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Abstract
In this paper we introduce a flexible framework to estimate the expected time (ET) an outcome
variable takes to cross a threshold conditional on covariates. The proposed methodology makes
use of the Markovian property and allows us to infer the impacts that covariates have on the
ET an outcome variable takes to revert to a value of interest (for instance, its mean) given
a specific starting point. An empirical application to the U.S. economy is provided, which
investigates how the yield spread (YS) influences the ET the industrial production (IP) growth
rate takes to return to its mean considering several initial values for the outcome variable.
Our results suggest that the YS may have an important role in stimulating a faster return to
desirable growth rates when the economy is in contraction or faces weak growth. Moreover,
the YS also seems relevant in the presence of positive and high IP growth rates since a negative
value of this variable may contribute for the IP growth rate to quickly return to below average
values.
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1. Introduction

The first hitting time or first passage time, i.e., the time a variable takes to reach
a certain value, is a fundamental concept in stochastic analysis and represents an
important modeling tool in fields, such as finance, biology and life sciences.

Although there is a large literature in economics and finance addressing this
topic (see, for instance, Durbin 1971, Lo et al. 2002 or Giesecke 2006), first-
hitting time densities are mostly obtained for Wiener diffusion processes under the
assumption of continuous-time, due to the tractability offered by the Itô calculus.
However, this approach often requires strong computational efforts and closed form
solutions are known only for some standard continuous-time models.

Since most economic and financial data is only available in discrete time,
researchers usually opt for modeling duration time as a stochastic process instead
of defining duration as the first time a stochastic process crosses a given threshold.
Thus, continuous-time based first passage time densities and duration models
(typically built in discrete time) have the same objective, namely, to characterize
the length of time that separates different stochastic events. In fact, as illustrated
by Whitmore (1986), duration models can be seen as reduced form representations
of first passage time densities.

Most of the existing duration analysis literature is based on the specification
of the hazard function, that is, on the conditional probability of exiting the initial
state within a short interval having survived up to the starting time of that interval.
Thus, the hazard function specification emphasizes the conditional probabilities1.
Since a duration process can intuitively be associated with a dynamic sequence
of conditional probabilities, the hazard-based approach is a convenient way to
interpret duration data and can be sufficiently flexible to handle relevant issues
such as the presence of censored observations and time-varying covariates. For
instance, parametric hazard models have been used in labor economics to examine
duration dependence and the determinants of unemployment exit probabilities (see,
for instance, Meyer 1990, McCall 1994 and Sueyoshi 1995); another example
is its application to firm survival (see, for instance, Audretsch and Mahmood
1995 and Mata and Portugal 2002). In addition, this methodology has also been
employed (without covariates) to investigate the presence of duration dependence
in economic cycles (see, for instance, Sichel 1991 and Ohn et al. 2004).

A closely related approach to model duration dependence is to treat the
occurrence of a given event as a random variable which follows a point process2. Let
{ti}i∈{1,2,...}, with 0 ≤ ti ≤ ti+1, be a sequence of non-negative random variables
representing the times at which the events occur. The sequence {ti} is called a
point process. A complete description of such processes is formulated in terms

1. Note that, for any hazard function specification there is a mathematically equivalent
representation in terms of a probability distribution; see Kiefer (1988).
2. For an introduction to point processes see, for instance, Cox and Isham (1980).
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of the conditional intensity function which can be associated, roughly speaking,
with the probability per unit of time, to observe an event in the next instant3.
Thus, different parameterizations of this function result in different point process
models. Existing models can be grouped into two classes. The first, formulated in
calendar time, considers that the marginal effects of an event that has occurred in
the past is independent of the intervening history; and the second class, focuses
on the intervals between events and assumes that the duration between successive
events depends on the number of intervening events. The autoregressive conditional
dynamic (ACD) model proposed by Engle and Russell (1998) is an important model
of this class4.

In this paper, we focus on first hitting time processes. Thus, unlike point process
models, we are not interested in the actual sequence {ti}, but only in the random
variable associated with the time at which the event occurs for the first time (t1).
As already mentioned, the first hitting time problems were mostly addressed in
continuous time invoking Wiener processes, which involve complex mathematical
concepts and can result in models which are difficult to estimate.

Nicolau (2017) introduces an intuitive and easy to implement framework for
estimating the first passage time probability function in a discrete time context.
The main contribution of the present work is the introduction of a novel approach
to estimate transition probabilities allowing for covariates and which generalizes
the framework of Nicolau (2017). To this end, we adapt the approach proposed by
Islam and Chowdhury (2006) to estimate covariate-dependent Markov models of
any order to the present context.

Understanding how a set of covariates influences the time a dependent variable
takes to cross a fixed threshold may provide relevant insights on the potential
causal relationships between economic variables. The proposed covariate-dependent
expected time (ET) to cross a threshold estimator may also be a useful tool
to support macroeconomic policy decisions, where there are desirable values or
even formal targets for some key variables, such as, output growth, inflation, or
unemployment. Thus, it is important to assess the effectiveness of the instruments
(or covariates) in driving the outcome variable towards some preassigned values. In
practice, the impact of the covariates may not be symmetric and may also depend
on the distance between the starting point and the target value. Consider, for
instance, the connection between monetary policy and real economic growth. Since
both negative and above-trend growth rates are undesirable, monetary policy plays
a key role in fostering a healthy level of economic growth. To this end, a tight
monetary policy is adopted when the rapid economic growth causes inflationary
pressures and an easy one is implemented in a recession in order to boost a
rapid economic recovery. However, it has been noticed in the literature that

3. The conditional intensity function can be seen as a counterpart to the hazard function.
4. The ACD model and its extensions have become a leading tool in modeling irregularly spaced
high-frequency financial data, which are characterized by the occurrence of strong clustering
structures in the waiting times between consecutive events.
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the responsiveness of the real economy to monetary shocks is different during
recessions and expansions (see, for instance, Florio 2004 and references therein).
The framework introduced in this paper allows us to investigate these possible
nonlinear dynamics by estimating the ET conditional on different starting values.
If, for a given starting value, changes in covariates are reflected in changes in
the ET estimation, it suggests that the chosen covariates affect the movement
towards a specified threshold in that specific situation. When other starting points
are considered the conclusions may, however, differ.

To further illustrate the usefulness of the approach introduced in this paper
an application to the industrial production (IP) - yield spread (YS) relationship
is provided. Until the 2008-2010 financial crisis, short-term nominal interest rates
were the primary monetary policy instrument used to achieve price stability, which
is a key objective of central banks. For instance, in response to the financial crisis,
central banks cut nominal interest rates in order to stimulate economic growth.
However, as short-term interest rates in recent years have been close to their zero
lower bound and economic growth remained low, unconventional monetary policies
such as quantitative easing have been employed to reduce long-term interest rates
and spur aggregate demand. In our analysis we will use the sovereign yield curve
slope as a proxy for the monetary policy stance since it captures both conventional
monetary policy and unconventional measures such as asset purchases and forward-
guidance; see Saldías (2017). Thus, the focus of the empirical application is to
investigate whether YS5 influences the ET the IP growth rate takes to return to
its stationary mean starting from a specific value.

