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Abstract
In the empirical literature, the analysis of aggregate productivity dynamics using firm-level
productivity has mostly been based on changes in the mean of log-productivity. This paper
shows that there can be substantial quantitative and qualitative differences in the results
relative to when the analysis is based on changes in the mean of productivity, and discusses
the circumstances under which such differences are likely to happen . We use firm-level data
for Portugal for the period 2006-2015 to illustrate the point. When the mean of productivity
is used, we estimate that TFP and labor productivity for the whole economy increased by 17.7
percent and 5.2 percent, respectively, over this period. But, when the mean of log-productivity
is used, we estimate that these two productivity measures declined by 4.3 percent and 1.8
percent, respectively. Similarly disparate results are obtained for productivity decompositions
regarding the contributions for productivity growth of surviving, entering and exiting firms.
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1. Introduction

In this paper, we show that using the arithmetic mean of firm-level log-
productivity or the arithmetic mean of firm-level productivity for analyzing
aggregate productivity dynamics, based on firm-level data, can deliver substantially
different results. These differences can occur not only in the estimation of average
productivity growth, but also in the decomposition of productivity growth into the
contributions of the different groups of firms operating in the economy (surviving,
entering, and exiting firms).

The literature studying aggregate productivity dynamics using firm-level data
usually defines firm-level productivity in logs (log-productivity) – e.g., log value
added per worker and not value added per worker. One consequence of this choice
is that the resulting aggregate measures of productivity are a weighted arithmetic
mean of log-productivity or, equivalently, the logarithm of a weighted geometric
mean of productivity (Baily et al. (1992), Griliches and Regev (1995), Foster
et al. (2001), Olley and Pakes (1996), Foster et al. (2006), Hallward-Driemeier
and Rijkers (2013), Dias et al. (2019)).

This issue may, at first sight, seem innocuous but it has some immediate
implications for the interpretation of the results. For example, the geometric mean
of value added per worker differs from the average value added per worker that
is obtained from dividing value added in the economy by the number of workers.
Thus, as Melitz and Polanec (2015) note, the arithmetic mean of firm-level log-
productivity does not directly correspond to a measure that is relevant for aggregate
welfare. In contrast, the arithmetic mean of firm-level productivity, to the extent
that it reproduces the aggregate economy’s output per unit of input, lends itself to
a direct relevant aggregate welfare interpretation. Moreover, and very importantly
for the purpose of this paper, this equality in levels ensures the equality in changes,
so that changes in the weighted arithmetic mean of firm-level productivity exactly
coincide with changes in productivity measures that are obtained from the National
Accounts aggregate data.

Despite the potential advantage, the arithmetic mean has been overlooked in
the literature, and most studies use the geometric mean.1 We conjecture that the
preference for using the geometric mean may be due to being easier to obtain
or simply because researchers see the two measures as close substitutes that are
expected to yield similar quantitative and qualitative results.

In this paper we show that using the arithmetic or the geometric mean of firm-
level productivity to study aggregate productivity can deliver both quantitatively
and qualitatively different results. Differences in the arithmetic and geometric

1. To the best of our knowledge, the single exception is the contribution by Melitz and Polanec
(2015) who, besides the usual geometric mean, also conduct the analysis based on the arithmetic
mean of productivity – this latter analysis is shown in the appendix and is not the main focus of
the their paper. In their case, despite some sizable quantitative differences, the results based on the
two alternative means deliver qualitatively similar results for aggregate productivity dynamics.
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means of firm-level productivity, stemming from Jensen’s inequality, will most likely
give rise to differences in the growth rates of the two statistics, through changes
in the moments of the firm-level log-productivity distribution. We show that the
importance and the direction of these differences depend on the correlations among
productivity levels, productivity changes, size and size changes involving surviving,
entering and exiting firms.

As an illustrative example, we use firm-level data for Portugal for the period
2006 to 2015 to compute two measures of aggregate productivity for the whole
economy and for individual sectors of economic activity. We find that, in most
cases, the arithmetic mean delivers very different results from the geometric mean,
not only for aggregate productivity dynamics, but also for the contributions of
the different types of firms operating in the economy (surviving, entering and
exiting firms). In some cases the two measures even suggest opposite productivity
developments. For instance, the arithmetic mean, for both total factor productivity
(TFP) and labor productivity, suggests that productivity for the total economy
increased between 2006 and 2015 (17.7 percent and 5.2 percent, respectively), but
the geometric mean suggests otherwise, i.e., a decrease for the two productivity
measures (-4.3 percent and -1.8 percent, respectively). In the manufacturing sector,
the contribution for total factor productivity growth of entering firms is positive
according to the geometric mean, but negative according to the arithmetic mean,
and similar opposite results are obtained for the contribution of exiting firms.

These findings cast serious doubts on the conclusions obtained in most empirical
research that investigates aggregate productivity developments and productivity
growth decompositions based on changes in the mean of log-productivity (Baily
et al. (1992), Griliches and Regev (1995), Olley and Pakes (1996), Foster et al.
(2001), Foster et al. (2006), Decker et al. (2017), Decker et al. (2018), Dias et al.
(2019)).

The rest of the paper is organized as follows: in section 2 we show analytically
what may give rise to the different results based on the arithmetic and geometric
means of firm-level productivity; in section 3 we use firm-level data from Portugal
to illustrate the problem; and in section 4 we conclude.

2. Theoretical background

In this section we show when the arithmetic and geometric means of productivity
deliver different results for aggregate productivity dynamics and provide the
intuition for why this may happen.

2.1. Jensen’s inequality and measurement of aggregate productivity
dynamics

Jensen’s inequality tells us that, in general, ln[E[X]] 6= E[ln[X]], that is, the
logarithm of the expected value of a random variable is different from the
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expected value of its logarithm. This condition may, similarly, be written as
E [X] 6= exp (E [ln [X]]). If we assume that X is a random variable that represents
firm-level productivity, an immediate implication of this result is that the mean
of firm-level productivity is not equal to the exponential of the mean of the log-
productivity at the firm level. This is equivalent to saying that the arithmetic
mean of productivity, E [X], is different from the geometric mean of productivity,
exp (E [ln [X]])).

While the arithmetic and geometric means of productivity differ, as long as both
quantities grow at the same rate the two measures will give equivalent results in
terms of productivity dynamics. An obvious question is what may make the growth
rates of the arithmetic and geometric means of productivity differ. To answer this
question we first show how the arithmetic and geometric means are related with
each other, and then discuss what can drive the difference in the growth rates of
average productivity implied by the two measures.

To link the two means, that is exp (E [ln [X]]) and E [X], we can use a Taylor
series expansion of exp (x) around E [ln [X]]. To start, let’s write the Taylor series
expansion of the exponential function – exp(x) – around a particular value of x –
x0:

exp (x) = exp (x0)

(
1 +

(x− x0)

1
+

(x− x0)2

2
+

(x− x0)3

6
+

(x− x0)4

24
+ ...

