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Abstract
Along with the advances of statistical data collection worldwide, dynamic factor models have
gained prominence in economics and finance when dealing with data rich environments.
Although factor models have been typically applied to two-dimensional data, three-way
array data sets are becoming increasingly available. Motivated by the tensor decomposition
literature, we propose a dynamic factor model for three-way data. We show that this modeling
strategy is flexible while remaining quite parsimonious, in sharp contrast with previous
approaches. We discuss identification and put forward a set of identifying restrictions that
enhance the interpretation of the model. We propose an estimation procedure based on
maximum likelihood using the Expectation-Conditional Maximization algorithm and assess
the finite sample properties of the estimator through a Monte Carlo study. In the empirical
application, we apply the model to inflation data for nineteen euro area countries and fifty-five
products covering the last two decades.
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1. Introduction

Macroeconomic data sets consist typically of variables addressed by one or two-
dimensional indices. In the latter case, one of the dimensions refers to time
periods and the other dimension represents inter alia macroeconomic aggregates,
countries, regions, and industries. However, an increasingly number of big data sets
is becoming available with variables whose observations need to be addressed by
more than a single index besides time.

The emergence of these large data sets with observations referenced to more
than two-dimensional indices recommends macroeconometric models developed
specifically to address the issues raised by this type of data. Models proposed
for ‘flat-view’ data, even when they appear to allow direct adaptation to
multi-dimensional indexed data, lose their parsimony and clearly become over-
parameterized when applied to more complex data.

In this respect, there are a few statistical fields which have been faster
in the development of models targeted to deal with data organized in multi-
way arrays, commonly called tensors, instead of the traditional vectors and
matrices. Psychometrics and chemometrics have historically been two areas driving
theoretical and algorithmic developments in models for high-order (i.e. multi-mode)
tensor data since as early as the 1960s. Signal processing and machine learning
followed in the 1990s and in the 2000s, respectively.1

In this paper, we propose a dynamic factor model for three-way array data, as
this type of data sets is becoming increasingly available in economics and finance.
In the empirical application, we estimate such a model using detailed consumer
price indices for elementary product items for the nineteen euro area countries over
the last two decades. Naturally, the model’s empirical relevance is not confined to
this particular application and can be easily applied with other multi-way data sets
exactly as it is formulated or with minor changes.

In a dynamic factor model, the data generating process of each variable is the
sum of a common component and an idiosyncratic component. The commonality
is driven by a relatively small number of latent time-factors generated by a
finite order vector autoregression. The literature on dynamic factor models in
economics and finance traces back to the seminal contributions by Geweke (1977),
Sargent and Sims (1977), Geweke and Singleton (1981) and Watson and Engel
(1983). In this early literature, the analysis was limited to two-way data arrays
with a small number of variables, and the model was estimated by Gaussian
maximum likelihood using either frequency or time domain approaches. For fixed
cross-sectional size, the consistency of the maximum likelihood estimator was

1. There is a vast literature on these topics. See, for example, Kolda and Balder (2009) for a review
of tensor models and available algorithms, Smilde et al. (2004) focus on tensor decompositions
with applications in chemometrics, Cichocki et al. (2015) highlight the applications to signal
processing, and Sidiropoulos et al. (2017) provide an overview of models and algorithms of tensor
rank decomposition and factorization for signal processing and machine learning.
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ensured under the assumptions of cross-sectional and serial independence of the
idiosyncratic components, as well as of independence between the latter and the
time-factors.

The growing availability of large two-way panel data sets steered the
development of a non-parametric estimation procedure drawing on least squares.
The resulting principal components estimator overcomes the feasibility issues of
the maximum likelihood estimator in the context of large cross-sections. The
consistency of the principal components estimator has been addressed by Connor
and Korajczyk (1986, 1988, 1993) when the number of variables grow to infinity
and the time dimension remains fixed. When both the number of variables and
the time dimension tend to infinity, Stock and Watson (1998, 2002a), Bai and
Ng (2002), and Amengual and Watson (2007) have shown that the first principal
components span the time-factor space, even in the presence of heteroskedasticity
and limited time and cross-sectional dependence of the idiosyncratic terms, as well
as moderate correlation between the latter and the factors. Related work using
frequency domain methods includes Forni and Reichlin (1998), Forni and Lippi
(2001), and Forni et al. (2000, 2004, 2005).

The classical approach based on maximum likelihood has been reconciled
with the estimation of models for large cross-sections by Doz, Giannone and
Reichlin (2012). In the sense of White (1982), the classical dynamic factor
model is treated as a possibly misspecified model which may be used for
estimation purposes. Resorting to the Expectation-Maximization (EM) algorithm
of Dempster, Laird and Rubin (1977), the estimation by maximum likelihood
becomes feasible for large cross-sections, and the factor space is estimated
consistently even if the underlying data generating process deviates slightly from the
classical assumptions of homoskedasticity and serial independence of idiosyncratic
components. Such specification has been enhanced to allow explicitly for serially
correlated idiosyncratic components, significantly improving the model fit in many
applications (Reis and Watson, 2010; Pinheiro, Rua and Dias, 2013; Jungbacker
and Koopman, 2015).

In some empirical applications, the set of variables may be partitioned into
blocks which in turn may or may not be further partitioned. In more complex data
structures, the variables are organized along more than one partition, for instance,
a partition of variables by region and a partition of the same variables by industry. If
one estimates an unrestricted dynamic factor model with such data sets, the issue
of over-parameterization is very present and becomes overwhelming even with small
to moderate sample sizes. Furthermore, in such situations, if we limit the number
of factors to a manageable level, we will potentially face strong cross-correlation
of estimated idiosyncratic components between variables belonging to the same
group or subgroup, suggesting under-specification of the unrestricted model. One
way to tackle this problem is to specify models not only with global factors, shared
by the data generating process of all variables and thus with unrestricted loadings,
but also with block-of-variables-specific factors. By construction, the latter are
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restricted to appear only in the measurement equation of those variables belonging
to the particular block for which they are targeted.

When in a data set there is a single partition of variables by primary blocks,
but these may be organized into sub-blocks, the dynamic factor models developed
to address these multi-level data structures are usually referred to as hierarchical
models. Such models are rather popular when comparing the business cycles of
different countries (Norrbin and Schlagenhauf, 1996; Gregory, Head and Raynauld,
1997; Gregory and Head, 1999; Kose, Otrok and Whiteman, 2003, 2008; Marcellino,
Stock and Watson, 2003; Crucini, Kose and Otrok, 2011; Mumtaz, Simonelli and
Surico, 2011; Kose, Otrok and Prasad, 2012; Dias, Pinheiro and Rua, 2013; among
others).

There are also several examples of dynamic factor models which explore multi-
level data structures and focus on economic issues other than international business
cycles. For instance, Diebold, Li and Yue (2008) propose a factor model to study the
evolution of sovereign bond yields in the US, Germany, Japan and UK; Giannone,
Reichlin and Small (2008) aim at improving nowcasts and organize the variables
according to their timing of release; Stock and Watson (2008) develop a model for
the number of building permits in the different US states, with global and state-
specific factors, as well as stochastic volatility of both factors and idiosyncratic
components; Beck, Hubrich and Marcellino (2009) employ a dynamic factor model
to describe regional inflation dynamics in the euro area with area-wide factors and
country-specific factors; Foerster, Sarte and Watson (2011) use a hierarchical factor
model to decompose US industrial production (117 industries) into components
arising from aggregate shocks, sectoral shocks and pure idiosyncratic shocks;
Moench, Ng and Potter (2013) propose a general framework for hierarchical
dynamic factor models and apply it to estimate a model of real activity in the
US, with five first-level and nine second-level blocks of variables.

Besides dynamic factor models developed for hierarchical data structures, there
are relatively few papers in the literature with models developed specifically for
more than one non-time data modes (i.e. for data addressed by more than one index
besides time). For example, Karadimitropoulou and León-Ledesma (2013) provide
an assessment of G7 countries’ business cycles considering, besides a partition
of variables by country, a parallel overlapping partition of variables by industry.
They specify 38 factors, one of which global, seven country-specific (one for each
country) and 30 sector-specific (as many as the industries in their data set). Beck,
Hubrich and Marcellino (2016) investigate the sources of prices changes in the euro
area and estimate aggregate, sectoral-specific and country-specific factors using a
dataset for 11 products and six countries, further broken down in 61 regions. They
specify 18 factors, one global, 11 product-specific and 6 country-specific, with the
intra-country heterogeneity conveyed by the idiosyncratic component.

If we postulate one global factor and also one specific factor for each block
(and sub-block) of variables, as done in most of the above literature, in terms of
empirical feasibility we will face a rather small upper bound to the sample size for
its non-time modes. In this paper, we have a partition of variables by 19 countries
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that coexists at the same level with a partition of the same variables by 55 products.
Adopting the modeling approach of one factor by block of variables, plus an global
factor, one would reach the excessive number of 75 factors. So, inspired by the
tensor decomposition literature, we propose a specification of the measurement
equation which, while remaining rather flexible to convey global and relative price
movements, it is very parsimonious.

In order to illustrate the proposed modeling approach, let us consider that,
besides the time mode, the data structure has (at least) two other modes and
the variables are partitioned in blocks defined for each non-time mode so that a
given variable belongs to as many blocks as index-dimensions besides time. In our
empirical application, each variable is referred to a consumer price item and to
a country. Given one of those non-time modes of the data set, for instance our
55 products, if we modeled a specific factor for each item, and the corresponding
loadings in the measurement equation were regarded as vectors spanning a given
space, likely it would be possible to approximate that space by a subspace of much
smaller dimension, say three. So instead of 55 specific factors we would only need
three to approximately span the loadings space. Applying the same reasoning to
each data mode besides time, one obtains a multiplicative and very parsimonious
structure for the loadings.

In the empirical application, we end up with a representation of consumer price
co-movements in the euro area with the relatively small number of six factors,
including one global factor, two factor specific to consumer price items (expressing
the non-idiosyncratic changes of relative prices across products), and one factor
specific to countries. Given the common currency in the euro area, cross-country
relative price changes correspond to real exchange rates movements. Hence, the
number of loading parameters in the suggested specification is around 2% and
6% of the corresponding number when adopting the unrestricted specification
or the approach with one factor for each block of variables in the overlapping
data partitions, respectively. Note that the suggested approach can make an
otherwise unfeasible sample size to became quite manageable. Moreover, in terms
of computational cost, the number of variables in each mode is less of a concern
and one would have managed with larger numbers of consumer price items and
countries in our application.

The identification of the proposed specification is addressed and a set of
identifying restrictions which improve the interpretation of model results is
discussed.2 By considering those identifying restrictions, it can be shown that the
measurement equation may be averaged out in each and every non-time mode
of the data, giving rise to simpler equations with conventional specifications. In
this way, it is possible to put forward the above mentioned interpretation that

2. In contrast with simpler dynamic factor models, in this specification factors cannot be made
contemporaneously uncorrelated (i.e. orthogonal) in the sample and therefore it becomes less
straightforward to obtain variance decompositions. To address this issue, we explore and assess
two alternative re-parameterizations and discuss their limitations.
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some factors are conveying pure relative price changes across products or across
countries. Moreover, exploring the aggregative properties of the model, we compute
a global inflation indicator for the euro area which reflects inflation developments
in the euro area purged from relative prices changes across products and countries
and idiosyncratic terms.

When averaging out the country dimension in the proposed measurement
equation, variables become indexed with time and products (for the euro area
as a whole) and the suggested specification collapses to the dynamic factor model
considered by Reis and Watson (2010) to identify and estimate a ‘pure’ inflation
indicator, which aims at identifying equiproportional changes in all prices.3. In
particular, they do so by transforming their global factor in a way such that it
becomes uncorrelated in the sample with all leads, lags and contemporaneous values
of the remaining factors in the model. We address how such an indicator can be
computed in the proposed framework and apply it to our data set.

The paper is organized as follows. In section 2, we present a dynamic factor
model specified and identified to tackle our three-mode and non-hierarchical
data structure of price changes (by products and countries). We also discuss
identification alternatives, and how to compute the pure inflation indicator in the
context of our model. In section 3, we propose the estimation procedure based
on maximum likelihood and the Expectation-Conditional Maximization (ECM)
algorithm. In section 4, we conduct a Monte Carlo analysis to assess the small
sample performance of the suggested maximum likelihood estimator. In section 5,
the empirical application is presented and the main estimation results are discussed.
Finally, in section 6 we sum up and make some concluding remarks.

2. Model specification

For the sake of exposition, let us assume that the data is organized in a three-way
array X ∈ RT×I×J with generic element xt,i,j representing, say, the year-on-year
price changes. The first, second and third mode indices t, i and j refer to time
periods, to products and to countries, respectively. The time-mode matricization
of tensor X yields the following matrix:

X = [ X•,•,1 · · · X•,•,j · · · X•,•,J ]
(T × IJ)

3. Reis and Watson (2010) use quarterly data on deflators for 187 detailed categories of personal
consumption expenditures in the United States.
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with

X•,•,j =
(T × I)


x1,1,j · · · x1,i,j · · · x1,I,j

...
...

...
xt,1,j · · · xt,i,j · · · xt,I,j
...