The remainder of the paper is organized as follows. Section 2 introduces the
proposed methodology to estimate the conditional ET to cross a threshold (given
a specific starting point). Section 3 investigates the finite sample properties of
the parameter estimates that describe the relationship between the ET and the
covariates. Section 4 presents an empirical application to the U.S. economy, where
we infer how YS influences the ET that the IP growth rate takes to return to its
mean. Section 5 concludes and a Technical Appendix collects the detailed proofs
of the results presented in the paper.

2. The proposed methodology

2.1. The process and probabilities of interest

Let {(yt, xt)} be a vector of discrete-time processes with state space <
characterized by the following Assumption.

5. YS is computed as the difference between the 10-years government bond yields and the 3-month
T-bill rate.
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Assumption A.

(A1) yt|xt is a Markov process of order r;
(A2) {(yt, xt)} is a jointly stationary vector stochastic process.

Let A be a measurable set of range D of the process of interest, and define the
first hitting time of A as TA := inf{t > 0 : yt ∈ A}. There is a σ-finite measure
m(y) such that m(A) > 0 implies E(TA|X0 = a) <∞ for every a ∈ D\A, where
A is the closure of set A. Assumption A2 ensures that the process {yt} is positive
Harris recurrent, that is, if the process starts from a level a not belonging to the
generic set A, it will visit A as T →∞ almost surely an infinite number of times
(see Meyn et al. 2009, chapter 9).

Consider the first hitting time Tz1 = inf{t > 0 : yt ≥ z1} and that the process
starts at z0, with z0 < z1. The case z0 > z1 with Tz1 = inf{t > 0 : yt ≤ z1} is
almost analogous6. The distribution of Tz1 is usually difficult to derive, especially
for non-linear processes. Thus, we consider a simple semi-parametric method to
estimate these quantities. First, we define the following binary variable:

St :=

{
0 if yt < z1, yt−1 < z1, ..., yt−k+1 < z1, yt−k ≤ z0,
1 otherwise, (1)

where k ≥0 and S0 = 0 if y0 = z0 (note that z0 is the starting value of the
process). Then, the probability that yt crosses the threshold z1 for the first time
starting from z0 is,

P (Tz1 = t) = P (St = 1, St−1 = 0, St−2 = 0, ..., S1 = 0|S0 = 0),

which is equivalent to

P (Tz1 = t) =
(
1− pt

) t−1∏
i=1

pi (2)

where pi := P (Si = 0|Si−1 = 0, Si−2 = 0, ..., S0 = 0) (see Appendix for details) .

Proposition 1. Considering that Assumption A1 holds and that yt|xt is a Markov
process of order r, then St|xt is also an rth order two-state Markov chain.

Since in view of the Markovian property if t > r then pt(x) = pr(x), from
Proposition 1 and expression (2) it follows that,

6. In practice, we can easily transform a z0 > z1 case into z0 < z1 by replacing z0, z1 and yt by
−z0, −z1 and −yt, respectively.
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P (Tz1 = t|x) =



[
1− pt(x)

] t−1∏
i=1

pi(x) for t ≤ r,

{[
1− pr(x)

] r−1∏
i=1

pi(x)

}
pr(x)t−r for t > r,

(3)

where pi(x) = P (St = 0|St−1 = 0, ..., St−i = 0|x) for 1 ≤ i ≤ r.

2.2. Covariate-dependent transition probabilities

When Assumption A1 and Proposition 1 hold, we can treat St|xt as a Markov
chain with state space {0, 1} and use standard Markov chain inference to estimate
the covariate-dependent transition probabilities.

For instance, if r=1, the transition probability matrix is

P (x) =

[
π00(x) π01(x)
π10(x) π11(x)

]
with

p1(x) := π00(x) = P (St = 0|St−1 = 0; x) =
expx

′β1

1 + expx
′β1

=: Λ(x′β1)

and Λ(x′β1) is the cumulative density function of the logistic distribution.
The generalization to higher order Markov chains is straightforwardly achieved

by extending the first order Markov chain model. To this end, note that the
transition probabilities of the rth order model can be arranged in a 2r×2 matrix
of which we only need a line; see Islam and Chowdhury (2006). As an illustration,
consider a matrix with the outcomes of an rth order Markov chain St, i.e.,

m {St−r St−(r−1) ... St−1}
1 0 0 ... 0
2 0 0 ... 1
...

...
...

...
...

2r − 1 1 1 ... 0
2r 1 1 ... 1



St
0 1
0 1
...

...
0 1
0 1


,

where m is an index that identifies each of the possible outcomes of
{St−1, St−2, ..., St−r}. For instance, m = 1 corresponds to the outcomes St−1 =
0, St−2 = 0, ..., St−r = 0.

As shown in (3), the covariate-dependent transition probabilities p1(x), ...,
pr(x) are needed to obtain the probability function for Tz1|x. Hence, if St|x is an
rth order Markov chain, we can define,
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pr(x) = P (St = 0|St−1 = 0, ..., St−r = 0; x) = Λ(x′βr). (4)
Moreover, for j = 1, ..., r − 1,

pj(x) = P (St = 0|St−1 = 0..., St−j = 0 ; x) = Λ(x′βj). (5)

Then, for an rth order Markov chain, the log-likelihood function of a Markov chain
of order j < r will be used to estimate the parameter vector βj and, consequently,
obtain the probabilities p1(x), ..., pr−1(x).

Despite similarities between (4) and (5) and the standard logit model for binary
responses, the proposed approach is less restrictive. Firstly, the focus here is on the
transition probabilities between states and not on the conditional probability of
success. Moreover, no specific functional form for the underlying latent variable
model is assumed. In fact, the only assumption we make on the data generating
process of yt is assumption (A1).

2.3. Parameter estimation

For an ith order Markov chain the log-likelihood function can be expressed
as the sum of 2i components, where each represents a particular outcome of
{St−1, St−2, ..., St−i}; see the Appendix for details. Thus, we can maximize
individually the part of the log-likelihood function which corresponds to
St−1=St−2=...=St−i = 0, considering for observation t that,

lnLi = ln f(St|St−1 = 0, ...,= St−i = 0; xt;βi)

= δi St ln
(

Λ(1− x′tβi)
)

+ δi(1− St)ln
(

Λ(x′tβi)
)
, (6)

where f(.) is a conditional density function, and δi is an indicator function which
is equal to one when St−1 = 0, ...St−i = 0 and zero otherwise. Note that when
δi = 1 (6) corresponds to the conditional log-likelihood function of the well-known
logit model (see, for instance, Hayashi 2000).

2.3.1. Consistency and asymptotic normality of the parameter estimators. Since
estimation of the transition probabilities and consequently of the ET to cross a
threshold only depends on βi, 1 ≤ i ≤ r, it is crucial that consistent estimates of
these coefficient vectors are obtained.

