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Abstract
This paper introduces a simple and easy to implement procedure to test for changes
in persistence. The time-varying parameter that characterizes persistence changes under
the alternative hypothesis is approximated by a parsimonious cosine function. The new
test procedure is the minimum of a t-statistic, computed from a test regression that
considers a set of reasonable values for a frequency term that is used to evaluate the
time varying properties of persistence. The asymptotic distributions of the new tests are
derived and critical values are provided. An indepth Monte Carlo analysis shows that the
new procedure has important power gains when compared to the local GLS de-trended
Dickey-Fuller (DFGLS) type tests introduced by Elliott et al. (1996) under various
data generating processes with persistence changes. Moreover, an empirical application
to OECD countries’ inflation series shows that for most countries analysed persistence
was high in the first half of the sample and subsequently decreased. These results
are compatible with modern macroeconomic theories that point to changes in inflation
behavior in the early 1980s and also with recent empirical evidence against the I(1)-I(0)
dichotomy.
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1. Introduction

Since the seminal work of Nelson and Plosser (1982), a large number of
procedures have been developed to infer whether the empirical evidence of
nonstationarity of economic and financial variables is due to the lack of
flexibility of the linear AR model specifications typically considered. Given that
structural breaks and nonlinear dynamics are data features that may occur in
practice, the assumption that parameters are constant over the whole sample
may be restrictive.

The presence of structural breaks in the data is a consequence of, among
other things, the occurrence of exogenous shocks, such as crises or policy
decisions, which may have permanent effects on the variables’ dynamics. For
instance, Perron (1989) showed that the Great Crash of 1929 caused a dramatic
decrease in the mean of most aggregate variables of the US economy and further
suggested the 1973 oil price shock as a possible cause of changes in the slope
of the trend function responsible for the subsequent slowdown of the output’s
growth rate. Garcia and Perron (1996) reported that the average value of real
interest rates suffered two breaks as a consequence of important structural
events: the rise in oil prices in 1973, and the high budget deficits in 1981 and
1982. Regarding inflation dynamics, changes in monetary policy, which reflect
the evolving preferences for price stability over time, seem to have affected
parameter constancy in linear models. Chang et al. (2013) and Chen and Hsu
(2016), inter alia, presented results pointing to the occurrence of structural
breaks in the deterministic component of inflation. Levin and Piger (2003)
and Beechey and Österholm (2012) proposed methodologies which allow for
the assessment of whether shifts in monetary policy caused changes in the
autoregressive parameter. Moreover, Leybourne et al. (1998) proposed unit
root tests that consider the possibility of a gradually rather than abrupt break
in the deterministic structure using LSTAR models; and Enders and Granger
(1998) and Kapetanios et al. (2003) developed unit root tests that consider
nonlinear models under the alternative hypothesis of stationarity, allowing for
adjustments to deviations from the deterministic component to be asymmetric.

A widely used approach to shed light on the nature of inflation persistence
is to empirically assess the order of integration of the inflation rate series (see,
for instance, Evans and Wachtel 1993, Culver and Papell 1997, and Crowder
and Wohar 1999). However, as mentioned above, the finite sample power
performance of traditional unit root tests is far from being satisfactory when
the coefficients of linear AR models change. This has led to the development
of tests that allow for breaks in the deterministic kernel of the process. Recent
unit root tests allow the breaks to be endogenously estimated along with the
other parameters of the model, however it is not easy to deal with more than
two breaks, since it is complex to derive the asymptotic distributions and to
obtain critical values for different combinations of breaks (see Perron, 2005,
for an interesting survey). However, many procedures consider that structural
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changes occur instantaneously, which may not be consistent with the fact that
changes in economic aggregates are influenced by changes in the behavior of
a very large number of agents that may not react simultaneously to a given
shock.

Enders and Lee (2012a) and Rodrigues and Taylor (2012) proposed tests
that do not require assumptions about the number of breaks and their exact
forms. To this end, Fourier terms have been used to approximate structural
changes of unknown functional forms in the deterministic component and,
thus, reducing the specification problem to the selection of the appropriate
frequency components of the Fourier approximation. Since structural breaks
shift the spectral density function towards the zero frequency, low-frequency
terms must be employed. A small number of low-frequency terms can capture
a great variety of breaks, sometimes even a single frequency is sufficient.

A lot of research has been devoted to the analysis of the interplay between
structural changes in the deterministic components and unit roots. However,
to the best of our knowledge, work on unit root tests that allow for changes
in the autoregressive parameter under the alternative hypothesis is scant (see
e.g. Caner and Hansen 2001). The extant literature on testing for changes in
the persistence of a time series has in general given priority to processes that
switch from stationarity to nonstationarity and vice-versa. Most of the available
statistics are related to the residual-based test for stationarity proposed by Kim
(2000) (see, for instance, Busetti and Taylor 2004 and Harvey et al. 2006). These
tests are based on a ratio that uses two partial sum processes of the residuals
from regressions of the time series of interest on its deterministic component
before and after a given break date. Since the break date is typically unknown,
statistics based on the value of the ratio for all possible break dates, such as
the maximum Chow-type test, were considered. Harvey et al. (2006) showed
that existing tests were unable to adequately distinguish between a change in
persistence and a constant I(1) process. They proposed modified versions of the
ratio based statistics of Kim (2000) that have the same critical values regardless
of the order of integration. Thus, the null hypothesis is that of constant I(0)
or I(1) persistence and the alternative is that of a change in persistence from
I(0) to I(1), from I(1) to I(0) or of unknown direction.

In this paper, the focus is to investigate if changes in the autoregressive
parameter may have been responsible for the occurrence of periods in which
inflation displayed higher persistence. To this end, we propose an easy
to implement approach. The procedure is compared, using Monte Carlo
simulations, to the local GLS de-trended unit root tests of Elliott et al. (1996)
for several types of breaks in persistence. In addition to processes in which the
breaks in the autoregressive parameter are approximated by a cosine function,
we also investigate the finite sample performance of the tests when abrupt
changes at different timings occur.