...
...

xT,1,j · · · xT,i,j · · · xT,I,j


2.1. A three-way factor model

Let us postulate that the data is generated by a factor model with measurement
equation:

xt,i,j = κi,j + δ1,1ft,1,1 +
M∑
m=2

δm,1αi,mft,m,1 +
N∑
n=2

δ1,nβj,nft,1,n+

+
M∑
m=2

N∑
n=2

δm,nαi,mβj,nft,m,n + ut,i,j (t = 1, · · · , T ; i = 1, · · · , I; j = 1, · · · , J)

(1)
where κi,j are (unknown) time-invariant additive terms, ft,m,n denote latent (i.e.
non-observable) time-factors, αi,m, βj,n and δm,n are (unknown) time-invariant
multiplicative loading parameters, and ut,i,j stand for residual idiosyncratic
components. We assume that the latter may be serial correlated:

ut,i,j = ρi,jut−1,i,j + εt,i,j (t = 1, · · · , T ; i = 1, · · · , I; j = 1, · · · , J) (2)

where ρi,j denote (unknown) first order autocorrelation coefficients, with |ρi,j | < 1
for all (i, j), and εt,i,j are innovations independent and identically distributed
according to

εt,i,j ∼ N(0;σi,j) (t = 1, · · · , T ; i = 1, · · · , I; j = 1, · · · , J) (3)

with (unknown) variances σi,j strictly positive for all i and j.
The state transition equation of the latent time-factors may be written as:

ft,m,n =
P∑
p=1

M∑
m̃=1

N∑
ñ=1

γp,m,n,m̃,ñft−p,m̃,ñ + ηt,m,n

(t = 1, · · · , T ;m = 1, · · · ,M ;n = 1, · · · ,N) (4)

where γp,m,n,m̃,ñ and ηt,m,n respectively denote (unknown) coefficients and
innovations of the vector autoregressive process of order P generating the latent
time-factors. We postulate that innovations are independent from the idiosyncratic
components, and independent and identically generated over time periods from the
following multivariate normal distribution (Ω being a MN ×MN positive definite
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matrix):

ηt = [ηt,1,1 ηt,2,1 · · · ηt,m,n · · · ηt,M,N ]′ ∼ N(0; Ω) (t = 1, · · · , T )4 (5)

We also assume that time-factors in the initial periods are normal distributed:

f0 ∼ N(µ; Ψ) (6)

where

f0 = [f0,1,1 f0,2,1 · · · f0,m,n · · · f0,M,N f−1,1,1 · · · f−1,M,N f1−P,1,1 · · · f1−P,M,N ]′

and µ are column-vectors of dimension MNP , and Ψ is a (MNP ×MNP )
positive definite matrix. Both µ and Ψ are unknown.

The total number of time-factors in our model is MN including:

– One global time-factor {ft,1,1} with time-invariant loadings δ1,1;
– (M − 1) time-factors {ft,m,1} (m = 2, · · · ,M), with loadings {δm,1αi,m}
which vary with the different products and are country-invariant;

– (N − 1) time-factors {ft,1,n} (n = 2, · · · ,N), with loadings {δ1,nβj,n} which
vary by country and are invariant to products;

– (M − 1)(N − 1) interaction time-factors {ft,m,n} (m = 2, · · · ,M ;n =
2, · · · ,N), with loadings {δm,nαi,mβj,n} varying with both product and
country.

Measurement equation (1) could have been written as

xt,i,j = κi,j +
M∑
m=1

N∑
n=1

δm,nαi,mβj,nft,m,n + ut,i,j

with
αi,1 = 1 (i = 1, · · · , I); βj,1 = 1 (j = 1, · · · , J). (7)

By taking on board these latter restrictions on the values of αi,1 (i = 1, · · · , I)
and βj,1 (j = 1, · · · , J), we accept a negative impact on the maximum likelihood
when estimating the model, in exchange for much greater parsimony and improved
ability to interpret the specification.

As regards parsimony, the smaller M and N are set relative to I and J ,
respectively, the more parsimonious is the model. Abstracting from identification
restrictions to be discussed in the next subsection, the number of parameters
making up the factor loadings in measurement equation (1) is MN + I(M − 1) +

4. Note that ηt is a column-vector in spite of its elements being written with three subindices.
Subindex t is shared by all elements and does not impact on the ordering of elements. As for the
second and third subindices m and n, they are such that element ηt,m,n is the ((n− 1)M +m)th
element of column-vector ηt (for instance, if M = 4 and N = 3, ηt,4,2 denotes the 7th element of
ηt). Hereafter,we will follow this notation convention.
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J(N − 1), whereas the measurement equation of the unrestricted factor model
with the same MN time-factors,

xt,i,j = κi,j +
MN∑
k=1

λi,j,kft,k + ut,i,j (t = 1, · · · , T ; i = 1, · · · , I; j = 1, · · · , J)

would have IJMN loading parameters λi,j,k. In our empirical application we have
I = 55 and J = 19, and we will end up withM = 3 and N = 2, thus a total of 135
loading parameters, corresponding to just 2.2% of the 6,270 loading parameters in
the unrestricted model. The disparity in the numbers increases sharply with I, J ,
M and N .

Instead of the unrestricted measurement equation, we could have considered
the comparison of our specification with that of a dynamic factor model with
one global factor, one product-specific factor associated with each product, and
one country-specific factor associated with each country. We would have a total of
1 + I + J factors (75 in our empirical illustration) and, after taking into account all
zero restrictions on the factor loadings, as well as the over-identifying restriction
of having the global factor impacting equally on all variables, 1 + 2IJ loading
parameters (2,091 in our empirical case).

In spite of its parsimony, our measurement equation is rather flexible to capture
relative price movements. Indeed, for any (i1, i2) or (j1, j2), from (1) we get:

xt,i1,j − xt,i2,j = (κi1,j − κi2,j)+

+
M∑
m=2

(αi1,m − αi2,m)

(
δm,1ft,m,1 +

N∑
n=2

δm,nβj,nft,m,n

)
+ (ut,i1,j − ut,i2,j)

and
xt,i,j1 − xt,i,j2 = (κi,j1 − κi,j2)+

+
N∑
n=2

(βj1,n − βj2,n)

(
δ1,nft,1,n +

M∑
m=2

δm,nαi,mft,m,n

)
+ (ut,i,j1 − ut,i,j2)

meaning that inflation differentials between products in the same country, or
inflation differentials between different countries for the same product, depend
on the corresponding differentials of the specific factor loadings, as well as on
the influence of interaction terms (besides being affected by the differences in the
respective idiosyncratic components).

In more compact matrix notation, model (1) to (6) may be written as:

xt = κ+ Θ(Ā, B̄)diag(δ)ft + ut (t = 1, · · · , T ) (8)

ft = Γft−1 + ηt (t = 1, · · · , T ) (9)

ut = diag(ρ)ut−1 + εt (t = 1, · · · , T ) (10)

εt ∼ i.i.d.N(0; diag(σ)) (t = 1, · · · , T ) (11)
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ηt ∼ i.i.d.N(0; Ω) (t = 1, · · · , T ) (12)

E(εtη
′
s) = 0 ∀t, s (13)

f0 ∼ N(µ; Ψ) (14)

where i.i.d. stands for independent and identically distributed, and

xt =
[
xt,1,1 xt,2,1 · · · xt,i,j · · · xt,I,J

]′
(IJ × 1)

ft =
[
ft,1,1 ft,2,1 · · · ft,m,n · · · ft,M,N

]′
(MN × 1)

ft =
[
f ′t f ′t−1 · · · f ′t−P+1

]′
(MNP × 1)

ut =
[
ut,1,1 ut,2,1 · · · ut,i,j · · · ut,I,J

]′
(IJ × 1)

εt =
[
εt,1,1 εt,2,1 · · · εt,i,j · · · εt,I,J

]′
(IJ × 1)

κ =
[
κ1,1 κ2,1 · · · κi,j · · · κI,J

]′
(IJ × 1)

Θ(Ā, B̄) = (B ⊗A) (IJ ×MN)5

A =
[
1I Ā

]
(I ×M), B =

[
1J B̄

]
(J ×N)

Ā =


α1,2 · · · α1,m · · · α1,M
...

...
...

αi,2 · · · αi,m · · · αi,M
...

...
...

αI,2 · · · αIm · · · αI,M

 (I × (M − 1))

B̄ =


β1,2 · · · β1,n · · · β1,N
...

...
...

βj,2 · · · βj,n · · · βj,N
...

...
...

βJ,2 · · · βJ,n · · · βJ,N

 (J × (N − 1))

δ =
[
δ1,1 δ2,1 · · · δm,n · · · δM,N

]′
(MN × 1)

ρ =
[
ρ1,1 ρ2,1 · · · ρi,j · · · ρIJ

]′
(IJ × 1)

σ =
[
σ1,1 σ2,1 · · · σi,j · · · σI,J

]′
(IJ × 1)

Γ =
[

Γ1 · · · Γp · · · ΓP
]

(MN ×MNP )

5. (B ⊗A) represents the kronecker product of B and A.
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Γp =
(MN ×MN)



γp,1,1,1,1 γp,1,1,2,1 · · · γp,1,1,m̃,ñ · · · γp,1,1,M,N

γp,2,1,1,1 γp,2,1,2,1 · · · γp,2,1,m̃,ñ · · · γp,2,1,M,N
...

...
...

...
γp,m,n,1,1 γp,m,n,2,1 · · · γp,m,n,m̃,ñ · · · γp,m,n,M,N

...
...

...
...

γp,M,N,1,1 γp,M,N,2,1 · · · γp,M,N,m̃,ñ · · · γp,M,N,M,N


and 1K denotes a K-dimensional column-vector of ones (K being any positive
integer).6

2.2. Identification

The model specified above is not identified. With the purpose of reinforcing the
economic interpretation of loadings and factors, we will consider the following
identification restrictions:

– For given weights w(α)
i (i = 1, . . . , I), such that w(α)

i ≥ 0 (i = 1, · · · , I)

and
∑I
i=1w

(α)
i = 1, weighted standardization of loading-factors αi,m in the

sample, i.e.
I∑
i=1

w
(α)
i αi,m = 0 (m = 2, · · · ,M) (15)

and
I∑
i=1

w
(α)
i α2

i,m = 1 (m = 2, · · · ,M) (16)

– For given weights w(β)
j (j = 1, . . . , J), such that w(β)

j ≥ 0 (j = 1, · · · , J)

and
∑J
j=1w

(β)
i = 1, weighted standardization of loading-factors βj,m in the

sample, i.e.
J∑
j=1

w
(β)
j βj,n = 0 (n = 2, · · · ,N) (17)

and
J∑
j=1

w
(β)
j β2

j,n = 1 (n = 2, · · · ,N) (18)

– Normalization of time-factors in the sample, i.e.

1

T

T∑
t=1

f2
t,m,n = 1 (m = 1, · · · ,M ;n = 1, · · · ,N) (19)

6. As regards Γp, following our notation convention, element γp,m,n,m̃,ñ belongs to its
((n− 1)N +m)th row and to its ((ñ− 1)N + m̃)th column.
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A simple choice of weights could be w(α)
i = I−1 (i = 1, · · · , I) and w(β)

j = J−1

(j = 1, · · · , J). But we will see below that a preferable choice in the case of inflation
data consists of setting:

– w
(α)
i equal to the weight of the i-th product in the basket for the euro area as

a whole; and
– w

(β)
j equal to the weight of country j in the same basket.

In matrix notation, identifying restrictions (15) to (19) may be expressed
equivalently as:

Ā′w(α) = 0M−1 (20)

diag
(
Ā′diag

(
w(α)

)
Ā
)

= 1M−1 (21)

B̄′w(β) = 0N−1 (22)

diag
(
B̄′diag

(
w(β)

)
B̄
)

= 1N−1 (23)

diag

(
1

T

T∑
t=1

ftf
′
t

)
= 1MN (24)

where 0K denotes a K-dimensional column-vector of zeros (K being any positive
integer), and

w(α) =
[
w

(α)
1 w

(α)
2 · · · w

(α)
i · · · w

(α)
I

]′
(I × 1)

w(β) =
[
w

(β))
1 w

(β)
2 · · · w

(β)
j · · · w

(β)
J

]′
(J × 1)

with w(α) ≥ 0, w(β) ≥ 0, and 1′Iw(α) = 1′Jw(β) = 1.
By normalizing time-factors and multiplicative loading-factors αi,m and βj,n,

the role and meaning of parameters δm,n become more clear. Without affecting
the likelihood value, the latter parameters will absorb the global scale effects in the
commonalities, freeing time-factors and loading-factors of that role.

For a moment let us consider that the above identifying restrictions were
not imposed. Then for each set of time-factors and loading parameters, it is
straightforward to confirm that there would be an alternative set of factors and
parameters associated with the same likelihood value. Indeed, for each commonality
term in the measurement equation, we would have:

δm,nαi,mβj,nft,m,n = δ∗m,nα
∗
i,mβ

∗
j,nf

∗
t,m,n (25)

for

δ∗m,n = δm,n

√√√√√( 1

T

T∑
t=1

f2
t,m,n

)(
I∑
i=1

ω
(α)
i α2

i,m

) J∑
j=1

ω
(β)
j β2

j,n


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f∗t,m,n =
ft,m,n√

1
T

∑T
t=1 f

2
t,m,n

; α∗i,m =
αi,m√∑I

i=1 ω
(α)
i α2

i,m

; β∗j,n =
βj,n√∑J

j=1 ω
(β)
j β2

j,n

(26)
and the transition equation (4) would also admit the equivalent alternative
formulation:

f∗t,m,n =
P∑
p=1

M∑
m̃=1

N∑
ñ=1

γ∗p,m,n,m̃,ñf
∗
t−p,m̃,ñ + η∗t,m,n

with

γ∗p,m,n,m̃,ñ = γp,m,n,m̃,ñ

√√√√∑T
t=1 f

2
t,m̃,ñ∑T

t=1 f
2
t,m,n

Ω∗ = Var (η∗t ) = Π−1ΩΠ−1

and7

Π = diag



√√√√ 1

T

T∑
t=1

f2
t,1,1 · · ·

√√√√ 1

T

T∑
t=1

f2
t,m,n · · ·

√√√√ 1

T

T∑
t=1

f2
t,M,N

′


Thus, conditions (16), (18) and (19) (or, equivalently, (21), (23) and (24)), by
setting particular values for the denominators in (26), resolve the ambiguity in the
measurement equation expressed by (25).

There is another source of non-identification in the measurement equation,
which restrictions (15) and (17) allow addressing. Let us admit that restriction
(15) is not verified (the argument for restriction (17) is similar). Denoting∑I
i=1w

(α)
i αi,m by α̃m, we may express the commonality as:

δ1,1ft,1,1 +
M∑
m=2

δm,1αi,mft,m,1 +
N∑
n=2

δ1,nβj,nft,1,n+
M∑
m=2

N∑
n=2

δm,nαi,mβj,nft,m,n

= δ1,1ft,1,1 +
M∑
m=2

δm,1 (αi,m − α̃m + α̃m) ft,m,1 +
N∑
n=2

δ1,nβj,nft,1,n+

+
M∑
m=2

N∑
n=2

δm,n (αi,m − α̃m + α̃m)βj,nft,m,n =

= δ∗1,1f
∗
t,1,1 +

M∑
m=2

δm,1α
∗
i,mft,m,1 +

N∑
n=2

δ∗1,nβj,nf
∗
t,1,n+

7. Let C and c be a square matrix (K ×K) and the K-dimensional column-vector obtained
stacking all its diagonal elements, respectively. Hereafter diag() may be used with two different
meanings depending on the context: (i) diag(C) = c; or (ii) diag(c) as the diagonal matrix with
diagonal elements taken from c.