)

= exp (x0)

( ∞∑
i=0

(x− x0)i

i!

)

Based on this result, we can write productivityX and its Taylor series expansion
around E(ln[X]), as follows:

X = exp (ln [X]) = exp (E [ln [X]])

( ∞∑
i=0

(ln [X]−E [ln [X]])i

i!

)
⇒

E [X] = exp (E [ln [X]])E

[( ∞∑
i=0

(ln [X]−E [ln [X]])i

i!

)]

Using the expression above, we can write how changes in E [X] relate to
changes in E [ln[X]]:

E [Xt]

E [Xt−1]
=

exp (E [ln [Xt]])

exp (E [ln [Xt−1]])

E
[(∑∞

i=0
(ln[Xt]−E[ln[Xt]])

i

i!

)]
E
[(∑∞

i=0
(ln[Xt−1]−E[ln[Xt−1]])

i

i!

)] (1)

This expression tell us that, when moments of the distribution of log-productivity
change, the change in the arithmetic mean of productivity is different from the
change in the geometric mean. To give some intuition to this result, we consider
a 3rd order Taylor series expansion of productivity around its geometric mean. In
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this case, the formula above becomes:

E [Xt]

E [Xt−1]
≈ exp (E [ln [Xt]])

exp (E [ln [Xt−1]])

(1 + V ar[ln[Xt]]/2 + V ar[ln[Xt]]
3
2SK[ln[Xt]]/6)

(1 + V ar[ln[Xt−1]]/2 + V ar[ln[Xt−1]]
3
2SK[ln[Xt−1]]/6)

(2)
where Var and SK stand for the variance and the Pearson’s coefficient of skewness,
respectively. From equation (2), we see that changes in the distribution of log-
productivity that alter the dispersion (measured by the variance) and/or the
symmetry (measured by the skewness) of the distribution of log-productivity will
make the change in the arithmetic and geometric means of productivity different.
When the variance and/or the skewness of log-productivity increase (decrease)
the change in the geometric mean is going to underestimate (overestimate) the
change in the arithmetic mean of productivity. When the variance and skewness of
log-productivity move in opposite directions it is not possible to predict whether
changes in the geometric mean of productivity overestimate or underestimate
changes in the arithmetic mean of productivity.2

To get the intuition for why these differences may occur we now look at the
empirical definition of the arithmetic and geometric means based on firm-level
productivity, that are typically investigated in the context of aggregate productivity
measures. For ease of presentation, we start with non-weighted means and a fixed
number of firms (we assume that there is no entry and exit of firms, so that firms
operating in the economy in periods t-1 and t are the same). In the next subsection
we will tackle the general case of weighted means in the context of entry and exit
of firms.

Under these simplifying assumptions the arithmetic mean is defined as the
average of firm-level productivity:

Pt =
1

N

∑
i

Pit (3)

where Pit stands for productivity of firm i in period t, and the geometric mean
may be written as:

P ∗t =

(∏
i

Pit

) 1
N

so that its logarithm is given by:

pt =
1

N

∑
i

pit (4)

where pit = ln(Pit) and pt = ln(P ∗t ).

2. It is useful to note that the differences in average productivity growth implied by the differences
in average productivity based on the arithmetic and the geometric means can be seen as a special
case of the problems of using log-linearized models in econometrics. See Appendix A for the
econometric details.
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Our variable of interest is the growth rate of productivity, so that we focus
on βt =

Pt−Pt−1

Pt−1
in equation (3) and β∗t = ∆pt = pt − pt−1 in equation

(4). We compute changes in the geometric mean using the log approximation,
∆pt = pt − pt−1, because this is the expression used in the empirical literature to
study aggregate productivity decompositions based on firm-level data, and we are
interested in studying the implications for productivity decompositions of such an
approach.

From equations (3) and (4) we get:

βt − β∗t =
∑
i

1

N

Pi,t−1
Pt−1

αi,t −
∑
i

1

N
∆pi,t

=
1

N

∑
i

(
Pi,t−1 − Pt−1

Pt−1
)αi,t +

1

N

∑
i

(αi,t −∆pi,t)

or simply:
βt − β∗t = cov(ηi,t−1, αi,t) + (αi,t −∆pi,t) (5)

where αi,t =
Pi,t−Pi,t−1

Pi,t−1
is the firm-level productivity change, and ηi,t−1 =

Pi,t−1−Pt−1

Pt−1
, with

∑
i ηi,t−1 = 0, is the relative contribution of firm i to average

productivity in t-1.
Equation (6) shows that the difference between the rates of change of the two

means may be written as the sum of two components: i) the covariance between the
initial relative productivity levels (ηi,t−1) and the firm-level productivity changes
given by αi,t, and ii) the difference between the average of firm-level productivity
changes (αi,t) and the average of the corresponding log approximations (∆pi,t).
We note that, given the properties of the log function, this second term is always
positive (αi,t > ∆pi,t), so that it contributes positively to the difference βt − β∗t .
This contribution increases with the average of firm-level productivity changes.3
The first term, the covariance between the relative productivity levels and the
firm-level productivity changes, may be positive or negative. If positive, it adds to
the positive contribution of the second term and both contribute to a potentially
large positive difference between the aggregate productivity changes delivered by
the arithmetic and the geometric mean; if negative, it offsets the positive impact
of the second term. Thus, whether the arithmetic and the geometric means deliver
similar or very different growth rates for aggregate productivity is an empirical
matter, and depends both on the average of firm-level productivity changes and the
covariance between these firm-level productivity changes and productivity levels.
In particular, the arithmetic mean will deliver higher aggregate productivity growth
rates than the geometric mean (βt > β∗t ) if firm-level productivity changes are large

3. Suppose, for instance, that the average of firm-level productivity changes is 10% (αi,t=0.10).
The contribution of the second component for the difference βt − β∗t , will be about 0.47 p.p., which
is substantial.
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and positively correlated with productivity levels (high productivity firms displaying
higher productivity growth rates).

These results relate directly to equation (2). When productivity changes are
correlated with productivity levels, changes in productivity alter the characteristics
of the productivity distribution, namely its variance and possibly its skewness.
In particular, if productivity changes are positively (negatively) correlated with
productivity levels, changes in productivity will increase (decrease) the variance
and (possibly) the skewness of the productivity distribution.

2.2. Implications of the arithmetic and geometric means for productivity
decomposition

In order to investigate the consequences for productivity decompositions, we now
consider the general case of aggregate productivity, with time-varying weights and
number of firms. In this context, we define the arithmetic mean as the weighted
average of firm-level productivities:

Pt =
∑
i

θitPit (6)

where Pit stands for firm i productivity and the shares θit ≥ 0 sum to 1. In turn,
the weighted geometric mean is defined as:

P ∗t =
∏
i

P θitit

so that its logarithm is given by

pt =
∑
i

θitpit (7)

where pit = ln(Pit) and pt = ln(P ∗t ).
As before, our variable of interest is the growth rate of productivity, so that we

focus on Pt−Pt−1

Pt−1
in equation (7) and on ∆pt = pt− pt−1 in equation (8). As a way

of introducing the discussion on productivity decompositions, we start by focusing
on equation (8), as this is the measure of aggregate productivity investigated in
the literature.