The simulation results show that the new statistics reject the false null
hypothesis significantly more often than the DFGLS tests in the presence of
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changes in persistence. The relative superiority of our tests becomes even more
evident when the sample size increases.

Finally, the results obtained applying the proposed test to G7 countries
inflation data are in line with the findings of the simulation analysis. The
unit root hypothesis is rejected for considerably more countries than when the
DFGLS or the test by Rodrigues and Taylor (2012) are employed.

The remainder of the paper is organized as follows. Section 2 introduces the
test procedures and derives their asymptotic distributions under the null and
local alternative hypotheses. Section 3 investigates the finite sample properties
of the statistics through Monte Carlo simulations. In specific, the impacts of
conditional heteroskedasticity, breaks in the innovation variance and serially
correlated errors are examined. Section 4 presents an in-depth analysis of
inflation data. Section 5 concludes, and finally, a Technical Appendix provides
detailed proofs of all results presented throughout the paper.

2. Motivation and proposed statistic

In this work we consider a model for persistence changes in line with Harvey
et al. (2006), i.e.,

yt = x
′

tβ + ut (1)
ut = ρtut−1 + εt, (2)

where εt ∼ iid(0, σ2), xt is a deterministic kernel which is either a constant or
a constant and time trend (i.e. xt := 1 or xt := [1, t]

′
), β is the corresponding

vector of parameters that captures the deterministic structure and (2) describes
the stochastic behaviour of yt. Most unit root test procedures available assume
that ρt is constant under both the null, H0 : ρt = ρ = 1, and the alternative
hypothesis, Ha : −1 < ρt = ρ < 1, of stationarity.

2.1. The Test Procedure

In this work we use a simple cosine function with a single frequency in order
to mimic the pattern of unknown shifts in the autoregressive parameter ρt.
In specific, to implement the test procedure, a two-step approach as in Elliott
et al. (1996) is employed. In the first step the time series of interest, yt, is
locally GLS de-trended based on ρ̃t := 1 + c̃

T cos(k ,t) with

cos(k ,t) :=
1 + cos(2πkt/T )

2
= cos2(πkt/T ), (3)
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where c̃ is fixed and non-positive, and k is fixed1. The demeaned/detrended
variable is computed as,

ûc̃,t = yt − x
′

tβ̂c̃ (4)

where xt = 1 (constant case) or xt = [1, t]
′

(linear trend case), β̂c̃ =(∑T
t=1 xc̃,txc̃,t

′
)−1∑T

t=1 xc̃,tyc̃,t, and yc̃,1 = y1, xc̃,1 = x1 and yc̃,t := yt −
ρ̃tyt−1, xc̃,t := xt − ρ̃txt−1, for t > 1 (see also Elliott et al. (1996)). As the
cos(k , t) function takes values between 0 and 1, this de-trending method can
be seen as a local GLS de-trending approach with time-varying weights.

In the second step, the presence of a unit root in ûc̃,t is investigated
considering, for k known and fixed, the t-statistic on ϕ computed from the
test regression

∆ûc̃,t = ϕcos(k ,t)ûc̃,t−1 + εt, (5)

where under the null hypothesis of a unit root, H0 : ϕ = 0, and under the
alternative hypothesis, Ha : ϕ < 0.

Remark 1. Elliott et al. (1996) showed that there is no uniformly most
powerful unit root test and proposed choosing the noncentrality parameter
c̃ as the value at which the test is tangent to the power envelope at 50%. For
the proposed test, the noncentrality parameter c̃ will assume different values
depending on the deterministic component and also on the frequency parameter
k considered (see Remark 2.8). �

Remark 2. The tests proposed by Enders and Lee (2012a) consider breaks
in intercept, which affect the conditional and unconditional means of the
process. However, breaks in persistence also alter the unconditional variance.
Hence, both de-trending and testing steps are influenced by the autoregressive
parameter and the assumption of constancy, which when invalid, seems to
favor the null hypothesis of a unit root. It is therefore important to propose
tests that allow for changes in persistence under the alternative hypothesis.
Since the number of breaks and its functional form are typically unknown
in practice, trigonometric functions have been considered to approximate
parameter changes. For instance, Fourier series, which are linear combinations
of sine and cosine functions, are widely used in this context (see e.g. Gallant
1981). �

Remark 3. In our framework, we use a single factor since the increase
in flexibility of the functions employed (i.e. more frequency terms) to
describe parameter changes has been associated with a deterioration in power
performance. For instance, the use of multiple Fourier frequencies to obtain

1. Note that when k = 0, ρ̃t corresponds to the typical near unit root representation used
by Elliott et al. (1996).
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more precise approximations leads to significant power losses due to over-fitting
of the data (see Enders and Lee 2012b).

Remark 4. The cos(k , t) function in (3) is crucial to properly approximate,
but not identify, structural break dates in persistence. Its shape is entirely
determined by the frequency parameter k. Most empirical work using Fourier
terms has only considered integer values for k (see e.g. Enders and Lee 2012a
and Rodrigues and Taylor 2012), which implies that the starting and ending
values of cos(k, t) are equal. For instance, considering k = 1, the resulting
function may be useful in cases with two breaks, where an increase in the
autoregressive parameter somewhere in the middle of the sample is followed
by a decrease of similar magnitude later. However, when there is an increase
in persistence at an unknown point in time and the parameter does not
return to its initial value, a fractional frequency needs to be considered. For
example, choosing k = 0.5 may be useful if after an increase in persistence
the autoregressive parameter remains close to 1 and the time series exhibits
near-unit root behavior for the rest of the sample. �

Remark 5. Figure 1 illustrates the shape of cos(k , t) for k =
(0.5, 1, 1.5, 2, 2.5, 3). This figure shows that fractional frequency values are
useful for the approximation of periods of higher persistence at the end of
the sample. For integer values of k, the autoregressive parameter is higher in
the middle of the sample and is far from unity at the end of the sample.