14

+
M∑
m=2

N∑
n=2

δm,nα
∗
i,mβj,nft,m,n

where
α∗i,m = αi,m − α̃m (i = 1, · · · , I;m = 2, · · · ,M)

δ∗1,nf
∗
t,1,n =

N∑
n=1

[
δ1,nft,1,n +

M∑
m=2

α̃mδm,nft,m,n

]
(t = 1, · · · , T ;n = 1, · · · ,N)

In order to separate δ∗1,n from f∗t,1,n in the latter identities, for each n we need to
normalize {δ∗1,nf∗t,1,n}t=1,··· ,T . The normalized output is {f∗t,1,n}t=1,··· ,T whereas
the normalizing factor becomes δ∗1,n.8

Let

x̊t,i =
J∑
j=1

w
(β)
j xt,i,j ; x̃t,j =

I∑
i=1

w
(α)
i xt,i,j ; ¯̄xt =

I∑
i=1

J∑
j=1

w
(α)
i w

(β)
j xt,i,j

κ̊i =
J∑
j=1

w
(β)
j κi,j ; κ̃j =

I∑
i=1

w
(α)
i κi,j ; ¯̄κ =

I∑
i=1

J∑
j=1

w
(α)
i w

(β)
j κi,j

ůt,i =
J∑
j=1

w
(β)
j ut,i,j ; ũt,j =

I∑
i=1

w
(α)
i ut,i,j ; ¯̄ut =

I∑
i=1

J∑
j=1

w
(α)
i w

(β)
j ut,i,j

Over-identifying restrictions (7), together with identifying restrictions (15) to (17),
give the model convenient aggregation properties which become apparent when
we collapse either the product mode of the data, or the country mode, or both.
Indeed, when averaging (using the appropriate weights) over the country mode
(j = 1, · · · , J), the product mode (i = 1, · · · , I), and both, we get respectively:

x̊t,i = κ̊i + δ1,1ft,1,1 +
M∑
m=2

δm,1αi,mft,m,1 + ůt,i (27)

x̃t,j = κ̃j + δ1,1ft,1,1 +
N∑
n=2

δ1,nβj,nft,1,n + ũt,j (28)

¯̄xt = ¯̄κ+ δ1,1ft,1,1 + ¯̄ut (29)

One direct implication of (29) is that {πGlobalt }t=1,··· ,T , defined as

πGlobalt = ¯̄κ+ δ1,1ft,1,1 (t = 1, · · · , T ) (30)

8. As time-factors {ft,1,n}t=1,··· ,T for n = 1, · · · ,N are transformed into {f∗t,1,n}t=1,··· ,T ,
the re-parametrization also requires that a corresponding transformation be performed to Γ and Ω,
so that the likelihood value remains unchanged.
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can be interpreted as a global inflation indicator for the euro area as a whole, which
abstracts from the inflation differentials associated with relative price changes both
across products and across countries, as well as from idiosyncratic price movements.

It should be remarked that the global time-factor {ft,1,1}t=1,··· ,T , the product-
relative-price time-factors {ft,m,1}t=1,··· ,T (m = 1, · · · ,M) and the country-
relative-prices time-factors {ft,1,n}t=1,··· ,T (n = 1, · · · ,N) will not be orthogonal
in the sample. Here we are using the term orthogonality in the sense of zero
contemporaneous linear correlation. However, with the proposed identification
strategy, we argue that the most relevant interpretations remain valid in spite of
non-orthogonality. Indeed, when doubly aggregating the measurement equation
over both product and country data modes, as in (29), no factors remain to
‘explain’ the inflation for the euro area {¯̄xt}t=1,··· ,T but the global time-factor
{ft,1,1}t=1,··· ,T .9 The disappearance of all time-factors but {ft,1,1}t=1,··· ,T from
(29) when aggregating the measurement equation across both modes justifies the
interpretation of

{
πGlobalt

}
t=1,··· ,T as a global inflation indicator for the euro area

as a whole.

2.3. Alternative identifications

It is not possible to impose identifying restrictions (i.e. restrictions which do not
negatively impact on the likelihood function) ensuring orthogonality in the sample
between all time-factors without forfeiting some of the convenient interpretations
and aggregation properties of the identification above proposed. In this subsection,
we discuss the pros and cons of two alternative identification strategies. For ease
of exposition, we will limit the discussion of re-parameterizations to the partially
aggregated measurement equation (27), in which the observables are addressed by
only two-dimensional indices (time and products), the country mode having been
canceled out by summing with weights wβj (j = 1, · · · , J).

Let us rewrite equation (27) in matrix notation, both for the single generic time
period t:

x̊t = κ̊+ δ1,11Ift,1,1 + Ādiag (δ•,1) ft,•,1 + ůt (t = 1, · · · , T ) (31)

and jointly for all t = 1 · · · , T :

X̊ = 1T κ̊′ + δ1,1f1,11′I + F•,1diag (δ•,1) Ā′ + Ů (32)

where
x̊t =

[
x̊t,1 · · · x̊t,i · · · x̊t,I

]′
(I × 1)

9. Actually, {¯̄xt}t=1,··· ,T is a proxy to the actual change of the euro area consumer price index
because the latter is based on weights for products which differ slightly from country to country
while our proxy uses the same product weights w(α)

i (i = 1, · · · , I) (the product weights for the
euro area as whole) for all countries j (j = 1, · · · , J).
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X̊ =


x̊′1
...
x̊′t
...
x̊′T

 =


x̊1,1 · · · x̊1,i · · · x̊1,I
...

...
...

x̊t,1 · · · x̊t,i · · · x̊t,I
...

...
...

x̊T,1 · · · x̊T,i · · · x̊T,I

 (T × I)

ůt =
[
ůt,1 · · · ůt,i · · · ůt,I

]′
(I × 1)

Ů =


ů′1
...
ů′t
...
ů′T

 =


ů1,1 · · · ů1,i · · · ů1,I
...

...
...

ůt,1 · · · ůt,i · · · ůt,I
...

...
...

ůT,1 · · · ůT,i · · · ůT,I

 (T × I)

f1,1 =
[
f1,1,1 · · · ft,1,1 · · · fT,1,1

]′
(T × 1)

ft,•,1 =
[
ft,2,1 · · · ft,m,1 · · · ft,M,1

]′
((M − 1)× 1)

F•,1 =



f ′1,•,1
...

f ′t,•,1
...

f ′T,•,1

 =


f1,2,1 · · · f1,m,1 · · · fM,1
...

...
...

ft,2,1 · · · ft,m,1 · · · fM,1
...

...
...

fT,2,1 · · · fT,m,1 · · · fM,1

 (T × (M − 1))

κ̊ =
[
κ̊1 · · · κ̊i · · · κ̊I

]′
(I × 1)

and
δ•,1 =

[
δ2,1 · · · δm,1 · · · δM,1

]′
((M − 1)× 1)

We obtain our first re-parametrization by substituting
{
f⊥1,1

}
t=1,··· ,T for

{f1,1}t=1,··· ,T , such that T−1F ′•,1f
⊥
1,1 = 0, and ensuring the necessary adjustment

of the loadings associated to factors F•,1 so that the commonalities remain
unchanged. Denoting IK the (K × K) identity matrix, for any positive integer
K, we have

X̊ = 1T κ̊′ + δ1,1f
⊥
1,11′I + F•,1Ā

⊥′ + Ů

with
f⊥1,1 =

[
IT − F•,1

(
F ′•,1F•,1

)−1
F ′•,1

]
f1,1 (T × 1)

and

Ā⊥ = Ādiag (δ•,1) + δ1,11If ′1,1F•,1
(
F ′•,1F•,1

)−1
(I × (M − 1))

Given f1,1, in practical terms f⊥1,1 corresponds to the residuals vector of the linear
regression, estimated by ordinary least squares,

ft,1,1 = θ′ft,•,1 + f⊥t,1,1 (t = 1, · · · , T )
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Compared to the identification laid out in the previous subsection, the advantage
of this re-parameterization is that it makes the transformed global factor{
f⊥t,1,1

}
t=1,··· ,T contemporaneously uncorrelated with the remaining factors. Its

drawback is that, unlike in the case of the identification discussed in subsection
2.2, when computing the weighted average of equation (32) over the products
mode using weights w(α)

i (i = 1, · · · , I), the effect of factors {F•,1}t=1,··· ,T does
not cancel out anymore because in general Ā⊥′w(α) 6= 0M−1. This means that
the part of the commonality associated with factors {ft,•,1}t=1,··· ,T cannot be
interpreted anymore as conveying the effect of relative price movements and, as a
consequence, neither should factor

{
f⊥t,1,1

}
t=1,··· ,T be viewed as expressing global

price movements.
The second possible re-parameterization is similar to the previous one except

that it is based on the orthogonalization of factors {ft,•,1}t=1,··· ,T relative to
{ft,1,1}t=1,··· ,T instead of the other way around:10

F⊥•,1 =
[
IT − T−1f1,1f

′
1,1

]
F•,1 (T × (M − 1))

This re-parameterization leaves unchanged the loadings of transformed factors{
f⊥t,•,1

}
t=1,··· ,T , as well as the global factor {ft,1,1}t=1,··· ,T , but modifies the

loadings associated with the latter. The re-parameterized measurement equation
becomes:

x̊t = κ̊+ δ⊥1,1ft,1,1 + Ādiag (δ•,1) f⊥t,•,1 + ůt (t = 1, · · · , T ) (33)

where δ⊥1,1 denotes a column-vector instead of a scalar:

δ⊥1,1 = δ1,11I + Ādiag (δ•,1)
(
T−1F ′•,1f1,1

)
(I × 1)

As the loadings associated with the transformed factors
{
f⊥t,•,1

}
t=1,··· ,T remain

unchanged in relation to our original parameterization, these factors are canceled
out when time-observations are aggregated using weights w(α)

i (i = 1, · · · , I).
However, the loadings associated with the global factor {ft,1,1}t=1,··· ,T are no
more constant across products, undermining the interpretation of the global factor
as price changes with an equiproportional effect on all products. Notwithstanding
this non-uniformity of the loadings associated with the global factor after the re-
parameterization, it is interesting to remark that, when averaging out the products
mode from (33) with weights w(α)

i (i= 1, · · · , I), we get the same doubly aggregate
specification as in (30), i.e. the global inflation indicator

{
πGlobalt

}
t=1,··· ,T remains

unchanged by this re-parameterization due to the fact that w(α)′δ⊥1,1 = δ1,1.

10. Continuing to consider the parameterization presented in subsection 2.2 as the base case, in
the following expression we make use of restriction (19) (or (24)) that T−1f ′1,1f1,1 = 1.
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2.4. Pure inflation

Reis and Watson (2010), after estimating a dynamic factor model for two-
dimensional indexed data with measurement equation similar to (31) and (32),
transform the global factor in such a way that it becomes orthogonal to the
remaining factors not only contemporaneously but also at all their leads and lags:

f
(p)
t,1,1 = E

[
ft,1,1| {fτ,•,1}τ=1,··· ,T

]
(t = 1, · · · , T )

In the notation of our model, and with ¯̄κ as in (29), the pure inflation indicator is
defined as:

π
(p)
t = ¯̄κ+ δ1,1f

(p)
t,1,1 (t = 1, · · · , T ) (34)

Reis and Watson (2010) named it so because of its lack of correlation at all leads
and lags with the remaining factors and because loadings in (34) are all identical.11

In order to calculate conditional expectations, a model of the joint dynamics
of {ft,1,1}t=1,··· ,T and {ft,•,1}t=1,··· ,T is required. After estimating the dynamic
factor model and obtaining the smoothed factors and estimated parameters, they
propose the Kalman smoother applied to the state-space system consisting of
the same state transition vector autoregression as the estimated dynamic factor
model. The measurement equations are set as noiseless identities between the
previously obtained smoothed estimates of the factors associated with relative price
movements, which become the observables, and the corresponding state variables.

Denoting ft,•,1|τ = E (ft,•,1|x1, · · · , xτ ) the M − 1 smoothed factors
associated with relative price movements across products obtained from the
estimation of our dynamic factor model (8) to (14) with identifying restrictions
(20) to (24), the system in state-space representation required to estimate pure
inflation as in Reis and Watson (2010) is the following, for t = 1, · · · , T :

ft,•,1|T =
[
0M−1 IM−1 0M−1 · · · 0M−1

]
ft

ft = Γft−1 + ηt

The orthogonalized factor f (p)
t,1,1 in (34) is constructed as the smoothed estimate of

the global factor {ft,1,1}t=1,··· ,T obtained from our dynamic factor model minus
the smoothed estimate of the same vector from the supplementary state-space
system.

Note that, in the spirit of the collapsed measurement equation (31) and (32),
where the country mode has been averaged out, in the supplementary state space
system we only considered as observables the smoothed versions of the M − 1
factors conveying relative price changes across products. A specification leading

11. Actually, Reis and Watson’s dynamic factor model neither does admit a loading parameter
associated with the global factor nor imposes the normalization of the latter, but our model does
both and thus we had to include δ1,1 in the latter definition.
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to an alternative pure inflation indicator may be obtained by including in the
supplementary state-space system as observables the smoothed versions of all time-
factors but the global factor (because all of them reflect relative price changes,
although of different nature), i.e.

ft,•,•|T =
[
0MN−1 IMN−1 0MN−1 · · · 0MN−1

]
ft

ft = Γft−1 + ηt

where

ft,•,•|T =
[
ft,2,1|T ft,3,1|T · · · ft,m,n|T · · · ft,M,N |T

]′
((MN − 1)× 1)

With three-dimensional indexed data, any of the two versions of the supplementary
state space system is a priori as warranted as the other. However, in practice,
they may deliver quite different results for the pure inflation indicator, as it is the
case in our empirical application. The indicator tends to become almost flat when
conditioning the global factor on all remaining factors instead of only on a subset of
relative price factors. One should note that when controlling for all leads and lags
of the factors associated with relatives prices, as the dimension of the vector space
spanned by all these leads and lags tends to expand very fast when the number of
factors increases, it leaves little to be identified as pure inflation.