Theorem 1. Consistency of conditional MLE without compactness
Let {St, xt} be jointly stationary with conditional density f(St|St−1 = ...= St−i =
0; xt;βi) and

β̂i = argmax
βi∈Bi

1

T

T∑
t=1

ln f(St|St−1 = ... = St−i = 0; xt;βi) (7)

the quasi-ML estimator. Moreover, consider that,
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(1) the true parameter vector βi is an element of the interior of a convex parameter
space Bi ⊂ Rp, where p is the dimension of βi;

(2) ln f(St|St−1 = 0... = St−r = 0; xt;βi) is concave in βi for all {St, xt} and
measurable for all βi in Bi;

(3) P[f(St|St−1 = 0... = St−r = 0; xt;βi) 6= f(St|St−1 = 0... = St−r =
0; xt;βi,0)] > 0 for all βi 6= βi,0;

(4) E[ |ln f(St|St−1 = 0... = St−i = 0; xt;βi)| ] exists and is finite for all βi in Bi.

Then, as T →∞, β̂i exists with probability 1 and β̂i
p→ βi.

The first and second order derivatives of the logistic cumulative density
function are, Λ(v)′ = Λ(v)− (1− Λ(v)) and Λ(v)′′ = [1− 2Λ(v)]Λ(v)[1− Λ(v)],
respectively. Thus, the score and Hessian for observation t are, respectively,

s(wt;βi) =
∂lnL

∂βi
= [St −Λ(x′tβi)]xt; (8)

H(wt;βi) =
∂s(wt;βi)

∂β′i
= −Λ(x′tβi)[1− Λ(x′tβi)]xtx′t, (9)

where wt := (St, x′t)′. Since xtx′t is positive definite, H(wt;βi) is negative semi-
definite and the log-likelihood function is concave, therefore condition (2) of
Theorem 1 holds. The last two conditions of Theorem 1 are satisfied under the
non-singularity of E(xtx′t) (see Appendix for details).

Theorem 2. Asymptotic normality of conditional MLE
Let wt = (St, x′t)′ be jointly stationary and β̂i

p→ βi. In addition, consider that

(1) βi is in the interior of Bi (identification);
(2) f(St|St−1 = 0... = St−i = 0; xt;βi) is twice continuously differentiable in βi

for all wt;
(3) E[s(wt;β0,r)] = 0 and -E[H(wt;βr)] =E[s(wt;β0,r)s(wt;β0,r)

′] where
s(wt;βi) and H(wt;βi) are as defined in (8) and (9) (local dominance
condition on the Hessian);

(4) for some neighborhood N of βi,

E[ sup ||H(wt;βi)|| ]
βi∈B

<∞,

so that for any consistent estimator β̃i, 1
T

∑T
t=1 H(wt; β̃i)

p→E[H(wt;βi)];
(5) E[H(wt;βi)] is nonsingular.

Thus, if conditions (1) - (5) hold, β̂i is asymptotically normal with

Avar (β̂i) =
(
E[H(wt;βi)]

)−1
Σr

(
E[H(wt;βi)]

)−1
where Σi is the long-run variance of {s(wt;βi)}.
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Assuming that Σ̂i is a consistent estimator of Σi, then a consistent estimator
of the asymptotic variance of β̂i is

̂Avar (β̂i) =

{
1

T

T∑
t=1

H(wt; β̂i)
}−1

Σ̂i

{
1

T

T∑
t=1

H(wt; β̂i)
}−1

. (10)

Theorem 3. Considering the results of Theorems 1 and 2 it follows as T → ∞
that,

√
T β̂i

d→ N(βi,Avar (β̂i)).

Theorem 4. Let Assumption A2 hold. From application of the Delta method it
follows that,

√
T pi(x)

d→ N

(
Λ(x′βi), [Λ(x′βi)′]2 x′ Avar (β̂i) x

)
.

The positive Harris recurrence of St|xt is crucial to ensure that the process
moves from one state to another an infinite number of times as T → ∞. This
prevents, for example, from having too many zeros in the sequence of St (i.e.,
that yt crosses z1 too few times), which results in inaccurate estimates of βi and
pi(x)→ 1.

2.4. Covariate-dependent ET

The covariate-dependent ET to cross z1 when the process yt starts at z0 is,

E(Tz1 |x) =
∞∑
t=1

t P (Tz1 = t|x). (11)

If St is a first order Markov Chain, i.e. r = 1, then P (St = 0|St−1 = 0; x) = p1(x)
and

E(Tz1 |x) =
[
1− p1(x)

] ∞∑
t=1

t p1(x)t−1 =
[
1− p1(x)

]−1
.

Theorem 5. Let Ê(Tz1 |x) =
[
1− p̂1(x)

]−1
. For r = 1,

̂E(Tz1 |x)
p→ E(Tz1 |x) and

√
T
(

̂E(Tz1 |x)−E(Tz1 |x)
)

d→ N
(

0,
[
x exp(x′β1)

]′Avar (p̂1(x)
)[
x exp(x′β1)

])
,

where Avar
(
p̂1(x)

)
:= [Λ(x′β1)′]2 x′ Avar (β̂1) x, and 0 < p1 < 1.
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Using (3) and (11) we have for r > 1 that

E(Tz1 |x) =
r∑
t=1

t
[
1− pt(x)

]
+
t−1∏
j=1

pj(x)

{[
1− pr(x)

] r−1∏
j=1

pj(x)

} ∞∑
t=r+1

t pr(x)t−r

=
r∑
t=1

t
[
1− pt(x)

]
+

{[
1− pr(x)

] r−1∏
j=1

pj(x)

}
pr(x)[1 + r − r pr(x)]

[1− pr(x)]2
. (12)

By the continuous mapping theorem, if β̂i is consistent then ̂E(Tz1 |x) will also
be a consistent estimator of E(Tz1 |x) since it is a continuous function of β̂i.

From (12) it follows that for r ≥ 1 we have,

r = 1⇒ E(Tz1 |x) =
1

1− p1(x)
,

r = 2⇒ E(Tz1 |x) =
1 + p1(x)− p2(x)

1− p2(x)
,

r = 3⇒ E(Tz1 |x) =
p1(x)

(
p2(x) + 1

)
− p3(x)

(
p1(x) + 1

)
+ 1

1− p3(x)
, etc.

Therefore, as already stated, it is critical to have consistent estimates of βi,
1≤ i≤ r. In small samples, St may not move from one state to another a sufficient
number of times when r is relatively large and estimating these parameters may be
problematic. In practice, the choice of r depends on the sample size, the level of
persistence, the starting point z0 and the threshold z1. We suggest that r is chosen
based on two indicators: the residuals of the regression of yt on its own r lags and
xt, and the statistical significance of βr. It is also possible to estimate r using some
information criteria such as BIC (Bayesian information criteria); see, for instance,
Katz (1981) and Raftery (1985). However, this approach is cumbersome, since
it requires estimating the entire transition probability matrix for several Markov
chains of different orders, while we are only interested in the probability in (4).