Following Dias and Marques (2019), we use a decomposition of aggregate
productivity growth, which results from a combination of the Melitz and Polanec
(2015) and the Foster et al. (2001) decompositions. Let firms at time t be
categorized as survivors (St), entrants (Et) and exiters (Xt), and define θkt =∑
i∈k θit as the aggregate market share of category K of firms (K=St, Et, Xt).4

4. In each year, the firms operating in the economy may be classified into three types: firms that
began the activity in that year (entrants or entering firms), firms that ceased activity in that year
(exiters or exiting firms) and firms, which are active and survive to the next year (incumbents,
survivors or surviving firms).
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In the context of the geometric mean, we define the average aggregate productivity
of group K of firms as pkt =

∑
i∈k(θit/θkt)pit=

∑
i∈k µ

k
itpit, where µkit = θit/θkt,

with
∑
i∈k µ

k
it = 1, for K=St, Et, Xt. Melitz and Polanec (2015) show that we

can express aggregate productivity, given by equation (8), for periods t and t-1, as
a function of the aggregate share and aggregate productivity of surviving, entering
and exiting firms, where θi,t−1 = 0 for entrants and θi,t = 0 for exiters:

pt−1 = θs,t−1ps,t−1 + θx,t−1px,t−1 = ps,t−1 + θx,t−1(px,t−1 − ps,t−1)

pt = θs,tps,t + θe,tpe,t = ps,t + θe,t(pe,t − ps,t)

From these equations we can compute the aggregate productivity change
∆pt = pt − pt−1 in terms of the contribution of each group of firms:

∆pt = (ps,t − ps,t−1) + θe,t(pe,t − ps,t) + θx,t−1(ps,t−1 − px,t−1) (8)

The contribution of surviving firms, ps,t − ps,t−1, can be decomposed further,
and there are several possibilities. For example, Melitz and Polanec (2015) suggest
decomposing the contribution of these firms using the Olley-Pakes decomposition
(Olley and Pakes (1996)). Alternatively, we can follow an approach similar to that
of Baily et al. (1992), Griliches and Regev (1995), and Foster et al. (2001) and
re-write equation (9) as:5

∆pt =
∑
i∈S

µsi,t−1∆pi,t +
∑
i∈S

pi,t−1∆µsi,t +
∑
i∈S

∆µsi,t∆pi,t

+θe,t(pe,t − ps,t) + θx,t−1(ps,t−1 − px,t−1) (9)

The first term in this decomposition represents the so-called “within" effect, i.e., the
contribution to productivity growth of within-firm productivity changes of surviving
firms, weighted by initial market shares, µsi,t−1. The second term represents the
“between" effect, i.e., the contribution of market share reallocation to productivity
growth, weighted by the initial productivity level, pi,t−1. The third term represents
the “cross" effect (covariance type effect) and measures the extent to which firm-
level productivity changes (∆pi,t) are associated with changes in size (∆µsi,t).
Finally, the fourth and fifth terms represent the contribution of entering (“entry"
effect) and exiting firms (“exit" effect) for productivity growth, respectively.

Similarly, the change of the arithmetic mean, as given by equation (7), may be
written as:
Pt − Pt−1
Pt−1

=
Ps,t − Ps,t−1

Pt−1
+ θe,t

(Pe,t − Ps,t)
Pt−1

+ θx,t−1
(Ps,t−1 − Px,t−1)

Pt−1
(10)

5. Note that for surviving firms we have:

ps,t − ps,t−1 =
∑
i∈S

µsi,tpi,t −
∑
i∈S

µsi,t−1pi,t−1 =
∑
i∈S

µsi,t−1∆pi,t +
∑
i∈S

pi,t−1∆µsi,t +
∑
i∈S

∆µsi,t∆pi,t
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where the terms on the right hand side capture the contribution for productivity
growth of surviving, entering and exiting firms, respectively.6

Similarly to (10), equation (11) may be decomposed further in order to
distinguish the “between", “within" and “cross" effects of surviving firms:

Pt − Pt−1
Pt−1

=
∑
i∈S

µsi,t−1
Pi,t−1
Pt−1

αi,t +
∑
i∈S

Pi,t−1
Pt−1

∆µsi,t +
∑
i∈S

Pi,t−1
Pt−1

∆µsi,tαi,t

+ θe,t
(Pe,t − Ps,t)

Pt−1
+ θx,t−1

(Ps,t−1 − Px,t−1)

Pt−1
(11)

where, again, αi,t =
Pi,t−Pi,t−1

Pi,t−1
. Now, denoting Pt−Pt−1

Pt−1
= βt and ∆pt = β∗t , the

overall difference between changes in the arithmetic and the geometric means may
be written as:

βt − β∗t =
∑
i∈S

ηi,t−1µ
s
i,t−1αi,t +

∑
i∈S

µsi,t−1(αi,t −∆pi,t)

+
∑
i∈S

λi,t−1∆µsi,t

+
∑
i∈S

ηi,t−1∆µsi,tαi,t +
∑
i∈S

∆µsi,t(αi,t −∆pi,t) (12)

+ θe,t

[∑
i∈E

µei,tλi,t −
∑
i∈S

µsi,tλi,t

]

+ θx,t−1

[∑
i∈S

µsi,t−1λi,t−1 −
∑
i∈X

µxi,t−1λi,t−1

]

where ηi,t−1 =
(
Pi,t−1−Pt−1

Pt−1

)
, λi,t =

(
Pi,t

Pt−1
− ln(

Pi,t

Pt−1
)
)

and λi,t−1 =(
Pi,t−1

Pt−1
− ln(

Pi,t−1

Pt−1
)
)
.7

We can now use equation (13) to discuss the conditions under which the
two means are expected to deliver different numbers for each of the individual
contributions and thus also for aggregate productivity growth. In order to facilitate
the discussion that follows, we note that the difference for each individual
contribution (“within", “between", “cross", “entry" and “exit" effects) is recorded
in a different row of equation (13).