3. Model estimation

The estimation of the proposed model is performed by maximum likelihood using
the ECM algorithm (Meng and Durbin, 1993), which is a generalization of the EM
algorithm.

The EM algorithm consists of iterating an expectation step (E-step) and a
maximization step (M-step) until convergence, i.e. until the improvement in the log-
likelihood function in consecutive steps is smaller than some tolerance level. When
applied to a dynamic factor model, given a set of values for the model parameters,
the E-step uses the Kalman smoother to compute the first- and second-order
moments of the time-factors. Having obtained the estimated factor moments, the
M-step corresponds to maximizing with respect to model parameters the expected
value of the joint likelihood of observables {xt} and time-factors {ft}.

When the set of model parameters may be partitioned into subsets, and it
is simpler to maximize the expected log-likelihood conditional on observables with
respect to each subset of parameters at a time, with all other parameters held fixed,
the ECM algorithm replaces each M-step of the EM algorithm by a sequence of
conditional maximization steps (CM-steps) intercalated by E-steps. In other words,
given an initial guess for all parameters, the E-step is performed, followed by the
CM-step regarding a first subset of the parameters partition. Then another E-step is
carried on, followed by a CM-step regarding a second subset of parameters, and so
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on until all parameter subsets are exhausted. The algorithm continues by repeating
the cycle of E-steps followed by CM-steps until convergence is achieved.

As in the case of the EM algorithm, and under essentially the same conditions,
each pair (E-step,CM-step) of the ECM algorithm monotonically increases the value
of the likelihood function, and the sequence converges to a stationary point of the
latter function.

3.1. Joint log likelihood of the complete data and its expectation
conditional on observables

In order to implement the ECM algorithm, as mentioned above, first we need to
obtain the joint log likelihood function of the complete data (i.e. observables and
latent time-factors) and calculate its expectation conditional on the observables.

Let ϕ(z; θ) denote a generic probability density function with arguments z and
parameters θ. The joint likelihood of the complete data for our model is simple to
obtain:

L(f0, f1, · · · , ft, · · · , fT , x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) =

= lnϕ(f0;µ,Ψ) +
T∑
t=1

lnϕ(ft|f0, f1, · · · , ft−1; Γ,Ω) + lnϕ(x1|f1; Ā, B̄, δ, κ, ρ, σ)+

+
T∑
t=2

lnϕ(xt|x1, · · · , xt−1, f1, f2, · · · , ft; Ā, B̄, δ, κ, ρ, σ) ∝

∝
1

2
ln
[
det(Ψ−1)

]
− 1

2
(f0 − µ)′Ψ−1 (f0 − µ) +

T

2
ln
[
det(Ω−1)

]
+

−1

2

T∑
t=1

(ft−Γft−1)′Ω−1(ft−Γft−1) +
1

2

I∑
i=1

J∑
j=1

ln(1−ρ2
i,j) +

T

2

I∑
i=1

J∑
j=1

ln(σ−1
i,j )+

−1

2

[
x1 − κ−Θ(Ā, B̄)diag(δ)f1

]′
[IIJ − diag(ρ)2]diag(σ)−1.

.
[
x1 − κ−Θ(Ā, B̄)diag(δ)f1

]
− 1

2

T∑
t=2

{[
xt − κ−Θ(Ā, B̄)diag(δ)ft

]
+

−diag(ρ)
[
xt−1 − κ−Θ(Ā, B̄)diag(δ)ft−1

]}′
diag(σ)−1.

.
{[
xt − κ−Θ(Ā, B̄)diag(δ)ft

]
− diag(ρ)

[
xt−1 − κ−Θ(Ā, B̄)diag(δ)ft−1

]}
(35)

where ∝ means ‘equal up to a constant’.
Taking conditional expectations yields:

`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) =

= E
[
L(f0, f1, · · · , fT , x1, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ)|x1, · · · , xT

]
∝
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∝
1

2
ln
[
det
(
Ψ−1

)]
− 1

2
tr
{

Ψ−1
[
V0,0|T + (f0|T − µ)(f0|T − µ)′

]}
+

+
T

2
ln
[
det(Ω−1)

]
− T

2
tr
[
Ω−1

(
F̄0,0 + ΓF̄•,•Γ

′ − F̄0,•Γ
′ − ΓF̄′0,•

)]
+

+
1

2

I∑
i=1

J∑
j=1

ln(1− ρ2
i,j) +

T

2

I∑
i=1

J∑
j=1

ln(σ−1
i,j )+

−T − 1

2
tr

{
diag(σ)−1

[[
X̄0,0 +

T

T − 1
(x̄0,0 − κ) (x̄0,0 − κ)′

]
+ diag(ρ)2

[
X̄1,1+

+
T − 2

T − 1
(x̄1,1 − κ) (x̄1,1 − κ)′

]
− 2diag(ρ)

[
X̄0,1 + (x̄0,1 − κ) (x̄1,0 − κ)′

]
+

+Θ(Ā, B̄)diag(δ)F̄0,0diag(δ)Θ(Ā, B̄)′+

+diag(ρ)2Θ(Ā, B̄)diag(δ)F̄1,1diag(δ)Θ(Ā, B̄)′+

−2diag(ρ)Θ(Ā, B̄)diag(δ)F̄0,1diag(δ)Θ(Ā, B̄)′+

−2
[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
diag(δ)Θ(Ā, B̄)′+

−2diag(ρ)2
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
diag(δ)Θ(Ā, B̄)′+

+2diag(ρ)
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
diag(δ)Θ(Ā, B̄)′

]}
(36)

where we are resorting to the following additional notation:

ft|τ = E (ft|x1, · · · , xτ )

Vt−q1,t−q2|τ = E
[(
ft−q1 − ft−q1|τ

) (
ft−q2 − ft−q2|τ

)′ |x1, · · · , xτ
]

F̄q1,q2 =
1

T

T∑
t=1

E
(
ft−q1f

′
t−q2 |x1, · · · , xT

)
=

1

T

T∑
t=1

(
Vt−q1,t−q2|T + ft−q1|T f

′
t−q2|T

)
ft|τ = E (ft|x1, · · · , xτ ) =

[
f ′t|τ f ′t−1|τ · · · f ′t−P+1|τ

]′
V0,0|T = E

[(
f0 − f0|T

) (
f0 − f0|T

)′ |x1, · · · , xT
]

F̄•,• =


F̄1,1 · · · F̄1,p · · · F̄1,P
...

...
...

F̄p,1 · · · F̄p,p · · · F̄p,P
...

...
...

F̄P,1 · · · F̄P,p · · · F̄P,P


F̄0,• =

[
F̄0,1 · · · F̄0,p · · · F̄0,P

]
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f̄0,0 =
1

T − 1

T∑
t=1

ft|T ; f̄1,1 =
1

T − 1

T−1∑
t=2

ft|T

f̄0,1 =
1

T − 1

T∑
t=2

ft|T ; f̄1,0 =
1

T − 1

T−1∑
t=1

ft|T =
1

T − 1

T∑
t=2

ft−1|T

F̄0,0 =
1

T − 1

T∑
t=1

(
Vt,t|T + ft|T f

′
t|T

)
; F̄1,1 =

1

T − 1

T−1∑
t=2

(
Vt,t|T + ft|T f

′
t|T

)

F̄0,1 =
1

T − 1

T∑
t=2

(
Vt,t−1|T + ft|T f

′
t−1|T

)

x̄0,0 =
1

T

T∑
t=1

xt ; x̄1,1 =
1

T − 1

T−1∑
t=2

xt

x̄0,1 =
1

T − 1

T∑
t=2

xt ; x̄1,0 =
1

T − 1

T−1∑
t=1

xt =
1

T − 1

T∑
t=2

xt−1

X̄0,0 =
1

T − 1

T∑
t=1

(xt − x̄0,0) (xt − x̄0,0)′

X̄1,1 =
1

T − 1

T−1∑
t=2

(xt − x̄1,1) (xt − x̄1,1)′

X̄0,1 =
1

T − 1

T∑
t=2

(xt − x̄0,1) (xt−1 − x̄1,0)′

W̄0,0 =
1

T − 1

T∑
t=1

(xt − x̄0,0) f ′t|T ; W̄1,1 =
1

T − 1

T−1∑
t=2

(xt − x̄1,1) f ′t|T

W̄0,1 =
1

T − 1

T∑
t=2

(xt − x̄0,1) f ′t−1|T ; W̄1,0 =
1

T − 1

T∑
t=2

(xt−1 − x̄1,0) f ′t|T

3.2. First order conditions

The first order conditions for the maximization of

`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Ω, µ,Ψ)

with respect to the parameters (Ā, B̄, δ, κ, ρ, σ,Ω, µ,Ψ) are the backbone of
the CM-steps of the ECM algorithm. The calculations leading to the following
conditions are detailed in Annex A.1.12

12. dχ`() denotes the differential of `() with respect to the scalar, vector or matrix of parameters
χ.
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From dµ`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀dµ we get:

µ = f0|T (37)

From dΨ−1`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀d(Ψ−1) we
get:

Ψ = V0,0|T (38)

From dΓ`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀dΓ we get:

Γ = F̄0,•F̄
−1
•,• (39)

From dΩ−1`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀d(Ω−1) we
get:

Ω = F̄0,0 − ΓF̄•,•Γ
′ (40)

From dκ`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀dκ we get:

κ =

(
T

T − 1
IIJ +

T − 2

T − 1
diag(ρ)2 − 2diag(ρ)

)−1

.

.

[
T

T − 1
x̄0,0 +

T − 2

T − 1
diag(ρ)2x̄1,1 − diag(ρ) (x̄0,1 + x̄1,0)−Θ(Ā, B̄)diag(δ)f̄0,0+

−diag(ρ)2Θ(Ā, B̄)diag(δ)f̄1,1 + diag(ρ)Θ(Ā, B̄)diag(δ)
(
f̄0,1 + f̄1,0

) ]
(41)

From dδ`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀dδ we get:

δ = S−1
δ

(
F̄0,0, F̄1,1, F̄0,1; Ā, B̄, ρ, σ

)
.

. cδ
(
W̄0,0, W̄1,1, W̄0,1, W̄1,0, x̄0,0, x̄1,1, x̄0,1, x̄1,0, f̄0,0, f̄1,1, f̄0,1, f̄1,0; Ā, B̄, κ, ρ, σ

)
(42)

where Sδ () is a (MN ×MN) matrix and and cδ () is a (MN × 1) vector. Adopting
the notation [Z]q1,q2 to represent element (q1, q2) of matrix Z, and [z]q to represent
the q-th element of column-vector z, the generic elements of Sδ () and cδ () are
(m, m̃ = 1, · · · ,M ; n, ñ = 1, · · · ,N ; αi,1 = βj,1 = 1 for all i and j):

[Sδ](n−1)M+m,(ñ−1)M+m̃ =

=
[
F̄0,0

]
(n−1)M+m,(ñ−1)M+m̃

 I∑
i=1

J∑
j=1

σ−1
i,j αi,mαi,m̃βj,nβj,ñ

+

+
[
F̄1,1

]
(n−1)M+m,(ñ−1)M+m̃

 I∑
i=1

J∑
j=1

ρ2
i,jσ
−1
i,j αi,mαi,m̃βj,nβj,ñ

+

−
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)M+m̃

 I∑
i=1

J∑
j=1

ρi,jσ
−1
i,j αi,mαi,m̃βj,nβj,ñ


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[cδ](n−1)M+m =

=
I∑
i=1

J∑
j=1

{
σ−1
i,j

[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
(j−1)I+i,(n−1)M+m

αi,mβj,n+

+σ−1
i,j

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
(j−1)I+i,(n−1)M+m

αi,mβj,n +−ρi,jσ−1
i,j

[
W̄0,1

+W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1
]
(j−1)I+i,(n−1)M+m

αi,mβj,n

}
From dĀ`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀dĀ we get, for

i = 1, · · · , I:
α[i] = S−1

α[i]

(
F̄0,0, F̄1,1, F̄0,1; B̄, δ, ρ, σ

)
.

. cα[i]

(
W̄0,0, W̄1,1, W̄0,1, W̄1,0, x̄0,0, x̄1,1, x̄0,1, x̄1,0, f̄0,0, f̄1,1, f̄0,1, f̄1,0; B̄, δ, κ, ρ, σ

)
(43)

where α[i] = [αi,2 · · ·αi,m · · ·αi,M ]′ (((M − 1)× 1) is the transposed i-th row of
Ā, Sα[i]

() is a ((M − 1)× (M − 1)) matrix, and cα[i]
() is a ((M − 1)× 1) vector.

Their generic elements are (for m, m̃ = 2, · · · ,M and with βj,1 = 1 for all j):[
Sα[i]

]
m−1,m̃−1

=

=
N∑
ñ=1

N∑
n=1

J∑
j=1

{
σ−1
i,j δm,nδm̃,ñβj,nβj,ñ

{[
F̄0,0

]
(n−1)M+m,(ñ−1)N+m̃

+

+ρ2
i,j

[
F̄1,1

]
(n−1)M+m,(ñ−1)N+m̃

− ρi,j
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)N+m̃

}}
[
cα[i]

]
m−1

=

=
N∑
n=1

J∑
j=1

{
σ−1
i,j δm,nβj,n

{{[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
(j−1)I+i,(n−1)N+m

+

+ρ2
i,j

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
(j−1)I+i,(n−1)N+m

+

−ρi,j
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
(j−1)I+i,(n−1)N+m

}
+

−
N∑
ñ=1

δ1,ñβj,ñ

{[
F̄0,0

]
(n−1)M+m,(ñ−1)N+1

+ ρ2
i,j

[
F̄1,1

]
(n−1)M+m,(ñ−1)N+1

+

−ρi,j
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)N+1

}}}
From dB̄`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀dB̄ we get, for

j = 1, · · · , J :
β[j] = S−1

β[j]

(
F̄0,0, F̄1,1, F̄0,1; Ā, δ, ρ, σ

)
.
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. cβ[j]

(
W̄0,0, W̄1,1, W̄0,1, W̄1,0, x̄0,0, x̄1,1, x̄0,1, x̄1,0, f̄0,0, f̄1,1, f̄0,1, f̄1,0; Ā, δ, κ, ρ, σ

)
(44)

where β[j] = [βj,2 · · ·βj,n · · ·βj,N ]′ (((N − 1)× 1) is the transposed j-th row of
B̄, Sβ[j]

() is a ((N − 1)× (N − 1)) matrix, and cβ[j]
() is a ((N − 1)× 1) vector.

