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Abstract
In this paper we investigate potential changes which may have occurred over the last two
decades in the probability mass of the right tail of the wage distribution, through the analysis
of the corresponding tail index. In specific, a conditional tail index estimator is introduced
which explicitly allows for right tail censoring (top-coding), which is a feature of the widely
used current population survey (CPS), as well as of other surveys. Ignoring the top-coding
may lead to inconsistent estimates of the tail index and to under or over statements of
inequality and of its evolution over time. Thus, having a tail index estimator that explicitly
accounts for this sample characteristic is of importance to better understand and compute
the tail index dynamics in the censored right tail of the wage distribution. The contribution
of this paper is threefold: i) we introduce a conditional tail index estimator that explicitly
handles the top-coding problem, and evaluate its finite sample performance and compare it
with competing methods; ii) we highlight that the factor values used to adjust the top-coded
wage have changed over time and depend on the characteristics of individuals, occupations
and industries, and propose suitable values; and iii) we provide an in-depth empirical analysis
of the dynamics of the US wage distribution’s right tail using the public-use CPS database
from 1992 to 2017.
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1. Introduction

The sharp rise in overall wage inequality in the second half of the 20th century
has become a stylized fact (Autor (2019) and Goos et al. (2014)). Wage inequality
growth in the 1980s was followed by a slowdown in the 1990s as a result of divergent
trends in the bottom and top of the wage distribution. Both the 90/50 and 50/10
indexes grew rapidly in the early 1980s, and although lower tail inequality virtually
stopped growing after 1987 upper-tail inequality kept rising. The deceleration in
inequality growth observed in the 1990s resulted mainly from polarization, i.e.,
from an abrupt stop or reversal of inequality growth in the lower-tail coupled with
a sustained secular rise of the upper-tail inequality. According to Autor et al. (2008)
between 1963 and 2005 the 90th percentile wage rose by more than 55% relatively
to the 10th percentile for both men and women.

Existing empirical evidence suggests that the rise in wage inequality is largely
explained by shifts in the supply and demand for skills (Goos and Manning (2007)),
and by the erosion of labour market institutions (e.g. unions and minimum wage)
(Kalleberg (2011)). It is documented that the increase in inequality in the 1980s
was the result of a secular rise in the demand for skill which faced an abrupt
slowdown in the relative supply of high-skilled workers (college or equivalent) in
the form of lower attainment and of smaller labor-entering cohorts which originated
expanding wage differentials (Autor et al. (2008); Katz and Murphy (1992); Card
and DiNardo (2002); and Acemoglu and Autor (2011)).

The monotonic increase of inequality until the late 1980s followed by the
divergent evolution in the top and lower half of the distribution is robust to different
measures and samples.1 Steady growth in the upper-tail inequality can also be seen
from the rising share of wages paid to the top 10% and 1% earners (Piketty and
Saez (2003)). However, literature based on public-use CPS data has produced a
less than perfect picture of the right tail of the wage distribution because of the
top-coding (Armour et al. (2016)).

The CPS wage data has historically been censored at the top (top-coded) and
ignoring this fact or not adequately handling it may result in inconsistent tail index
estimates, lead to understatements of inequality and affect the estimates of its
dynamics (Feng et al. (2006)).2 In addition, top-coding has changed over time.
For instance, the top-coded wage was set at $1923 in 1997 and changed to $2884
from 1998 onward. But even during periods of constant nominal top-coding the
data may hide changes in inequality (Levy and Murnane (1992)).

1. The result holds for male and female samples separately, considering weekly wages of full-time
workers as well as for the March CPS samples (Autor et al. (2006)).
2. Parker (1999) developed a model of wages in which wages follow a Generalized Beta Distribution
of the second kind (GB2). Bordley et al. (1995) show that GB2 exhibits better fit to US wage data
than alternative distributions. Because the authors are modelling the distribution of total wage and
not its components, they only need to know whether total wages are censored or not, and therefore
do not need to be concerned with consistency problems in categories as in Burkhauser et al. (2004).
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While some authors have tried to address the top-coding issues by restricting
the sample under analysis, the method presented in this article makes use of the
complete set of information available from the public use CPS data, for every year,
in a time-consistent fashion, arguably providing better estimates on the level of
wage inequality than other available measures. In specific, a conditional tail index
regression specifically designed to account for right censoring is used. The tail index
(sometimes also referred to as Pareto coefficient) is an important indicator, as it
can be interpreted as an inverse measure of concentration of top wages. The lower
the value of the index the more concentrated the distribution is.

Several estimation approaches have recently been proposed which consider
either non-random or random covariates; see e.g. Ma et al. (2019) (and references
therein). Our contribution falls into the latter class and provides a tail index
estimator which takes the top-coding explicitly into consideration, providing in
this way more efficient and consistent estimates than methods currently available
in the literature. The superior performance of the new approach is illustrated, and
it is shown using the public-use CPS database from 1992 to 2017 that the factor
values used for the adjustment of the top-coded wages changed over time and
across the characteristics of individuals, occupations and industries; moreover it is
also shown using the new estimator that the tail index has been decreasing since
1992 suggesting increased concentration in the right tail.

The contribution of this paper is threefold: i) we introduce a conditional tail
index estimator that explicitly handles the top-coding problem, evaluate its finite
sample performance and compare it to competing methods; ii) we show that the
factor values used for the adjustment of top-coded wages change over time and
across the characteristics of individuals, occupations and industries, and suitable
values are proposed; and iii) we provide an in-depth analysis of the dynamics of
the US wage distribution’s right tail using the public-use CPS database from 1992
to 2017.

The remainder of the paper is organized as follows. Section 2 introduces the
methodology of analysis, the new tail index estimator and a detailed description of
the computation of the partial effects; Section 3 presents the results of an in-depth
Monte Carlo analysis on the finite sample properties of the new approach and a
comparison to existing procedures; Section 4 describes and discusses the results of
an empirical analysis of the right tail characteristics of the wage distribution and
wage inequality in the US using the CPS database from 1992 to 2017; and finally,
in Section 5 presents the main conclusions of the paper. A technical Appendix
collects proofs of the results put forward throughout the paper.

2. Methodology

To reduce the top-coding bias, researchers interested in measuring long-term trends
in wages typically impute top-code values to create a consistent series. Until
recently one of four approaches has in general been adopted in the literature: (1)



4

the top-coding problem is ignored i.e., top-coded observations are dropped (see
e.g. Jensen and Shore (2015)); (2) an ad hoc adjustment of the top-coded wages
is made (e.g. Lemieux (2006) multiplied top-coded hourly wages by 1.4, and Autor
et al. (2008) multiplied top-coded weekly wages by 1.5); (3) a Pareto distribution
is used to estimate wages at the top of the distribution (e.g. Bernstein and Mishel
(1997), Piketty and Saez (2003)); and (4) cell means or rank-proximity swapped
data based on the still-censored internal CPS data is used (e.g. Larrimore et al.
(2008) and Burkhauser et al., 2008); for a discussion and shortcomings of these
approaches see, inter alia, Burkhauser et al. (2010) and Armour et al. (2016).

In a recent contribution Armour et al. (2016) proposed an alternative approach
which consists in estimating the tail index of a censored Pareto distribution. To
briefly illustrate the procedure consider first the survival function, F , of a Pareto
distribution3

F (y) := P
(
Yi > y

)
=

(
y0

yi

)α
, where yi ≥ y0 > 0 and α > 0 (1)

and the corresponding density function, fY (y) = (αyα0 )/(yα+1
i ). A large number

of tail index estimation procedures is available in the literature. One widely used
approach is the conditional maximum likelihood estimator (MLE) proposed by Hill
(1975),

α̂Hill :=

 1

m

m∑
j=1

log y(j) − log y(0)

−1

(2)

where m is the number of largest order statistics used in the estimation of α,
y(j), j = 1, ...,m are the largest m order statistics and y0 is the tail cut off point.