As is evident from (12), an exact asymptotic expression for the distribution
of ̂E(Tz1 |x) is difficult to obtain since it is a complex non-linear function of β̂i.
However, advances in computing have made resampling techniques, in particular
bootstraping approaches, a valuable tool for the estimation of standard errors and
for the construction of confidence intervals.

In this work, suitable bootstrap methods, which allow for serial dependence,
are applied. Many different bootstrap techniques for dependent data have been
proposed (see, for instance, MacKinnon 2007, Section 6 for a brief overview). A
widely used approach in this context is the block bootstrap algorithm (Härdle et al.
2003). The block bootstrap consists in dividing the time series into several blocks
of b consecutive observations in order to preserve the original structure within a
block, and to re-sample the blocks, which may be overlapping or non-overlapping
and of fixed or of variable length, as in e.g. the stationary block bootstrap proposed
by Politis and Romano (1994).
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Lahiri (2003, Chapter 5) compares the performance of four block bootstrap
approaches7 and shows that, in terms of their MSEs, the overlapping block
bootstrap outperforms the non-overlapping and the stationary block bootstrap
procedures. This conclusion is valid if the block length increases as the sample
size T increases at a rate not slower than the optimal rate κT 1/3, where κ is
constant.

Thus, in what follows we will employ the overlapping block bootstrap, also
known as "blocks of blocks" bootstrap, proposed by Politis and Romano (1992b).
Defining Zt ≡ (yt, xt), we construct T − b+ 1 overlapping blocks as

Z1, ...,Zb, Z2, ...,Zb+1, ...,ZT−b+1, ...,ZT , (13)

which are re-sampled in the usual way, using an iid random variable on {1, 2, ..., T −
b+ 1}. The block bootstrap algorithm consists of the following steps:

Step 1 : Choose the block length b. In the empirical application, we opt for
b = T 1/3;

Step 2 : Resample the blocks as illustrated in (13) and generate the
bootstrap sample (y∗t , x∗t );

Step 3 : Build the process S∗t in (1) using y∗t and estimate the covariate-
dependent probabilities in (4) and (5) ;

Step 4 : Compute ̂E(Tz1 |x)
∗
.

Step 5 : Repeat Steps 1 to 4 a B number of times, where B is the number
of bootstrap simulations, and compute the empirical distribution
of ̂E(Tz1 |x)

∗
and respective confidence intervals.

3. Monte Carlo Analysis

This section investigates the finite sample properties of the parameter estimates
β̂r. We generate the St|xt process by simulating two-state Markov chains of orders
r = 1, 2, ..., 5.

In order to simplify the simulation exercise but without loss of generality we
make some simplifying assumptions about the data generation process (DGP) of
St|xt. In specific, we assume that pr(x) is covariate-dependent and the remaining
probabilities are constant and equal to 0.5. In practice, one would expect that
all transition probabilities depend on covariates. As stated in Section 2.3, these
assumptions have no effect on the consistency of β̂r since the part of the log-
likelihood which corresponds to St−1 = 0, ..., St−r = 0 is maximized individually.

7. In addition to the overlapping, non-overlapping and stationary block bootstraps, Lahiri (2003)
also considers the circular block bootstrap proposed by Politis and Romano (1992a).
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As an illustration, consider a second order (r = 2) Markov chain. In this case,
the transition probabilities matrix is completely defined by the probabilities

• p2(x) = P (St = 0|St−1 = 0, St−2 = 0; x) = Λ(x′β2),
• P (St = 0|St−1 = 0, St−2 = 1; x) = 0.5,
• P (St = 0|St−1 = 1, St−2 = 0; x) = 0.5,
• P (St = 0|St−1 = 1, St−2 = 1; x) = 0.5,

and our interest centers exclusively on p2(x), which can be estimated by maximizing
the log-likelihood function in (6) for i = r = 2. However, it is noteworthy that,
since the DGP is a second order Markov chain, p1(x) = P (St|St−1; x), also needed
to compute the ET, will depend on the first two probabilities presented above, that
is, on p2(x) and P (St = 0|St−1 = 0, St−2 = 1; x).

The DGP also considers that xt :=
(
1, x2t

)′ and β2 =
(
β2,1, β2,2

)′ in (4),
where x2t ∼ N(0, 1). Therefore, as T →∞,∑T

t=1 p2(xt)
T

p→ E
(
p2(xt)

)
=

∫ +∞

−∞
P (St = 0|St−1, ..., St−r = 0; xt)f(x2t)dx2t

=

∫ +∞

−∞

expx
′
tβ2

1 + expx
′
tβ2

1√
2π

exp−
x2
2t
2 dx2t.

We will investigate two cases, β2 = (0.0, 3)′ and β2 = (2.3, 3)′ which imply
that

∑T
t=1 pr(xt)
T → 0.5 and

∑T
t=1 pr(xt)
T → 0.75, respectively. The second case

is particularly relevant since we are interested in z1 = ȳ and the macroeconomic
variables tend to exhibit some persistence (or slow mean reversion after a shock),
which results in higher values of E(Tz1 |x).

As the order of the Markov chain is unknown in practice, for each Markov chain
of order r generated in the simulations, we estimate first up to fifth order Markov
chains.

Table 1 summarizes the Monte Carlo results for T ∈ {500, 1000, 2000}. When
i ≥ r, the β2 parameters seem to be consistently estimated even for T = 500. As
expected, the mean of the parameter estimates is closer to the "true" parameter
values and the standard deviation of the estimates reduces in all cases when the
sample size increases. Although MLE seems to produce consistent estimates of β2

even when Markov chains of higher order than the one considered in the DGP is
estimated (i > r), these estimates are less accurate since

pr−1(x)pr−2(x)...p1(x) = P (St−1 = 0, ..., St−r = 0|x)

decreases as r increases and there are less cases with {St−1 = 0, ..., St−r = 0}.
Thus, βr will be estimated using a smaller number of observations, since δi = 1 in
expression (6) occurs less often.



