrumental variables estimation (Table
16), suggesting that this result was possibly affected by endogeneity problems.

In sum, when we explore the role of the announcement of the O-SII buffer as an
instrument that exogenously affects complexity, the results do not remain entirely
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unchanged. That said, the most important conclusion of our analysis remains valid.
There is a positive relationship between geographical complexity and banks’ risk.

The next step is to estimate the instrumental variables approach for the effect
of business complexity on the four risk variables: z-score (Table 17), average
corporate default probability (Table 18), new NPLs (Table 19), and the risk
weighted asset ratio (Table 20). In the OLS estimation, the relationship between
structural complexity and risk was very weak. We could only find a negative
relationship between the number of affiliates and risk measured by the z-score.
The results are broadly the same with the instrumental variables approach. There
is a marginally statistically significant coefficient on the effects of the share of
non-financial business types on banks’ z-score. Banks with a larger share of non-
financial activities have more risk. None of the other complexity-risk combinations
yields statistically significant results. Further, the results for the first step are also
generally not-statistically significant. Even though the announcement of the O-SII
buffer was associated with changes in geographical complexity, it did not lead to
changes in structural complexity.

3.3.2. Additional results. In the results presented in Tables 13 to 20, the
instrumental variable used in the first step refers to the announced O-SII buffer for
each institution, which can vary from 0 to 2%. In unreported estimations, we also
considered as an instrument a binary version of this variable, taking the value one
for all the banking groups classified as O-SII from 2015 onwards.

The results confirm a positive relationship between geographical complexity
and bank risk, but only in one case: the effect of having or not activities in Africa
on banks’ z-score. The weaker results for the binary version of the instrumental
variable are essentially linked to its weaker performance in the first stage of the
estimations.

However, for structural complexity the results are stronger with this binary
instrument, which performs better in the first stage estimation of complexity.
Although the majority of complexity-risk links remains not statistically significant,
there is a significant negative effect of the share of non-financial business types and
of the number of business types on banks’ z-score. There is also a negative effect
of the share of non-financial business types on new NPLs.

The period analyzed in the paper corresponds to the first years of the Single
Supervisory Mechanism (SSM). In 2014, the ECB became responsible for the direct
supervision of “significant institutions” in the euro area. The set of Portuguese
institutions that became directly supervised by the ECB in 2014 greatly overlaps,
albeit not entirely, with the set of institutions subject to O-SII buffers. When
we consider as an instrumental variable a dummy that captures whether or not a
banking group is supervised directly by the ECB, the results are generally consistent
with those previously obtained, though more imprecisely estimated.
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4. Concluding remarks

The existing literature on the relationship between bank complexity and risk offers
ambiguous predictions. On the one hand, bank complexity can be linked to moral
hazard and agency problems. This means that more complex banks are expected
to have higher levels of risk. On the other hand, being more complex might allow
banks to benefit from diversification and from scale economies. This implies that
more complex banks can have lower levels of risk.

In this paper, we examine a set of complexity and risk indicators to shed
more light on these conflicting predictions. We discuss two types of complexity:
geographical and structural. The link between these two concepts of complexity
and risk has opposite signs. We find a positive relationship between geographical
complexity and bank risk. Banks that operate in more countries, both through banks
and non-banks, have higher risk in their balance sheets. Their credit portfolios have,
on average, higher default probabilities, they have more new non-performing loans,
and they have higher risk-weights per unit of exposure. In contrast, we find a
(weak) negative relationship between structural complexity and bank risk. Banks
that have more affiliates show higher levels of risk as captured by the z-score.
That said, for most structural complexity indicators, we do not find a statistical
significant relationship with risk.

Geographical complexity may be captured by the number of countries and
affiliates that a banking group has abroad, but considering what type of countries
this exposure refers to might also be relevant. We explore the heterogeneous
exposure of Portuguese banks to Africa to understand how is complexity, as
captured through exposure to an emerging market economy, related to risk. We find
that banks that operate in Africa indeed have higher levels of risk, as captured by
the z-score. This reflects the larger volatility of returns arising from these exposures.
However, exposure to Africa is not related to other risk indicators that capture the
overall risk in banks’ balance sheets.

Taken together, our results validate two apparently contradictory hypotheses.
Bank complexity can be associated with both more and less risk. Geographical
complexity is more likely to create moral hazard and agency problems, thus leading
to more risk, notably when banks operate in many geographies and in volatile
emerging markets. In turn, structural complexity can allow for more diversification
and scale benefits, thus leading to lower risk levels.
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Tables and Figures

Count Mean St. dev. Min. Q1 Q2 Q3 Max.
Geographical complexity
Number of countries 64 5.27 4.11 1 1 4 8.5 16
Number of foreign affiliates 64 8.50 9.21 0 0 6 13 32
Number of foreign bank affiliates 64 4.03 4.08 0 0 3 6 17
Number of affiliates in Africa 64 1.09 1.80 0 0 0 2 8
Dummy variable for affiliates in Africa 64 0.42 0.50 0 0 0 1 1

Structural complexity
Number of affiliates 64 26.16 26.92 1 4.5 16 43.5 91
Share of non-financial business types 45 0.55 0.15 0.33 0.50 0.50 0.60 0.91
Number of business types 64 3.53 2.32 1 2 3 4 11
HHI business types 56 0.66 0.26 0.14 0.44 0.74 0.88 1.00

Table 1. Summary statistics on complexity indicators
Notes: The sample period goes from 2014 to 2018. Count refers to the number of observations
and Q1, Q2, and Q3 refer to the first, second, and third quartiles of the sample distribution of
each complexity indicator, respectively. The number of countries counts the countries in which each
banking group operates. The number of foreign affiliates considers all branches and subsidiaries
abroad, while the number of foreign bank affiliates considers only foreign branches and subsidiaries
registered as banks. The number of affiliates (in Africa) counts all affiliates (in Africa). The share
of non-financial business types captures the percentage of the group’s non-financial activities. The
HHI for business types refers to the Herfindahl-Hirschman Index for business types and equals 0
when a group only operates in one business type.