However, recognizing the limitations of this approach when the data is top-
coded, Armour et al. (2016) proposed an alternative method, which consists of
an adaptation of the Hill estimator taking into consideration the censoring. This
approach provides an unbiased estimate of the censored Pareto parameter, α, while
using all available information. In specific, in the case of a censored sample the
outcome variable is,

ωi =

{
yi if y0 ≤ yi < yc
yc if yi ≥ yc

, (3)

where y0 is the tail cut off point and yc the top-coded value. Hence, the density
function of the censored Pareto distribution is,

gY (ωi) =

(
αyα0
ωα+1
i

)I(y0≤ωi<yc)
[(

y0

yc

)α]I(ωi≥yc)

(4)

3. This distribution was used, for instance, by Harrison (1981) to analyse earnings by size in the
UK.



5 Measuring wage inequality under right censoring

and the respective log-likelihood function,

logL =
m∑
i=1

gY (ωi)

=
m∑
i=1

I(y0≤ωi<yc)

(
log(α) + αlog(y0)− (α+ 1)log(ωi)

)
+

m∑
i=1

I(ωi≥yc)

(
αlog(y0)− αlog(yc)

)
. (5)

Consequently, the conditional MLE estimator proposed by Armour et al. (2016)
computed from (5) is,

α̂cHill =
n0∑m

i=1 I(y0≤yi<yc)log(yi) + nclog(yc)− (n0 + nc)log(y0)
(6)

where n0 is the number of individuals with wages between y0 and yc, nc is the
number of individuals with wages at or above yc, and n0 + nc = m.

2.1. The conditional tail index estimator and properties

In this paper, a new approach, also designed to overcome the top-coding bias,
is proposed. In specific, a conditional tail index estimator which explicitly takes
the right censoring of the data into account and uses covariates in the estimation
process is introduced. Correctly estimating this tail index is of importance as it is
used, for instance, for the imputation of wages above the top-code. Furthermore,
the procedure has the additional advantage of allowing for an in-depth analysis
of the determinants that impact the tail index the strongest according to the
characteristics of individuals, occupations and industries and whether these impacts
have changed over time. The use of different scaling factors to impute wages
depending on the different categorizations of individuals has been used previously
in the literature, see e.g., Macpherson and Hirsch (1995) who allow the scaling
factors to vary according to gender and over the years.

To introduce the conditional tail index estimation approach we consider
observations (Xi, Yi), where Yi ∈ R1 is the response of interest, and Xi :=
(x1i, ..., xpi)

′ ∈ Rp is an associated p-dimensional vector of predictors with 1 ≤ i ≤
n. In addition, let F (y|x;θ) := P [Yi ≤ y|Xi = x] be the cumulative distribution
function of Yi conditional on Xi, and assume that the corresponding survival
function (under no censoring) is,

F (y|x;θ) := 1− F (y|x;θ) = y−α(x)L(y; x), (7)

where α(x) := exp(x′θ), θ ∈Rp is the unknown vector of coefficients and L(y; x) is
some predictor-dependent slowly varying function, such that L(yk; x)/L(y; x)→ 1
for any k > 0 as y → ∞. Specifically, following Hall (1982) we characterize the
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slowly varying function as,

L(y; x) := c0(x) + c1(x)y−β(x) + o(y−β(x)) (8)

where c0(x) and c1(x) are functions in x with c0(x) > 0, β(x) > α(x) a positive
function and o(y−β(x)) is the higher-order remainder term. As a result, as y→∞,
L(y; x)→ c0(x) and L̇(y; x)→ 0, where L̇(y; x) = ∂L(y; x)/∂y.

From (7), it follows that the probability density function of Yi conditional on
Xi is,

f(y|x; θ) = α(x)y−α(x)−1L(y; x)− y−α(x)L̇(y; x). (9)

Considering (8) and assuming that y is sufficiently large, it follows that the density
in (9) can be approximated as,

f(y|x; θ) ≈ c0(x)α(x)y−α(x)−1; (10)

see also Wang and Tsai (2009). Thus, the conditional probability function of Yi
given Xi and Yi > y0 can be approximated as,

f(y|x; θ) ≈ α(x)(y/y0)−α(x)−1, (11)

where y0 is the threshold that controls the sample fraction used for estimation. Note
that (11) is the approximate conditional Pareto density function of an unrestricted
random variable and thus, its use when some form of censoring (such as right
censoring4 in the CPS database) is imposed on the data will originate inconsistent
tail index parameter estimates.

In the censored case, rather than observing the outcome yi, as in the previous
section, we effectively observe wi as defined in (3). In this context, the adequately
adjusted conditional Pareto density function is,

g(ωi|xi, yc,θ) := f(ωi|xi, yc,θ)I(y0≤wi<yc) [1− F (yc|xi, yc,θ)]I(wi≥yc) (12)

where I(.) is the indicator function and f ( .|x) and F ( .|x) correspond to
the conditional Pareto density function and the conditional cumulative Pareto
distribution function, respectively.

Hence, the negative log-transformed likelihood function for the top-coded data
is,

Kcn(θ; yc) :=
n∑
i=1

log g (wi|xi; yc;θ) (13)

where g (wi|xi; yc;θ) is as defined in (12), wi is given in (3) and yc is the censoring
threshold.

4. An observation is said to be right censored at yc if the exact value of the observation is not
known except that it is greater than or equal to yc.
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Moreover, since

log [g(ωi|xi, yc,θ)] = I(y0 ≤ wi < yc) log f(ωi|xi, yc, θ)
+I(wi ≥ yc) log [1− F (yc|xi, yc, θ)]

= I{y0≤wi<yc}{logα (xi) + α (xi) log y0 − [α (xi) + 1] logwi}
+I{wi=yc}{α (xi) [log (y0)− log(yc)]}, (14)

if we replace α (xi) = exp (x′iθ) the approximate negative log-likelihood function
in (13) (omitting for simplicity of notation the terms not related to θ) becomes,

Kcn(θ; yc) =
n∑
i=1

I{y0≤wi<yc}

(
exp

(
x
′

iθ
)

log

(
wi
y0

)
− x

′

iθ

)

−
n∑
i=1

I{wi=yc} exp
(
x
′

iθ
)

log

(
y0

yc

)
. (15)

Hence, we see from this approximate log-likelihood function that censuring the
data imposes a penalty term, which the unrestricted estimator does not take into
consideration.

To derive the limit distribution of the parameter estimators and corresponding
test statistics we consider, as in Wang and Tsai (2009), the following assumptions:

Assumption A:

(A1) n−1
0

n∑
i=1

ZniZ
′
niI (wi ≥ y0) = Σ

−1/2
y0 Σ̂y0Σ

−1/2
y0

p→ Ip, where Zni := Σ
−1/2
y0 xi,

Ip is a p× p identity matrix and Σ̂y0 := n−1
0

∑
(xix

′
i)I(wi ≥ y0).

(A2) (Slowly varying function) We assume that the remainder term o(y−β(x)) satis-
fies
supx y

β(x)o(y−β(x))→ 0 as y→∞.

The following theorem characterizes the limit distribution of the MLE estimates
of θ.

Theorem 1. Under Assumptions (A1) - (A2) it follows that

n−1/2Σ−1/2
y0

Λ−1/2(θ̂ − θ0)
d→ N(0, Ip),

where Λ := E(e2
i |xi) and ei =

 exp (x′iθ) log
(
wi
y0

)
− 1, for I{y0≤wi<yc}

− exp (x′iθ) log
(
y0

yc

)
, for I{wi=yc}

.