13
The

expected
tim

e
to

crossa
threshold

and
itsdeterm

inants

T = 500 T = 1000 T = 2000 T = 500 T = 1000 T = 2000
βi,1 = 0.0 βi,2 = 3.0 βi,1 = 0.0 βi,2 = 3.0 βi,1 = 0.0 βi,1 = 3.0 β1 = 2.3 β2 = 3.0 β1 = 2.3 β2 = 3.0 β1 = 2.3 β2 = 3.0

r i mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

1 -0.005 0.196 3.076 0.407 -0.002 0.137 3.035 0.278 0.001 0.099 3.019 0.193 2.340 0.289 3.067 0.384 2.322 0.201 3.035 0.263 2.312 0.139 3.017 0.185
2 -0.014 0.284 3.157 0.621 -0.008 0.196 3.077 0.413 -0.001 0.138 3.037 0.281 2.351 0.342 3.090 0.458 2.327 0.236 3.047 0.310 2.314 0.162 3.023 0.216

1 3 -0.032 0.448 3.362 1.043 -0.017 0.283 3.160 0.629 -0.007 0.197 3.076 0.411 2.370 0.409 3.129 0.553 2.335 0.277 3.064 0.365 2.319 0.189 3.031 0.254
4 -0.054 0.673 3.541 1.391 -0.031 0.434 3.332 0.998 -0.018 0.289 3.158 0.630 2.397 0.499 3.179 0.686 2.345 0.325 3.084 0.429 2.325 0.222 3.041 0.295
5 0.008 0.799 3.202 1.382 -0.033 0.624 3.353 1.178 -0.036 0.453 3.365 1.114 2.430 0.609 3.247 0.846 2.363 0.387 3.119 0.515 2.334 0.259 3.057 0.346

1 0.008 0.137 0.800 0.169 0.004 0.098 0.791 0.118 0.003 0.069 0.786 0.083 0.824 0.195 0.993 0.185 0.816 0.136 0.980 0.129 0.812 0.096 0.976 0.091
2 -0.010 0.287 3.169 0.627 -0.006 0.197 3.079 0.410 -0.003 0.137 3.036 0.279 2.358 0.389 3.109 0.525 2.330 0.264 3.055 0.350 2.317 0.183 3.029 0.243

2 3 -0.023 0.441 3.353 1.030 -0.015 0.288 3.169 0.636 -0.007 0.197 3.075 0.406 2.385 0.470 3.162 0.646 2.341 0.310 3.075 0.412 2.323 0.215 3.039 0.284
4 -0.039 0.667 3.507 1.371 -0.031 0.448 3.354 1.013 -0.014 0.289 3.164 0.623 2.420 0.580 3.233 0.812 2.358 0.369 3.105 0.487 2.330 0.252 3.052 0.332
5 0.007 0.812 3.225 1.397 -0.029 0.622 3.358 1.165 -0.035 0.452 3.390 1.138 2.470 0.720 3.331 1.000 2.379 0.446 3.147 0.595 2.338 0.296 3.071 0.391

1 0.015 0.127 0.366 0.142 0.007 0.091 0.359 0.100 0.005 0.066 0.358 0.071 0.433 0.178 0.492 0.149 0.423 0.126 0.483 0.103 0.422 0.088 0.483 0.073
2 0.008 0.194 0.815 0.246 0.003 0.136 0.797 0.168 0.003 0.097 0.791 0.118 0.828 0.263 1.005 0.250 0.818 0.186 0.987 0.176 0.816 0.13 0.981 0.123

3 3 -0.026 0.439 3.354 1.037 -0.014 0.287 3.158 0.624 -0.008 0.193 3.071 0.403 2.416 0.566 3.215 0.778 2.357 0.369 3.105 0.488 2.328 0.252 3.049 0.332
4 -0.039 0.647 3.520 1.380 -0.030 0.440 3.331 0.990 -0.015 0.282 3.158 0.621 2.460 0.689 3.301 0.963 2.383 0.444 3.152 0.591 2.338 0.295 3.068 0.391
5 0.008 0.802 3.220 1.384 -0.033 0.617 3.342 1.179 -0.039 0.446 3.371 1.095 2.501 0.814 3.389 1.117 2.410 0.541 3.208 0.727 2.348 0.345 3.093 0.462

1 0.020 0.128 0.186 0.137 0.010 0.089 0.179 0.094 0.006 0.065 0.175 0.066 0.247 0.168 0.263 0.136 0.236 0.119 0.256 0.098 0.228 0.084 0.253 0.068
2 0.022 0.184 0.381 0.207 0.011 0.127 0.364 0.141 0.005 0.092 0.360 0.099 0.444 0.250 0.507 0.207 0.434 0.175 0.495 0.147 0.423 0.124 0.486 0.101

4 3 0.016 0.281 0.851 0.360 0.010 0.192 0.812 0.243 0.003 0.135 0.799 0.167 0.849 0.378 1.052 0.367 0.833 0.261 1.012 0.247 0.817 0.182 0.989 0.168
4 -0.042 0.659 3.504 1.369 -0.028 0.441 3.336 0.984 -0.018 0.281 3.165 0.622 2.506 0.838 3.409 1.159 2.414 0.548 3.211 0.740 2.351 0.361 3.101 0.482
5 -0.007 0.798 3.250 1.402 -0.031 0.620 3.374 1.167 -0.045 0.455 3.377 1.119 2.515 0.934 3.452 1.265 2.444 0.650 3.277 0.881 2.369 0.433 3.140 0.583

1 0.029 0.127 0.097 0.133 0.016 0.090 0.093 0.092 0.009 0.065 0.091 0.064 0.151 0.156 0.144 0.133 0.136 0.111 0.138 0.094 0.126 0.078 0.133 0.066
2 0.036 0.179 0.195 0.197 0.021 0.127 0.184 0.135 0.009 0.091 0.179 0.093 0.267 0.231 0.277 0.195 0.247 0.166 0.263 0.135 0.232 0.118 0.256 0.095

5 3 0.042 0.260 0.398 0.305 0.023 0.185 0.374 0.204 0.008 0.129 0.364 0.140 0.471 0.345 0.539 0.301 0.445 0.244 0.507 0.203 0.426 0.174 0.491 0.141
4 0.026 0.424 0.921 0.609 0.017 0.277 0.844 0.358 0.004 0.192 0.817 0.247 0.894 0.553 1.142 0.567 0.850 0.371 1.048 0.353 0.821 0.253 1.004 0.234
5 0.004 0.791 3.295 1.404 -0.030 0.601 3.353 1.169 -0.041 0.445 3.363 1.093 2.469 1.004 3.379 1.281 2.477 0.764 3.341 1.007 2.392 0.530 3.200 0.722

Table 1. Means and standard deviations of Markov chain parameter estimates
Notes for Table 1: r refers to the Markov chain order considered in the data generating process and i = 1, .., 5 is the order of the Markov chain used to
estimate βi. All results presented are based on 10000 Monte Carlo simulations.
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4. Empirical Application

It is nowadays widely accepted that the relation between major economic variables
is nonlinear (see, for instance, Terasvirta et al. 2010). However, since most existing
nonlinear models assume a parametric functional form and require the estimation of
a considerable numbers of parameters, alternative ways to capture some aspects of
the nonlinear relationships have been developed. For instance, in order to cater for
the possibility that the yield curve predicts more accurately when drastic changes
in output occur, some authors considered a binary dependent variable which equals
one when the National Bureau of Economic Research (NBER) dates a recessions
and zero otherwise (see, for instance, Estrella and Hardouvelis 1991 and Estrella and
Mishkin 1998). Then, discrete choice models, such as logit or probit, are employed
to estimate the effect of YS on the probability of a recession.

Most standard models for binary responses do not take the dynamic structure
of the data into account, which is crucial for applications to time series data. A
relevant exception is the parametric (linear) dynamic probit model which includes
lags of the binary response variable in the probit function; see e.g. Kauppi and
Saikkonen (2008) and Antunes et al. (2018).