Figure 1: The cosine function for non-integer and integer values of k

�

In this work, we consider both integer and fractional values for the frequency
parameter k. It is not expected that many breaks in persistence occur given
the relatively small number of observations usually available in empirical work.
Thus, the proposed test considers that under the alternative hypothesis there
are a maximum of three periods of persistence change (this assumption can
however be relaxed if necessary).

To test the null hypothesis, H0 : ϕ = 0, in equation (5) when k is unknown
(which is the empirically relevant case) the following test statistic is considered,
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T GLS
k̂

:= min
k∈K

t̂GLSk = min
k∈K

∑T
t=2 ∆ûc̃,tcos(k ,t)ûc̃,t−1[

σ̂2
k

∑T
t=2 cos2(k , t)û2

c̃,t−1

]1/2 , (6)

where K = {0.5, 1, 1.5, 2, 2.5, 3} and σ̂2
k is the least-squares estimate of σ2

obtained from (5) under a fixed k.
Although, under the alternative hypothesis a time series is not weakly

stationary, it follows an intrinsically mean-reverting process with some
exceptional periods during which the autoregressive parameter was close to
unity.

2.2. Short-run dependence

In practice, test regression (5) may not be sufficient to properly describe the
dynamics of economic and financial time series, resulting in autocorrelated error
terms. Thus, to overcome this problem an augmented version of test regression
(5) can be considered, i.e.,

∆ûc̃,t = ϕcos(k ,t)ûc̃,t−1 +

p∑
j=1

δj∆ûc̃,t−j + εt, (7)

where p is the order of augmentation (lag length) selected using some model
selection criteria (such as, e.g., AIC, MAIC or BIC). In the augmented Dickey-
Fuller (ADF) context, Chang and Park (2002) showed that the asymptotic
distribution of the DF test will not change when the true DGP is an
ARMA process of unknown order if the test regression is augmented with
a sufficient number of lagged differences of ûc̃,t to ensure that the residuals
are approximately uncorrelated. In (7), p denotes the lag truncation order
chosen to account (parametrically) for any weak dependence in {εt}. More
generally, when εt is a linear process satisfying standard summability and
moment conditions, p needs to be such that 1/p + p3/T → ∞ as T → ∞;
see Said and Dickey (1984) and Chang and Park (2002). As shown in (7), the
difference between the proposed test and that of the DFGLS is due to the
presence of some terms that are deterministic when k is known. So, the results
of Chang and Park (2002) remain valid in this context.

2.3. Unconditional and Conditional heteroskedasticity

Another important issue is to examine how the proposed tests perform when
the conditional variance of the error process εt is not constant over time, in
order to avoid spurious evidence of changes in the persistence of yt. In the
case of the ADF test, although conditional heteroskedasticity does not affect
the asymptotic distribution of the test statistic (Phillips 1987), the presence of
ARCH effects does cause size distortions in finite samples (see e.g. Kim and
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Schmidt 1993 and Haldrup 1994). Hence, it is important to understand how
this feature of the data may impact the proposed test.

Moreover, it is also important to assess the impact of unconditional
heteroscedasticity on the proposed test’s performance. Hamori and Tokihisa
(1997) and Kim et al. (2002) showed that a permanent variance shift causes size
distortions in the DF tests. Note that if simultaneous increases in persistence
and in the innovation variance are observed (two reinforcing effects that cause
an increase in σ2

y ) the proposed test may exhibit size distortions. This is because
it may be hard to distinguish whether the increase in the unconditional variance
of yt is caused by a true change in persistence or by an exogenous shift in the
innovation variance. Moreover, a large increase in the unconditional variance
may cause the process to be confounded more often with a unit root process,
for which the variance grows with t.

In the presence of (conditional or unconditional) heteroskedasticity,
heteroskedasticity-consistent standard errors, as proposed by Eicker-White
(EW), are typically employed in response to this problem (see e.g. Demetrescu
2008 and Phillips 1987). The proposed test statistic with EW robust standard
errors, considering fixed k and no short-run dependence in εt is based on,

t̂GLSk,EW :=

∑T
t=2 ∆ûc̃,tcos(k ,t)ûc̃,t−1(∑T
t=2 cos2(k , t)û2

c̃,t−1ε̂
2
t

)1/2
. (8)

Based on this statistics, the following limit results can be stated.

Proposition 1. Under the null hypothesis, H0 : ϕ = 0, and considering
Assumptions 1 and 2 in Demetrescu (2008), as T →∞,

t̂GLSk,EW − t̂GLSk
p→ 0

for a given fixed k, where ”
p→ ” stands for convergence in probability.

Proposition 2. Under the alternative hypothesis, Ha : ϕ = c
T , as T →∞,

t̂GLSk,EW − t̂GLSk
p→ 0,

for a given fixed k and any fixed non-positive c and c̃.

Since conditional heteroskedasticity has no impact on the de-trending
approach used, Propositions 1 and 2 are valid regardless of the deterministic
kernel (constant or linear time trend) considered.