6. To our knowledge, this decomposition has never been used in the literature. The only
contribution addressing the decomposition of an arithmetic mean, that we are aware of, is the one by
Melitz and Polanec (2015), but the authors look at (Pt − Pt−1)/P t where P t = (Pt + Pt−1)/2.
The use of P t in the denominator, instead of Pt−1, changes the interpretation of the different
components, as part of the “within", “between", “cross" and “entry" effects is introduced in the
denominator through Pt. Thus, we stick to our definition (11) as a way of making the results as
much comparable as possible to the ones of equation (10).
7. The derivation of equation (13) uses the fact that

∑
i∈S ln(Pt−1)∆µsi,t = 0 and∑

i∈S µ
s
i,tln(Pt−1) =

∑
i∈E µ

e
i,tln(Pt−1) =

∑
i∈X µxi,tln(Pt−1) = ln(Pt−1).
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2.2.1. Differences in the contribution of surviving firms. We start the discussion
by looking at the differences in the contributions of surviving firms, regarding the
“within", “between" and “cross" effects. The difference between the contributions
of the “within" effect (first row in equation (13)) depends on the sum of two
components, which are similar to the ones presented above in equation (6) for the
simplest case: i) the correlation between the weights (ηi,t−1µsi,t−1) and firm-level
productivity changes αi,t, and ii) the weighted average of the difference between
firm-level productivity changes, measured by αi,t, and their log approximations,
∆pi,t. The second component is always positive, so that it contributes to a higher
“within" effect of the arithmetic mean.8 The first component can be positive
or negative. For instance, it will be positive if, on average, (size-adjusted) high
productivity firms (firms for which ηi,t−1µsi,t−1 is above the mean) display higher
productivity changes. Thus, as a general rule, one may expect the contribution
of the ‘within" effect to be larger under the arithmetic mean than the geometric
mean. The exception occurs only if productivity changes are negatively correlated
with productivity levels and this correlation is strong enough to offset the positive
contribution of the second component.

We note that negative or positive correlations between productivity changes
and productivity levels may be related to interesting economic situations. A
positive correlation is expected to emerge in the presence of large “superstar"
firms, i.e., when an important fraction of high productivity firms also displays
higher productivity growth. This will increase the dispersion of the productivity
distribution. In contrast, a negative correlation is expected to emerge in the
presence of a catching-up process, through which low productivity firms (usually
young firms) display higher productivity growth than high productivity firms,
leading to a concentration of the productivity distribution. In the presence of these
dynamic processes, the arithmetic and geometric means of productivity can deliver
very different results about the “within" effect.

Regarding the “between" effect (second row in the decomposition), we note
that λi,t−1 is a positive U-shaped convex function that reaches its minimum at
Pi,t−1

Pt−1
= 1, i.e., for a firm whose productivity, Pi,t−1 equals the initial mean, Pt−1.

This function increases not only when Pi,t−1 decreases (if Pi,t−1 < Pt−1), but
also when Pi,t increases (if Pi,t−1 > Pt−1). Overall, given that

∑
i∈S ∆µsit = 0,

the difference between the “between" effect as delivered by the two means will
be positive (negative) if the covariance between λi,t−1 and ∆µsit is positive
(negative). Given that λi,t−1 is large for both high and low productivity firms,
a positive (negative) covariance will emerge if increases (decreases) in size tend to
be associated with firms in the tails of the productivity distribution, prevailing in
period t-1.

8. This positive contribution will tend to be larger in the presence of a positive correlation between
the weights, µi,t−1, and the gaps, αi,t −∆pi,t, (larger firms displaying larger productivity changes,
on average). This component also increases with firm-level productivity changes: the difference,
αi,t − ∆pi,t, which is always positive, increases with αi,t.



11 From Micro to Macro: Analysis of Aggregate Productivity Dynamics

Regarding the “cross" term, the difference between the two means (third row
of equation (13)) stems from the fact that αi,t > ∆pi,t and, in general, ηi,t−1 6= 0.
Whether this difference is large (positive or negative) depends on the sign and
magnitude of the correlation involving ηi,t−1 and ∆µsi,tαi,t on the one side, and
the covariance between ∆µsi,t and (αi,t −∆pi,t), on the other.

Some authors do not separate the “between" and “cross" effects (see, for
instance, Baily et al. (1992)). The sum of these two terms has an interesting
interpretation on its own: it measures the contribution for aggregate productivity
growth of resource reallocation involving surviving firms. If we aggregate these two
terms, we get

∑
i∈S λi,t∆µ

s
i,t for the difference between the two means, which is

just the covariance between λi,t and ∆µsi,t. In particular, the difference between
the “between" plus “cross" effects in the two means will be positive if increases
in size, (∆µsi,t > 0), tend to be associated with very high or very low productivity
firms, i.e., firms in the tails of the productivity distribution, prevailing in period t.

In summary, the differences between changes in the two means regarding
surviving firms stem from two sources: i) the difference between firm-level
productivity changes, measured by αi,t, and their log approximations, ∆pi,t (which
is always positive) and ii) the correlations involving productivity changes, firm’s size
changes and productivity levels. In particular, changes in aggregate productivity
generated by the arithmetic mean will be bigger than changes generated by the
geometric mean if firm-level productivity changes and firm’s size changes are
positively correlated with firm-level productivity.

2.2.2. Differences in the contributions of entering and exiting firms. We now look
at the contributions of entering and exiting firms. From equation (13), we conclude
that the difference between the contributions of the arithmetic and geometric
means for the “entry" effect is positive if

∑
i∈E µ

e
i,tλi,t >

∑
i∈S µ

s
i,tλi,t. It is

easy to show that
∑
i∈E µ

e
i,tλi,t = Ne,t.cov(µei,t, λi,t) + λe,t where Ne,t is the

number of entering firms and λe,t is the mean of λi,t for entering firms. Using
a similar expression for surviving firms, we conclude that the condition above
holds if cov(µei,t, λi,t) >

Ns,t

Ne,t
.cov(µsi,t, λi,t) + 1

Ne,t
(λs,t − λe,t). Thus, the larger

cov(µei,t, λi,t) and λe,t, the higher the probability for the contribution of entering
firms generated by the arithmetic mean to be larger than the contribution generated
by the geometric mean.9

In turn, the difference between the contributions of the arithmetic and geometric
means for the “exit" effect is positive if

∑
i∈X µ

x
i,t−1λi,t−1 <

∑
i∈S µ

s
i,t−1λi,t−1.

Similarly to the “entry" effect, this condition for “exit" may be written as
cov(µxi,t−1, λi,t−1)<

Ns,t−1

Nx,t−1
.cov(µsi,t−1, λi,t−1) + 1

Nx,t−1
(λs,t−1−λx,t−1), so that

9. Because λi,t is a positive U-shaped convex function, a large positive covariance between size,
µi,t, and λi,t will be obtained if size and productivity are either positively or negatively correlated.
In turn, a large λe,t will be obtained if productivity of entering firms is largely above or largely
below Pt−1, the initial average aggregate productivity.
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the smaller cov(µxi,t−1, λi,t−1) and λx,t−1, the larger the probability for the for the
contribution of exiting firms generated by the arithmetic mean to be larger than
the contribution generated by the geometric mean.

In summary, the differences between the arithmetic and geometric means
regarding the contributions for productivity growth of entering and exiting firms
depend on the strength of the correlations between size and productivity of entering
and exiting firms, on the one side, and surviving firms, on the other.