Largest 6 banks Other banks Difference t-statistic
(mean) (mean)
(1) (2) (3) (4)

Geographical complexity
Number of countries 7.93 2.91 -5.02*** -6.12
Number of foreign affiliates 13.73 3.88 -9.85*** -5.03
Number of foreign bank affiliates 6.57 1.79 -4.77*** -5.72
Number of affiliates in Africa 2.17 0.15 -2.02*** -5.40
Dummy variable for affiliates in Africa 0.73 0.15 -0.59*** -5.79

Structural complexity
Number of affiliates 39.53 14.35 25.18*** -4.20
Share of non-financial business types 0.58 0.50 -0.08 -1.83
Number of business types 4.43 2.74 -1.70** -3.12
HHI business types 0.58 0.74 0.16* 2.36

Table 2. Summary statistics on complexity indicators: largest 6 banks vs. other institutions
Notes: The sample period goes from 2014 to 2018. The largest 6 banks (G6) refer to the sub-sample
of systemically important institutions. Column (1) reports means for this group of banks and column
(2) reports the means for the other banks. Column (3) reports the differences between these two
sub-samples and column (4) reports the t-statistic under the null hypothesis of no difference of
means between the two sub-samples. The number of countries counts the countries in which each
banking group operates. The number of foreign affiliates considers all branches and subsidiaries
abroad, while the number of foreign bank affiliates considers only foreign branches and subsidiaries
registered as banks. The number of affiliates (in Africa) counts all affiliates (in Africa). The share
of non-financial business types captures the percentage of the group’s non-financial activities. The
HHI for business types refers to the Herfindahl-Hirschman Index for business types and equals 0
when a group only operates in one business type.***, **, and * stand for statistical significance at
1%, 5%, and 10%, respectively.
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Count Mean St. dev. Min. Q1 Q2 Q3 Max.

ln z-score 55 -2.74 0.85 -4.7 -3.36 -2.86 -2.15 -0.51
ln PD 64 -2.73 0.44 -3.41 -3 -2.78 -2.5 -0.46
New NPL / Assets 64 0.52 0.75 -1.43 0.05 0.31 0.91 2.66
RWA / Assets 60 0.61 0.14 0.4 0.51 0.6 0.67 0.94

Table 3. Summary statistics on risk-taking indicators
Notes: The sample period goes from 2014 to 2018. Count refers to the number of observations
and Q1, Q2, and Q3 refer to the first, second, and third quartiles of the risk measures distribution,
respectively. The ln z-score is computed as the logarithm of the inverse of the average return on
assets in a given period plus the equity to assets ratio of the bank, divided by the standard deviation
of the return on assets in the last 8 quarters. Ln PD is computed as the logarithm of the average
default probability of loans granted to firms by each bank, using the output of a firm-level credit
scoring model (Antunes et al., 2016). New NPL / Assets is the flow of non-performing loans over
total assets; and RWA / Assets is the ratio between risk-weighted assets and total assets.

Count Mean St. dev. Min. Q1 Q2 Q3 Max.

ln Assets 64 9.07 1.89 5.23 7.49 9.65 10.77 11.52
Loans / assets 64 50.60 25.53 1.77 32.25 58.91 65.39 95.50
ROA 64 0.76 1.86 -4.75 -0.15 0.65 1.76 7.03
Cost-to-income 64 60.48 26.75 21.13 43.21 55.56 69.30 165.25
Tier 1 ratio 54 16.07 11.02 0.01 10.87 13.57 20.27 60.67

Table 4. Summary statistics on bank characteristics
Notes: The sample period goes from 2014 to 2018. Count refers to the number of observations
and Q1, Q2, and Q3 refer to the first, second, and third quartiles of the risk measures distribution,
respectively. ROA refers to return on assets.



21 Banks’ complexity and risk: agency problems and diversification benefits

Geographical complexity indicator

Number of Number of foreign Number of foreign Number of Dummy variable
countries foreign affiliates bank affiliates affiliates in Africa for affiliates in Africa

(1) (2) (3) (4) (5)

Geographical complexity 0.0082 -0.0046 -0.0145 0.1652∗ 1.1136∗∗∗
(0.0721) (0.0407) (0.0628) (0.0888) (0.1793)

ln Assets 0.3055 0.3438∗ 0.3606∗ 0.1630 0.0394
(0.1883) (0.1872) (0.1697) (0.1417) (0.0816)

Loans / assets 0.0052 0.0043 0.0033 0.0070 0.0027
(0.0054) (0.0063) (0.0057) (0.0061) (0.0036)

ROA 0.1181 0.1087 0.1153 0.1764 0.1254
(0.1878) (0.1884) (0.1649) (0.1559) (0.0957)

Cost-to-income 0.0152∗ 0.0143 0.0143 0.0143∗ 0.0127∗
(0.0078) (0.0100) (0.0081) (0.0072) (0.0068)

Tier 1 ratio 0.0511∗ 0.0519∗ 0.0489∗∗ 0.0384∗ 0.0073
(0.0241) (0.0269) (0.0168) (0.0193) (0.0084)