An alternative to the EW approach used in (8) which is also widely
employed in the literature to deal with, among other things, (unconditional and
conditional) heteroskedasticity of unknown form is the Wild bootstrap (see, for
instance, Killian and Gonçalves, 2004, Cavaliere and Taylor 2008, Pavlidis et al.
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2010 and Maki 2015). It consists of using the residuals ε̂t computed from (6)
and generating a new unit root process as

ûbt = ûbt−1 + vbt

where vbt := etε̂t and et is such that any heteroskedasticity in ε̂t is preserved in
the newly created residuals vbt . We use et∼i.i.d. N(0, 1), but the Rademacher
distribution is also frequently used. Next, B bootstrap series ûbt are generated
and in each iteration the bootstrap t-statistic t̂b,GLSk is computed based on the
auxiliary regression

∆ûbt = ϕbcos(k ,t)ûbt−1 + ηt (9)

where ηt is an error term. The bootstrap p-value is computed as

Pb
(
t̂GLSk

)
:=

1

B

B∑
n=1

I
(
t̂b,GLSk > t̂GLSk

)
, (10)

where B is the number of bootstrap iterations and I(.) is the indicator function
(see e.g. ?). In the case of short-run dependence in the innovations of the process
an augmented framework as in (8) is used.

2.4. Asymptotic Distribution

In this section the asymptotic distributions of the proposed tests are derived
under the null hypothesis of a unit root and under the alternative hypothesis
of local breaks in persistence. Moreover, the test statistics employed in the
construction of the asymptotic local power envelope and their asymptotic
distributions are also presented.

Theorem 1. Under the null hypothesis of a unit root, H0 : ϕ = 0 (c = 0),
the limit distribution of the proposed test statistic, as T →∞, when local GLS
demeaning is used is

T GLSµ
k̂

:= min
k∈K

t̂
GLSµ
k ⇒

min
k∈K

cos(k, 1)W (1)2 + 1
2(2πk)2

∫ 1

0 cos(2πkr) [W (r)]2 dr − 1

2
(∫ 1

0 cos2(k, r) [W (r)]2 dr
)1/2

(11)

and for local GLS detrending,

T GLSτ
k̂

:= min
k∈K

t̂GLSτk ⇒

min
k∈K

cos(k, 1) [W τ (1)]2 + 1
2(2πk)2

∫ 1

0 cos(2πkr) [W τ (r)]2 dr − 1

2
(∫ 1

0 cos2(k, r) [W τ (r)]2 dr
)1/2

(12)
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where k is fixed, W (r) is a standard Brownian motion, cos(k, r) is as defined
in (3) with r := t/T and

W τ (r) = σW (r)− σr
(1− c̃cos(k , r))W (1) + c̃2

∫ 1

0 rcos2(k , r)W (r)dr∫ 1

0 [1− 2c̃rcos2(k , r) + r2c̃2cos(k, r)]dr
+

σr
c̃kπ

∫ 1

0 rsin(2πkr)W (r)dr∫ 1

0 [1− 2c̃rcos2(k , r) + r2c̃2cos(k, r)]dr
. (13)

Remark 6. As in the traditional unit root testing context, local GLS
demeaning has no effect on the proposed test’s asymptotic distribution (see
the Appendix for details) and, therefore, the asymptotic distribution of T GLSµ

k̂
given in (11) is equivalent to that of a test statistic computed from a test
regression with no deterministics. �

Remark 7. The results in (11) and (12) show that the asymptotic
distributions of the proposed tests depends only on the frequency parameter
k. When k = 0, cos(0, r) = 1, ∀r ∈ (0, 1) and the asymptotic distributions
in (11) and (12) correspond to the asymptotic distributions of the local GLS
demeaned/detrended DF unit root tests of Elliott et al. (1996). �

Remark 8. Table 1 presents the values for c̃ for which the power of the test is
tangent to the power envelope at 50% (as recommended by Elliott et al. 1996).

k xt = 1 xt = [1, t]
′

0.0 -7.0 -13.5
0.5 -15.6 -25.4
1.0 -11.8 -25.8
1.5 -12.7 -26.1
2.0 -10.7 -22.2
2.5 -11.2 -23.3
3.0 -10.2 -20.2

Table 1. Local GLS detrending parameter c̃

Note: Values computed based on 100,000 replications for T=1000.
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In order to construct the asymptotic power envelope, an asymptotically
equivalent test to the infeasible most powerful invariant LR statistic proposed
by Elliott et al. (1996) will be used. For a given c̃ and k, it has the form:

Pc̃ :=

∑T
t=1 ε̂

2
c̃,t −

[
1 + c̃

T cos(k , t)
]∑T

t=1 ε̂
2
0,t

σ̂2
(14)

where ε̂0,t and ε̂c̃,t are the residuals of the model defined by (1) and (2) when,
respectively, c̃ = 0 and c̃ < 0 for ρ̃t := 1 + c̃

T cos(k, t).

Theorem 2. Under H0 : ϕ = 0(c = 0) and i.i.d. innovations, the asymptotic
distribution of the test statistic presented in (14) is

Pµc̃ ⇒ c̃2
∫ 1

0

cos2(r , k)Jc(r)
2 − c̃ cos(T, k)Jc(1)2

and

P τc̃ ⇒ c̃2
∫ 1

0

cos2(k , r) [Jτc (r)]2 + (1− c̃ cos(k, T )) [Jτc (1)]2 ,

where Pµc̃ and P τc̃ correspond to demeaned and de-trended test statistics,
respectively, Jc(r) is a standard Ornstein-Uhlenbeck [OU] process, Jτc (r) is a
local GLS de-trended OU process and σ̂2 := T−1

∑T
t=1 ε

2
c̄,t.

Theorem 3. Under the local alternative hypothesis Ha : ϕ = c
T < 0 the limit

distribution of the proposed statistic under local GLS demeaning is

T GLSµ
k̂

= min
k∈K

t̂GLSk ⇒

min
k∈K

cos(k, 1)J2
c (1) + 1

2(2πk)2
∫ 1

0 cos(2πkr)J2
c (r)dr − 1

2
(∫ 1

0 cos2(k, r)J2
c (r)dr

)1/2

(15)

and under local GLS de-trending

T GLSτ
k̂

= min
k∈K

t̂GLSτk ⇒

min
k∈K

cos(k, 1) [Jτc (1)]2 + 1
2(2πk)2

∫ 1

0 cos(2πkr) [Jτc (r)]2 dr − 1

2
(∫ 1

0 cos2(k, r) [Jτc (r)]2 dr
)1/2

(16)

where Jc(r) is a standard OU process, k ∈ K , r ∈ (0, 1), and Jτc (r) is a local
GLS detrended OU process.
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3. Monte Carlo Analysis

This section investigates the finite sample properties of the tests previously
introduced under the null and alternative hypotheses. All simulations are
performed in Gauss 10. For the Wild bootstrap procedure, the number of Monte
Carlo and bootstrap replications is 1000, whereas for all the other simulations
10,000 Monte Carlo replications were used.