Let:
δ[n] = [δ1,n · · · δm,n · · · δM,n]′ (M × 1)

ρ[j] = [ρ1,j · · ·ρi,j · · ·ρI,j ]′ (I × 1)

σ[j] = [σ1,j · · ·σi,j · · ·σI,j ]′ (I × 1)

and [Z][n,ñ] denote the (M ×M) block of (MN ×MN) matrix Z:
z(n−1)M+1,(ñ−1)M+1 · · · z(n−1)M+1,(ñ−1)M+m̃ · · · z(n−1)M+1,ñM

...
...

...
z(n−1)M+m,(ñ−1)M+1 · · · z(n−1)M+m,(ñ−1)M+m̃ · · · z(n−1)M+m,ñM

...
...

...
znM,(ñ−1)M+1 · · · znM,(ñ−1)M+m̃ · · · znM,ñM


Similarly, for (IJ ×MN) matrix Ẑ,

[
Ẑ
]

[j,n]
will denote the (I ×M) block:


ẑ(j−1)I+1,(n−1)M+1 · · · ẑ(j−1)I+1,(n−1)M+m · · · ẑ(j−1)I+1,nM

...
...

...
ẑ(j−1)I+i,(n−1)M+1 · · · ẑ(j−1)I+i,(n−1)M+m · · · ẑ(j−1)I+i,nM

...
...

...
ẑjI,(n−1)M+1 · · · ẑjI,(n−1)M+m · · · ẑjI,nM


Using this block notation, the generic elements of Sβ[j]

() and cβ[j]
() are the

following (for n, ñ = 2, · · · ,N and with tr(Q) denoting the trace of square matrix
Q): [

Sβ[j]

]
n−1,ñ−1

= tr

{{[
F̄0,0

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
+

+
[
F̄1,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

}
diag(σ[j])

−1
[
1I Ā

]
diag(δ[n])

}
[
cβ[j]

]
n−1

= tr

{{{[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
[j,n]

+

+
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
[j,n]

diag(ρ[j])
2+

−
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
[jn]

diag(ρ[j])
}

+

−
{[

F̄0,0

]
[n,1]

diag(δ[1])
[
1I Ā

]′
+
[
F̄1,1

]
[n,1]

diag(δ[1])
[
1I Ā

]′
diag(ρ[j])

2+
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−
[
F̄0,1 + F̄′0,1

]
[n,1]

diag(δ[1])
[
1I Ā

]′
diag(ρ[j])

}}
diag(σ[j])

−1
[
1I Ā

]
diag(δ[n])

}
From dσ−1

i,j
`(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀dσ−1

i,j (i =

1, · · · , I and j = 1, · · · , J), we get:

σ =
T − 1

T
diag

{[
X̄0,0 +

T

T − 1
(x̄0,0 − κ) (x̄0,0 − κ)′

]
+

+diag(ρ)2
[
X̄1,1 +

T − 2

T − 1
(x̄1,1 − κ) (x̄1,1 − κ)′

]
+

−2diag(ρ)
[
X̄0,1 + (x̄0,1 − κ) (x̄1,0 − κ)′

]
+

+Θ(Ā, B̄)diag(δ)F̄0,0diag(δ)Θ(Ā, B̄)′+

+diag(ρ)2Θ(Ā, B̄)diag(δ)F̄1,1diag(δ)Θ(Ā, B̄)′+

−2diag(ρ)Θ(Ā, B̄)diag(δ)F̄0,1diag(δ)Θ(Ā, B̄)′+

−2
[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
diag(δ)Θ(Ā, B̄)′+

−2diag(ρ)2
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
diag(δ)Θ(Ā, B̄)′+

+2diag(ρ)
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
diag(δ)Θ(Ā, B̄)′

}
(45)

Finally, from dρi,j `(x1, · · · , xt, · · · , xT ; Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ) = 0 ∀dρi,j
(i = 1, · · · , I; j = 1, · · · , J) we get:

ρi,j =

{[
X̄1,1 +

T − 2

T − 1
(x̄1,1 − κ) (x̄1,1 − κ)′

]
(j−1)I+i,(j−1)I+i

+

+
M∑
m=1

N∑
n=1

M∑
m̃=1

N∑
ñ=1

δm,nδm̃,ñαi,mαi,m̃βj,nβj,ñ
[
F̄1,1

]
(n−1)M+m,(ñ−1)M+m̃

+

−2
M∑
m=1

N∑
n=1

δm,nαi,mβj,n

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
(j−1)I+i,(n−1)M+m

+

+
σij

(T − 1)
(

1− ρ2
i,j

)}−1{[
X̄0,1 + (x̄0,1 − κ) (x̄1,0 − κ)′

]
(j−1)I+i,(j−1)I+i

+

+

M∑
m=1

N∑
n=1

M∑
m̃=1

N∑
ñ=1

δm,nδm̃ñαi,mαi,m̃βj,nβj,ñ
[
F̄0,1

]
(n−1)M+m,(ñ−1)M+m̃

+

−
M∑
m=1

N∑
n=1

δm,nαi,mβj,n

[
W̄0,1 + W̄1,0+
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+ (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
(j−1)I+i,(n−1)M+m

}
(46)

Unlike all other first order conditions, note that equation (46) is not fully solved
with respect to ρi,j . The right hand side of (46) depends on ρi,j through the term

σi,j

(T − 1)
(

1− ρ2
i,j

) (47)

For large T this term will be negligible. For not so large T , it will be straightforward
to solve equation (46) by starting to ignore term (47) and then iterating the
complete equation until convergence (conditional on the remaining moments and
parameters), restricting |ρi,j | ≤ ρmax with ρmax set to a value lower than but very
close to one.

3.3. E-step of the ECM algorithm

The ECM algorithm E-step consists of updating the values of sufficient statistics
based on the first and second order moments of observables and time-factors.
The updating relies on the Kalman smoother applied to the model in state-space
representation, for given estimates of the model parameters. In this section, we will
use the following slightly more compact formulation of the model than in (8) to
(14):

x1 = κ+ Ξ0(Ā, B̄, δ)fe1 + u1

xt = (IIJ − diag(ρ))κ+ diag(ρ)xt−1 + Ξ(Ā, B̄, δ)fet + εt (t = 2, · · · , T )

fet = Γefet−1 + vt (t = 1, · · · , T )

εt ∼ N(0; diag(σ)) (t = 1, · · · , T )

vt ∼ N(0; Ωe) (t = 1, · · · , T )

where
fet =

{ [
f ′t f

′
t−1

]′
(2MN × 1) if P = 1

ft (PMN × 1) if P > 1

Ξ0(Ā, B̄, δ) =
[
Θ(Ā, B̄)diag(δ) 0IJ×MN · · · 0IJ×MN

]
(IJ ×MNP e)

Ξ(Ā, B̄, δ) =
(IJ ×MNP e)

[
Θ(Ā, B̄)diag(δ) − diag(ρ)Θ(Ā, B̄)diag(δ) 0IJ×MN · · · 0IJ×MN

]

Γe =
(MNP e ×MNP e)


Γ1 Γ2 · · · ΓP e−1 ΓP e

IMN 0MN×MN · · · 0MN×MN 0MN×MN

0MN×MN IMN · · · 0MN×MN 0MN×MN
...

...
...

...
0MN×MN 0MN×MN · · · IMN 0MN×MN


vt =

[
η′t 01×MN · · · 01×MN

]′
(MNP e × 1)
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Ωe =
(MNP e ×MNP e)


Ω 0MN×MN · · · 0MN×MN

0MN×MN 0MN×MN · · · 0MN×MN
...

...
...

0MN×MN 0MN×MN · · · 0MN×MN


with

P e = max {2;P}

Γp = 0MN×MN ∀p > P

Let us also consider the notation:

fet|τ = E (fet |x1, · · · , xτ )

Ve
t−q1,t−q2|τ = E

[(
fet−q1 − fet−q1|τ

)(
fet−q2 − fet−q2|τ

)′
|x1, · · · , xτ

]
The Kalman forward recursions for t = 2, · · ·Θ are given by:

fet|t−1 = Γefet−1|t−1

Ve
t,t|t−1 = ΓeVe

t−1,t−1|t−1(Γe)′ + Ωe

Ve
t,t−1|t−1 = ΓeVe

t−1,t−1|t−1

Kt = Ve
t,t|t−1Ξ(Ā, B̄, δ)′diag(σ)−1

{
IIJ − Ξ(Ā, B̄, δ) [IMNP e+

+Ve
t,t|t−1Ξ(Ā, B̄, δ)′diag(σ)−1Ξ(Ā, B̄, δ)

]−1

Ve
t,t|t−1Ξ(Ā, B̄, δ)′diag(σ)−1

}
fet|t = fet|t−1 + Kt

[
xt − (IIJ − diag(ρ))κ− diag(ρ)xt−1 − Ξ(Ā, B̄, δ)fet|t−1

]
Ve
t,t|t =

[
IMNP e −KtΞ(Ā, B̄, δ)

]
Ve
t,t|t−1

starting with

fe1|1 =

{
[µ′ µ′]

′
if P = 1

µ if P > 1

Ve
1,1|1 =


[

Ψ ΓeΨ
Ψ(Γe)′ Ψ

]
if P = 1

Ψ if P > 1

Built upon the results of the Kalman forward recursions, we have the Kalman
smoother backward recursions (for t = T − 1, T − 2, · · · , 1):

Jt = Ve
t−1,t−1|t−1(Γe)′

(
Ve
t,t|t−1

)−1

fet|T = fet|t + Jt+1

(
fet+1|T − fet+1|t

)
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Ve
t,t|T = Ve

t,t|t + Jt+1

(
Ve
t+1,t+1|T −Ve

t+1,t+1|t

)
J′t+1

Ve
t,t−1|T = Ve

t,t|tJ
′
t + Jt+1

(
Ve
t+1,t|T −Ve

t+1,t|t

)
J′t

starting with

JT = Ve
T−1,T−1|T−1(Γe)′

(
Ve
T,T |T−1

)−1

Ve
T,T−1|T =

[
IMNP e −KTΞ(Ā, B̄, δ)

]
Ve
T,T−1|T−1

3.4. Log-likelihood evaluation

Given estimates of the model parameters, we may use the prediction error
decomposition to evaluate the log-likelihood function:

ϕ(Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ;x1, · · · , xT ) =

= ϕ1(Ā, B̄, δ, κ, ρ, σ, µ,Ψ;x1) +
T∑
t=2

ϕt(Ā, B̄, δ, κ, ρ, σ,Γ,Ω, µ,Ψ;xt|x1, · · · , xt−1) =

= −1

2

{
IJ ln(2π) + ln

[
det
(

V̂ar (x1)
)]

+

+
[
x1 − Ê (x1)

]′ [
V̂ar (x1)

]−1 [
x1 − Ê (x1)

]}
+

−1

2

T∑
t=2

{
IJ ln(2π) + ln

[
det
(

V̂art−1 (xt)
)]

+

+
[
xt − Êt−1 (xt)

]′ [
V̂art−1 (xt)

]−1 [
xt − Êt−1 (xt)

]}
where

Ê (x1) = κ+ Ξ0(Ā, B̄, δ)f1|0

V̂ar (x1) =
[
IIJ − diag(ρ)2

]−1
diag(σ) + Ξ0(Ā, B̄, δ) V1,1|0 Ξ0(Ā, B̄, δ)′

and for t = 2, · · · , T :

Êt−1 (xt) = Ê (xt|x1, · · · , xt−1) = (IIJ − diag(ρ))κ+ diag(ρ)xt−1 + Ξ(Ā, B̄, δ)ft|t−1

V̂art−1 (xt) = V̂ar (xt|x1, · · · , xt−1) = diag(σ) + Ξ(Ā, B̄, δ)Vt,t|t−1Ξ(Ā, B̄, δ)′

Instead of directly computing determinants and inverses of (IJ × IJ)

covariance matrices V̂ar (x1) and V̂ar (xt|x1, · · · , xt−1), it is more convenient to
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make use of the so-called matrix determinant and inversion lemmas:13

ln
[
det V̂ar (x1)

]
=

= ln
{

det
[
IMNP e + V1,1|0Ξ0(Ā, B̄, δ)′ΦΞ0(Ā, B̄, δ)

]}
+

I∑
i=1

J∑
j=1

ln
σij

1− ρ2
ij

ln
[
det V̂art−1 (xt)

]
=

= ln
{

det
[
IMNP e + Vt,t|t−1Ξ(Ā, B̄, δ)′diag(σ)−1Ξ(Ā, B̄, δ)

]}
+

I∑
i=1

J∑
j=1

ln (σij)

[
V̂ar (x1)

]−1

= Φ+

−ΦΞ0(Ā, B̄, δ)
[
IMNP e + V1,1|0Ξ0(Ā, B̄, δ)′ΦΞ0(Ā, B̄, δ)

]−1
V1,1|0Ξ0(Ā, B̄, δ)′Φ[

V̂art−1 (xt)
]−1

= diag(σ)−1 − diag(σ)−1Ξ(Ā, B̄, δ).

.
[
IMNP e + Vt,t|t−1Ξ(Ā, B̄, δ)′diag(σ)−1Ξ(Ā, B̄, δ)

]−1
.

.Vt,t|t−1Ξ(Ā, B̄, δ)′diag(σ)−1

where
Φ =

[
IIJ − diag(ρ)2

]
diag(σ)−1

These expressions only require the computation of determinants and inverses of
order MNP e << IJ (besides those of diagonal matrices).

4. Monte Carlo analysis

In this section, a simulation study is conducted to assess the small sample
performance of the maximum likelihood estimator applied to the proposed model
considering that the parameters are unknown but otherwise the equations are
correctly specified. First, we generate the data for numbers of variables and factors
similar to the ones we deal with in the empirical illustration presented in section 5.
Then, we perform a sensitivity analysis to some of the simulation settings.