An alternative approach to incorporate information provided by the past values
of the dependent variable is to assume the Markovian property. In this context, the
interpretation is in terms of transitional rather than marginal probabilities (see, for
instance, Azzalini 1994) and the focus is on the estimation of the probabilities of
transitions between states. The framework that we introduce in this paper, which
also relies on the Markov assumption, allows us to obtain covariate-dependent
transition probabilities without requiring a rigid parametric functional form8 or the
estimation of a large number of parameters. Moreover, instead of simply indicating
the presence or not of a recession, the binary variable is given by (1). Since the
proposed approach allow us to consider different threshold z1 and starting z0
values, it may be useful to capture additional information about possible nonlinear
relationships between a dependent variable and a set of covariates.

However, the major advantage of our approach is that it provides a simple
method to estimate the covariate-dependent expected time (ET) to cross a
threshold, which may be a useful reduced-form tool to investigate relevant topics
such as dynamic controllability. Roughly speaking, Buiter and Gersovitz (1981)
define that a system is dynamically controllable if a path for the economic
instruments exists which is capable of moving the vector with the economic
objectives from any initial value to any other target value in pre-assigned finite
time. They argue that this ability to achieve a vector of target values is relevant
for economic policy even if these target values cannot be maintained. Thus, by
choosing a target value z1 and calculating covariate-dependent ET for different

8. The only parametric assumption is that the covariates influence the transition probabilities via
a logistic function, as defined in (4) and (5).
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starting points z0 we may gather evidence about the effectiveness of the covariates
in driving a dependent variable towards z1.

This section provides an empirical application to the economic activity-yield
spread relationship. The link between YS and economic growth is related to
monetary policy, which influences the shape of the yield curve - the representation
of several yields or interest rates across different contract lengths - over the business
cycles. For instance, monetary policy influences directly, through the use of open
market operations, the level of short-term maturity yields. Central banks have
a reference interest rate as an important pro-cyclical instrument to pursue their
objectives (e.g., price stability). They will lower short run yields in recessions in
an attempt to stimulate the economy and will do the opposite when there are
inflationary pressures. However, as short-term interest rates have been close to their
zero lower bound in recent years, central banks also began to influence long-term
interest rates using unconventional monetary policy operations such as, quantitative
easing, in order to stimulate aggregate demand and avoid a scenario of low growth
and deflation.

Therefore, central banks’ monetary policies exert a strong influence on YS.
When the economy is in recession, monetary policy actions that have led YS to
positive values will promote a faster economic recovery. On the other hand, if the
economy is in expansion and the inflation rate suggests that we are facing an over
heated economy, monetary policy actions can be taken in order to reduce the YS
and slow down economic growth; for instance, by increasing the reference interest
rates.

We consider YS as a proxy for the monetary policy stance and investigate how
this variable affects the ET that IP growth rate takes to return to its mean after an
exogenous shock. In practice, this will be done considering several starting values
z0, each of which correspond to a different St process, and by estimating the vector
of parameters βi that indicates how YS influences the ET for IP growth rate to
return to its mean.

4.1. Data

The proposed methodology is applied to U.S. data. The IP index was selected
as an indicator of economic activity due to its higher (monthly) frequency and
faster availability relatively to GDP, the most commonly used measure of economic
activity. IP seems an adequate choice since, at least for the more industrialized
countries, the value added by industrial production represents a substantial share of
GDP. Moreover, the IP index exhibits more cyclical fluctuations than the financial
index. It is expected that the larger number of observations available and the
greater cyclical variability of the IP index will have a positive impact on parameter
estimation. We consider the monthly seasonally adjusted U.S. IP index obtained
from OECD’s Main Economic Indicators Publication, for the period from December
1964 to February 2019 (651 observations).
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YS, which is the difference between the long-term9 and the short-term interest
rates10, used as a proxy for the monetary policy stance, is obtained from OECD’s
Monthly Monetary and Financial Statistics. Figure 1 graphically presents both time
series.
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Figure 1: U.S. Industrial Production (monthly) growth rate and yield spread.

4.2. Empirical Results

Let yt be the monthly IP growth rate and xt YS. We consider the empirical mean
of the IP growth rate as the threshold, z1 = y, and estimate βi (1 ≤ i ≤ r) for the
covariate-dependent probabilities defined in (4) and (5) considering several starting
values z0, each corresponding to a different St process as defined in (1). The βi
parameters are crucial to properly estimate the impact of the covariates on the ET
for yt to cross z1 when it starts from z0; see (12).

YS has been identified as an important leading indicator in the literature. For
instance, Estrella and Mishkin (1998) conclude that the steepness of the yield curve
is an accurate predictor of real activity, especially between two and six quarters
ahead. Thus, we estimated the probabilities in (4) and (5) using k-periods lagged
YS as covariates, with k = 1, ..., 6, considering Markov chains of different orders
and starting values z0. Since, overall the 3-month lagged YS provides stronger
statistical evidence, we will use this variable as a covariate. In other words, we will
consider that xt = (1, xt−3)′ and βi = (βi,1, βi,2), with i = 1, ..., r.

The Markov chain order r was chosen based on the analysis of the residuals of
a regression of yt on its own lags and YS. Additionally, we also take into account
the statistical significance of βi,1 and βi,2 for several starting values z0. Thus, a
third order Markov process (i.e. r = 3) has been considered. For r > 3, β̂r,2 is not

9. Long-term interest rates are computed using government securities with outstanding maturities
of 10 years.
10. Short-term interest rates are either the three month interbank rate associated to loans provided
and taken among banks for any excess or shortage of liquidity over several months or the rate
associated with Treasury bills, certificates of deposit or comparable instruments, each of three
month maturity.
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statistically significant and the standard error of β̂r,1 also becomes substantially
higher for almost all starting values z0 considered.

Table 2 shows that the coefficients of YS (β̂i2, i = 1, 2, 3) are negative when
z0 < y and positive when z0 > y. For the first case the YS coefficients are
statistically significant at the 10% significance level for almost all starting values
considered. When z0 > z1, significance is only observed for i = 2, 3 and if the
starting values are not particularly large.

.
i = 1 i = 2 i = 3

β̂1,1 β̂1,2 β̂2,1 β̂2,2 β̂3,1 β̂3,2
α z0 coef. prob. coef. prob. coef. prob. coef. prob. coef. prob. coef. prob.