N 33 33 33 33 33
adj. R2 0.173 0.173 0.176 0.333 0.590

Table 5. Geographical complexity and risk: z-score
The table reports the estimation of Equation 1. The dependent variable is the logarithm of the
z-score calculated over eight quarters (ln Z-score). The ln z-score is computed as the logarithm of
the inverse of the average return on assets in a given period plus the equity to assets ratio of the
bank, divided by the standard deviation of the return on assets in the last 8 quarters. Columns (1)
to (5) correspond to the different measures of the independent variable on geographical complexity
(Number of countries, Number of foreign affiliates, Number of foreign bank affiliates, Number of
affiliates in Africa, Dummy variable for affiliates in Africa). The number of countries counts the
countries in which each banking group operates. The number of foreign affiliates considers all
branches and subsidiaries abroad, while the number of foreign bank affiliates considers only foreign
branches and subsidiaries registered as banks. The number of affiliates (in Africa) counts all affiliates
(in Africa). All the independent variables are lagged by one quarter. The sample period goes from
2014 to 2018. All specifications include time fixed effects. Ordinary Least Squares estimates with
robust standard errors clustered at the bank level in parentheses. ***, **, and * stand for statistical
significance at 1%, 5%, and 10%, respectively.
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Geographical complexity indicator

Number of Number of foreign Number of foreign Number of Dummy variable
countries foreign affiliates bank affiliates affiliates in Africa for affiliates in Africa

(1) (2) (3) (4) (5)

Geographical complexity 0.0546∗∗ 0.0220∗∗ 0.0293∗∗ 0.0385 0.0058
(0.0184) (0.0081) (0.0102) (0.0262) (0.1609)

ln Assets -0.1114∗∗ -0.0896 -0.0814 -0.0631 -0.0407
(0.0462) (0.0511) (0.0470) (0.0560) (0.0598)

Loans / assets -0.0096∗ -0.0102 -0.0098 -0.0121 -0.0115
(0.0051) (0.0061) (0.0063) (0.0072) (0.0069)

ROA -0.1469∗∗∗ -0.1425∗∗∗ -0.1671∗∗∗ -0.1631∗∗∗ -0.1722∗∗∗
(0.0309) (0.0437) (0.0513) (0.0527) (0.0528)

Cost-to-income -0.0053∗∗ -0.0052 -0.0060 -0.0057 -0.0063
(0.0022) (0.0031) (0.0034) (0.0035) (0.0035)

Tier 1 ratio -0.0129 -0.0125 -0.0092 -0.0151 -0.0128
(0.0126) (0.0150) (0.0159) (0.0160) (0.0142)

N 39 39 39 39 39
adj. R2 0.310 0.252 0.207 0.178 0.158

Table 6. Geographical complexity and risk: default probability on corporate loan book
Notes: The table reports the estimation of Equation 1. The dependent variable is the logarithm of the
probability of default of the firms in the bank’s portfolio (ln PD). Columns (1) to (5) correspond to
the different measures of the independent variable on geographical complexity (Number of countries,
Number of foreign affiliates, Number of foreign bank affiliates, Number of affiliates in Africa, Dummy
variable for affiliates in Africa). The number of countries counts the countries in which each banking
group operates. The number of foreign affiliates considers all branches and subsidiaries abroad, while
the number of foreign bank affiliates considers only foreign branches and subsidiaries registered as
banks. The number of affiliates (in Africa) counts all affiliates (in Africa). All the independent
variables are lagged by one quarter. The sample period goes from 2014 to 2018. All specifications
include time fixed effects. Ordinary Least Squares estimates with robust standard errors clustered
at the bank level in parentheses. ***, **, and * stand for statistical significance at 1%, 5%, and
10%, respectively.
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Geographical complexity indicator

Number of Number of foreign Number of foreign Number of Dummy variable
countries foreign affiliates bank affiliates affiliates in Africa for affiliates in Africa

(1) (2) (3) (4) (5)

Geographical complexity 0.0527∗∗ 0.0344∗∗ 0.0525∗ 0.0391 0.2572
(0.0219) (0.0157) (0.0285) (0.0442) (0.1968)

ln Assets 0.0383 0.0292 0.0325 0.0837 0.0563
(0.0629) (0.0591) (0.0563) (0.0767) (0.0720)

Loans / assets 0.0006 0.0009 0.0017 -0.0018 -0.0027
(0.0063) (0.0053) (0.0070) (0.0070) (0.0066)

ROA -0.1385 -0.1166 -0.1540 -0.1537 -0.1702∗
(0.1072) (0.1135) (0.0962) (0.0887) (0.0877)

Cost-to-income -0.0028 -0.0020 -0.0033 -0.0032 -0.0033
(0.0077) (0.0072) (0.0068) (0.0073) (0.0075)

Tier 1 ratio 0.0120 0.0125 0.0184 0.0098 0.0044
(0.0139) (0.0125) (0.0188) (0.0176) (0.0168)

N 39 39 39 39 39
adj. R2 0.236 0.284 0.244 0.170 0.186

Table 7. Geographical complexity and risk: new NPL / assets
Notes: The table reports the estimation of Equation 1. The dependent variable is the new NPL
to total assets ratio. Columns (1) to (5) correspond to the different measures of the independent
variable on geographical complexity (Number of countries, Number of foreign affiliates, Number
of foreign bank affiliates, Number of affiliates in Africa, Dummy variable for affiliates in Africa).
The number of countries counts the countries in which each banking group operates. The number
of foreign affiliates considers all branches and subsidiaries abroad, while the number of foreign
bank affiliates considers only foreign branches and subsidiaries registered as banks. The number
of affiliates (in Africa) counts all affiliates (in Africa). All the independent variables are lagged
by one quarter. The sample period goes from 2014 to 2018. All specifications include time fixed
effects. Ordinary Least Squares estimates with robust standard errors clustered at the bank level in
parentheses. ***, **, and * stand for statistical significance at 1%, 5%, and 10%, respectively.
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Geographical complexity indicator

Number of Number of foreign Number of foreign Number of Dummy variable
countries foreign affiliates bank affiliates affiliates in Africa for affiliates in Africa

(1) (2) (3) (4) (5)