13. If all matrices are conformable and C is non-singular, one has:

det
(
A+ UCV ′

)
= det

(
I +CV ′A−1U

)
det (A)(

A+ UCV ′
)−1

= A−1 −A−1U
(
I +CV ′A−1U

)−1
CV ′A−1
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4.1. The base case

Take model (8)-(14) with identifying restrictions (20)-(24). The results for the
base case were obtained from 1,000 simulated sample draws with T = 200, I = 50,
J = 25, and M = N = 3 (respectively, the number of time periods, the number
of variables in the first non-time data mode, the number of variables in the second
non-time mode, and the number of time-factors associated with these non-time
modes).14

Regarding the generation of time-factors, we set the vector autoregression to
be of order one (i.e. P = 1) with a diagonal coefficient matrix such that, for each
simulation of the paths of factors, the coefficients in the diagonal are drawn from a
uniform distribution on [0.3, 0.7].15 In order to obtain each set of simulated factor
paths, the innovations of the autoregressive process were generated by drawing
standard Gaussian noise and then applying the transformation associated with
the lower triangular Cholesky decomposition of previously constructed covariance
matrices. The latter were obtained in three steps. Firstly, for each simulated
sample, MN eigenvalues were drawn from a uniform distribution on [0, 1] and
rescaled in order to average one. A correlation matrix was then generated by
resorting to the procedure proposed by Davies and Higham (2000), which is based
on subjecting the diagonal matrix of given eigenvalues to a random orthogonal
similarity transformation and then to a sequence of Givens rotations. Lastly, the
correlation matrix thus generated was rescaled by pre- and post-multiplying it by a
diagonal matrix constructed such that the sample variances of all factors became
equal to one.

Concerning the measurement equation, for each simulated sample, the elements
of matrices Ā and B̄ were drawn from a uniform distribution on [0, 1] and
adjusted by subtracting the corresponding column sum from each element (in
order to comply with identifying restrictions (20) and (22)). All elements of
vectors κ and δ were simply set to zero and to one, respectively. As to the
idiosyncratic components, their autoregressive coefficients were drawn from a
uniform distribution on [−0.9, 0.9], while, as it is usual in the literature, the
innovation variances were set indirectly by drawing the ratios between the variance
of each idiosyncratic component ut,i,j and the variance of the associated observable
xt,i,j from a uniform distribution (in our case on [0.5, 0.9]).

To evaluate the estimation performance, we consider the trace R2, as in Stock
and Watson (2002a), which measures the closeness of the space generated by the
true factors to that generated by the estimated factors. The results of the simulation

14. For each sample draw, 10,000 burning-in periods were considered.
15. The autoregressive coefficients considered when generating the time-factors also varied from
sample draw to sample draw. In the literature, generating dynamic factors from a VAR(1) process
with a diagonal coefficient matrix is standard in simulations (see, for example, Stock and Watson,
2002a, and Doz, Giannone and Reichlin, 2012, although in these papers the same autoregressive
coefficient is common for all factors).
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study are presented in Table 1. For the base case, we obtain a R2 very close to
one which denotes a very good fit of the space spanned by the true factors. To
assess the robustness of the findings, we conduct in the next subsection a sensitivity
analysis.

Model specification
T I J M N R2

Base case
200 50 25 3 3 0.999

Sensitivity analysis
100 50 25 3 3 0.999
50 50 25 3 3 0.999
200 50 50 3 3 0.999
200 50 25 2 2 0.999
200 50 25 4 4 0.998
200 50 25 5 5 0.996
100 50 50 5 5 0.998

Note: The bold figures denote specification values
different from the base case.

Table 1. Simulation results

4.2. Sensitivity analysis

The sensitivity analysis was carried out in the following way. Firstly, we changed
one setting of the simulation design in each turn, while maintaining unchanged all
the other specifications, to assess the robustness of the results to each particular
dimension.

To start with, the number of time periods in the sample was reduced from
T = 200 to T = 100 and also to T = 50, in order to assess how the quality
of estimation depends on the sample size in the time mode. We find no visible
deterioration of the estimation performance.

The data set in the empirical illustration presented in section 5 is characterized
by having the size of one non-time mode (the number of countries) much smaller
than the size of the other non-time mode (the number of products). The base
case for our simulations was designed to approximately convey such disparity of
non-time mode sizes. We assessed the sensitivity of the simulation results to more
balanced sizes of non-time modes, by making I = J = 50 (instead of I = 50 and
J = 25 as in the base case). Again, the R2 is very close to one in this scenario.

Simulations were also carried out after changing the number of dynamic factors.
Instead ofM = N = 3, we considered a lower figure,M = N = 2, as well as higher
numbers, M = N = 4 and M = N = 5. The results are not sensitive either in this
respect.

Finally, we considered the case where all the above specifications were changed
at the same time. In particular, the number of time periods was decreased from
T = 200 to T = 100, the number of units in the second non-time mode was
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increased from 25 to 50 (that is, I = J = 50) and, regarding the number of
dynamic factors, we set M = N = 5. The R2 is also close to one in this case
which reinforces the previous simulation results concerning the robustness of the
estimation method.

5. Empirical analysis

5.1. Data

For the empirical application, we collected disaggregated data concerning inflation
in the euro area, namely by considering its breakdown by country and by product.
The data is compiled and provided by the Eurostat and inflation is measured as the
year-on-year rate of change of the Harmonized Index of Consumer Prices (HICP) as
used by the European Central Bank for the monitoring of inflation in the Economic
and Monetary Union.

In particular, we collected data for all countries currently belonging to the euro
area. Hence we considered nineteen countries namely Austria, Belgium, Finland,
France, Germany, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Greece,
Slovenia, Cyprus, Malta, Slovakia, Estonia, Latvia and Lithuania. For each country,
we gathered detailed data by product considering the highest level of disaggregation
available for all countries. It was possible to consider 55 products.16

The resulting monthly data set basically spans the last two decades, running
from January 2002 up to October 2019. Hence, in our empirical application we
have T = 214, I = 55 and J = 19.

5.2. Results

The estimation of the model involves setting the number of factors, M and N . As
discussed previously, the model can be collapsed over the country mode or over
the products mode. This feature of the model suggests the following empirical
strategy. Given an estimate of the global factor (and δ1,1), one can purge the
data set disaggregated only by products using (27) and then apply an established
criterion to determine the number of factors of the resulting series. This provides
a value for M − 1. In a similar fashion, by considering the data set disaggregated
by countries, one can take out the effect of the global factor using (28) and then
determine a value for N − 1.

Regarding the criteria, we use the Eigenvalue Ratio (ER) and Growth Ratio
(GR) estimators proposed by Ahn and Horenstein (2013) which determine the
number of factors based on the empirical distribution of the eigenvalues. Ahn and
Horenstein (2013) show that the ER and GR estimators perform the best among a

16. In the Appendix, we report the list of countries and products along with the corresponding
weights for the euro area.
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set of alternative criteria suggested in the literature, including the well-known Bai
and Ng (2002) and Onatski (2010) criteria.

Therefore, we firstly obtain an estimate for the global factor by considering a
model with a sufficiently higher M and N so as not to affect the consistency of
the estimator due to under-specification. In particular, we estimate a model with
M = N = 5.17 Applying the ER and GR estimators to the data disaggregated only
by products, after purging the effect of the estimated global factor, both criteria
points to the presence of two factors. When considering the data disaggregated only
by countries, we get one factor. Hence, we set M = 3 and N = 2.18 Regarding the
order of the vector autoregressive process of the latent factors, we set P = 1.19
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Figure 1: Inflation and the global inflation indicator for the euro area

In Figure 1, we display the actual inflation for the euro area along the resulting
global inflation indicator as defined in (30). Despite the strong correlation, the
global inflation indicator is smoother than actual inflation for the euro area. In fact,
this global inflation indicator reflects the underlying common inflation developments
within the euro area discarding idiosyncratic movements and the influence of
relative price changes across countries and products. In this sense, such a measure

17. The results are not sensitive to increasing or decreasing both M and N .
18. We have also considered the criteria proposed by Bai and Ng (2002) but the selected number
of factors is quite sensitive to the choice regarding the maximum possible number of factors (see
also the discussion in Onatski (2010) and Ahn and Horenstein (2013)). Alternatively, if one applies
the estimator developed by Onatski (2010), we end up withM = 3 and N = 4 but the main results
presented in this section remain qualitatively unchanged.
19. The results are qualitatively similar for higher values of P .



35 A non-hierarchical dynamic factor model for three-way data

can be seen as more meaningful indicator of price developments in the euro area
than headline inflation.

One should also mention that estimated dynamic factor model despite its
parsimony has a relatively high explanatory power. In particular, we assess the
fraction of inflation variability explained by the factor model for the euro area as
a whole as well as for each individual country and product. Following Stock and
Watson (2002b), we compute the R2 of the regression of observed inflation on
the estimated factors. We find that the global factor captures a large share of the
variance of euro area inflation, in particular, 90 percent. By country, the average
proportion captured by total communality is 64 percent and for most countries
(14 out of 19) the proportion is above 50 percent. By product, we find that, on
average, 39 percent of the variance is explained by the model.
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Figure 2: Inflation and pure inflation indicators for the euro area

As discussed previously, a pure inflation indicator can be computed as defined
in (34). When we apply the approach of Reis and Watson (2010) to our collapsed
model (with only the global factor and two factors conveying relative prices across
products), we are able to generate a pure inflation indicator. The resulting pure
inflation indicator is displayed in Figure 2 (solid black line) along the observed
inflation for the euro area. This pure inflation indicator seems to capture the very
slow moving trend developments in inflation. After declining until the end of 2004,
it stood slightly below 2 percent before declining again throughout 2013 to a
level around 1.6 percent thereafter. Alternatively, one can compute a pure inflation
indicator by using all the factors to orthogonalize f (p)

t,1,1. This indicator is also
displayed in Figure 2 (black dashed line). We find that when such an approach is
applied to the fully fledged model with three-mode data (and factors specific to
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real exchange rate movements as well as interactions between relative prices across
products and countries), we get an almost flat indicator (around 1.6 percent), i.e.
very few price movements are identified as ‘pure’. The rationale for this diminished
relevance of the pure inflation indicator lies with its sensitivity to the number of
factors in the model. In fact, when controlling for all leads and lags of the factors
associated with relative prices, because the dimension of the vector space spanned
by all these leads and lags tends to expand very quickly when the number of factors
increases, there is not much variability to be imputed to the pure inflation indicator.

6. Conclusion

In an increasingly data rich environment, dynamic factor models have become
one of the most established methods when dealing with large data sets. Though
factor models are usually applied to two-way data, the availability of data sets with
observations addressed by three-dimensional indices has been growing in economics
and finance. Most of the literature that takes on board three-way data sets within
the factor model framework postulates one global factor and one specific factor for
each group (and sub-group) of variables. However, as the sample size for non-time
modes grow such an approach becomes unfeasible. Hence, inspired by the tensor
decomposition literature, we proposed a non-hierarchical dynamic factor model for
three-way data which is rather flexible while remaining quite parsimonious.

We discussed the identification of the proposed specification and put forward a
set of identifying restrictions which improve the interpretation of the model. Based
on these assumptions, we have shown that the model may be averaged out in
each and every non-time mode of the data, nesting standard dynamic factor model
specifications. We have shown that the model can be conveniently estimated by
maximum likelihood using the ECM algorithm, which is a generalization of the well-
known EM algorithm. We assessed the finite sample performance of the proposed
estimator through a Monte Carlo simulation study and found that it performs
remarkably well.

We applied the proposed model to inflation data. In particular, we collected
consumer price indices for 55 products for the 19 euro area countries over the
last two decades. The estimated model ends up being quite parsimonious while
presenting a noteworthy explanatory power across countries and products. Drawing
on the estimated model, it was possible to obtain a global inflation indicator that
captures inflation developments within the euro area abstracting from inflation
differentials associated with relative price changes both across products and across
countries as well as from idiosyncratic price movements. Furthermore, we addressed
the estimation of pure inflation in the context of the suggested model, with the
resulting empirical measures capturing the very slow moving trend developments
in inflation.
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Appendix

A.1. First order conditions - proofs

In what follows, we will denote:

– By e(K)
k the k-th column of the identity matrix of order K, i.e. the column-

vector of size K with the value one in the k-th position and zeros elsewhere;
– For any real (K1× K2) matrix C, by trim(C) the truncated ((K1 − 1)× K2)
matrix obtained from C by dropping its first row.

A.1.1. µ.

dµ`() = 0 ∀dµ ⇔
(
f0|T − µ

)′
Ψ−1dµ = 0 ∀dµ ⇔ µ = f0|T

A.1.2. Ψ.
dΨ−1`() = 0 ∀d(Ψ−1) ⇔ (using A.1.1)

⇔ tr
[(

Ψ−V0,0|T
)
d(Ψ−1)

]
= 0 ∀d(Ψ−1) ⇔ Ψ = V0,0|T

A.1.3. Γ.

dΓ`() = 0 ∀dΓ ⇔ tr
[(

F̄•,•Γ
′ − F̄′0,•

)
dΓ
]

= 0 ∀dΓ ⇔ Γ = F̄0,•F̄
−1
•,•

A.1.4. Ω.
dΩ−1`() = 0 ∀d(Ω−1) ⇔

⇔ tr
{[

Ω− F̄0,0 − ΓF̄•,•Γ
′ + +F̄0,•Γ

′ + ΓF̄′0,•
]
d(Ω−1)

}
= 0 ∀d(Ω−1)

(using A.1.2) ⇔ Ω = F̄0,0 − ΓF̄•,•Γ
′

A.1.5. κ.

dκ`() = 0 ∀dκ ⇔
[

T

T − 1
(x̄0,0 − κ) +

T − 2

T − 1
diag(ρ)2 (x̄1,1 − κ) +

−diag(ρ) (x̄0,1 + x̄1,0 − 2κ)−Θ(Ā, B̄)diag(δ)f̄0,0−diag(ρ)2Θ(Ā, B̄)diag(δ)f̄1,1+

+diag(ρ)Θ(Ā, B̄)diag(δ)
(
f̄0,1 + f̄1,0

) ]′
diag(σ)−1dκ = 0 ∀dκ ⇔

⇔ κ =

(
T

T − 1
IIJ +

T − 2

T − 1
diag(ρ)2 − 2diag(ρ)

)−1

.

.