Table 2 presents the critical values for T GLSµ
k̂

and T GLSτ
k̂

, considering
T ∈ {150, 250, 500} and k ∈ K = {0.5, 1, 1.5, 2, 2.5, 3}.

T GLSµ
k̂

T GLSτ
k̂

T 1% 5% 10% 1% 5% 10%
150 -3.266 -2.695 -2.403 -4.092 -3.589 -3.336
250 -3.192 -2.629 -2.346 -4.008 -3.517 -3.268
500 -3.152 -2.592 -2.303 -3.958 -3.467 -3.215

1000 -3.133 -2.574 -2.285 -3.935 -3.438 -3.189

Table 2. Critical values

Notes: For the constant case, critical values were computed from test regressions applied to
demeaned data. Reported critical values are based on 100,000 simulations.

In what follows, the finite sample performance of the proposed tests will be
compared to that of DFGLSς , with ς = µ, τ , applied to demeaned or de-trended
data, respectively. We investigate how the tests perform under iid innovations,
in the presence of autocorrelation and, under conditional and unconditional
heteroskedasticity.

3.1. IID innovations

To investigate the finite sample properties of the tests we consider two data
generation processes (DGPs): i) the first DGP, (henceforth DGP1), is,

yt = ρtyt−1 + εt (17)

with ρt = (1 +ϕcos(k , t)), cos(k, t) := (1 + cos(2πkt/T))/2, ϕ ∈ {−0.1,−0.2, 0};
and ii) as second DGP (DGP2) we use,

yt = ρ1yt−1 + εt for t = 1, ..., bτ1T c
yt = ρ2yt−1 + εt for t = bτ1T c+ 1, ..., bτ2T c
yt = ρ3yt−1 + εt for t = bτ2T c+ 1, ..., T,

(18)

where τ1 ≤ τ2, τ1 ∈ {0.3, 0.4, 0.6, 0.8}, τ2 ∈ {0.3, 0.6, 0.7, 0.8}, ρ1 ∈ {0.8, 0.9},
ρ2 ∈ {0.99, 1} and ρ3 ∈ {0.8, 0.9, 0.99, 1} to investigate the finite sample power
and ρ1 = ρ2 = ρ3 = 1 (ϕ = 0) to examine the finite sample size of the tests. For
both cases, εt ∼ N(0, 1) and y1 = ε1 ∼ N(0, 1) is used.



13 A reexamination of inflation persistence dynamics

Thus, DGP1 implies that the transition from regimes with ϕ < 0 to regimes
with ϕ = 0 is smooth, since the autoregressive parameter of the process is
obtained by multiplying ϕ by time-varying weights defined by the cos(k, t)
function in (3). This function is approximately 1 for the first values of t,
which implies that ρ̃t is smaller at the beginning of the sample. Table 3
presents the empirical size and power of the proposed test for this DGP
when applied to demeaned data. The empirical size is close to the nominal
5% significance level for all cases considered. Regarding the power properties,
T GLSµ
k̂

displays significant power gains relative to DFGLSµ when there are
breaks in persistence. It provides power gains for almost all of the simulation
parameters used (the only exception is k = 0.5). However, as expected, the
proposed test has more difficulties in rejecting the null hypothesis when
ϕ=−0.1, since the autoregressive parameter is already large before the increase
in persistence. But, even in this case, there are significant power gains that
increase with the sample size (note that the empirical power of the T GLSµ

k̂
test

is close to 100% for T = 500).
Table 4 presents the results for the linear trend case. When ϕ = −0.1, the

proposed test only presents power gains for all values of k when T = 500.
Nonetheless, there are some relevant positive differences relative to DFGLSτ
for k > 0.5 even when T = 250. For ϕ = −0.2, there are relevant power gains
even in the smaller samples considered (T = 150) with k > 0.5.

DGP2 is used to investigate the performance of the tests when breaks in
persistence occur instantaneously. To save space, we allow for a maximum of
two abrupt changes which result in a single period of higher persistence. When
ρ2 = ρ3, the break divides the process into two regimes, with the autoregressive
parameter being larger in the last sub-period. If ρ1 = ρ3, the sub-period of
higher persistence occurs in the middle of the time series and the autoregressive
parameter returns to the value assumed at the beginning of the process. Table
5 presents the results for the demeaned test statistics. As expected, the power
of the two tests considered is lower when ρ2 = 1 for a significant percentage of
the sample. For instance, if there is a break in persistence, at τ1 = τ2 = 0.6 the
time series behaves as a random walk over the last 40% of the sample. When
the sample size is moderate (T = 250) and a break occurs, the proposed test
displays significant power gains even when ρ1 = 0.9 and ρ2 = ρ3 = 1.

If ρ2 = ρ3, the proposed test only provides power gains relative to the
DFGLSµ test when T ≥ 250 . The differences between the rejection rates of
these two tests are maximized when the process exhibits higher persistence for
a relevant portion of the sample (τ1 = τ2 = 0.6 ). The same holds when ρ1 = ρ3,
where power gains are observed even in small samples (T = 150) when τ1 = 0.3
and τ2 = 0.7.