Geographical complexity 0.0214∗∗∗ 0.0063∗∗ 0.0074 0.0205 0.0667
(0.0069) (0.0028) (0.0060) (0.0120) (0.0705)

ln Assets -0.0806∗∗∗ -0.0668∗∗ -0.0630∗ -0.0650∗∗ -0.0657∗∗∗
(0.0179) (0.0260) (0.0296) (0.0222) (0.0202)

Loans / assets -0.0008 -0.0012 -0.0011 -0.0019 -0.0019
(0.0013) (0.0017) (0.0017) (0.0019) (0.0019)

ROA -0.0416∗ -0.0429 -0.0502 -0.0466 -0.0533∗
(0.0210) (0.0261) (0.0290) (0.0281) (0.0260)

Cost-to-income -0.0021 -0.0022 -0.0024 -0.0022 -0.0024
(0.0014) (0.0018) (0.0019) (0.0019) (0.0018)

Tier 1 ratio -0.0007 -0.0005 0.0003 -0.0019 -0.0026
(0.0032) (0.0044) (0.0046) (0.0040) (0.0034)

N 39 39 39 39 39
adj. R2 0.502 0.302 0.242 0.277 0.246

Table 8. Geographical complexity and risk: risk-weighted assets to total assets
Notes: The table reports the estimation of Equation 1. The dependent variable is the ratio of
risk-weighted assets to total assets. Columns (1) to (5) correspond to the different measures of
the independent variable on geographical complexity (Number of countries, Number of foreign
affiliates, Number of foreign bank affiliates, Number of affiliates in Africa, Dummy variable for
affiliates in Africa). The number of countries counts the countries in which each banking group
operates. The number of foreign affiliates considers all branches and subsidiaries abroad, while the
number of foreign bank affiliates considers only foreign branches and subsidiaries registered as banks.
The number of affiliates (in Africa) counts all affiliates (in Africa). All the independent variables
are lagged by one quarter. The sample period goes from 2014 to 2018. All specifications include
time fixed effects. Ordinary Least Squares estimates with robust standard errors clustered at the
bank level in parentheses. ***, **, and * stand for statistical significance at 1%, 5%, and 10%,
respectively.
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Business complexity indicator

Number of affiliates Share of non-financial Number of business HHI business types
business types types

(1) (2) (3) (4)

Business complexity -0.0139∗∗∗ -2.3905 -0.1660 0.3179
(0.0041) (2.1681) (0.1115) (0.5250)

ln Assets 0.4328∗∗∗ 0.5013∗ 0.4554∗∗ 0.3456∗∗
(0.1008) (0.2579) (0.1466) (0.1308)

Loans / assets 0.0073 -0.0326 0.0029 0.0037
(0.0069) (0.0204) (0.0080) (0.0086)

ROA 0.0147 -0.0860 0.1136 0.1125
(0.1531) (0.1668) (0.1577) (0.1886)

Cost-to-income 0.0090 0.0193∗∗∗ 0.0156∗ 0.0134
(0.0070) (0.0053) (0.0078) (0.0084)

Tier 1 ratio 0.0693∗∗∗ 0.0290 0.0632∗∗∗ 0.0463
(0.0189) (0.0210) (0.0166) (0.0279)

N 33 26 33 32
adj. R2 0.320 0.251 0.274 0.174

Table 9. Business complexity and risk: z-score
Notes: The table reports the estimation of Equation 1. The dependent variable is the logarithm of
the z-score calculated over eight quarters (ln Z-score). The ln z-score is computed as the logarithm
of the inverse of the average return on assets in a given period plus the equity to assets ratio of
the bank, divided by the standard deviation of the return on assets in the last 8 quarters. Columns
(1) to (4) correspond to the different measures of the independent variable on business complexity
(Number of affiliates, Share of non-financial business types, Number of business types, HHI business
types). The share of non-financial business types captures the percentage of the group’s non-financial
activities. The HHI for business types refers to the Herfindahl-Hirschman Index for business types
and equals 0 when a group only operates in one business type. All the independent variables are
lagged by one quarter. The sample period goes from 2014 to 2018. All specifications include time
fixed effects. Ordinary Least Squares estimates with robust standard errors clustered at the bank level
in parentheses. ***, **, and * stand for statistical significance at 1%, 5%, and 10%, respectively.
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Business complexity indicator

Number of affiliates Share of non-financial Number of business HHI business types
business types types

(1) (2) (3) (4)

Business complexity 0.0031 0.3684 0.0200 0.4160
(0.0032) (0.7027) (0.0472) (0.2934)

ln Assets -0.0571 0.0270 -0.0530 0.0110
(0.0573) (0.1056) (0.0636) (0.0677)

Loans / assets -0.0121 0.0002 -0.0115 -0.0152
(0.0073) (0.0063) (0.0070) (0.0088)

ROA -0.1529∗∗∗ -0.0850∗ -0.1735∗∗∗ -0.2040∗∗∗
(0.0484) (0.0390) (0.0526) (0.0533)

Cost-to-income -0.0051 0.0014 -0.0062 -0.0071∗∗
(0.0034) (0.0022) (0.0036) (0.0031)

Tier 1 ratio -0.0155 0.0052 -0.0138 -0.0180
(0.0179) (0.0074) (0.0173) (0.0166)

N 39 29 39 35
adj. R2 0.173 0.630 0.161 0.146

Table 10. Risk and business complexity: logarithm of the probability of default of the firms
in the bank’s portfolio
Notes: The table reports the estimation of Equation 1. The dependent variable is the logarithm of
the probability of default of the firms in the bank’s portfolio (ln PD). Columns (1) to (4) correspond
to the different measures of the independent variable on business complexity (Number of affiliates,
Share of non-financial business types, Number of business types, HHI business types). The share of
non-financial business types captures the percentage of the group’s non-financial activities. The HHI
for business types refers to the Herfindahl-Hirschman Index for business types and equals 0 when a
group only operates in one business type. All the independent variables are lagged by one quarter.
The sample period goes from 2014 to 2018. All specifications include time fixed effects. Ordinary
Least Squares estimates with robust standard errors clustered at the bank level in parentheses. ***,
**, and * stand for statistical significance at 1%, 5%, and 10%, respectively.
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Business complexity indicator