-1.50 -0.886 0.761 0.011 -0.171 0.049 0.957 0.008 -0.176 0.072 0.998 0.013 -0.131 0.162
-1.25 -0.705 0.960 0.000 -0.183 0.018 1.193 0.000 -0.199 0.033 1.019 0.003 -0.225 0.033
-1.00 -0.524 0.755 0.000 -0.167 0.006 0.944 0.000 -0.118 0.068 0.903 0.001 -0.201 0.027
-0.75 -0.343 0.485 0.003 -0.170 0.001 0.811 0.000 -0.137 0.031 0.964 0.000 -0.190 0.033
-0.50 -0.162 0.509 0.000 -0.148 0.001 0.833 0.000 -0.133 0.018 1.026 0.000 -0.191 0.014
-0.25 0.020 0.319 0.007 -0.101 0.000 0.864 0.000 -0.140 0.009 0.996 0.000 -0.211 0.005
0.25 0.382 0.177 0.102 0.102 0.015 0.282 0.071 0.132 0.020 0.231 0.192 0.254 0.009
0.50 0.563 0.448 0.002 0.061 0.125 0.489 0.006 0.152 0.015 0.438 0.045 0.270 0.003
0.75 0.744 0.595 0.000 0.048 0.227 0.633 0.002 0.138 0.050 0.490 0.032 0.209 0.020
1.00 0.925 0.809 0.000 0.073 0.191 0.742 0.001 0.178 0.042 0.812 0.003 0.184 0.063
1.25 1.106 1.051 0.000 0.110 0.154 0.972 0.000 0.167 0.089 1.092 0.001 0.134 0.167
1.50 1.287 0.958 0.000 0.042 0.363 0.955 0.002 0.147 0.157 0.991 0.005 0.125 0.219

Table 2. Estimated parameters for pi(x) := P (St = 0|St−1 = 0, ..., St−i = 0; x), i ≤ r
Notes for Table 2: z0 = ȳ+ασ̂y and z1 = ȳ ≈ 0.201, where ȳ and σ̂y are, respectively, the sample
mean and standard deviation.

We computed the unconditional (proposed by Nicolau 2017) and covariate
dependent ET time curves11 (ETC) and their 95% confidence intervals computed
using the overlapping block bootstrap described in Subsection 2.4 with 999
bootstrap replications and block length equal to T 1/3.

Figure 2 shows the estimated (unconditional and covariate dependent) ETCs
and their 95% confidence bounds considering 24 different starting points z0, equally
spaced in the interval

(
y− 1.5σ̂y, y+ 1.5σ̂y

)
, with y and σ̂y the sample mean and

standard deviation of yt, respectively, and six different values for the explanatory
variable zt−3.

The bootstrap-based ETC estimates presented in Figure 2 seem to confirm the
results in Table 2. That is, when the IP growth rate is below its mean, z0 < ȳ, the
βi2 estimates are negative. As a consequence, the ET to reach z1 ≥ ȳ is relatively
low if YS is positive. Therefore, the IP growth rate easily recovers from low values
when YS is positive; however, recovery is slower when YS is negative. For example,

11. As in Nicolau (2017), we call ET curve to the graphical representation of the ET estimates
for different starting values z0, but same threshold z1 = ȳ
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consider the case where YS is equal to 3.9% (see Figure 2 panel F ). If the initial
value of the IP growth rate is negative, recovery is fast and takes around 2 months
on average to reach ȳ. On the other hand, if YS is negative and equal to -1.9%,
recovery is much slower and can take on average four months (see Figure 2 panel
A).

When the IP growth rate is above its mean, z0 > ȳ, the estimates of βi2
become positive and the opposite interpretation applies. Thus, in this case, the ET
to decrease to z1 ≤ ȳ is delayed if YS is positive (prosperity tends to last) and
accelerated if YS is negative. For example, if the YS is equal to 3.9% (see Figure 2
panel F), the IP growth rate will remain above its mean value for about 4 months
while the same only happens for two months on average if YS is negative and equal
to -1.9% (see Figure 2 panel A).

Hence, we can conclude that there is statistical evidence that YS influences the
ET the IP growth rate takes to return to its mean, which is graphically reflected
in the asymmetric shapes of the conditional ET curves for high and low YS values.
For instance, panels A, E and F of Figure 2 illustrate this feature particularly well.

The relationship between YS and economic activity has been investigated
by an extensive literature. Harvey (1989), Stock and Watson (1989), Estrella
and Hardouvelis (1991) and Estrella and Mishkin (1998), among others, found
statistical evidence that YS predicts future output growth. Most of this research
is based on a linear framework of analysis (OLS regressions), considering an
appropriate lead-lag relationship. However, there are some exceptions to this
practice. For instance, Galbraith and Tkacz (2000) used the linearity tests against
TAR models suggested by Hansen (1996) and found evidence in support of the
asymmetric impact of YS on the conditional expectation of output growth. When
YS is above a specific threshold value, the additional effect of a large positive
spread becomes small and statistically insignificant.

Moreover, YS has also been successfully used in predicting recessions (see, for
instance, Estrella and Hardouvelis 1991, Estrella and Mishkin 1998 and Kauppi and
Saikkonen 2008). Most of this evidence was obtained using probit or logit models
where the dependent variable used was a recession indicator, which equals 1 when
the NBER dates a recession and zero otherwise.

The proposed methodology is somehow related with this strand of the literature
since it considers a logit specification for the transition probabilities in (4) and (5).
However, it is much more flexible and can provide additional information about
the economic activity-yield spread relationship. We considered z1 = ȳ in order to
illustrate the proposed approach, but other threshold values such as z1 = 0 could
also have been considered. With z1 = ȳ, the covariate-dependent ET curve may
provide important insights about the predictive content of YS. For instance, let us
consider that yt−1 > ȳ. If YS is positively related to future economic activity, a
negative YS increases the probability that the dependent variable will cross ȳ in
period t and consequently ET will be lower.

A visual informal analysis of the ET curves presented in Figure 2 suggests some
interesting facts. First, for z0 > ȳ, the ET estimates change very little when YS
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increases from -1.9 to -0.6 (see panels A and B) and from 0 to 1 (see panels C and
D). It seems that a large YS value is necessary to increase the ET substantially (see
panels E and F). On the other hand, if z0 < ȳ, the decrease in the ET estimates
when YS increases seems clearer.
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PANEL A - Yield Spread = -1.9
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PANEL B - Yield Spread = -0.6
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PANEL C - Yield Spread = 0.0
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PANEL D - Yield Spread = 1.0
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PANEL E - Yield Spread = 3.1
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PANEL F - Yield Spread = 3.9
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PANEL G - Unconditional ETC

Figure 2: Unconditional and conditional estimated expected time curves (ETC) with
overlapping block bootstrap 95% CI. For the conditional case the following six values for
the covariate were considered: (x̄ − σ̂x) = −1.9 , Q1 = −0.6 , 0 , x̄=1 , Q3 = 3.1,
(x̄− σ̂x) = 3.9; where Q1 and Q3 are the first and third quartiles of xt, respectively.
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5. Conclusions

In this paper we propose a simple and easy to implement approach to investigate
the effect of covariates on the expected time (ET) to cross a threshold given
a specific starting point. In order to estimate the parameters that describe the
relationship between the ET and the covariates, we adapt the procedure to estimate
Markov models of any order proposed by Islam and Chowdhury (2006). We confirm
via Monte Carlo simulations that the relevant parameters, βr, are consistently
estimated even when the sample size is relatively small (T = 500).