3. Empirical evidence

To show how the arithmetic and geometric means can yield very different results
in the analysis of aggregate productivity dynamics, we compute two measures of
productivity commonly used in the literature: a labor productivity measure defined
on value added, and a total factor productivity measure (TFP) defined on gross
output. More specifically, the labor productivity measure is defined as the ratio of
real value added to employment (number of employees) at the firm-level, while
TFP is computed from a three input Cobb-Douglas production function defined on
real gross output.10

To get sector-level or economy-wide average productivity measures, we need to
choose the weights, θit, to be used in equations (7) and (8). When aggregating
labor productivity measures, employment or hours worked emerge as natural choices
as they allow reproducing exactly average productivity that we get from aggregate
sector data, i.e., dividing sector-level output by sector-level employment (or total
hours worked).11 When aggregating firm-level TFP two distinct types of weights
have been used by the literature: the gross-output or value-added shares (Baily
et al. (1992), Foster et al. (2001), Olley and Pakes (1996), Griffin and Odaki
(2009), Hallward-Driemeier and Rijkers (2013), Melitz and Polanec (2015)) and
the composite-input shares (Liu and Tybout (1996) and Bartelsman and Dhrymes
(1998)). In this paper, firm-level productivities are aggregated at the sectoral
or total economy level using, as weights, the shares of employment for labor
productivity and the log of the composite input for TFP.12

10. The production functions are estimated at the industry level using the Levinsohn-Petrin
estimator (see Levinsohn and Petrin (2003)), to account for the endogeneity of the regressors.
11. Nevertheless, gross output and gross value added have also been used as weights to obtain
aggregate measures of labor productivity (see Foster et al. (2001), Griffin and Odaki (2009),
Hallward-Driemeier and Rijkers (2013)).
12. The composite input is defined as a geometric mean of inputs using estimated factor
elasticities. The use of the log transformation is used as an alternative to trimming and winsorizing
do deal with outliers in the composite input. See Dias et al. (2019), Appendix B, for a discussion.
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3.1. The data

To compute firm-level productivity measures, we use data that draw on annual
information for Portuguese firms reported under the Informação Empresarial
Simplificada (IES), covering the period 2006 to 2015. The IES dataset has data
since 2006 and covers virtually the universe of Portuguese non-financial firms. The
data provide very detailed information on the firms’ balance sheets and income
statements. From this dataset, we get information on firm’s gross output, value
added, consumption of intermediate inputs, labor costs, employment, gross fixed
capital formation, capital depreciations, and the book values of the capital stock.

Before using the data, we clean the dataset by dropping firms that do not report
strictly positive figures for gross output (production), labor costs, employment,
capital stock, intermediate consumption and value added. After cleaning the data,
we are left with a number of firms that varies between 240,030 in 2006 and 247,575
in 2015.

Table 1 records the relative importance of the main sectors of activity in our
dataset (agriculture, manufacturing, construction, utilities and services) in terms
of gross output (GO), gross value added (GVA) and employment (Emp). Note the
small contribution of agriculture for total employment and value added (around 2
percent), while manufacturing contributes around 25 percent and the service sector
around 60 percent.13 Table 1 also distinguishes between tradable and nontradable
services.14 Tradable services contribute about 12 percent to total value added and
correspond to about 20 percent of the service sector.

To obtain estimates for real gross output, real value added and real
intermediate consumption, we use industry-level price indices. The price indices
for the manufacturing sector were built with information from the disaggregated
manufacturing production price index, obtained from the Instituto Nacional de
Estatística (Statistics Portugal). For the non-manufacturing industries, for which
no price index was available, we used alternative deflators depending on the type
of industry (disaggregated items of the consumer price index and the investment
goods deflator). In order to compute the real stock of capital, we used the perpetual
inventory method, with a special adjustment factor for the first year of the sample
(2006). This approach is similar to that used by Foster et al. (2016) and the details
of the procedure can be found in Dias and Marques (2019).

13. According to information from the National Accounts, in 2010, agriculture, manufacturing,
construction, utilities and services contribute 2.3, 13.8, 6.2, 3.9 and 73.8 percent for aggregate GDP,
respectively. Thus, if anything, our dataset appears to be slightly skewed towards manufacturing
and against the service sector. We note, however, that in contrast to the National Accounts, services
in our dataset do not include information of the government sector, the financial sector and self-
employment.
14. The distinction among tradable and nontradable industries follows Amador and Soares (2012).
They define as tradable the industries for which the export to sales ratio is above 15 percent, along
with all the manufacturing industries.
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2006 2010 2015
GO GVA Emp. GO GVA Emp. GO GVA Emp.

Agric. 2.0 2.1 2.1 2.1 1.9 2.2 2.5 2.2 2.6
Manuf. 32.9 25.6 27.9 31.5 23.1 24.0 34.8 25.1 24.4
Const. 15.0 11.5 13.2 13.9 10.3 12.4 7.6 7.0 8.7
Utilities 3.3 4.4 0.4 2.7 4.0 0.4 6.4 4.4 0.5
Services 46.8 56.4 56.3 49.9 60.6 61.0 48.6 61.4 63.8

T. serv. 10.3 10.3 8.8 11.8 12.1 9.9 12.4 13.4 10.7
NT. serv. 36.6 46.2 47.5 38.1 48.5 51.2 36.3 48.0 53.1

Table 1. Relative importance of each sector in the dataset (Percentage)
Note: Agriculture also includes forestry, fishing, mining and quarrying; the utilities sector includes
electricity, gas and water services.

The dataset also includes information on the firm’s main industry of operation
based on NACE classification (Rev. 2.1 and Rev. 3) both at 3- and 5-digit
disaggregation level. However, the exercises in our paper are conducted with
industries defined at the 3-digit NACE code (Rev. 2.1) because we do not have
information on prices at a higher disaggregation level, and also because the number
of firms at a 5-digit classification will be very small for many industries, making
it impossible to estimate the corresponding production functions. After dropping
industries with less than 10 firms (to avoid estimation problems), we are left with
202 industries defined at the 3-digit NACE code classification - 16 for agriculture
(including forestry, fishing, mining and quarrying), 101 for manufacturing and 85
for services (including construction and utilities).

3.2. Productivity changes based on the arithmetic and geometric means

Figures 1, 2 and 3 compare the arithmetic and geometric means for the two
productivity measures - labor productivity and TFP - for the total economy and
some sectors of activity (agriculture, manufacturing, tradable and nontradable
services). In turn, Table 2 records the productivity growth rates of these two
productivity measures for the full sample period (2006-2015).

Our results show that, for most cases, the arithmetic and geometric means
deliver substantially different results about aggregate productivity dynamics in
Portugal. The only exception is labor productivity for agriculture, where the two
means suggest a similar growth rate for the full period and not very different
dynamics (Figure 2). In all other cases, the arithmetic and the geometric means
deliver very different productivity growth rates for the full sample period, as well
as very different time profiles for productivity dynamics. With the exception of
agriculture, the geometric mean delivers much lower productivity growth rates than
the arithmetic mean.