Corollary 1. Under the same conditions of Theorem 2.1 as n→∞ it follows that,

Tj = n−1/2
(

Σ
−1/2
y0,jj

)
Λ−1/2θ̂j

d→ N(0, 1). (16)

where Σ
−1/2
y0,jj

corresponds to the (j, j)th element of the Σ−1/2
y0

matrix.
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2.2. Computation of partial effects

A further important and not immediately obvious aspect of the methodology just
described relates to the computation of the partial effects of the covariates used in
the conditional tail index regression. In specific, for ease of presentation consider

F (y|x;θ) := P (Y > y|x;θ) =

(
y0

yi

)α(x)

.

where for the sake of simplicity but with no loss of generality we consider x to be a
scalar and continuous. Thus, to measure the impact of x on α (x) and subsequently
on F (y|x;θ), consider

δ :=
F̄ (y|∆x+ x;θ)− F̄ (y|x;θ)

F̄ (y|x;θ)
× 100 (17)

where y is an extreme value, say the (1− u) quantile, with u ∈ (0, 1), such that,

y = (1− u)
1

α(x) y0. (18)

Hence, δ in (17) measures the probability’s percentage variation of an extreme
value due to a variation of x, ∆x. For example, considering u = 0.15 and ∆x = 1,
if δ = 20% then P(Y > y0) , where y0 is the 0.85 quantile, increases by 20% as a
result of ∆x = 1. Therefore, the variation of x increases the likelihood of observing
extreme values by 20%.

For computational purposes, assuming that α (x) := exp (ϕ (x)), and ϕ(x) is
some function of x, we show in the appendix that

δ (u) =
[
(1− u)ϕ

′(x)∆x − 1
]
× 100. (19)

For instance, in the multivariate case, ϕ (x) := x′β, where x is a p× 1 vector of
covariates, α (x) = exp (x′β), and the impact of xj on α(x) is,

δj (u) =
[
(1− u)βj∆x − 1

]
× 100. (20)

Thus, a negative (positive) coefficient increases (decreases) the likelihood of
having more extreme values, i.e. βj < 0 (βj > 0) implies δj > 0 (δj < 0) (this is
also obvious from the impact on α(x) since if α(x) decreases (increases), the right
tail becomes (less) heavier).

Remark 1. If we use only a portion of the sample to estimate the model, say for
example, all observations larger than y0, then y is the quantile of order 1− u of
the conditional distribution P (Y < y|Y > y0) , i.e. P (Y < y|Y > y0) = 1− u.
To determine the quantile order of the unconditional distribution P (Y < y)
we use the relation P (Y < y|Y > y0) = 1 − u ⇒ P (Y < y) = P (Y < y0) +
(1− u)P (Y > y0) . In the empirical analysis below we use all observations larger
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than the empirical quantile of 0.80 (see also Mishel et al. (2013)), so that
P (Y > y0) = 0.20 in the above formula. Hence, when u = 0.15 and u = 0.20, we
are actually analysing the 96th and 97th quantile, respectively, of the unconditional
distribution.

Remark 2. When the covariate considered is discrete (e.g. a dummy variable)
a simple adaptation of (20) leads to the following formula, which measures the

impact of group d = 1 over d = 0, δ (u) :=

[
(1− u)

α(x;d=1)
α(x;d=0)

−1 − 1

]
× 100. Given

that α (x;d = 1) and α ( x;d = 0) depend on x, we also need to provide values
for x. One possible solution is to replace x by its respective averages.

3. Monte Carlo simulation

In this section we evaluate the finite sample properties of the procedures and their
performance in imputing mean wages above the top-code.

3.1. Finite sample performance of tail index estimators

To evaluate the performance of the conditional tail index estimator introduced in
the previous section, we conduct an in-depth Monte Carlo analysis using several
data generation processes (DGPs). In specific, data is simulated from the general
framework,

yi ∼ D (α (xi)) (21)
α (xi) = exp (β1 + β2xi) , xi ∼ U (0, 1) (22)

where β1 = β2 = 1 and the k100%, k ∈ (0, 1), largest observations of the empirical
distribution D(.) closely follow a Pareto distribution. We consider the case of right
censoring given by the censoring threshold yc so that the sequence {yi} is not
completely observed. Instead, we observe wi = min (yi, yc).

To be more precise about the framework used to generate the data, we consider
that D(.) in (21) is either a Pareto or a Burr distribution5 and generate samples of
size n ∈ {2500, 5000, 10000, 50000}. Moreover, we censor the sample considering
yc = {q̂y0.95, q̂

y
0.99} which corresponds to the 95th and 99th empirical quantile of y.

For estimation of the tail index we use the bknc largest observations, with k = 0.2
when the Pareto distribution is considered and k = {0.05, 0.10, 0.20} for the Burr.
In the case of samples generated from a Pareto distribution we could have set
k = 1, however, a lower value was considered in order to mimic the conditions
typically found in empirical analysis.

5. The cumulative Burr distribution function considered in the simulations is F (x) := 1− (1 +

x−αρ)
1
ρ and the corresponding probability density function f(x) := x−1−αρ(1 + x−αρ)

−1 1
ρα.
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Based on the specifications described above we generated 10,000 sequences of
{yi} and {wi} of size n and use in each iteration three estimation methods:

i) The tail index regression of Wang and Tsai (2009) applied to the sequence of
{yi}. We define the resulting estimator as α̂. This method should provide the
best results since it is applied to the original uncensored data.

ii) The censored tail index regression introduced in this paper applied to the
sequence {wi}. The resulting estimator is denoted as α̂c.

iii) The tail index regression of Wang and Tsai (2009) applied to the censored data
{wi}. The resulting tail index is defined as α̃. This approach will be useful in
providing information on the impact of neglecting the censoring on the tail
index estimates.

Table 1 provides the bias and RMSEs associated with the estimates of β1 and
β2 in (22) computed based on the three approaches described in i), ii) and iii).
The first observation we can make is that, in general, the largest bias and RMSEs
(regardless of considering β1 or β2) result from the use of the approach described in
iii), i.e., when the censoring is ignored. On the other hand, it is interesting to observe
that the difference in the bias and RMSEs obtained from the approaches described
in i) and ii) are relatively small, which suggest that the estimation approach which
accounts for the censoring produces results close to those obtained when the sample
without censoring is used for estimation as is the case in i).

Moreover, this Table also shows that the bias remains relatively stable and does
not decrease as n increases. There are however different patterns according to the
values of k and yc. For instance, in Cases 3 to 6, which use the Burr distribution
as DGP, a small value of k tends to improve the estimation results given that the
tail of the Burr distribution gets closer to the tail of a Pareto distribution.

To further evaluate the estimation performance of the three estimation
approaches in i), ii) and iii), Figure 1 plots the ratios of the RMSEs of the α
estimates obtained under the these estimations approaches. In specific, the ratios
are,

Ratio 1 =
RMSE (α̂c (xi))

RMSE (α̂ (xi))
, Ratio 2 =

RMSE (α̃ (xi))

RMSE (α̂ (xi))
.

Since α̂, obtained as described in i), is the best estimator, Ratio 1 and Ratio 2
are larger than 1, across the different values of n. However, Ratio 1 is just slightly
above 1, which means that the censored estimator performs very well and mimics
closely the behavior of the best estimator, α̂, although the former is based on the
censored data. On the contrary, Ratio 2 is substantially higher than 1, which means
that, ignoring the censoring when estimating the tail index produces an inconsistent
estimator; see Figure 1.