Number of affiliates Share of non-financial Number of business HHI business types
business types types

(1) (2) (3) (4)

Business complexity 0.0013 0.6727 -0.0721 -0.1681
(0.0059) (1.3867) (0.0477) (0.5414)

ln Assets 0.1003 0.3681∗ 0.1563∗∗ 0.0653
(0.0658) (0.1742) (0.0709) (0.1076)

Loans / assets -0.0015 -0.0174 -0.0011 0.0013
(0.0069) (0.0114) (0.0066) (0.0092)

ROA -0.1547 -0.1194 -0.1576∗ -0.1730∗
(0.0975) (0.1261) (0.0830) (0.0838)

Cost-to-income -0.0032 0.0021 -0.0042 -0.0028
(0.0077) (0.0082) (0.0069) (0.0060)

Tier 1 ratio 0.0110 0.0150 0.0163 0.0186
(0.0181) (0.0171) (0.0170) (0.0196)

N 39 29 39 35
adj. R2 0.160 0.299 0.180 0.186

Table 11. Business complexity and risk: new NPL / assets
Notes: The table reports the estimation of Equation 1. The dependent variable is the new NPL
to total assets ratio. Columns (1) to (4) correspond to the different measures of the independent
variable on business complexity (Number of affiliates, Share of non-financial business types, Number
of business types, HHI business types). The share of non-financial business types captures the
percentage of the group’s non-financial activities. The HHI for business types refers to the
Herfindahl-Hirschman Index for business types and equals 0 when a group only operates in one
business type. All the independent variables are lagged by one quarter. The sample period goes
from 2014 to 2018. All specifications include time fixed effects. Ordinary Least Squares estimates
with robust standard errors clustered at the bank level in parentheses. ***, **, and * stand for
statistical significance at 1%, 5%, and 10%, respectively.
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Business complexity indicator

Number of affiliates Share of non-financial Number of business HHI business types
business types types

(1) (2) (3) (4)

Business complexity 0.0001 -0.2522 -0.0046 0.1705
(0.0011) (0.1850) (0.0164) (0.1200)

ln Assets -0.0532∗ 0.0568∗ -0.0492 -0.0266
(0.0272) (0.0285) (0.0278) (0.0220)

Loans / assets -0.0016 -0.0015 -0.0015 -0.0034
(0.0020) (0.0016) (0.0020) (0.0020)

ROA -0.0505∗ -0.0164 -0.0511∗ -0.0653∗∗
(0.0243) (0.0142) (0.0286) (0.0234)

Cost-to-income -0.0025 0.0010 -0.0025 -0.0029∗
(0.0017) (0.0009) (0.0019) (0.0015)

Tier 1 ratio -0.0007 0.0044 -0.0003 -0.0028
(0.0048) (0.0036) (0.0048) (0.0042)

N 39 29 39 35
adj. R2 0.202 0.310 0.204 0.285

Table 12. Business complexity and risk: risk weighted assets to total assets ratio
Notes: The table reports the estimation of Equation 1. The dependent variable is the ratio of
risk-weighted assets to total assets. Columns (1) to (4) correspond to the different measures of the
independent variable on business complexity (Number of affiliates, Share of non-financial business
types, Number of business types, HHI business types). The share of non-financial business types
captures the percentage of the group’s non-financial activities. The HHI for business types refers
to the Herfindahl-Hirschman Index for business types and equals 0 when a group only operates in
one business type. All the independent variables are lagged by one quarter. The sample period goes
from 2014 to 2018. All specifications include time fixed effects. Ordinary Least Squares estimates
with robust standard errors clustered at the bank level in parentheses. ***, **, and * stand for
statistical significance at 1%, 5%, and 10%, respectively.
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Geographical complexity indicator

Number of Number of foreign Number of foreign Number of Dummy variable
countries foreign affiliates bank affiliates affiliates in Africa for affiliates in Africa

(1) (2) (3) (4) (5)

Geographical complexity 0.1051∗ 0.0610∗ 0.1007 0.2061∗∗ 1.7462
(0.0561) (0.0357) (0.0639) (0.1007) (1.1552)

Loans / assets 0.0124 0.0082 0.0138∗∗ 0.0076 0.0017
(0.0087) (0.0082) (0.0069) (0.0055) (0.0048)

ROA 0.1723 0.1786 0.1011 0.1920 0.1322
(0.1872) (0.1997) (0.1810) (0.1247) (0.0860)

Cost-to-income 0.0177∗∗ 0.0242∗ 0.0197∗ 0.0141∗∗ 0.0114
(0.0088) (0.0124) (0.0101) (0.0059) (0.0076)

Tier 1 ratio 0.0479∗∗ 0.0444∗∗ 0.0682∗∗∗ 0.0352∗∗ -0.0177
(0.0186) (0.0208) (0.0125) (0.0170) (0.0509)

ln Assets 0.0895 0.0569 0.0685 0.1232 -0.1221
(0.1743) (0.2053) (0.2050) (0.1505) (0.3038)