[
T

T − 1
x̄0,0 +

T − 2

T − 1
diag(ρ)2x̄1,1 − diag(ρ) (x̄0,1 + x̄1,0)−Θ(Ā, B̄)diag(δ)f̄0,0+

−diag(ρ)2Θ(Ā, B̄)diag(δ)f̄1,1 + diag(ρ)Θ(Ā, B̄)diag(δ)
(
f̄0,1 + f̄1,0

) ]
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A.1.6. δ.
dδm,n`() = 0 ∀dδmn ⇔ 20

⇔ e
(MN)′
(n−1)M+mΘ(Ā, B̄)′diag(σ)−1

{
Θ(Ā, B̄)diag(δ)F̄0,0+

+diag(ρ)2Θ(Ā, B̄)diag(δ)F̄1,1 − diag(ρ)Θ(Ā, B̄)diag(δ)
(
F̄0,1 + F̄′0,1

)
+

−
[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
− diag(ρ)2

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
+

+diag(ρ)
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]}
e

(MN)
(n−1)M+m = 0 ⇔

⇔
M∑
m̃=1

N∑
ñ=1

δm̃,ñ

{[
F̄0,0

]
(n−1)M+m,(ñ−1)M+m̃

I∑
i=1

J∑
j=1

σ−1
i,j αi,mαi,m̃βj,nβj,ñ+

+
[
F̄1,1

]
(n−1)M+m,(ñ−1)M+m̃

I∑
i=1

J∑
j=1

ρ2
i,jσ
−1
i,j αi,mαi,m̃βj,nβj,ñ+

−
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)M+m̃

I∑
i=1

J∑
j=1

ρi,jσ
−1
i,j αi,mαi,m̃βj,nβj,ñ

}
=

=
I∑
i=1

J∑
j=1

σ−1
i,j

[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
(j−1)I+i,(n−1)M+m

αi,mβj,n+

+
I∑
i=1

J∑
j=1

ρ2
i,jσ
−1
i,j

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
(j−1)I+i,(n−1)M+m

αi,mβj,n+

−
I∑
i=1

J∑
j=1

ρi,jσ
−1
i,j

[
W̄0,1 + W̄1,0+

+ (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
(j−1)I+i,(n−1)M+m

αi,mβj,n

Stacking these equations for m = 1, · · · ,M and n = 1, · · · ,N , we have a linear
system on δ conditional on values for the remaining parameters and the moments
of observables and latent variables:

Sδδ = cδ

with (for m, m̃ = 1, · · · ,M , n, ñ = 1, · · · ,N , and with αi,1 = βj,1 = 1 for all i
and j):

[Sδ](n−1)M+m,(ñ−1)M+m̃ =

20. Note that δm,n is the ((n− 1)M +m)-th element of vector δ and thus it is
the element ((n− 1)M +m, (n− 1)M +m) of diag(δ), implying that dδm,n

diag(δ) =

e
(MN)
(n−1)M+m

e
(MN)′
(n−1)M+m

dδm,n.
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=
[
F̄0,0

]
(n−1)M+m,(ñ−1)M+m̃

I∑
i=1

J∑
j=1

σ−1
i,j αi,mαi,m̃βj,nβj,ñ+

+
[
F̄1,1

]
(n−1)M+m,(ñ−1)M+m̃

I∑
i=1

J∑
j=1

ρ2
i,jσ
−1
i,j αi,mαi,m̃βj,nβj,ñ+

−
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)M+m̃

I∑
i=1

J∑
j=1

ρi,jσ
−1
i,j αi,mαi,m̃βj,nβj,ñ

[cδ](n−1)M+m =

=

I∑
i=1

J∑
j=1

{
σ−1
i,j

[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
(j−1)I+i,(n−1)M+m

αi,mβj,n+

+σ−1
i,j

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
(j−1)I+i,(n−1)M+m

αi,mβj,n − ρi,jσ−1
i,j .

.
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
(j−1)I+i,(n−1)M+m

αi,mβj,n

}
A.1.7. Ā and B̄. `() depends on Ā and B̄ only through Θ(Ā, B̄). Therefore, in
order to obtain the first order conditions with respect to Ā and B̄, we will first
calculate the differential of `() with respect to Θ:

dΘ`() = −(T − 1)tr

{
diag(δ)

[
F̄0,0diag(δ)Θ(Ā, B̄)′+

F̄1,1diag(δ)Θ(Ā, B̄)′diag(ρ)2 −
(
F̄0,1 + F̄′0,1

)
diag(δ)Θ(Ā, B̄)′diag(ρ)+

−
[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
−
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
diag(ρ)2+

+
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
diag(ρ)

]
diag(σ)−1dΘ(Ā, B̄)

}
Thus, taking into account that

dĀΘ(Ā, B̄) =
([

1J B̄
]
⊗ II

) (
IN ⊗

[
0I dĀ

])
dB̄Θ(Ā, B̄) =

(
IJ ⊗

[
1I Ā

]) ([
0J dB̄

]
⊗ IM

)
we have:

(i) Ā

dĀ`() = 0 ∀dĀ ⇔

⇔ tr
{
Y
(
x1, · · · , xT ; Ā, B̄, δ, κ, ρ, σ

) (
IN ⊗

[
0I dĀ

])}
= 0 ∀dĀ
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where21

Y (Ā, B̄, δ, κ, ρ, σ) =

= diag(δ)

[
F̄0,0diag(δ)Θ(Ā, B̄)′ + F̄1,1diag(δ)Θ(Ā, B̄)′diag(ρ)2+

−
(
F̄0,1 + F̄′0,1

)
diag(δ)Θ(Ā, B̄)′diag(ρ)−

[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
+

−
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
diag(ρ)2+

+
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
diag(ρ)

]
.

.diag(σ)−1
([

1J B̄
]
⊗ II

)
Therefore, making use of the equality between traces of matrices presented in
Annex A.2.1, the first order conditions of the maximization of `() with respect to
Ā may be written as:

trim

(
N∑
n=1

Y[n,n](Ā, B̄, δ, κ, ρ, σ)

)
= 0

with

Y[n,n] = diag(δ[n])

{ N∑
ñ=1

J∑
j=1

βj,nβj,ñ

{[
F̄0,0

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
+

+
[
F̄1,1

]
[nñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[nñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

}
diag(σ[j])

−1+

−
J∑
j=1

βjn

{[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
[jn]

+
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
[jn]

diag(ρ[j])
2

−
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
[jn]

diag(ρ[j])
}

diag(σ[j])
−1

}
Thus,

trim

(
N∑
n=1

Y[n,n](Ā, B̄, δ, κ, ρ, σ)

)
= 0 ⇔

⇔
N∑
ñ=1

N∑
n=1

J∑
j=1

βj,nβj,ñtrim
(
diag(δ[n])

){ [
F̄0,0

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
+

21. In order to simplify notation, we will keep implicit the dependence of Y () on observables and
time-factors.
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+
[
F̄1,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

}
diag(σ[j])

−1 =

=
N∑
n=1

J∑
j=1

βj,ntrim
(
diag(δ[n])

){ [
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
[j,n]

+

+
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
[j,n]

diag(ρ[j])
2+

−
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
[j,n]

diag(ρ[j])
}

diag(σ[j])
−1

or equivalently, denoting the transposed i-th row of Ā by α[i], for i = 1, · · · , I:22

N∑
ñ=1

N∑
n=1

J∑
j=1

σ−1
i,j βj,nβj,ñtrim

(
diag(δ[n])

){ [
F̄0,0

]
[n,ñ]

+ ρ2
i,j

[
F̄1,1

]
[n,ñ]

+

−ρi,j
[
F̄0,1 + F̄′0,1

]
[nñ]

}
diag(δ[ñ])

[
1
α[i]

]
=

=
N∑
n=1

J∑
j=1

σ−1
i,j βj,ntrim

(
diag(δ[n])

){ [
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
[j,n]

+

+ρ2
i,j

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
[j,n]

+

−ρi,j
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
[j,n]

}
e

(I)
i

which, for i = 1, · · · , I and m = 2, · · · ,M , may also be written as:
N∑
m̃=2

αi,m̃

{
N∑
ñ=1

N∑
n=1

J∑
j=1

{
σ−1
i,j δm,nδm̃,ñβj,nβj,ñ

{[
F̄0,0

]
(n−1)M+m,(ñ−1)M+m̃

+

+ρ2
i,j

[
F̄1,1

]
(n−1)M+m,(ñ−1)M+m̃

−ρi,j
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)M+m̃

}}}
=

=
N∑
n=1

J∑
j=1

{
σ−1
i,j δm,nβj,n

{{[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
(j−1)I+i,(n−1)M+m

+

+ρ2
i,j

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
(j−1)I+i,(n−1)M+m

+

−ρi,j
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
(j−1)I+i,(n−1)M+m

}
+

−
N∑
ñ=1

δ1,ñβj,ñ

{[
F̄0,0

]
(n−1)M+m,(ñ−1)M+1

+ ρ2
i,j

[
F̄1,1

]
(n−1)M+m,(ñ−1)M+1

+

22. With βj,1 = 1 for all j.
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−ρi,j
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)M+1

}}}
⇔ Sα[i]

α[i] = cα[i]
(i = 1, · · · , I)

with (for m, m̃ = 2, · · · ,M): [
Sα[i]

]
m−1,m̃−1

=

=
N∑
ñ=1

N∑
n=1

J∑
j=1

{
σ−1
i,j δm,nδm̃,ñβj,nβj,ñ

{[
F̄0,0

]
(n−1)M+m,(ñ−1)N+m̃

+

+ρ2
i,j

[
F̄1,1

]
(n−1)M+m,(ñ−1)N+m̃

− ρi,j
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)N+m̃

}}
and [

cα[i]

]
m−1

=

=
N∑
n=1

J∑
j=1

{
σ−1
i,j δm,nβj,n

{{[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
(j−1)I+i,(n−1)N+m

+

+ρ2
i,j

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
(j−1)I+i,(n−1)N+m

+

−ρi,j
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
(j−1)I+i,(n−1)N+m

}
+

−
N∑
ñ=1

δ1,ñβj,ñ

{[
F̄0,0

]
(n−1)M+m,(ñ−1)N+1

+ ρ2
i,j

[
F̄1,1

]
(n−1)M+m,(ñ−1)N+1

+

−ρi,j
[
F̄0,1 + F̄′0,1

]
(n−1)M+m,(ñ−1)N+1

}}}
(ii) B̄

dB̄`() = 0 ∀dB̄ ⇔ tr
{
Z(Ā, B̄, δ, κ, ρ, σ)

([
0J dB̄

]
⊗ IM

)}
= 0 ∀dB̄

where23

Z(Ā, B̄, δ, κ, ρ, σ) = diag(δ)

[
F̄0,0diag(δ)Θ(Ā, B̄)′+ F̄1,1diag(δ)Θ(Ā, B̄)′diag(ρ)2+

−
(
F̄0,1 + F̄′0,1

)
diag(δ)Θ(Ā, B̄)′diag(ρ)−

[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
+

23. Again, in order to simplify notation, we will keep implicit the dependence of Z() on observables
and time-factors.
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−
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
diag(ρ)2 + +

[
W̄0,1 + W̄1,0+

+ (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
diag(ρ)

]
diag(σ)−1

(
IJ ⊗

[
1I Ā

])
Thus, making use of the equality between traces of matrices presented in Annex
A.2.2, the first order conditions of the maximization of `() with respect to B̄ are:

Υ(Ā, B̄, δ, κ, ρ, σ) = 0

where

Υ =
((N − 1)× J)


tr
(
Z[2,1]

)
· · · tr

(
Z[2,j]

)
· · · tr

(
Z[2,J]

)
...

...
...

tr
(
Z[n,1]

)
· · · tr

(
Z[n,j]

)
· · · tr

(
Z[n,J]

)
...

...
...

tr
(
Z[N,1]

)
· · · tr

(
Z[N,j]

)
· · · tr

(
Z[N,J]

)


and Z[n,j] (n = 2, · · · ,N ; j = 1, · · · , J) are blocks of Z() with size (M ×M)
obtained after breaking down the latter matrix as follows:24

Z(Ā, B̄, δ, κ, ρ, σ) =
(MN ×MJ)



Z[1,1] Z[1,2] · · · Z[1,j] · · · Z[1,J]

Z[2,1] Z[2,2] · · · Z[2,j] · · · Z[2,J]
...

...
...

...
Z[n,1] Z[n,2] · · · Z[n,j] · · · Z[n,J]

...
...

...
Z[N,1] Z[N,2] · · · Z[N,j] · · · Z[N,J]


From the expression for Z(), the generic bloc Z[n,j] may be written as:

Z[nj] = diag(δ[n])

{ N∑
ñ=1

βj,ñ

{[
F̄0,0

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
+

+
[
F̄1,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

}
+

−
{[

W̄0,0 + (x̄0,0 − κ) f̄ ′0,0
]′
[jn]

+
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
[j,n]

diag(ρ[j])
2+

−
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
[j,n]

.