The censoring threshold yc also impacts the estimation results, i.e., the lower
its value, the greater is the impact of censoring on estimation, and Ratio 2 tends
to be larger (see, for example, the results for Case 4 in Table 1 and Figure 1).
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Case 1: DGP Pareto (k=0.20 and yc = Qy(0.95))
α̂ (xi) α̂c (xi) α̃ (xi) α̂ (xi) α̂c (xi) α̃ (xi) α̂ (xi) α̂c (xi) α̃ (xi) α̂ (xi) α̂c (xi) α̃ (xi)

n 2500 5000 10000 50000
bias(β1) 0.0025 0.0004 0.4553 0.0011 -0.0002 0.4539 0.0004 -0.0005 0.4528 0.0001 -0.0002 0.4526
bias(β2) 0.0029 0.0024 -0.4241 0.0027 0.0034 -0.4237 0.0014 0.0020 -0.4246 0.0003 0.0007 -0.4257
RMSE(β1) 0.0775 0.0937 0.4611 0.0552 0.0660 0.4567 0.0386 0.0465 0.4542 0.0174 0.0208 0.4529
RMSE(β2) 0.1703 0.1942 0.4422 0.1208 0.1369 0.4329 0.0852 0.0963 0.4292 0.0378 0.0430 0.4267

Case 2: DGP Pareto (k=0.20 and yc = Qy(0.99))
n 2500 5000 10000 50000
bias(β1) 0.0025 -0.0012 0.1000 0.0011 -0.0010 0.0984 0.0004 -0.0005 0.0980 0.0001 -0.0001 0.0977
bias(β2) 0.0029 0.0070 -0.1202 0.0027 0.0050 -0.1202 0.0014 0.0023 -0.1219 0.0003 0.0005 -0.1229
RMSE(β1) 0.0775 0.0807 0.1258 0.0552 0.0575 0.1126 0.0386 0.0401 0.1051 0.0174 0.0182 0.0992
RMSE(β2) 0.1703 0.1745 0.2006 0.1208 0.1240 0.1659 0.0852 0.0871 0.1460 0.0378 0.0389 0.1281

Case 3: DGP Burr ρ=-2 (k=0.05 and yc = Qy(0.99))
n 2500 5000 10000 50000
bias(β1) 0.0015 -0.0118 0.3277 -0.0006 -0.0084 0.3241 -0.0025 -0.0065 0.3229 -0.0042 -0.0061 0.3210
bias(β2) 0.0388 0.0488 -0.3189 0.0186 0.0242 -0.3356 0.0134 0.0161 -0.3409 0.0073 0.0097 -0.3452
RMSE(β1) 0.1450 0.1683 0.3562 0.1021 0.1180 0.3387 0.0719 0.0821 0.3301 0.0323 0.0372 0.3224
RMSE(β2) 0.4088 0.4518 0.4549 0.2833 0.3121 0.4043 0.1991 0.2176 0.3754 0.0891 0.0976 0.3523

Case 4: DGP Burr ρ=-2 (k=0.10 and yc = Qy(0.95))
n 2500 5000 10000 50000
bias(β1) -0.0099 -0.0239 0.9137 -0.0120 -0.0258 0.9098 -0.0129 -0.0259 0.9079 -0.0137 -0.0259 0.9071
bias(β2) 0.0297 0.0380 -0.6485 0.0250 0.0402 -0.6489 0.0216 0.0372 -0.6512 0.0200 0.0371 -0.6519
RMSE(β1) 0.1055 0.1596 0.9196 0.0754 0.1129 0.9127 0.0537 0.0820 0.9094 0.0271 0.0434 0.9074
RMSE(β2) 0.2609 0.3563 0.6637 0.1835 0.2492 0.6561 0.1305 0.1773 0.6548 0.0602 0.0857 0.6527

Case 5: DGP Burr ρ=-2 (k=0.20 and yc = Qy(0.99))
n 2500 5000 10000 50000
bias(β1) -0.0364 -0.0435 0.0602 -0.0378 -0.0433 0.0586 -0.0385 -0.0428 0.0582 -0.0386 -0.0421 0.0581
bias(β2) 0.0487 0.0578 -0.0733 0.0486 0.0558 -0.0732 0.0474 0.0531 -0.0748 0.0460 0.0510 -0.0762
RMSE(β1) 0.0847 0.0909 0.0966 0.0665 0.0716 0.0798 0.0542 0.0584 0.0693 0.0422 0.0458 0.0606
RMSE(β2) 0.1737 0.1807 0.1739 0.1283 0.1342 0.1344 0.0961 0.1009 0.1089 0.0592 0.0638 0.0840

Case 6: DGP Burr ρ=-2 (k=0.20 and yc = Qy(0.95))
n 2500 5000 10000 50000
bias(β1) -0.0364 -0.0551 0.4134 -0.0378 -0.0557 0.4119 -0.0385 -0.0559 0.4108 -0.0386 -0.0553 0.4109
bias(β2) 0.0487 0.0702 -0.3813 0.0486 0.0713 -0.3808 0.0474 0.0699 -0.3817 0.0460 0.0682 -0.3831
RMSE(β1) 0.0847 0.1084 0.4196 0.0665 0.0864 0.4150 0.0542 0.0727 0.4124 0.0422 0.0591 0.4112
RMSE(β2) 0.1737 0.2040 0.4010 0.1283 0.1532 0.3908 0.0961 0.1182 0.3866 0.0592 0.0804 0.3841

Note: α̂ (xi) is the tail index regression estimate considering the complete sample of data (with no censoring); α̂c (xi) is the censored tail index
regression estimate; and α̃ (xi) is the uncensored tail index regression estimate computed from censored data. n corresponds to the total sample
size, k to the % of observations used for the tail index estimation and bknc is the effective number of observations used in the estimation of the

tail index. yc is the censoring value used and Qy(τ) corresponds to the τ th quantile of y.

Table 1. Bias and RMSE of estimators
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Note: Ratio 1 = RMSE (α̂c)/RMSE (α̂) and Ratio 2 = RMSE (α̃)/RMSE (α̂). Ratio 1
compares the censored estimator with the best estimator α̂, while Ratio 2 compares the estimator
that ignores the censoring with the best estimator α̂. We report the results using the Pareto and
the Burr distributions as DGP.

Figure 1: Ratios of the tail index estimates’ RMSEs
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3.2. Imputing mean wages

To provide further insights on the usefulness of the procedure introduced in this
paper we provide next an analysis of the performance of the different methods for
imputing mean wages. In specific, we compare the following three methods:

i) the Pareto-imputed mean wage above the top-code yc,

τ̂1 (yc) =
α̂1

α̂1 − 1
yc (23)

where α̂1 is the tail index estimate considering an uncensored Pareto
distribution as in Section 2 (see e.g. Hill (1975) and Nicolau and Rodrigues
(2019) for tail index estimators) and yc is the top-code threshold;

ii) the imputed mean wage based on the approach suggested by Armour et al.
(2016)

τ̂2 (yc) =
α̂cHill

α̂cHill − 1
yc (24)

where α̂cHill is a consistent estimate of the tail index parameter computed as
in (6). Note that τ2 (yc) := E (yi|yi > yc) ;

iii) the imputed mean wage based on the method introduced in this paper

τ̂3 (yc) =
α̂ (xi)

α̂ (xi)− 1
yc (25)

where α̂ (xi) = exp
(
x′iθ̂
)
. Note that τ3 (yc) := E (yi|xi, yi > yc) .

The main difference between τ̂3 (yc) and the other two approaches (τ̂1 (yc) and
τ̂2 (yc)) is that in the former the particular characteristics of the individuals whose
wage is above the threshold are taken into account through xi. Interestingly, the
estimator τ̂3 (yc) corresponds to the optimal mean square predictor because τ3 (yc)
is the conditional expectation of yi given xi and yi > yc. This follows from the
well known result E (yi −E (yi|xi, yi > yc))

2 ≤ E (yi − g (.))2 where g (.) is any
other predictor of yi given yi > yc. It turns out that τ2 (yc) is optimal only if yi is
mean-independent of xi, in which case both τ2 (yc) and τ3 (yc) coincide.