15 From Micro to Macro: Analysis of Aggregate Productivity Dynamics

Tradable Nontradable Total
Agriculture Manufacturing Services Services Economy

Labor productivity:
Arithmetic -11.9 20.2 -11.7 4.0 5.4
Geometric -12.4 16.5 -29.7 -3.0 -1.8

TFP:
Arithmetic 4.5 16.7 28.6 8.9 18.0
Geometric 9.5 7.1 8.9 -5.3 -4.3

Table 2. Productivity growth (2006-2015): (Arithmetic vs. geometric mean (Percentage))
Note: Agriculture also includes forestry, fishing, mining and quarrying; total economy also includes
construction, but excludes the utilities sector (electricity, gas and water services)
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Figure 1: Labor productivity and TFP: Arithmetic vs. geometric means

In some cases the two measures even suggest opposite productivity
developments. According to Figure 1 and Table 2 the arithmetic mean for both
labor productivity and TFP, suggests that productivity increased over time for the
total economy (5.4 percent and 18.8 percent, respectively), but the geometric
mean suggests otherwise, i.e., a decrease for the two productivity measures (-1.8
percent and -4.3 percent, respectively). These accumulated changes imply large
differences in the average annual growth rates between the arithmetic and the
geometric means: 1.9 percent against -0.5 percent in case of TFP, and 0.6 percent
against -0.2 percent in case of labor productivity. Large quantitative differences are
also detected for some of the activity sectors, such as tradable and nontradable
services.

Overall, the evidence in this section shows that the geometric and the arithmetic
means, in the case of Portuguese data, give rise to very different messages regarding
aggregate and sector level productivity developments.

In section 2 we showed that the difference between the estimates of aggregate
productivity growth based on the arithmetic and the geometric means of firm-level
productivity are the result of systematic changes in the distribution of firm-level
productivity. To see how much of the differences in the results based on the two
means can be explained by changes in the variance and skewness of the distribution
of firm-level log-productivity, we calculate these two statistics at the beginning
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Figure 2: Labor productivity: Arithmetic vs. geometric mean
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Figure 3: TFP: Arithmetic vs. geometric mean

(2006) and at the end (2015) of the sample period, and use these numbers to
calculate the second term on the right-hand-side of equation (2). By dividing the
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second term on the right-hand-side of this equation by the total difference in the
growth rate, we get an estimate of how much of the difference between the results
based on the arithmetic and geometric means can be explained by changes in the
variance and skewness of the distribution of firm-level log-productivity. The results
of this exercise are shown in Table 3. The values in columns (5) and (6) can be
interpreted as the share of the difference between the arithmetic and the geometric
means that can be attributed to changes in the variance or in the variance and
skewness of the firm-level log-productivity distribution, respectively.15

changes changes in explained explained
Observed in variance by by variance
Difference variance and skewness variance and skewness

(1) (2) (3) (4) (5) (6)
Labor Productivity

Agriculture 0.990 1.080 1.018 -7.611 -1.764
Manufacturing 1.034 1.031 1.016 0.914 0.482
Tradable Serv. 1.185 1.085 1.105 0.461 0.567
Nontradable Serv. 1.071 1.072 1.044 1.017 0.614
Total economy 1.073 1.065 1.042 0.892 0.576

TFP
Agriculture 0.949 0.960 0.958 0.790 0.829
Manufacturing 1.102 0.990 1.053 -0.095 0.523
Tradable Serv. 1.194 1.094 1.136 0.483 0.702
Nontradable Serv. 1.147 1.036 1.079 0.244 0.538
Total economy 1.246 1.028 1.092 0.115 0.373

Table 3. Differences between the arithmetic and geometric mean (2006-2015)
(Contributions of changes in variance and skewness)
Note: Numbers in column (2) are the ratio between productivity growth based on the arithmetic
and the geometric means over the full sample period. See footnote (14). The second and third
columns show the second term on the right-hand-side of equation (2) with just the variance term
(column (3)) or with both the variance and the skewness terms (column (4)). Columns (5) and (6)
show the ratios of columns (3) and (4) to column (2), respectively.

For labor productivity, the results in Table 3 show that changes in the variance
and skewness of the (size-weighted) log-productivity distribution account, on
average, for more than 50 percent of the difference in the growth rates of the
arithmetic and geometric means. The differences in the two means are, in most
cases, the result of an increase in the variance combined with a decline in the
skewness of the log labor-productivity distribution. The two results together -
increase in the variance and decline in skewness - suggest that the difference

15. Column (2) of Table 3 is obtained from equation (2) and corresponds to the ratio
E[Xt]

E[Xt−r]
/

exp(E[lnXt])
exp(E[lnXt−r])

=(1 + β)/(exp(β∗), where β and β∗ stand for the growth rate of the
arithmetic and geometric means, respectively, over the full sample period, (t=2015 and t-r=2006).
Column (5) is obtained as [column (3)-1]/[column (2)-1]. Similarly for column (6).
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between the most and the least (size-weighted) productive firms in Portugal
increased, but that the difference was made larger by the least productive firms
becoming less productive.

Turning now to TFP, Table 3 shows that changes in the variance and skewness
of the log-TFP distribution also account for an important part of the difference
in the growth rates of the arithmetic and geometric means. The differences in the
two means are now the result of an increase both in the variance and the skewness
of the (size-weighted) log-TFP distribution. For the non-tradable service sector
and the tradable service sector, the importance of changes in the variance and
the skewness are about equal. For these sectors, both the variance and skewness
increased between 2006 and 2015, and together they explain between 54 percent
and 70 percent of the difference between the estimates of average productivity
growth based on the arithmetic and geometric means. For manufacturing, most of
the difference between the average productivity growth based on the arithmetic and
the geometric means is explained by changes in the skewness of firm-level log-TFP.

Correlations involving size and productivity levels, on the one side, and size
and productivity changes, on the other, determine how the variance and skewness
of the log productivity distributions evolve over time, as firm-size and firm-level
productivity change. An interesting result that emerges from Table 3 is that, in
general, there seems to have been an increase in the variance of both the log-
TFP and log labor-productivity distributions but, while the skewness of the log
TFP distribution increased, the skewness of the log labor-productivity distribution
declined. These results suggest that levels and changes of (size-weighted) log-TFP
and log labor-productivity at the firm-level are not perfectly correlated, so that it is
possible for the moments of the two distributions to evolve in different directions.
This can also be inferred from Table 2 (as well as from Tables 3.3 and 5 below),
which shows that productivity growth and productivity decompositions delivered
by the geometric mean for the two productivity measures (labor productivity and
TFP) differ sometimes considerably from each other.

3.3. Consequences for productivity decompositions

We now investigate the extent to which the differences between the arithmetic
and the geometric means have large implications for the type of productivity
decompositions, discussed in subsection 2.2.