However, since the expression for ET in (12) is a highly nonlinear function of βi,
with i= 1, .., r, we consider an overlapping block-bootstrap procedure to obtain the
standard errors of the ET estimates and to construct relevant confidence intervals.
Existing literature on the topic suggests that this block-bootstrap variant is a good
choice to resample dependent data. We used it to obtain confidence intervals for
the ET that the U.S. IP growth rate takes to revert to its mean given a starting
point and a particular YS value. Figure 2 shows that the width of the confidence
intervals is relatively narrow even when the starting value z0 is far (in absolute
value) from the threshold value z1 (which results in less accurate estimates of βi).

The empirical application to the U.S. economy shows that there is statistical
evidence supporting the influence of YS on the ET for the IP growth rate to return
to its mean. Namely, a high YS reduces this ET if the IP growth rate starts by
assuming below average values. Thus, monetary policies that result in higher YS
could play an important role in stimulating a faster return to desirable growth rates
in periods of weak growth or contraction. Moreover, the YS value seems also critical
when the IP growth rate is larger than average. If YS is negative, the IP growth
rate will return quickly to below average values. This finding may be related to
the widely documented ability of the yield curve inversion (negative YS) to predict
recessions (see, for instance, Estrella and Mishkin 1998).

The application of the proposed methodology to the economic activity-yield
spread relationship illustrates that it provides insights that may be relevant to
policymakers. Thus, the proposed approach can be adapted to support a wide range
of economic decisions since it provides a flexible and easy to implement framework
that allows us to infer about the nonlinear relationship between a dependent variable
associated with an economic objective and a set of relevant covariates associated
with economic policy instruments.
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Appendix

The Markov chain’s log likelihood function
For an rth order Markov chain, the log-likelihood function can be expressed

as the sum of r2 components. As an illustration, consider a second order Markov
chain and define:

δ000 = 1 if {St = 0, St−1 = 0, St−2 = 0};
δ100 = 1 if {St = 0, St−1 = 0, St−2 = 1};
δ010 = 1 if {St = 0, St−1 = 1, St−2 = 0};
δ110 = 1 if {St = 0, St−1 = 1, St−2 = 1};
p000(x) := p2(x) = P (St = 0|St−1 = 0, St−1 = 0);

p100(x) = P (St = 0|St−1 = 0, St−1 = 1);

p010(x) = P (St = 0|St−1 = 1, St−1 = 0);

p110(x) = P (St = 0|St−1 = 1, St−1 = 1).

The log-likelihood for observation t can be expressed as

lnL = L1 + L2 + L3 + L4,

where

L1 = δ001 ln(1− p000(x)) + δ000 ln(p000(x)),

L2 = δ101 ln(1− p100(x)) + δ100 ln(p100(x)),

L3 = δ011 ln(1− p010(x)) + δ010 ln(p010(x)),

L4 = δ111 ln(1− p110(x)) + δ110 ln(p110(x)).

Proof of Proposition 1
Consider the probability P (St = 0|St−1 = 0, St−2 = 0, ..., S0 = 0; x). The

results for other cases are similar. The event {St−1 = 1, St−2 = 1, ..., S0 = 1}
represents {yt−1 < z1, yt−2 < z1, ..., y1 < z1, y0 ≤ z0}. Therefore,

P (St = 1|St−1 = 1, St−2 = 1, ..., S0 = 1; x)

≡ P (yt < z1|yt−1 < z1, yt−2 < z1, ..., y0 ≤ z0; x)

and since yt is an rth order Markov process,

P (St = 1|St−1 = 1, St−2 = 1, ..., S0 = 1; x)

= P (St = 1|St−1 = 1, St−2 = 1, ..., St−r = 1; x)

= P (yt < z1|yt−1 < z1, yt−2 < z1, ..., yt−r+1 ≤ z1, yt−r ≤ z0; x).

�
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Proof of Theorem 1
For condition (3) (conditional density identification) note that

E[(xtβi,0 − xtβi)2] = E[{xt(βi,0 −βi)}2] = (βi,0 −βi)′E(xtx′t)(βi,0 −βi) > 0 ,

where βi is the true parameter vector and βi,0 a parameter vector such that
βi,0 6= βi. Hence, xtβi 6= xtβi,0 with positive probability and since Λ(v) is strictly
monotonic, we have Λ(xtβi) 6= Λ(xtβi,0) when xtβi 6= xtβi,0.

Condition (4) holds if E[|log(f(St|St−1 = 0... = St−r = 0; xt;βi)|] <∞ for all
βi .

For the logistic function, it is easy to verify that

|ln Λ(v)| ≤ |ln Λ(0)|+ |v|.

Furthermore, note that

|ln f(St|St−1 = 0, ..., St−r = 0; xt;βi)| ≤ |St| ln (Λ(xtβi))|+ |1− St| |ln (1−Λ(xtβi))|
≤ |ln (Λ(xtβi))|+ |ln (Λ(−xtβi))|
(since |St| ≤ 1 and |1− St| ≤ 1)

≤ 2[ |ln (Λ(0)|+ ||xt|| × ||βi|| ]
(due to the Cauchy-Schwartz inequality)

The nonsingularity of E(xtx′t) implies E(x2it)<∞ for all i and, therefore, E(||x2t ||)<
∞ and E(||xt||) < ∞. Thus, the nonsingularity of E(xtx′t) ensures that the logit
ML estimator is consistent. �

Proof of Theorem 2

Condition (1) is satisfied for the logit model if the compact parameter space Bi
is taken to be Rp. Condition (2) is obviously satisfied. To check condition (3) note
that since E[St|St−1 = 0, ..., St−r = 0; xt] = Λ(xtβi), we have E[s(wt;βi)|xt] = 0
and, by the Law of Total Expectations E[s(wt;βi)] = 0.

In order to derive the conditional information matrix, note that, using the
standard rules of differentiation we have that,

E
[
∂lnL

∂βi∂β
′
i

]
= −E

[
∂lnL

∂βi

∂lnL

∂β′i

]
+ E
[

1

lnL
∂2lnL
∂βi∂β

′
i

]
,

where it is easy to verify that the second term is zero. Thus, the following
relationship between the expected value of the Hessian matrix and the expected
outer product of the scores holds:

−E[H(wt;βi)] = E[s(wt;βi) s(wt;βi)′],

where s(wt;βi) and H(wt;βi) are the functions defined in (8) and (9),respectively.
Regarding the local dominance of the Hessian - condition (4) -, since Λ(x′tβi)[1−
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Λ(x′tβi)] < 1, we have ||H(wt;βi)|| ≤ ||xtx′t|| for all βi. It can be shown that
E[||xtx′t||] < ∞ if E[xtx′t] is nonsingular (and hence finite). Finally, condition (5)
also requires that E[xtx′t] is nonsingular. �

Proof of Theorem 4
Under assumption A2, the joint stationarity of {yt, xt} implies the joint

stationarity of {St, xt}, given the measurability of (1). �
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