Thus, having established the superiority of τ3 (yc), it remains to be shown how
much improvement is provided by τ3 (yc) compared to τ1 (yc) and τ2 (yc) when
computing the mean wage above yc. The following Monte Carlo study tries to
answer this question. Our experiment is based on the following steps:

1. Select a sample size from

n ∈ {250, 500, 1000, 2000, 5000, 20000} ;

2. Simulate yi, i = 1, 2, ..., n according to a conditional Pareto distribution
P (α (xi)) where α (xi) = exp (1 + 2xi) and xi ∼ U (0, 1) . For each i =
1, 2, ..., n simulate α (xi) and then the corresponding yi;
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3. All observations above quantile 0.95, which corresponds to yc, are censored, but
their original values are saved for comparison purposes (these values are used
to assess the estimators’ predictive precision). The data used for estimation are
{wi, i = 1, 2, ..., n} where wi = min (yi, yc) , from which we estimate τ̂1 (yc) ,
τ̂2 (yc) and τ̂3 (yc) .

4. The estimators τ̂1 (yc) , τ̂2 (yc) and τ̂3 (yc) are used to predict the imputed
mean value above the threshold yc.

5. Steps 2 to 4 are repeated 2000 times and the mean square errors (MSE) of
τ̂1 (yc) , τ̂2 (yc) and τ̂3 (yc) are computed.

Other combinations of α (xi) produce essentially the same results as long as
α (xi) ≥ 1, and for this reason we present results only for the case α (xi) =
exp (1 + 2xi) (note that E (α (xi)) = 3.7). However, α (xi) should be set so that
α (xi) > 1, otherwise the conditional and marginal expected values do not exist,
and consequently none of the above estimators will be well defined. The case
0 < α (xi) < 1 should be dealt with using other estimators, such as, for example,
the median, α̂(xi)

√
2yc).

Figure 2 illustrates our results. The lines represent two MSE ratios, Ratio 1 :=
MSE (τ̂1) /MSE (τ̂3) and Ratio 2 := MSE (τ̂2) /MSE (τ̂3), computed over
different sample sizes (n = (250, 500, 1000, 2000, 5000, 10000)).
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Figure 2: MSE Ratios Computed Over Different Sample Sizes

As can be observed from Figure 2, the τ̂3(yc) estimator introduced in this paper
produces the best results as all MSE ratios are larger than one. The gains are modest
(between 1% and 2%) when the sample size is small (n=250), but they increase
steadily as the sample size increases. Another conclusion, is that τ̂2 (Armour et al.
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(2016)) is better than the (naive) τ̂1 estimator that does not accommodate the
censoring.

4. Empirical analysis

In this section, we use censored publicly available CPS data to evaluate how
the right tail index of the US wage distribution has changed over time and how
these changes may differ across the characteristics of individuals, occupations and
industries. In specific, we show that the new tail index estimator introduced provides
very rich and detailed insights about the right tail distribution of wages. We also
assess the sensitivity of the adjustment of the top coded wage to changes over time
and across the characteristics of individuals.

4.1. Data

For the empirical analysis the March CPS files from IPUMS for the period between
1992 and 2017 are used. The wage measure is top-coded at $1923 between 1989
and 1997, and at $2884 between 1998 and 2017. The sample is restricted to
workers between 16 to 64 year-old on full-time full year basis employed during the
CPS sample survey reference week (35+ hours per week, 40+ weeks per year).
Following Autor and Dorn (2013) the real weekly wage data are weighted by the
appropriate CPS weight to provide a measure of the full distribution of weekly
wages paid.6,7

Occupations are defined as job task requirements of the US Department of
Labor Dictionary of Occupational Titles (DOT, 1977) and Census occupation
classifications for routine, abstract and manual task classifications (Autor and Dorn
(2013)).

In Figure 3 we present the distribution of the weekly wages for 1992, 1997, 1998,
2007, 2010 and 2017. From 1992 to 2017 the concentration of wages has become
more skewed to the right. Between 1992 and 1997 the mass points around the top-
code increased and with the relaxing of the top-code in 1998 real values beyond
that top-code are potentially observable. The same phenomenon also occurs in the
most recent period. In 2017 the mass point around the current top-code used in
the CPS data is much larger.

6. Wages are converted to 2012 values using the GDP personal consumption expenditure deflator.
7. Workers in our sample come from outgoing rotation groups 4 and 8 and according to Unicon:
When the Outgoing Rotation files are produced, two rotations are extracted from each of the twelve
months and gathered into a single annual file. The weights on the file must be modified by the
user before giving reliable counts. Since the final weight is gathered from 12 months but only 2/8
rotations, the weight on the outgoing file should be divided by 3 (12/4) before it is applied. The
earner weight is gathered from 12 months from the 2 rotations. Since those two rotations were
originally weighted to give a full sample, the earner weight must be divided by 12, not 3.
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Figure 3: Annual unconditional histograms of the weekly wage.

The means and proportions of workers according to their characteristics,
occupations and industry, for observations above the 80th percentile, are presented
in Table 2. In contrast to 1992, in 2017 the population in the right tail is older
(41.03 years on average in 1992 and 43.83 years in 2017), the percentage of women
is larger (25% in 1992 increased to 33% in 2017), and is about one year more
educated (15.20 years of education in 1992 and 16.06 years in 2017).
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Year
Mean 1992 2017
Age 41.03 43.83
Female 0.25 0.33
Education 15.20 16.06
Race

White 0.90 0.83
Black 0.05 0.05
Other race 0.05 0.12

Marital Status
Married 0.83 0.81
Married no spouse 0.01 0.02
Separated 0.02 0.01
Divorced 0.09 0.09
Widowed 0.01 0.01
Single 0.14 0.16

Occupations
Managers 0.72 0.81
Administrative 0.10 0.08
Low skill 0.01 0.01
Craft 0.04 0.01
Operators 0.02 0.01
Transportation 0.11 0.08

Industrya
Agriculture 0.02 0.03
Construction 0.05 0.05
Manufacturing 0.22 0.14
Transports 0.11 0.08
Trade 0.11 0.09
Finance 0.09 0.10
Repair 0.04 0.10
Personal 0.28 0.32
Public 0.08 0.09

Observations 112,960 64,002
Observations above Percentile 80 22,485 12,791

a In Appendix C we provide a detailed description of the industry classification.

Notes: This Table reports the means for the variables used in the analysis for both 1992 and
2017. These statistics were calculated for the right tail (for observations above percentile 80).
All variables are reported on a scale between 0 and 1 with the exception of age and education
which are reported in years. The occupation dummies using 6 aggregate occupation groups are
based on the International Standard Classification of occupations (ISCO) as used in Autor and
Dorn (2013). The category Managers includes management, professional, technical, financial
sales and public security occupations. The category Administrative consists of routine non
cognitive occupations and includes administrative support and retail sales occupations. The
category Low-skill includes low-skill services, such as cleaning, guard, food, health, janitors,
beauty, recreation, working with children and other personal low-skill services. The category
Craft aggregates precision production and craft occupations. The category Operators refers
to machine operators, assemblers and inspectors. Finally, the category Transportation includes
transportation, construction, mechanics, mining and agricultural occupations.

Table 2. Characteristics of individuals: means and proportions
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The results in Table 2 show that the 7% decrease of white individuals in the
right tail in 2017 when compared to 1992 seems to be compensated by a 7%
increase of individuals from other races (non-white nor non-black). There is a 3%
change in the composition of the sample, where the reduction of married individuals
is compensated by an increase in individuals that are single. However, married still
represent the marital status of the majority of individuals in the right tail (83% in
1992 and 81% in 2017).

A further observation that can be made from the results in Table 2 is job
polarization. A significant growth in employment in the right tail for non-routine
cognitive tasks is observed in detriment of routine occupations (see also Autor
(2019) and Goos and Manning (2007)). The decrease in the share of employment
is even more significant for non-routine manual tasks (individuals in occupations
associated with transportation, construction and mechanics (Transportation)
decreased their share of employment in the right tail, from 11% in 1992 to 8%
in 2017). The percentage of individuals in occupation Managers, which is the
occupation with the largest proportion of individuals, increased from 72% in 1992
to 81% in 2017.