Tables 3.3 and 5 record the contributions for accumulated productivity growth
of surviving, entering and exiting firms, as delivered by the arithmetic and geometric
means for the two productivity measures. Numbers for the “within", “between"
and the “cross" components are also shown. To make the interpretation easier, the
tables also include the differences between the contributions delivered by the two
statistics.

As could be expected, given the evidence in the previous subsection, the tables
show that conclusions about the relative importance of the contributions of the
three types of firms differ, sometimes substantially, depending on whether one looks
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at the arithmetic or the geometric mean. For instance, the results for aggregate TFP
in Table 5 show that the contribution of surviving firms for aggregate productivity
growth using the arithmetic mean is positive and very large (15.0 pp), but small
and negative (-0.5 pp) when the geometric mean is used. Of course, these different
aggregate contributions of surviving firms reflect different contributions of the
“within" (23.3 pp of the arithmetic mean against 3.1 pp of the geometric mean),
“between" (14.0 pp against 4.7 pp) and “cross" effects (-22.3 pp against -8.3 pp).

Large differences in these effects also appear at the sectoral level. For instance,
with the exception of agriculture, for all the other cases the “within" effect of the
arithmetic mean is larger than that of the geometric mean. There are cases in
which the differences are not only quantitatively but also qualitatively different.
For tradable services the arithmetic mean suggests that the contribution of the
“within" effect over the 2006-2015 period was large and positive (18.8 pp for
labor productivity and 32.1 pp for TFP), but the geometric mean suggests a large
negative contribution (-16.7 pp and -9.1 pp, respectively). The fact that the “within
effect" of the arithmetic mean is higher than that of the geometric mean is in line
with the general rule derived in subsection 2.2, according to which one should
expected the “within" effect to be larger under the arithmetic mean, except if
productivity changes are strongly negatively correlated with productivity levels.
This condition is met only by agriculture. In our data the first term of the “within"
effect in equation (13) is always negative (which implies a negative correlation
between productivity changes and size-weighted productivity levels), but with the
exception of agriculture, is not big enough to offset the contribution coming from
the second term, which, as shown above, is always positive.

Regarding the “between" effect, we see from Tables 3.3 and 5 that the difference
in the contributions of the arithmetic and the geometric mean is always positive,
with the exception of labor productivity for agriculture (which is negative, but
small). In the case of TFP, the contributions delivered by the arithmetic mean are,
on average, more than twice as large the contributions of the geometric mean.
According to the discussion in subsection 2.2, these results suggest that (with the
exception of agriculture) increases in size were mostly associated with either low
or high productivity firms, i.e., firms in the tails of the productivity distribution.

In turn, the difference in the “cross" effects is usually negative and very large,
i.e., the contributions of the “cross" effect delivered by the arithmetic mean are
much lower than the contributions recorded by the geometric mean (again with
the exception of labor productivity in agriculture). In our dataset this negative
difference is the result of positive contribution coming from the first term in
equation (13), which is more than offset by the negative contribution of the
second term. The fact that this second term is negative shows that, in the case of
Portugal, larger productivity changes tend to be associated with larger negative size
changes. Given that in these type of decompositions there is usually, in empirical
terms, an offsetting effect of the “between" and “cross" terms, it might be more
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Survivors Net Total Total
Sectors Within Between cross Total Entry Exit entry reallocation change

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)=(5)+(8)
Agriculture

Arithmetic 21.1 19.5 -45.5 -4.8 -21.6 14.6 -7.0 -33.0 -11.9
Geometric 33.7 21.1 -55.0 -0.1 -31.1 18.9 -12.2 -46.1 -12.4
Difference -12.6 -1.6 9.5 -4.7 9.5 -4.3 5.2 13.1 0.5

Manufacturing
Arithmetic 21.4 12.4 -20.3 13.4 -6.4 13.2 6.8 -1.1 20.2
Geometric 12.7 10.0 -12.0 10.8 -12.2 17.9 5.7 3.7 16.5
Difference 8.7 2.4 -8.3 2.6 5.8 -4.7 1.1 -4.8 3.7

Tradable services
Arithmetic 18.8 70.5 -103.7 -14.4 7.3 -4.5 2.8 -30.4 -11.7
Geometric -16.7 29.6 -43.8 -30.9 -16.5 17.8 1.3 -12.9 -29.7
Difference 35.5 40.9 -59.9 16.5 23.8 -22.3 1.5 -17.5 18.0

Nontradable services
Arithmetic 34.1 15.8 -40.5 9.3 -12.3 7.0 -5.3 -30.0 4.0
Geometric 19.6 12.5 -31.6 0.4 -21.7 18.3 -3.4 -22.5 -3.0
Difference 14.5 3.3 -8.9 8.9 9.4 -11.3 -1.9 -7.5 7.0

Total economy
Arithmetic 27.3 23.4 -44.7 6.0 -9.0 8.4 -0.6 -21.9 5.4
Geometric 12.7 14.5 -28.6 -1.4 -19.6 19.3 -0.3 -14.4 -1.8
Difference 14.6 8.9 -16.1 7.4 10.6 -10.9 -0.3 -7.5 7.2

Table 4. Labor productivity decomposition (accumulated contributions 2006-2015)
Note: Total economy also includes construction, but excludes electricity, gas and water services.
Net entry is the sum of columns (6) and (7). Total reallocation is the sum of columns (3), (4) and
(8).

Survivors Net Total Total
Sectors Within Between cross Total Entry Exit entry reallocation change

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)=(5)+(8)
Agriculture

Arithmetic 4.3 17.4 -19.0 2.7 5.8 -4.0 1.8 0.2 4.5
Geometric 4.7 2.5 -2.4 4.8 2.9 1.8 4.7 4.8 9.5
Difference -0.4 14.9 -16.6 -2.1 2.9 -5.8 -2.9 -4.6 -5.0

Manufacturing
Arithmetic 24.7 10.9 -19.8 15.8 -7.6 8.5 0.9 -8.0 16.7
Geometric 6.7 9.4 -11.4 4.7 8.9 -6.6 2.3 0.3 7.1
Difference 18.0 1.5 -8.4 11.1 -16.5 15.1 -1.4 -8.3 9.6

Tradable services
Arithmetic 32.1 13.8 -21.3 24.6 -53.3 57.3 4.0 -3.5 28.6
Geometric -9.1 2.6 -3.2 -9.7 14.3 4.3 18.6 18.0 8.9
Difference 41.2 11.2 -18.1 34.3 -67.6 53.0 -14.6 -21.5 19.7

Nontradable services
Arithmetic 20.5 17.1 -26.5 11.2 -20.0 17.7 -2.3 -11.7 8.9
Geometric 7.2 6.4 -10.6 3.0 -26.8 18.6 -8.2 -12.4 -5.3
Difference 13.3 10.7 -15.9 8.2 6.8 -0.9 5.9 0.7 14.2