First-stage F-stat. 14.2489∗∗∗ 15.7643∗∗∗ 11.3370∗∗∗ 29.7177∗∗∗ 0.6539

N 33 33 33 33 33

Table 13. Geographical complexity and risk: z-score
Notes: The table reports the estimation of Equation 1, when using a two-stages least square
estimation where the first-stage is estimated using Equation (2). The dependent variable is the
logarithm of the z-score calculated over eight quarters (ln Z-score). The ln z-score is computed
as the logarithm of the inverse of the average return on assets in a given period plus the equity
to assets ratio of the bank, divided by the standard deviation of the return on assets in the last
8 quarters. Columns (1) to (5) correspond to the different measures of the independent variable
on geographical complexity (Number of locations, Number of foreign affiliates, Number of foreign
bank affiliates, Number of affiliates in Africa, Dummy variable for affiliates in Africa). The number
of countries counts the countries in which each banking group operates. The number of foreign
affiliates considers all branches and subsidiaries abroad, while the number of foreign bank affiliates
considers only foreign branches and subsidiaries registered as banks. The number of affiliates (in
Africa) counts all affiliates (in Africa). All the independent variables are lagged by one quarter. The
sample period goes from 2014 to 2018. All specifications include time fixed effects. Two-stage least
squares estimates with robust standard errors clustered at the bank level in parentheses. ***, **,
and * stand for statistical significance at 1%, 5%, and 10%, respectively.
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Geographical complexity indicator

Number of Number of foreign Number of foreign Number of Dummy variable
countries foreign affiliates bank affiliates affiliates in Africa for affiliates in Africa

(1) (2) (3) (4) (5)

Geographical complexity 0.0231 0.0108 0.0237 0.0480 0.3140
(0.0287) (0.0144) (0.0295) (0.0607) (0.4991)

Loans / assets -0.0106∗∗ -0.0108∗∗ -0.0101∗ -0.0123∗∗ -0.0133∗
(0.0051) (0.0055) (0.0056) (0.0061) (0.0074)

ROA -0.1614∗∗∗ -0.1575∗∗∗ -0.1681∗∗∗ -0.1609∗∗∗ -0.1811∗∗∗
(0.0349) (0.0414) (0.0414) (0.0480) (0.0506)

Cost-to-income -0.0059∗∗ -0.0057∗∗ -0.0061∗∗ -0.0056∗ -0.0057
(0.0023) (0.0027) (0.0028) (0.0030) (0.0036)

Tier 1 ratio -0.0128 -0.0126 -0.0099 -0.0157 -0.0222
(0.0123) (0.0132) (0.0154) (0.0129) (0.0187)

ln Assets -0.0699 -0.0641 -0.0734 -0.0690 -0.1022
(0.0554) (0.0533) (0.0625) (0.0565) (0.1032)

First-stage F-stat 7.7410** 11.8872*** 4.5571* 8.1762** 1.4662

N 39 39 39 39 39

Table 14. Geographical complexity and risk: default probability on corporate loan book
Notes: The table reports the estimation of Equation 1, when using a two-stages least square
estimation where the first-stage is estimated using Equation (2). The dependent variable is the
logarithm of the probability of default of the firms in the bank’s portfolio (ln PD). Columns (1) to
(5) correspond to the different measures of the independent variable on geographical complexity
(Number of locations, Number of foreign affiliates, Number of foreign bank affiliates, Number of
affiliates in Africa, Dummy variable for affiliates in Africa). The number of countries counts the
countries in which each banking group operates. The number of foreign affiliates considers all
branches and subsidiaries abroad, while the number of foreign bank affiliates considers only foreign
branches and subsidiaries registered as banks. The number of affiliates (in Africa) counts all affiliates
(in Africa). All the independent variables are lagged by one quarter. The sample period goes from
2014 to 2018. All specifications include time fixed effects. Two-stage least squares estimates with
robust standard errors clustered at the bank level in parentheses. ***, **, and * stand for statistical
significance at 1%, 5%, and 10%, respectively.
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Geographical complexity indicator

Number of Number of foreign Number of foreign Number of Dummy variable
countries foreign affiliates bank affiliates affiliates in Africa for affiliates in Africa

(1) (2) (3) (4) (5)

Geographical complexity 0.2293∗∗∗ 0.1072∗∗∗ 0.2356∗∗∗ 0.4774∗∗∗ 3.1209
(0.0714) (0.0391) (0.0800) (0.1081) (2.2441)

Loans / assets 0.0067 0.0052 0.0118 -0.0094 -0.0194
(0.0091) (0.0072) (0.0079) (0.0081) (0.0188)

ROA -0.0572 -0.0186 -0.1234 -0.0518 -0.2529
(0.1826) (0.1819) (0.1678) (0.1541) (0.2591)

Cost-to-income 0.0004 0.0017 -0.0018 0.0029 0.0017
(0.0108) (0.0094) (0.0092) (0.0096) (0.0182)

Tier 1 ratio 0.0112 0.0132 0.0400∗ -0.0176 -0.0823
(0.0195) (0.0160) (0.0233) (0.0207) (0.0837)

ln Assets -0.1946 -0.1373 -0.2296∗∗ -0.1853∗∗ -0.5159
(0.1230) (0.0910) (0.1162) (0.0916) (0.4636)

First-stage F-stat 7.7410** 11.8872*** 4.5571* 8.1762** 1.4662

N 39 39 39 39 39

Table 15. Geographical complexity and risk: new NPL / assets
Notes: The table reports the estimation of Equation 1, when using a two-stages least square
estimation where the first-stage is estimated using Equation (2). The dependent variable is the new
NPL to total assets ratio. Columns (1) to (5) correspond to the different measures of the independent
variable on geographical complexity (Number of locations, Number of foreign affiliates, Number of
foreign bank affiliates, Number of affiliates in Africa, Dummy variable for affiliates in Africa). The
number of countries counts the countries in which each banking group operates. The number of
foreign affiliates considers all branches and subsidiaries abroad, while the number of foreign bank
affiliates considers only foreign branches and subsidiaries registered as banks. The number of affiliates
(in Africa) counts all affiliates (in Africa). All the independent variables are lagged by one quarter.
The sample period goes from 2014 to 2018. All specifications include time fixed effects. Two-stage
least squares estimates with robust standard errors clustered at the bank level in parentheses. ***,
**, and * stand for statistical significance at 1%, 5%, and 10%, respectively.
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Geographical complexity indicator