Table 6 presents the empirical power for the detrended statistics with abrupt
breaks in persistence. For ρ2 = ρ3, the advantages of using the proposed test
are clear only when the sample is large. On the other hand, for ρ1 = ρ3, there
are positive differences relative to the DFGLSτ for all cases.
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Note that, for the trigonometric function considered, the persistence
parameter is always lower at the beginning of the sample. The symmetric
cases can be investigated using the time series in reverse chronological
order. However, this transformation alters the asymptotic distributions of the
proposed test and those of the DFGLS tests. In this work, we only derive
the asymptotic distribution of the tests in reverse chronological order for the
demeaned case (see Section 5, equation (24)). Since the critical values are very
close to those obtained using the normal chronological order, reversing the
chronological order when the process starts with a period of higher persistence
should lead to results similar to those obtained in this Section

Overall, simulation results suggest that the proposed test performs
substantially better than the DFGLS test when the periods of higher
persistence occur somewhere in the middle of the sample. The Wild bootstrap
was also considered here and the results show that the empirical size and power
using this technique are, as expected, very close to those obtained using finite
sample critical values (see Table 2).
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DGP:yt = yt−1 + ϕ((1 + cos(2πkt/T ))/2)yt−1 + εt, with εt∼N(0, 1)

DFGLSµ T GLSµ
k̂

DFGLS
∗
µ T GLS

∗
µ

k̂

T = 150
k/ϕ 0 −0.1 −0.2 0 −0.1 −0.2 0 −0.1 −0.2 0 −0.1 −0.2

0 0.052 0.925 0.999 0.051 0.707 0.962 0.053 0.918 0.996 0.048 0.679 0.952
0.5 0.052 0.317 0.523 0.051 0.286 0.654 0.053 0.330 0.547 0.048 0.268 0.640
1.0 0.052 0.356 0.601 0.051 0.375 0.769 0.053 0.349 0.619 0.048 0.366 0.748
1.5 0.052 0.336 0.574 0.051 0.354 0.734 0.053 0.336 0.574 0.048 0.337 0.725
2.0 0.052 0.377 0.658 0.051 0.428 0.811 0.053 0.377 0.659 0.048 0.419 0.803
2.5 0.052 0.361 0.635 0.051 0.420 0.796 0.053 0.365 0.624 0.048 0.400 0.762
3.0 0.052 0.405 0.725 0.051 0.461 0.843 0.053 0.423 0.726 0.048 0.465 0.820

T = 250
0 0.052 0.996 1.000 0.052 0.942 0.996 0.040 0.935 0.998 0.040 0.935 0.998

0.5 0.052 0.484 0.674 0.052 0.557 0.942 0.040 0.477 0.663 0.040 0.532 0.930
1.0 0.052 0.555 0.765 0.052 0.689 0.967 0.040 0.549 0.762 0.040 0.685 0.961
1.5 0.052 0.524 0.753 0.052 0.657 0.958 0.040 0.526 0.754 0.040 0.628 0.958
2.0 0.052 0.601 0.854 0.052 0.740 0.974 0.040 0.578 0.851 0.040 0.720 0.971
2.5 0.052 0.588 0.839 0.052 0.717 0.967 0.040 0.577 0.832 0.040 0.703 0.955
3.0 0.052 0.666 0.918 0.052 0.774 0.976 0.040 0.661 0.919 0.040 0.752 0.970

T = 500
0 0.050 1.000 1.000 0.052 0.999 1.000 0.041 1.000 1.000 0.041 1.000 1.000

0.5 0.050 0.683 0.818 0.052 0.961 0.999 0.041 0.684 0.818 0.041 0.950 0.998
1.0 0.050 0.774 0.911 0.052 0.982 1.000 0.041 0.758 0.909 0.041 0.978 1.000
1.5 0.050 0.761 0.913 0.052 0.977 1.000 0.041 0.778 0.923 0.041 0.966 1.000
2.0 0.050 0.859 0.976 0.052 0.988 1.000 0.041 0.852 0.968 0.041 0.984 0.999
2.5 0.050 0.848 0.968 0.052 0.983 1.000 0.041 0.844 0.972 0.041 0.972 1.000
3.0 0.050 0.922 0.995 0.052 0.989 1.000 0.041 0.915 0.992 0.041 0.985 0.999

Table 3. Empirical size and power with iid errors - constant case
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DGP: yt = yt−1 + ϕ((1 + cos(2πkt/T ))/2)yt−1 + εt, with εt∼N(0, 1)

DFGLSτ T GLSτ
k̂

DFGLS
∗
τ T GLS

∗
τ

k̂

T = 150
k/ϕ 0 −0.1 −0.2 0 −0.1 −0.2 0 −0.1 −0.2 0 −0.1 −0.2

0 0.050 0.594 0.991 0.048 0.364 0.859 0.053 0.584 0.988 0.046 0.340 0.839
0.5 0.050 0.184 0.400 0.048 0.153 0.373 0.053 0.195 0.415 0.046 0.146 0.351
1.0 0.050 0.119 0.280 0.048 0.134 0.396 0.053 0.120 0.274 0.046 0.110 0.348
1.5 0.050 0.126 0.298 0.048 0.130 0.376 0.053 0.132 0.297 0.046 0.125 0.338
2.0 0.050 0.134 0.314 0.048 0.147 0.439 0.053 0.133 0.307 0.046 0.142 0.406
2.5 0.050 0.130 0.307 0.048 0.147 0.434 0.053 0.129 0.324 0.046 0.130 0.415
3.0 0.050 0.146 0.348 0.048 0.171 0.481 0.053 0.149 0.343 0.046 0.155 0.446