In 1992, the proportion of individuals, working in manufacturing (transports)
was 22% (12%) and this proportion decreased to 14% (8%). This decrease in
the share of employment was compensated by an increase in the repair (+6%
between 1992 and 2017) and finance, personal and public industries (+6% between
1992 and 2017). Note that the industries with the largest number of individuals
in the right tail in (1992, 2017) are Personal (28%, 32%), Manufacturing (22%,
14%), Finance (9%, 10%), Repair (4%, 10%) and Public (8%, 9%). However,
Manufacturing (22%, 14%), Transport (11%, 8%) and Trade (11%, 9%) see their
weight decrease in 2017.

To illustrate the evolution of the proportions of individuals in the different
percentiles of the overall wage distribution, Figure 4 plots the proportions in
percentiles 0.05 to 0.95 considering different attributes, occupations and industries
(in the appendix we present additional plots for all other cases analysed in Table
2). From this Figure we distinguish two patterns from 1992 to 2017: Other Race,
Female, Single and Personal increase in proportion from 1992 to 2017 across all
percentiles, whereas Administration and Trade decrease across all percentiles. The
number of Black individuals seems to decrease up to around percentile 80 and
increases thereafter.

Moreover, this Figure also shows that individuals that are Black, Female
or Single as well as individuals working in Administration and Trade display a
downward trend over the percentiles, whereas the number of individuals of Other
Races and individuals working in the Personal industry display a different pattern.
The former is relatively constant across all percentiles in 1992 but increases for
percentiles larger than the median in 2017, and the latter is relatively constant
across all percentiles in 1992 and 2017. Interestingly, Finance shows a different
pattern when compared to all other covariates. In specific, the largest proportions
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are observed at the higher percentiles (i.e. from the median onward). This pattern
is very similar across all years analysed.

.0
2

.0
4

.0
6

.0
8

.1

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

1992 1997
2002 2007
2012 2017

.0
4

.0
6

.0
8

.1
.1
2

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

1992 1997
2002 2007
2012 2017

Black Other Race

.1
.2

.3
.4

.5

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

1992 1997
2002 2007
2012 2017

.0
5

.1
.1
5

.2
.2
5

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

1992 1997
2002 2007
2012 2017

Female Occ: Administration

.1
.1
5

.2
.2
5

.3

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

1992 1997
2002 2007
2012 2017

.0
6

.0
8

.1
.1
2

.1
4

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

1992 1997
2002 2007
2012 2017

Single Ind: Finance

.2
6

.2
8

.3
.3
2

.3
4

.3
6

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

1992 1997
2002 2007
2012 2017

.0
8

.1
.1
2

.1
4

.1
6

.1
8

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

1992 1997
2002 2007
2012 2017

Ind: Personal Ind: Trade

Notes: The graphs presented in this figure represent the proportion of individuals in different
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Figure 4: Proportion of individuals in different wage percentiles
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4.2. Conditional tail index estimation results

Table 3 presents the censored and uncensored tail index regression results for 1992
and 2017. A negative (positive) regression coefficient corresponds to a decrease
(increase) in the tail index (ceteris paribus) and hence a larger (smaller) number
of extreme values may result as a consequence of changes in the specific variable
associated to such a coefficient. Before analyzing the partial effects, as described
in Section 2.2, the behavior of a tail index estimate computed as an average of the
conditional tail indexes is examined, i.e.,

α̂t =
1

n

n∑
i=1

α̂ (xt,i) , t = 1992, ..., 2017 (26)

where α̂ (xt,i) = exp
(
x′t,iθ̂t

)
(we only report results for 1992 and 2017, however

the tail index regression estimation results from 1993 to 2016 can be obtained
upon request). The tail index estimate in (26), α̂t, provides an estimate of the
unconditional tail index after considering the characteristics of all individuals in the
sample for each year.

The results in Table 3 show that in general, the estimates based on the
method that ignores censored data underestimate the true effects of the variables.
This is especially clear in the estimates for 2017 (e.g. female and finance). It
is a consequence of the potential inconsistency of the uncensored estimates as
highlighted in the Monte Carlo section above. However, the direction of the impact
of the covariates suggested by the uncensored estimation is consistent with the
results obtained from the censored tail index regression.

Comparing 1992 and 2017 (censored estimation), we generally observed a
decrease in the estimates for 2017 (e.g. Transportation and Craft and Precision).
In some cases, although in general not statistically significant (see e.g. other races,
married no spouse, widowed, Transports and Trade), positive estimates in 1992
become negative in 2017 and vice versa. Considering only the statistically significant
covariates it can be observed that Female, Black, Divorced, Single, Low Skill, Craft,
Operators, Transportation and Public have a positive impact leading to a reduction
in the probability of individuals with these characteristics being in the right tail,
whereas Age, Education, Construction, Finance and Repair have a negative impact,
originating an increase of the probability of individuals with these characteristics
being in the right tail.
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Uncensored Censored
1992 2017 1992 2017

Constant 2.597 ∗∗∗ 2.321 ∗∗∗ 2.723 ∗∗∗ 2.812 ∗∗∗

(0.066) (0.076) (0.075) (0.121)
Age -0.011 ∗∗∗ -0.007 ∗∗∗ -0.013 ∗∗∗ -0.012 ∗∗∗

( 0.001) (0.001) (0.001) ( 0.001)
Female 0.272 ∗∗∗ 0.134 ∗∗∗ 0.309 ∗∗∗ 0.229 ∗∗∗

( 0.014) (0.013) (0.016) (0.022)
Education -0.076 ∗∗∗ -0.061 ∗∗∗ -0.085 ∗∗∗ -0.100 ∗∗∗

(0.004) (0.004) (0.004) (0.006)
Race

Black 0.085 ∗∗∗ 0.004 0.098 ∗∗∗ 0.010 ∗∗∗

( 0.029) (0.034) (0.031) (0.054)
Other race -0.023 ∗∗∗ 0.004 -0.031 0.015

(0.025) (0.016) (0.030) (0.033)
Marital Status

Married no spouse 0.075 -0.036 0.095 -0.100
(0.063) (0.046) (0.070) (0.091)

Separated 0.035 0.051 0.044 0.093
(0.042) (0.059) (0.047) (0.096)

Divorced 0.018 0.066 ∗∗∗ 0.025 0.119 ∗∗∗

(0.019) (0.022) (0.022) (0.036)
Widowed 0.003 -0.070 0.022 -0.083

(0.083) (0.052) (0.077) (0.099)
Single 0.009 0.066 ∗∗∗ 0.015 0.114 ∗∗∗

(0.018) (0.018) (0.021) (0.029)
Occupations

Administrative 0.113 ∗∗∗ 0.021 0.125 ∗∗∗ 0.006
(0.020) (0.022) (0.023) (0.047)

Low Skill 0.098 0.093 0.111 ∗ 0.153 ∗

(0.064) (0.060) (0.067) (0.091)
Craft 0.289 ∗∗∗ 0.069 0.324 ∗∗∗ 0.154 ∗

(0.033) (0.056) (0.035) (0.086)
Operators 0.394 ∗∗∗ 0.148 ∗∗∗ 0.416 ∗∗∗ 0.217 ∗∗∗

(0.050) (0.062) (0.053) (0.090)
Transportation 0.366 ∗∗∗ 0.184 ∗∗∗ 0.400 ∗∗∗ 0.264 ∗∗∗

(0.023) (0.030) (0.025) (0.045)
Industry

Construction -0.202 ∗∗∗ -0.117 ∗∗∗ -0.234 ∗∗∗ -0.173 ∗∗∗

(0.039) (0.042) (0.047) (0.071)
Manufacturing 0.003 -0.011 0.004 0.026

(0.028) (0.029) (0.031) (0.052)
Transports 0.050 ∗∗∗ -0.016 0.051 ∗∗ -0.001

(0.021) (0.027) (0.024) (0.040)
Trade 0.002 -0.052 ∗∗ 0.001 -0.052

(0.020) (0.024) (0.025) (0.043)
Finance -0.126 ∗∗∗ -0.099 ∗∗∗ -0.184 ∗∗∗ -0.219 ∗∗∗

(0.020) (0.022) (0.026) (0.043)
Repair -0.059 ∗∗∗ -0.098 ∗∗∗ -0.071 ∗∗ -0.142 ∗∗∗

(0.028) (0.022) (0.033) (0.041)
Personal 0.125 ∗∗∗ 0.048 ∗∗∗ 0.127 ∗∗∗ 0.060 ∗

(0.016) (0.018) (0.019) (0.033)
Public 0.238 ∗∗∗ 0.120 ∗∗∗ 0.272 ∗∗∗ 0.265 ∗∗∗

(0.022) (0.024) (0.025) (0.040)

Note: This table reports the tail index regression results for 1992 and 2017. The first two
columns present the uncensored results while the last two columns contain the censored results.
The omitted categories are white, married, working as manager and the agriculture industry.
Standard errors in parentheses and *, **, *** indicate significance at the 10%, 5% and 1%
significance levels.