Number of Number of foreign Number of foreign Number of Dummy variable
countries foreign affiliates bank affiliates affiliates in Africa for affiliates in Africa

(1) (2) (3) (4) (5)

Geographical complexity 0.0089 0.0042 0.0092 0.0185 0.1212
(0.0112) (0.0057) (0.0120) (0.0249) (0.1687)

Loans / assets -0.0012 -0.0013 -0.0010 -0.0019 -0.0023
(0.0015) (0.0016) (0.0018) (0.0016) (0.0018)

ROA -0.0473∗∗ -0.0458∗ -0.0499∗ -0.0471∗ -0.0549∗∗∗
(0.0221) (0.0259) (0.0256) (0.0254) (0.0206)

Cost-to-income -0.0023 -0.0023 -0.0024 -0.0022 -0.0023
(0.0014) (0.0017) (0.0017) (0.0017) (0.0016)

Tier 1 ratio -0.0006 -0.0006 0.0005 -0.0018 -0.0043
(0.0033) (0.0038) (0.0049) (0.0033) (0.0051)

ln Assets -0.0641∗∗∗ -0.0619∗∗∗ -0.0655∗∗∗ -0.0638∗∗∗ -0.0766∗∗
(0.0217) (0.0220) (0.0249) (0.0225) (0.0329)

First-stage F-stat 7.7410** 11.8872*** 4.5571* 8.1762** 1.4662

N 39 39 39 39 39

Table 16. Geographical complexity and risk: risk-weighted assets to total assets
Notes: The table reports the estimation of Equation 1, when using a two-stages least square
estimation where the first-stage is estimated using Equation (2). The dependent variable is the
ratio of risk-weighted assets to total assets. Columns (1) to (5) correspond to the different measures
of the independent variable on geographical complexity (Number of countries, Number of foreign
affiliates, Number of foreign bank affiliates, Number of affiliates in Africa, Dummy variable for
affiliates in Africa). The number of countries counts the countries in which each banking group
operates. The number of foreign affiliates considers all branches and subsidiaries abroad, while the
number of foreign bank affiliates considers only foreign branches and subsidiaries registered as banks.
The number of affiliates (in Africa) counts all affiliates (in Africa). All the independent variables
are lagged by one quarter. The sample period goes from 2014 to 2018. All specifications include
time fixed effects. Two-stage least squares estimates with robust standard errors clustered at the
bank level in parentheses. ***, **, and * stand for statistical significance at 1%, 5%, and 10%,
respectively.
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Business complexity indicator

Number of affiliates Share of non-financial Number of business HHI business types
business types types

(1) (2) (3) (4)

Business complexity -1.0623 -6.7087∗ 1.6958 7.8397
(21.7628) (3.7034) (6.8611) (11.9839)

Loans / assets 0.2151 -0.0373∗ 0.0217 -0.0160
(4.1602) (0.0195) (0.0566) (0.0413)

ROA -7.4390 -0.2577 0.1132 -0.3563
(152.1972) (0.2879) (0.5112) (0.5629)

Cost-to-income -0.4422 0.0155∗ 0.0082 -0.0159
(9.2865) (0.0084) (0.0450) (0.0389)

Tier 1 ratio 1.4222 0.0390∗∗∗ -0.0696 -0.0723
(27.8413) (0.0122) (0.5457) (0.1976)

ln Assets 8.6595 0.7086∗∗ -1.0207 0.4969
(174.1964) (0.2884) (5.2992) (0.5554)

First-stage F-stat 0.0015 3.2543 0.0503 0.2420

N 33 26 32 33

Table 17. Business complexity and risk: z-score
Notes: The table reports the estimation of Equation 1, when using a two-stages least square
estimation where the first-stage is estimated using Equation (2). The dependent variable is the
logarithm of the z-score calculated over eight quarters (ln Z-score). The ln z-score is computed as
the logarithm of the inverse of the average return on assets in a given period plus the equity to
assets ratio of the bank, divided by the standard deviation of the return on assets in the last 8
quarters. Columns (1) to (4) correspond to the different measures of the independent variable on
business complexity (Number of affiliates, Share of non-financial business types, Number of business
types, HHI business types). The share of non-financial business types captures the percentage of
the group’s non-financial activities. The HHI for business types refers to the Herfindahl-Hirschman
Index for business types and equals 0 when a group only operates in one business type. All the
independent variables are lagged by one quarter. The sample period goes from 2014 to 2018. All
specifications include time fixed effects. Two-stage least squares estimates with robust standard
errors clustered at the bank level in parentheses. ***, **, and * stand for statistical significance at
1%, 5%, and 10%, respectively.
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Business complexity indicator

Number of affiliates Share of non-financial Number of business HHI business types
business types types

(1) (2) (3) (4)

Business complexity 0.0222 -3.1813 0.2461 0.6549
(0.0516) (2.1923) (0.5832) (1.6773)

Loans / assets -0.0163 -0.0042 -0.0116∗ -0.0160
(0.0146) (0.0076) (0.0061) (0.0106)

ROA -0.0350 -0.2072∗∗ -0.1896∗∗ -0.2224∗
(0.3597) (0.0931) (0.0871) (0.1319)

Cost-to-income 0.0021 -0.0026 -0.0048 -0.0075∗
(0.0219) (0.0047) (0.0048) (0.0045)

Tier 1 ratio -0.0334 0.0077 -0.0264 -0.0209
(0.0555) (0.0093) (0.0395) (0.0254)

ln Assets -0.1657 0.1933 -0.2051 0.0161
(0.2849) (0.2038) (0.4137) (0.0704)