T = 250
0 0.048 0.960 1.000 0.051 0.725 0.994 0.048 0.969 1.000 0.056 0.706 0.994

0.5 0.048 0.333 0.604 0.051 0.290 0.759 0.048 0.356 0.629 0.056 0.309 0.737
1.0 0.048 0.230 0.478 0.051 0.298 0.819 0.048 0.223 0.456 0.056 0.300 0.787
1.5 0.048 0.246 0.504 0.051 0.280 0.797 0.048 0.259 0.517 0.056 0.264 0.789
2.0 0.048 0.253 0.537 0.051 0.336 0.850 0.048 0.264 0.544 0.056 0.325 0.824
2.5 0.048 0.244 0.542 0.051 0.325 0.833 0.048 0.243 0.527 0.056 0.309 0.818
3.0 0.048 0.282 0.598 0.051 0.369 0.872 0.048 0.275 0.602 0.056 0.361 0.844

T = 500
0 0.050 1.000 1.000 0.048 0.995 1.000 0.049 1.000 1.000 0.046 0.987 1.000

0.5 0.050 0.607 0.806 0.048 0.764 0.999 0.049 0.612 0.808 0.046 0.749 0.997
1.0 0.050 0.486 0.728 0.048 0.827 0.999 0.049 0.490 0.727 0.046 0.807 1.000
1.5 0.050 0.509 0.758 0.048 0.806 0.999 0.049 0.517 0.767 0.046 0.782 0.998
2.0 0.050 0.535 0.811 0.048 0.859 1.000 0.049 0.540 0.793 0.046 0.851 1.000
2.5 0.050 0.540 0.828 0.048 0.847 1.000 0.049 0.550 0.817 0.046 0.837 1.000
3.0 0.050 0.595 0.884 0.048 0.879 1.000 0.049 0.597 0.882 0.046 0.871 0.999

Table 4. Empirical size and power with iid errors -linear trend case
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DGP: yt = ρ1yt−1 + εt for t = 1, ..., bτ̄1T c,
yt = ρ2yt−1 + εt for t = bτ̄1T c+ 1, ..., bτ̄2T c,
yt = ρ3yt−1 + εt for t = bτ̄2T c+ 1, ..., T

εt∼N(0, 1)

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

CV WB CV WB CV WB CV WB CV WB CV WB
T = 150
(τ̄1, τ̄2)

(ρ1, ρ2, ρ3) (0.3, 0.3) (0.6, 0.6) (0.8, 0.8)
(0.8, 0.99, 0.99) 0.233 0.252 0.287 0.287 0.515 0.541 0.724 0.714 0.783 0.792 0.908 0.889

(0.8, 1, 1) 0.148 0.165 0.205 0.211 0.408 0.418 0.661 0.655 0.718 0.723 0.897 0.876
(0.9, 0.99, 0.99) 0.194 0.207 0.188 0.191 0.398 0.419 0.373 0.384 0.629 0.650 0.553 0.526

(0.9, 1, 1) 0.124 0.135 0.133 0.133 0.314 0.308 0.315 0.317 0.561 0.576 0.525 0.502
(ρ1, ρ2, ρ3) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(0.8, 0.99, 0.8) 0.752 0.768 0.880 0.866 0.743 0.746 0.920 0.896 0.607 0.623 0.865 0.838
(0.8, 1, 0.8) 0.667 0.676 0.876 0.863 0.658 0.675 0.924 0.905 0.501 0.509 0.873 0.850

(0.9, 0.99, 0.9) 0.569 0.578 0.538 0.520 0.568 0.573 0.574 0.544 0.454 0.457 0.500 0.473
(0.9, 1, 0.9) 0.485 0.487 0.534 0.517 0.491 0.498 0.581 0.561 0.362 0.360 0.513 0.490

T = 250
(ρ1, ρ2, ρ3) (0.3, 0.3) (0.6, 0.6) (0.8, 0.8)

(0.8, 0.99, 0.99) 0.342 0.345 0.475 0.452 0.640 0.628 0.940 0.933 0.863 0.873 0.992 0.992
(0.8, 1, 1) 0.170 0.157 0.286 0.286 0.449 0.448 0.878 0.856 0.763 0.777 0.989 0.989

(0.9, 0.99, 0.99) 0.305 0.316 0.332 0.327 0.569 0.557 0.686 0.644 0.798 0.809 0.857 0.842
(0.9, 1, 1) 0.149 0.125 0.189 0.180 0.392 0.402 0.573 0.531 0.687 0.698 0.834 0.815

(ρ1, ρ2, ρ3) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)
(0.8, 0.99, 0.8) 0.856 0.853 0.982 0.981 0.857 0.855 0.990 0.990 0.745 0.732 0.981 0.977

(0.8, 1, 0.8) 0.733 0.729 0.981 0.980 0.737 0.730 0.991 0.987 0.570 0.577 0.983 0.979
(0.9, 0.99, 0.9) 0.773 0.769 0.831 0.813 0.775 0.777 0.868 0.852 0.659 0.655 0.804 0.793

(0.9, 1, 0.9) 0.635 0.638 0.822 0.810 0.633 0.631 0.879 0.864 0.481 0.475 0.820 0.804

Table 5 continued on next page
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DGP: yt = ρ1yt−1 + εt for t = 1, ..., bτ̄1T c,
yt = ρ2yt−1 + εt for t = bτ̄1T c+ 1, ..., bτ̄2T c,
yt = ρ3yt−1 + εt for t = bτ̄2T c+ 1, ..., T

εt∼N(0, 1)

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

CV WB CV WB CV WB CV WB CV WB CV WB
T = 500

(ρ1, ρ2, ρ3) (0.3, 0.3) (0.6, 0.6) (0.8, 0.8)
(0.8, 0.99, 0.99) 0.578 0.569 0.752 0.753 0.824 0.816 0.998 0.998 0.948 0.934 1.000 1.000

(0.8, 1, 1) 0.177 0.161 0.369 0.355 0.476 0.472 0.959 0.957 0.801 0.800 1.000 1.000
(0.9, 0.99, 0.99) 0.550 0.549 0.644 0.657 0.793 0.789 0.978 0.973 0.928 0.921 0.997 0.997