Table 3. Uncensored and Censored Tail Index Regression Results
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Figure 5: Uncensored and censored right tail index estimates from 1992 to 2017

Figure 5 plots the tail index estimate computed as suggested in (26) for
each year from 1992 to 2017, based on uncensored and censored tail index
regression estimates. As discussed above, the uncensored approach misrepresents
the true unconditional tail index, as it ignores the top-coded wages, leading to the
overestimation of the true values of αt (where the bias/inconsistency is due to the
fact that the top extreme values are simply not included in the estimation). On the
contrary, the censored estimates take the information of the individuals of the top-
coded wages, although the true wages are not known, into account. Figure 5 shows
that the censored estimates of α̂t have declined over the last 20 years. In other
words, this Figure shows that the probability of observing an extreme value today is
higher compared to the 90s or even in the more recent past. This finding supports
the idea that upper-tail inequality has increased since the 90s and has become
more pronounced over the last 20 years. Autor et al. (2008) observed that the 90th
percentile wage rose by more than 55% relative to the 10th percentile between 1963
and 2005, which represents a significant increase. However, our approach suggests
that the increase in inequality found by Autor et al. (2008) may be a lower bound
of the true increase in inequality.

Not adequately handling the top-coding may also lead to overestimation of
the tail index in a variety of other applications (this has been recognized in
e.g. the analysis of returns to education by Hubbard (2011), and differences in
gender and race by Burkhauser and Larrimore (2009) who already use approaches
to accommodate for the fact that the wage data is top-coded). Our procedure
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provides additional flexibility by allowing researchers to evaluate which determinants
impact the probability of being in the right tail of the wage distribution and which
determinants do not. Thus, permits a more detailed analysis on how inequality has
spread across industries, occupation, gender and other population characteristics.

In what follows, we focus on the (conditional) tail index regression, and
especially on the partial effects computed as discussed in section 2.2. Figure 6
groups the partial effect estimates and rearranges them from the lowest effect to
the highest. A negative (positive) regression coefficient translates into a positive
(negative) partial effect, which is associated with an increase (decrease) in the
likelihood of having more extreme values (the right tail becomes (less) heavier).

In the discussion that follows on the partial effects of the covariates, whenever
we refer to an extreme event, we are referring to observations which are larger than
the 96th quantile (u = 0.15); see Remark 2 for details.

It is clear that industries such as Finance, Construction and Repair are the ones
with more extreme wages. The probability of observing an extreme value increased
in 2017 by 4.94% for an individual working in the Finance industry. The probability
of an individual working in the public industry having a wage higher than the 96th
percentile decreased in 2017 by 2.14%. The biggest increase from 1992 to 2017
was observed for individuals that are black, married without a spouse, or widowed.
Older and more educated workers continued to have a significant probability of
observing an extreme wage but there was no relevant change between 1992 and
2017. Women observed a positive increase between 1992 and 2017, but the impact
is still towards an increase in alpha (although smaller in absolute value than in
1992), i.e., a decrease in the probability of being in the right tail. In specific,
women in 2017 have a partial effect on the tail index of -1.26% which corresponds
to a decrease in the probability of an extreme value.

The impact in terms of occupation is very interesting. In comparison to an
individual working in a non-routine cognitive occupation (managers) all other
occupations display a positive contribution to observe an extreme value (although
smaller in 2017). However, the picture is very different across occupations.
Individuals working in routine occupations such as administrative workers reduced
their presence in the right tail from 10% to 8% (see Table 2) but the probability to
observe an extreme value for these occupations increased in 2017 (-2.14% in 1992
and changed to 2.00% in 2017). The contribution to the probability of observing an
extreme value for an individual working as an operator was significantly higher in
1992 than in 2017 (the partial effect was -8.04% in 1992 and it reduced to -1.41%
in 2017).
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Figure 6: Partial Effects of Variables when u=0.15

4.3. Imputed mean wages

4.3.1. Imputing wages above the top-code. A further important contribution of
the approach introduced is its use for the imputation of mean wages above the
top-code as described in Section 3.2. Some authors use values to adjust the top-
coded wage which are time-varying and differ by group. For instance, Macpherson
and Hirsch (1995) provide separate Pareto estimates according to gender and by
year from 1973 to 2014 using public CPS-Merged Outgoing Rotation Groups (CPS-
MORG). These authors indicate that these values increase over time and are higher
for men than for women (e.g. for 2014 the adjustment coefficient is 2.06 for men and
1.81 for women). In contrast, our analysis is based on the March CPS (outgoing
rotation groups 4 and 8), and on the weekly wages instead of annual earnings,
however, we also find evidence in favour of changing adjustment parameters.

This renders support to the observation that imputed wages above the top-
code, based on a fixed value may lead to misstatement of results, given that this
approach considers wages above the top-code to be independent of time, age,
gender, race and other personal characteristics; as well as industry and occupation.
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To impute wages above the top-code, we consider the estimate of
E (yi| yi > yc; xi) given by τ̂3 (xi, yc) in (25). However, for some individuals in
the CPS database, especially those in the highest wage groups, α̂ (xi) can be in
the neighborhood of 1, or even lower than 1, which implies that E (yi| yi > yc; xi)
does not exist and, therefore, the estimate τ̂3 (xi, yc) is inadequate. For these cases,
we use the conditional median of yi given yi > yc and xi, which is 21/α̂(xi)yc. In
specific, to accommodate all situations (i.e. low and high values of α̂ (xi)) we
propose the following estimator,

τ̂4 (xi, yc) =

{
21/α̂(xi)yc 0 < α̂ (xi) ≤ c
α̂(xi)
α̂(xi)−1yc α̂ (xi) > c

. (27)

In the empirical application of this statistic we set c = 1.5, since using c = 1 may
lead to explosive estimates as α̂(xi)

α̂(xi)−1 → ∞ as α̂ (xi) → 1+. Other values of c
in the neighborhood of c = 1.5 yield basically the same results. In the application
to the CPS data we observed that for the overwhelming majority of estimates
α̂ (xi) > 1.5. Thus, for most cases, the estimate τ̂4 (xi, yc) coincides with the
second branch of (27), which is the τ̂3 (xi, yc) estimator in (3.3). Hence, we use
τ̂4 (xi, yc) to impute wages above the top-code over all individuals of the sample
across time (see Figure 7).

Figure 7 illustrates the estimates of the imputed wages above the top-code
computed from the different approaches discussed in (23), (24) and (27). The
τ̂2 and τ̂4 estimates are similar. This result is expected given that for the overall
analysis τ̂4 is based on the values of α̂t computed as in (26), which provides an
estimate of the unconditional tail index after considering the characteristics of all
individuals in the sample. However, in the case where estimates for a particular
group, occupation or industry are considered, the τ̂3 estimates will certainly be
different from the τ̂2 estimates (see next section).
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Figure 7: Prediction of Topcoded Wages

When the proportion of wages above the top-code is relatively small (as for
example, from 1992 to 2005), the difference between τ̂1, τ̂2 and τ̂4 is relatively small;
however, as more wages are located in the top-coded category (as for example, in
the years following 2007), the effect of censored data becomes stronger and the
bias (underestimation) produced by the Hill estimator more pronounced (τ̂1 (yc)).