First-stage F-stat 0.1605 1.5815 0.1576 0.6968

N 39 29 39 35

Table 18. Business complexity and risk: default probability on corporate loan book
Notes: The table reports the estimation of Equation 1, when using a two-stages least square
estimation where the first-stage is estimated using Equation (2). The dependent variable is the
logarithm of the probability of default of the firms in the bank’s portfolio (ln PD). Columns (1) to (4)
correspond to the different measures of the independent variable on business complexity (Number of
affiliates, Share of non-financial business types, Number of business types, HHI business types). The
share of non-financial business types captures the percentage of the group’s non-financial activities.
The HHI for business types refers to the Herfindahl-Hirschman Index for business types and equals
0 when a group only operates in one business type. All the independent variables are lagged by
one quarter. The sample period goes from 2014 to 2018. All specifications include time fixed
effects. Two-stage least squares estimates with robust standard errors clustered at the bank level in
parentheses. ***, **, and * stand for statistical significance at 1%, 5%, and 10%, respectively.
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Business complexity indicator

Number of affiliates Share of non-financial Number of business HHI business types
business types types

(1) (2) (3) (4)

Business complexity 0.2209 -13.6915 2.4464 8.5468
(0.4641) (11.8372) (5.1716) (9.3397)

Loans / assets -0.0499 -0.0351 -0.0029 -0.0285
(0.1226) (0.0309) (0.0252) (0.0345)

ROA 1.1996 -0.6139 -0.3369 -0.8444
(3.4002) (0.3842) (0.6344) (0.6279)

Cost-to-income 0.0796 -0.0138 0.0112 -0.0196
(0.2030) (0.0161) (0.0469) (0.0241)

Tier 1 ratio -0.1943 0.0252 -0.1247 -0.0892
(0.4921) (0.0339) (0.3288) (0.1182)

ln Assets -1.1470 1.0410 -1.5387 0.2496
(2.3855) (0.9535) (3.4642) (0.4821)

First-stage F-stat 0.1605 1.5815 0.1576 0.6968

N 39 29 39 35

Table 19. Business complexity and risk: new NPL / assets
Notes: The table reports the estimation of Equation 1, when using a two-stages least square
estimation where the first-stage is estimated using Equation (2). The dependent variable is the
new NPL to total assets ratio. Columns (1) to (4) correspond to the different measures of the
independent variable on business complexity (Number of affiliates, Share of non-financial business
types, Number of business types, HHI business types). The share of non-financial business types
captures the percentage of the group’s non-financial activities. The HHI for business types refers
to the Herfindahl-Hirschman Index for business types and equals 0 when a group only operates in
one business type. All the independent variables are lagged by one quarter. The sample period goes
from 2014 to 2018. All specifications include time fixed effects. Two-stage least squares estimates
with robust standard errors clustered at the bank level in parentheses. ***, **, and * stand for
statistical significance at 1%, 5%, and 10%, respectively.
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Business complexity indicator

Number of affiliates Share of non-financial Number of business HHI business types
business types types

(1) (2) (3) (4)

Business complexity 0.0086 -0.9431 0.0950 0.1506
(0.0264) (0.7375) (0.2839) (0.5580)

Loans / assets -0.0034 -0.0023 -0.0016 -0.0033
(0.0067) (0.0019) (0.0018) (0.0025)

ROA 0.0015 -0.0402 -0.0582 -0.0638
(0.1843) (0.0344) (0.0409) (0.0460)

Cost-to-income 0.0007 0.0002 -0.0028∗ -0.0019
(0.0113) (0.0015) (0.0028) (0.0017)

Tier 1 ratio -0.0086 0.0048 -0.0059 -0.0026
(0.0277) (0.0038) (0.0186) (0.0067)

ln Assets -0.1011 0.0892∗∗ -0.1163 -0.0270
(0.1428) (0.0397) (0.1983) (0.0203)

First-stage F-stat 0.1605 1.5815 0.1576 0.6968

N 39 29 35 39

Table 20. Business complexity and risk: risk-weighted assets to total assets
Notes: The table reports the estimation of Equation 1, when using a two-stages least square
estimation where the first-stage is estimated using Equation (2). The dependent variable is the ratio
of risk-weighted assets to total assets. Columns (1) to (4) correspond to the different measures of the
independent variable on business complexity (Number of affiliates, Share of non-financial business
types, Number of business types, HHI business types). The share of non-financial business types
captures the percentage of the group’s non-financial activities. The HHI for business types refers
to the Herfindahl-Hirschman Index for business types and equals 0 when a group only operates in
one business type. All the independent variables are lagged by one quarter. The sample period goes
from 2014 to 2018. All specifications include time fixed effects. Two-stage least squares estimates
with robust standard errors clustered at the bank level in parentheses. ***, **, and * stand for
statistical significance at 1%, 5%, and 10%, respectively.
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Figure 1: Geographical complexity indicators
Notes: The number of countries counts the countries in which each banking group operates. The
number of foreign affiliates considers all branches and subsidiaries abroad, while the number of
foreign bank affiliates considers only foreign branches and subsidiaries registered as banks. The
number of affiliates (in Africa) counts all affiliates (in Africa).
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Figure 2: Structural complexity indicators
Notes: The share of non-financial business types captures the percentage of the group’s non-financial
activities. The HHI for business types refers to the Herfindahl-Hirschman Index for business types
and equals 0 when a group only operates in one business type (left-hand scale).
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Figure 3: Risk-taking indicators
Notes: The ln z-score is computed as the logarithm of the inverse of the average return on assets in
a given period plus the equity to assets ratio of the bank, divided by the standard deviation of the
return on assets in the last 8 quarters. Ln PD is computed as the logarithm of the average default
probability of loans granted to firms by each bank, using the output of a firm-level credit scoring
model (Antunes et al., 2016). New NPL / Assets is the flow of non-performing loans over total
assets (right-hand scale). RWA / Assets is the ratio between risk-weighted assets and total assets
(right-hand scale).
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