.diag(ρ[j])
}}

diag(σ[j])
−1
[
1I Ā

]

24. Note that the first row of blocks of Z() is disregarded when calculating Υ.
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Taking into account that βj1 = 1 for all j, we get:

Z[n,j] = diag(δ[n])

{ N∑
ñ=2

βj,ñ

{[
F̄0,0

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
+

+
[
F̄1,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

}
+

−
{[

W̄0,0 + (x̄0,0 − κ) f̄ ′0,0
]′
[j,n]

+
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
[j,n]

diag(ρ[j])
2+

−
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
[j,n]

diag(ρ[j])
}

+

+
{[

F̄0,0

]
[n,1]

diag(δ[1])
[
1I Ā

]′
+
[
F̄1,1

]
[n,1]

diag(δ[1])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[n,1]

diag(δ[1])
[
1I Ā

]′
diag(ρ[j])

}}
diag(σ[j])

−1
[
1I Ā

]
Thus, by equating to zero the trace of each block Z[n,j], we have (for n =
2, · · · ,N ; j = 1, · · · , J):

N∑
ñ=2

βj,ñtr

{{[
F̄0,0

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
+

+
[
F̄1,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

}
diag(σ[j])

−1
[
1I Ā

]
diag(δ[n])

}
=

= tr

{{{[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
[j,n]

+
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
[j,n]

diag(ρ[j])
2+

−
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
[j,n]

diag(ρ[j])
}

+

−
{[

F̄0,0

]
[n,1]

diag(δ[1])
[
1I Ā

]′
+
[
F̄1,1

]
[n,1]

diag(δ[1])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[n,1]

diag(δ[1])
[
1I Ā

]′
diag(ρ[j])

}}
diag(σ[j])

−1
[
1I Ā

]
diag(δ[n])

}
⇔ Sβ[j]

β[j] = cβ[j]
(j = 1, · · · , J)

with (for n, ñ = 2, · · · ,N): [
Sβ[j]

]
n−1,ñ−1

=

= tr

{{[
F̄0,0

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
+
[
F̄1,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

2+
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−
[
F̄0,1 + F̄′0,1

]
[n,ñ]

diag(δ[ñ])
[
1I Ā

]′
diag(ρ[j])

}
diag(σ[j])

−1
[
1I Ā

]
diag(δ[n])

}
=

and [
cβ[j]

]
n−1

=

= tr

{{{[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]′
[j,n]

+
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]′
[j,n]

diag(ρ[j])
2+

−
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]′
[jn]

diag(ρ[j])
}

+

−
{[

F̄0,0

]
[n,1]

diag(δ[1])
[
1I Ā

]′
+
[
F̄1,1

]
[n,1]

diag(δ[1])
[
1I Ā

]′
diag(ρ[j])

2+

−
[
F̄0,1 + F̄′0,1

]
[n,1]

diag(δ[1])
[
1I Ā

]′
diag(ρ[j])

}}
diag(σ[j])

−1
[
1I Ā

]
diag(δ[n])

}

A.1.8. σ. For all i and j:

dσ−1
i,j
`() = 0 ∀d(σ−1

i,j ) ⇔ 25

⇔ σi,j =
T − 1

T
e

(IJ)′
(j−1)I+i

{[
X̄0,0 +

T

T − 1
(x̄0,0 − κ) (x̄0,0 − κ)′

]
+

+diag(ρ)2
[
X̄1,1 +

T − 2

T − 1
(x̄1,1 − κ) (x̄1,1 − κ)′

]
+

−2diag(ρ)
[
X̄0,1 + (x̄0,1 − κ) (x̄1,0 − κ)′

]
+ Θ(Ā, B̄)diag(δ)F̄0,0diag(δ)Θ(Ā, B̄)′+

+diag(ρ)2Θ(Ā, B̄)diag(δ)F̄1,1diag(δ)Θ(Ā, B̄)′+

−2diag(ρ)Θ(Ā, B̄)diag(δ)F̄0,1diag(δ)Θ(Ā, B̄)′+

−2
[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
diag(δ)Θ(Ā, B̄)′+

−2diag(ρ)2
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
diag(δ)Θ(Ā, B̄)′+

+2diag(ρ)
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
.

.diag(δ)Θ(Ā, B̄)′
}
e

(IJ)
(j−1)I+i

Stacking the equations for all i and j:

σ =
T − 1

T
diag

{[
X̄0,0 +

T

T − 1
(x̄0,0 − κ) (x̄0,0 − κ)′

]
+ diag(ρ)2

[
X̄1,1+

25. Note that d(
σ−1
i,j

)diag(σ)−1 = e
(IJ)
(j−1)I+i

e
(IJ)′
(j−1)I+i

d
(
σ−1
i,j

)
.
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+
T − 2

T − 1
(x̄1,1 − κ) (x̄1,1 − κ)′

]
− 2diag(ρ)

[
X̄0,1 + (x̄0,1 − κ) (x̄1,0 − κ)′

]
+

+Θ(Ā, B̄)diag(δ)F̄0,0diag(δ)Θ(Ā, B̄)′+

+diag(ρ)2Θ(Ā, B̄)diag(δ)F̄1,1diag(δ)Θ(Ā, B̄)′+

−2diag(ρ)Θ(Ā, B̄)diag(δ)F̄0,1diag(δ)Θ(Ā, B̄)′+

−2
[
W̄0,0 + (x̄0,0 − κ) f̄ ′0,0

]
diag(δ)Θ(Ā, B̄)′+

−2diag(ρ)2
[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
diag(δ)Θ(Ā, B̄)′+

+2diag(ρ)
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
diag(δ)Θ(Ā, B̄)′

}
A.1.9. ρ. For all i and j:

dρi,j `() = 0 ∀dρi,j ⇔ 26

⇔ ρi,j
1− ρ2

i,j

+
(T − 1)

σi,j
e

(IJ)′
(j−1)I+i

{
ρi,j

[
X̄1,1 +

T − 2

T − 1
(x̄1,1 − κ) (x̄1,1 − κ)′

]
+

−
[
X̄0,1 + (x̄0,1 − κ) (x̄1,0 − κ)′

]
+ ρi,jΘ(Ā, B̄)diag(δ)F̄1,1diag(δ)Θ(Ā, B̄)′+

−Θ(Ā, B̄)diag(δ)F̄0,1diag(δ)Θ(Ā, B̄)′+

−2ρi,j

[
W̄1,1 + (x̄1,1 − κ) f̄ ′1,1

]
diag(δ)Θ(Ā, B̄)′+

+
[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0 + (x̄1,0 − κ) f̄ ′0,1

]
.

.diag(δ)Θ(Ā, B̄)′
}
e

(IJ)
(j−1)I+i = 0 ⇔

⇔ ρij =

{[
X̄1,1 +

T − 2

T − 1
(x̄1,1 − κ) (x̄1,1 − κ)′

]
(j−1)I+i,(j−1)I+i

+

+

M∑
m=1

N∑
n=1

M∑
m̃=1

N∑
ñ=1

δm,nδm̃,ñαi,mαi,m̃βj,nβj,ñ
[
F̄1,1

]
(n−1)M+m,(ñ−1)M+m̃

+

−2
M∑
m=1

N∑
n=1

δm,nαi,mβj,n

[
(x̄1,1 − κ) f̄ ′1,1

]
(j−1)I+i,(n−1)M+m

+

+
σi,j

(T − 1)
(

1− ρ2
i,j

)}−1{[
X̄0,1 + (x̄0,1 − κ) (x̄1,0 − κ)′

]
(j−1)I+i,(j−1)I+i

+

26. Note that dρi,j
[
diag(σ)−1diag(ρ)

]
= σ−1

i,j e
(IJ)
(j−1)I+i

e
(IJ)′
(j−1)I+i

dρi,j and

dρi,j
[
diag(σ)−1diag(ρ)2

]
= 2ρi,jσ

−1
i,j e

(IJ)
(j−1)I+i

e
(IJ)′
(j−1)I+i

dρi,j .
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+
M∑
m=1

N∑
n=1

M∑
m̃=1

N∑
ñ=1

δm,nδm̃,ñαi,mαi,m̃βj,nβj,ñ
[
F̄0,1

]
(n−1)M+m,(ñ−1)M+m̃

+

−
M∑
m=1

N∑
n=1

δm,nαi,mβj,n

[
W̄0,1 + W̄1,0 + (x̄0,1 − κ) f̄ ′1,0+

+ (x̄1,0 − κ) f̄ ′0,1

]
(j−1)I+i,(n−1)M+m

}

A.2. Useful identities on traces of matrices

Let H and C be matrices (K1 ×K2) and (K2Q×K1Q), respectively, with
H =

[
0K1 H̄

]
and

H̄ =


h1,2 · · · h1,k2 · · · h1,K2

...
...

...
hk1,2 · · · hk1,k2 · · · hk1,K2

...
...

...
hK1,2 · · · hK1,k2 · · · hK1,K2


A.2.1. Expressing tr

{
C
(
IQ ⊗

[
0K1 H̄

])}
as tr

(
ΠH̄

)
. In order to simplify

tr
[
C
(
IQ ⊗

[
0K1 H̄

])]
, it is convenient to breakdown C into blocks C[q2,q1]

(q1, q2 = 1, · · · ,Q), each of dimension (K2 ×K1), allowing us to write:

C
(
IQ ⊗

[
0K1 H̄

])
=

=


C[1,1] · · · C[1,q1] · · · C[1,Q]

...
...

...
C[q2,1] · · · C[q2,q1] · · · C[q2,Q]

...
...

...
C[Q,1] · · · C[Q,q1] · · · C[Q,Q]

 .

.



[
0K1 H̄

]
· · · 0K1×K2 · · · 0K1×K2

...
...

...
0K1×K2 · · ·

[
0K1 H̄

]
· · · 0K1×K2

...
...

...
0K1×K2 · · · 0K1×K2 · · ·

[
0K1 H̄

]

 =

=


C[1,1]

[
0K1 H̄

]
· · · C[1,q1]

[
0K1 H̄

]
· · · C[1,Q]

[
0K1 H̄

]
...

...
...

C[q2,1]

[
0K1 H̄

]
· · · C[q2,q1]

[
0K1 H̄

]
· · · C[q2,Q]

[
0K1 H̄

]
...

...
...

C[Q,1]

[
0K1 H̄

]
· · · C[Q,q1]

[
0K1 H̄

]
· · · C[Q,Q]

[
0K1 H̄

]


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Thus,

tr

{
C
(
IQ ⊗

[
0K1 H̄

])}
= tr

{ Q∑
q=1

C[q,q]

[0K1 H̄
]}

= tr
(
ΠH̄

)
where Π is a matrix ((K2 − 1)×K1) obtained from

∑Q
q=1C[q,q] by dropping the

first row of the latter matrix, i.e. Π = trim
(∑Q

q=1C[q,q]

)
.

A.2.2. Expressing tr
{
C
([
0K1 H̄

]
⊗ IQ

)}
as tr

(
ΥH̄

)
. In order to simplify

tr
[
C
([

0K1 H̄
]
⊗ IQ

)]
, it is convenient to breakdown C into blocks C[k2k1]

(k1 = 1, · · · ,K1;k2 = 1, · · · ,K2), each of dimension (Q×Q), allowing us to
write:

C
([
0K1 H̄

]
⊗ IQ

)
=

=



C[1,1] C[1,2] · · · C[1,k1] · · · C[1,K1]

C[2,1] C[2,2] · · · C[2,k1] · · · C[2,K1]
...

...
...

...
C[k2,1] C[k2,2] · · · C[k2,k1] · · · C[k2,K1]

...
...

...
...

C[K2,1] C[K2,2] · · · C[K2,k1] · · · C[K2,K1]


.

.



0Q×Q h1,2IQ · · · h1,k2IQ · · · h1K2IQ
0Q×Q h2,2IQ · · · h2,k2IQ · · · h2,K2IQ

...
...

...
...

0Q×Q hk1,2IQ · · · hk1,k2IQ · · · hk1,K2IQ
...

...
...

...
0Q×Q hK1,2IQ · · · hK1,k2IQ · · · hK1,K2IQ


=

=



0Q×Q
∑K1

k1=1 hk1,2C[1,k1] · · ·
∑K1

k1=1 hk1,K2C[1,k1]

0Q×Q
∑K1

k1=1 hk1,2C[2,k1] · · ·
∑K1

k1=1 hk1,K2C[2,k1]
...

...
...

0Q×Q
∑K1

k1=1 hk1,2C[k2,k1] · · ·
∑K1

k1=1 hk1,K2C[k2,k1]
...

...
...

0Q×Q
∑K1

k1=1 hk1,2C[K2,k1] · · ·
∑K1

k1=1 hk1,K2C[K2,k1]


Thus,

tr
{
C
([
0K1 H̄

]
⊗ IQ

)}
=

K2∑
k2=2

K1∑
k1=1

tr
(
C[k2,k1]

)
hk1,k2 = tr

(
ΥH̄

)



53 A non-hierarchical dynamic factor model for three-way data

where

Υ =
((K2 − 1)×K1)


tr
(
C[2,1]

)
· · · tr

(
C[2,k1]

)
· · · tr

(
C[2,K1]

)
...

...
...

tr
(
C[k2,1]

)
· · · tr

(
C[k2,k1]

)
· · · tr

(
C[k2,K1]

)
...

...
...

tr
(
C[K2,1]

)
· · · tr

(
C[K2,k1]

)
· · · tr

(
C[K2,K1]

)


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A.2.3. List of countries and products.

Country Weight Country Weight
Austria 0.032 Spain 0.117
Belgium 0.035 Greece 0.028
Finland 0.017 Slovenia 0.004
France 0.204 Cyprus 0.002
Germany 0.276 Malta 0.001
Ireland 0.014 Slovakia 0.007
Italy 0.182 Estonia 0.002
Luxembourg 0.003 Latvia 0.002
Netherlands 0.051 Lithuania 0.004
Portugal 0.022
Note: The figures correspond to the average
weight over the whole sample period 2002-2019.

Table A1. List of countries
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Product Weight
Bread and cereals 0.026
Meat 0.037
Fish and seafood 0.011
Milk, cheese and eggs 0.023
Oils and fats 0.005
Fruit 0.012
Vegetables 0.016
Sugar, jam, honey, chocolate and confectionery 0.010
Other food products 0.005
Coffee, tea and cocoa 0.004
Mineral waters, soft drinks, fruit and vegetable juices 0.009
Spirits 0.003
Wine 0.007
Beer 0.006
Tobacco 0.024
Clothing 0.051
Other articles of clothing and clothing accessories 0.002
Cleaning, repair and hire of clothing 0.002
Footwear 0.014
Actual rentals for housing 0.063
Maintenance and repair of the dwelling 0.014
Water supply and miscellaneous services relating to the dwelling 0.027
Electricity, gas and other fuels 0.056
Furniture and furnishings, carpets and other floor coverings 0.026
Household textiles 0.005
Household appliances 0.011
Glassware, tableware and household utensils 0.006
Tools and equipment for house and garden 0.005
Goods and services for routine household maintenance 0.019
Medical products, appliances and equipment 0.019
Out-patient services 0.019
Purchase of vehicles 0.044
Spare parts and accessories for personal transport equipment 0.006
Fuels and lubricants for personal transport equipment 0.044
Maintenance and repair of personal transport equipment 0.029
Other services in respect of personal transport equipment 0.011
Transport services 0.024
Communications 0.032
Audio-visual, photographic and information processing equipment 0.015
Games, toys and hobbies 0.005
Equipment for sport, camping and open-air recreation 0.003
Gardens, plants and flowers 0.006
Pets and related products; veterinary and other services for pets 0.006
Recreational and sporting services 0.010
Cultural services 0.014
Newspapers, books and stationery 0.018
Package holidays 0.016
Education 0.011
Catering services 0.079
Accommodation services 0.018
Hairdressing salons and personal grooming establishments 0.012
Electrical appliances, articles and products for personal care 0.017
Other personal effects 0.010
Insurance 0.020
Other financial services 0.010

Note: The figures correspond to the average weight over the whole sample
period, 2002-2019, and are normalized to sum to one (as these indices cover
approximately the whole HICP).

Table A2. List of products
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