Figure 8 illustrates the time varying nature of the factor necessary to compute
the imputed mean wages. Recall that to overcome the top-coding bias, in the
literature, a constant value is frequently used to adjust the top-coded wages. For
instance, Autor and Dorn (2013) consider a sample between 1980-2005; Acemoglu
and Autor (2011), between 1973-2009; Autor et al. (2008) from 1963 to 2005;
Katz and Murphy (1992) between 1963 and 1987; Autor and Dorn (2013) between
1950 and 2005; Lemieux (2006) from 1973 to 2003; and Beaudry, Green and Sand
(2013) from 1979 to 2011. Figure 8 shows that using a fixed value may have been
adequate for pre-1992 data, but that the adjustment factor has increased over time
reaching an overall value around 1.85 in 2017.
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Figure 8: Top-coded wage adjustment factors between 1992 and 2017

4.3.2. Imputed wages above the top-code by gender and industry. Figure 9
illustrates the difference of the imputed mean values for individuals in the Finance,
Repair, Personal and Public industries, as well as for women and women working in
those industries. The purpose of these graphs is to further highlight the importance
of allowing for different scaling factors depending on individuals characteristics and
industry, but other graphs considering other characteristics can be plotted using
our approach.

The first noticeable result is that the imputed wage of individuals decreases
when we compare the wages for individuals in the Finance, Repair, Personal and
Public industries. Finance displays the largest and Public the lowest imputed wages
of the four industries. With the exception of the Public industry, women’s imputed
wages are lower for the other three industries and this observation also holds
when we condition women’s imputed wages on the industry they are in. A further
interesting result is that the imputed mean wages display an increasing trend over
time in all industries, for women and for women in those industries, which is an
indication that the adjustment factors used to compute the imputed wages also
changes over time.
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Figure 9: Imputed mean wages between 1992 and 2017 by industry

This is further highlighted in Figure 10, where the graphs show the top-coded
wage adjustment factors between 1992 and 2017, for different combinations of
women working in different industries. Women’s top-coded adjustment factor is
always smaller than the topcoded adjustment factor that would be applied to males
in any industry with the exception of public. This implies that the public industry
is the less heavy tailed. On top of that women working in the public industry earn
less in the right tail than women in the right tail working in other industries.

While women working in personal and repair are not earning much more nor
much less than in other industries we find that women working in finance would
need a much higher adjustment factor. This means that this is the industry in which
they have been earning more and this result is reinforced with a clear positive trend
between 1992 and 2017.
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Figure 10: Adjustment factors between 1992 and 2017 by industry to impute topcoded
wages

5. Conclusions

This paper provides three important contributions to the literature. The first
corresponds to the introduction of a conditional tail index estimator which explicitly
handles the top-coding problem and an indepth evaluation of its finite sample
performance and comparison with competing methods. The Monte Carlo simulation
exercise shows that the method proposed to estimate the tail index performs well
in terms of estimation of the tail index and when used in the imputation of wages
above the top-code when the sample is censored, which is an intrinsic feature of
the public-use CPS database.

Second, evidence is provided which shows that the factor values used to adjust
the top-coded wages have changed over time and across the characteristics of
individuals, occupations and industries and an indication of suitable values is
proposed. Interestingly, the empirical results show that the upper-tail inequality
has increased since the 90s and has become more pronounced over the last 20
years.

Third, an in depth empirical analysis of the dynamics of the US wage
distribution’s right tail using the public-use CPS database from 1992 to 2017 is
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provided. The application of the procedure to the CPS data reveals that individuals
working in industries such as finance, construction and repair are the ones with the
more extreme wages. Moreover, it is also observed that the biggest increases in the
probability of observing an extreme wage between 1992 and 2017 was for individuals
that are black, married without a spouse, or widowed. Older and more educated
workers continued to have a significant probability of observing an extreme wage but
there was no relevant change between 1992 and 2017. Women observed a positive
increase between 1992 and 2017, but the impact is still towards an increase of alpha
(although smaller in absolute values than in 1992) i.e. a decrease in the probability
of an extreme wage. Furthermore, it is also noted that in comparison to an individual
working in a non-routine cognitive occupation (managers) all occupations observed
a positive contribution to observe an extreme value (although smaller in 2017).
However, conclusions are different across occupations.

Our analysis also showed that women working in finance (public) would need a
higher (lower) adjustment factor to impute the top-coded wages. Furthermore, we
also observe that the adjustment factor used to impute top-coded wages should
be adapted over time and across characteristics of the individuals especially when
using censored data.
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Appendix A:. Technical Appendix

A.1 Proof of Theorem 2.1
For the proof of Theorem 2.1, let us show first that Σ

−1/2
y0

K̇c(θ,yc)
n

p−→ 0.
Consider that the sequence {(yi,xi)} is independently distributed.

Σ−1/2
y0
K̇ (θ, yc) =
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(A.1)
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Thus, considering (A.1) we cans how that,
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Moreover, it follows that
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From Chebychev’s weak law of law of large numbers, we have that

Σ−1/2
y0

K̇c (θ, yc)

n
=

1

n

n∑
t=1

eiZni
p−→ E (eiZni)

and E (eiZni) is zero since

E (eiZni) = E (E (eiZni|Zni)) = E (E (ei|Zni) Zni) = 0

Given these results, considering that θ̂ minimizes the log-likelihood function,
Kc(θ,yc)

n such that K̇
c(θ,yc)
n = 0, using the Mean Value Theorem it follows that

K̇c (θ, yc)

n
=
K̇c (θ0, yc)

n
+
K̈c (θ1, yc)

n

(
θ̂ − θ0

)
(A.2)

for some θ1 ∈ [θ̂,θ0]. �
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A.2 Computation of the partial effects
We have

δ =
F̄ (y|∆x+ x)− F̄ (y|x)

F̄ (y|x)
× 100

=

(
y
y0

)α(∆x+x)

−
(
y
y0

)α(x)

(
y
y0

)α(x)
× 100

=

[(
y

y0

)α(∆x+x)−α(x)

− 1

]
× 100 (A.3)

since y = (1− u)
1

α(x)
y0 thus it follows that,

δ =

(
(1− u)

α(∆x+x)
α(x)

−1 − 1

)
× 100. (A.4)

Now and given the specification α (x) = exp (ϕ (x)) where ϕ (x) is usually of
type ϕ (x) = x′β it follows that,

α (∆x+ x) ' α (x) +
dα (x)

dx
∆x = α (x) + ϕ′ (x) exp (ϕ (x)) ∆x.

Therefore

α (∆x+ x)

α (x)
=
α (x) + ϕ′ (x) exp (ϕ (x)) ∆x

α (x)
= 1 + ϕ′ (x) ∆x.

In conclusion

δ =
F̄ (y|∆x+ x)− F̄ (y|x)

F̄ (y|x)
× 100 =

(
(1− u)ϕ

′(x)∆x − 1
)
× 100.
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Appendix B:. Additional figures on proportion of individuals, according to
characteristics, occupation and industry
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Appendix C:. Industry classification

Table C.1 - Industry classification

Agriculture agriculture, forestry, fishing, hunting, mining and utilities;
Construction only construction;
Manufacturing manufacturing of non-durable and durable goods and wood;
Transports transportation, warehousing, utilities electric light;
Trade wholesale and retail trade;
Finance finance and insurance;
Repair business and repair;
Personal personal services, entertainment and recreation, professional

and related services;
Public public administration and armed forces.

Note: This classification is based on the harmonized variable "ind1990" from
IPUMS.
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