Total economy
Arithmetic 23.3 14.0 -22.3 15.0 -33.1 36.1 3.0 -5.3 18.0
Geometric 3.1 4.7 -8.3 -0.5 -11.4 7.6 -3.8 -7.4 -4.3
Difference 20.2 9.3 -14.0 15.5 -21.7 28.5 6.8 2.1 22.3

Table 5. TFP decomposition (accumulated contributions 2006-2015)
Note: Total economy also includes construction, but excludes electricity, gas and water services.Net
entry is the sum of columns (6) and (7). Total reallocation is the sum of columns (3), (4) and (8).
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interesting to look at the sum of these two contributions.16 If we take the sum of
the “between" and “cross" effect, which can be interpreted as a measure of resource
reallocation among surviving firms (sum of columns (3) and (4) in Tables 3.3 and
5), we conclude that, with the exception of labor productivity for agriculture, the
contribution of resource reallocation for productivity growth is lower under the
arithmetic mean. According to subsection 2.2, this result stems from a negative
covariance between changes in size (∆µsi,t) and λi,t. Overall, for surviving firms,
the arithmetic mean suggests a larger contribution of the “within" effect, but a
lower contribution of “resource reallocation", than the geometric mean.

Now, if we look at the contributions of entering and exiting firms, we conclude
that they also differ between the two means. For instance, in the case of labor
productivity the contribution of entry delivered by the arithmetic mean is always
larger than that of the geometric mean but, with the exception of agriculture
and nontradable services, the opposite holds for TFP (Table 5).17 Also, for labor
productivity the contribution of exiting firms is always lower under the arithmetic
mean. In some cases, the two means even suggest contributions with opposite
signs regarding entering and exiting. This is the case of tradable services for labor
productivity and of manufacturing for TFP. In particular, Figure 4, which records
the accumulated contributions over time of entry and exit for TFP growth in
manufacturing, shows that the contributions of entry are systematically negative,
according to the arithmetic mean, but systematically positive, according to the
geometric mean. Taken at face value, these results imply that entering firms are
less productive than surviving firms according to the arithmetic mean, but more
productive than surviving firms according to the geometric mean (see equations
(10) and (11)). A similar situation occurs with the exiting firms. These firms emerge
as less productive than surviving firms according to the arithmetic mean, but more
productive than surviving firms, according to the geometric mean.

Finally, we look at the “net entry" contribution in column (8) and “total
reallocation" in column (9) of Tables 3.3 and 5. Even though these aggregate
contributions tend to mitigate the differences between the two statistics, some
quantitative and qualitative differences are still observable. In the case of TFP,
we see that for the total economy the accumulated contribution of “net entry" is
positive according to the arithmetic mean (3.0 pp), but negative according to the
geometric mean (-3.8 pp). Similarly, for tradable services and manufacturing the

16. This offsetting effect is consistent with the view that idiosyncratic productivity shocks induce
changes in size and that changes in size, in turn, induce productivity changes, given decreasing
within-firm returns. The negative cross term is also consistent with the idea that downsizing may
be productivity enhancing.
17. Note that the arithmetic and the geometric means deliver similar aggregate dynamics for
labor productivity in agriculture, but the contributions of some of the components, like the “within"
effect, the “entry" effect or "total reallocation" are very different. These results show that even
similar aggregate productivity growth rates of the two means may hide very different productivity
decompositions.
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Figure 4: Manufacturing (TFP): Entry and Exit

contribution of “total reallocation" is negative according to the arithmetic mean,
but positive according to the geometric mean.

In summary, the evidence in this section shows that in the case of Portugal
the use of the arithmetic or the geometric mean leads to substantially different
conclusions regarding aggregate productivity dynamics and productivity growth
decompositions, casting serious doubts on the conclusions obtained so far in the
empirical literature, which have been based almost exclusively on the use of the
geometric mean.

4. Conclusions

This paper investigates the use of the arithmetic or the geometric means of
firm-level productivity to study aggregate productivity dynamics. We establish the
conditions under which the two means are expected to yield different outcomes,
and show that the commonly used methods to decompose productivity growth,
such as those proposed in Baily et al. (1992), Griliches and Regev (1995), Olley
and Pakes (1996), Foster et al. (2001) and Melitz and Polanec (2015), can deliver
substantially different results regarding productivity decompositions, when using
one or the other statistic. These findings cast serious doubts on the conclusions
obtained so far in the literature, which has made an extensive use of the geometric
mean, and raise the question of which statistic to use in empirical applications.

Based on the evidence documented in this paper, we suggest using the
arithmetic mean whenever the analysis is based on labor productivity, measured
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by either the value added or gross output per worker, with employment shares or
hours worked used as weights. The arithmetic mean has an immediate counterpart
to the aggregate measure of labor productivity, so that their changes match the
changes in labor productivity that can be computed from the National Accounts
aggregate data.

In the case of TFP, the choice between the two means is much less obvious as
it may depend on the researchers preferences and questions being addressed. Under
these circumstances, we suggest that researchers compute both the arithmetic and
the geometric mean, as a robustness test, and, if differences are large, use the
results in this paper to investigate the sources of such differences. Looking at
changes in the moments of the firm-level log-productivity distribution, or at the
correlations between productivity levels, size and productivity changes involving
surviving, entering and exiting firms, will allow identifying the possible sources of the
differences between the two statistics. These might well be related to economically
important situations, such as the presence of catching-up processes (small and
low productivity firms displaying higher productivity growth) or of large and high
productivity “superstar" firms.
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Appendix A: The econometrics of the arithmetic and the geometric means

In this Appendix we show that the differences in average productivity growth implied
by the differences in average productivity based on the arithmetic and the geometric
means can be seen as a special case of the problems of using log-linearized models
in econometrics.

Let us assume that we have information on firm-level productivities for T+1
time periods (t=0,1,2,...T). As shown by Santos Silva and Tenreyro (2006), the
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arithmetic averages for each time period can be calculated by estimating by pseudo-
Poisson maximum likelihood (PPML) the equation:

Pit = exp(α+
T∑
j=1

γj ∗ Ij)εit (A1)

and the geometric averages can be calculated by estimating by OLS the following
equation

ln(Pit) = α+
T∑
j=1

γj ∗ Ij + ln(εit). (A2)

where Ij is an indicator variable that takes the value 1 if t = j and 0 otherwise
(j=1,2,..T).

From these equations, the cumulative change in average aggregate productivity
between periods t and 0 based on the arithmetic mean is given by exp(γ̂tPPML),
while the cumulative change in average aggregate productivity between periods t
and 0 based on the geometric mean is given by exp(γ̂tOLS).

Importantly, as shown in Santos Silva and Tenreyro (2006), if the error term εit
is not i.i.d., the estimates of α and γj based on OLS and PPML will be different,
and those based on OLS will be biased while those based on PPML will not.
Because the assumption of i.i.d. error terms will be violated if 2nd – or higher-
order moments – of the distribution of log-productivity are not constant over time,
it is very likely that the analysis of productivity dynamics based on the arithmetic
and the geometric means of productivity will lead to different conclusions.
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