(0.9, 1, 1) 0.165 0.147 0.291 0.269 0.440 0.440 0.881 0.877 0.761 0.756 0.995 0.993
(ρ1, ρ2, ρ3) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(0.8, 0.99, 0.8) 0.961 0.965 1.000 1.000 0.962 0.955 1.000 1.000 0.910 0.909 1.000 1.000
(0.8, 1, 0.8) 0.784 0.770 1.000 1.000 0.792 0.785 1.000 1.000 0.615 0.615 1.000 1.000

(0.9, 0.99, 0.9) 0.941 0.945 0.995 0.994 0.943 0.935 0.997 0.996 0.878 0.866 0.992 0.990
(0.9, 1, 0.9) 0.727 0.723 0.992 0.988 0.733 0.730 0.998 0.997 0.560 0.554 0.993 0.993

Table 5. Empirical power when the breaks in persistence are abrupt - constant case
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DGP: yt = ρ1yt−1 + εt for t = 1, ..., bτ̄1T c,
yt = ρ2yt−1 + εt for t = bτ̄1T c+ 1, ..., bτ̄2T c,
yt = ρ3yt−1 + εt for t = bτ̄2T c+ 1, ..., T

εt∼N(0, 1)

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

CV WB CV WB CV WB CV WB CV WB CV WB
T = 150
(τ̄1, τ̄2)

(ρ1, ρ2, ρ3) (0.3, 0.3) (0.6, 0.6) (0.8, 0.8)
(0.8, 0.99, 0.99) 0.185 0.206 0.211 0.199 0.442 0.460 0.440 0.429 0.712 0.728 0.661 0.658

(0.8, 1, 1) 0.143 0.156 0.168 0.154 0.360 0.369 0.386 0.372 0.646 0.660 0.637 0.620
(0.9, 0.99, 0.99) 0.129 0.147 0.124 0.100 0.244 0.253 0.186 0.176 0.375 0.381 0.259 0.234

(0.9, 1, 1) 0.105 0.119 0.103 0.091 0.198 0.203 0.157 0.155 0.337 0.346 0.241 0.215
(ρ1, ρ2, ρ3) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(0.8, 0.99, 0.8) 0.449 0.450 0.615 0.584 0.461 0.475 0.657 0.604 0.304 0.320 0.531 0.494
(0.8, 1, 0.8) 0.376 0.380 0.610 0.575 0.393 0.390 0.651 0.598 0.241 0.248 0.530 0.468

(0.9, 0.99, 0.9) 0.228 0.222 0.232 0.208 0.240 0.230 0.230 0.196 0.166 0.175 0.181 0.153
(0.9, 1, 0.9) 0.187 0.184 0.231 0.208 0.198 0.185 0.214 0.181 0.125 0.131 0.172 0.135

T = 250
(ρ1, ρ2, ρ3) (0.3, 0.3) (0.6, 0.6) (0.8, 0.8)

(0.8, 0.99, 0.99) 0.256 0.236 0.383 0.372 0.596 0.614 0.810 0.791 0.846 0.851 0.956 0.952
(0.8, 1, 1) 0.174 0.164 0.274 0.257 0.445 0.457 0.713 0.696 0.749 0.760 0.946 0.942

(0.9, 0.99, 0.99) 0.195 0.171 0.208 0.215 0.436 0.449 0.381 0.391 0.673 0.694 0.545 0.535
(0.9, 1, 1) 0.134 0.132 0.151 0.148 0.313 0.340 0.300 0.321 0.576 0.597 0.506 0.500

(ρ1, ρ2, ρ3) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)
(0.8, 0.99, 0.8) 0.617 0.611 0.929 0.906 0.632 0.621 0.964 0.951 0.456 0.437 0.902 0.868

(0.8, 1, 0.8) 0.483 0.463 0.920 0.900 0.499 0.496 0.964 0.943 0.317 0.297 0.897 0.857
(0.9, 0.99, 0.9) 0.433 0.416 0.487 0.480 0.452 0.451 0.516 0.495 0.315 0.287 0.414 0.410

(0.9, 1, 0.9) 0.326 0.311 0.480 0.463 0.345 0.326 0.506 0.492 0.211 0.203 0.410 0.393

Table 6 continued on next page



D
E
E

W
orking

P
apers

20

DGP: yt = ρ1yt−1 + εt for t = 1, ..., bτ̄1T c,
yt = ρ2yt−1 + εt for t = bτ̄1T c+ 1, ..., bτ̄2T c,
yt = ρ3yt−1 + εt for t = bτ̄2T c+ 1, ..., T

εt∼N(0, 1)

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

CV WB CV WB CV WB CV WB CV WB CV WB
T = 500

(ρ1, ρ2, ρ3) (0.3, 0.3) (0.6, 0.6) (0.8, 0.8)
(0.8, 0.99, 0.99) 0.412 0.396 0.680 0.678 0.799 0.791 0.991 0.989 0.951 0.938 1.000 1.000

(0.8, 1, 1) 0.200 0.192 0.413 0.404 0.509 0.517 0.920 0.912 0.812 0.815 1.000 1.000
(0.9, 0.99, 0.99) 0.360 0.339 0.474 0.466 0.723 0.720 0.863 0.855 0.910 0.904 0.968 0.958

(0.9, 1, 1) 0.169 0.164 0.267 0.256 0.434 0.440 0.697 0.675 0.749 0.750 0.951 0.940
(ρ1, ρ2, ρ3) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(0.8, 0.99, 0.8) 0.819 0.813 0.999 0.999 0.841 0.833 1.000 1.000 0.699 0.685 0.999 0.999
(0.8, 1, 0.8) 0.563 0.580 0.998 0.997 0.582 0.572 1.000 1.000 0.386 0.381 0.997 0.992

(0.9, 0.99, 0.9) 0.740 0.732 0.941 0.937 0.757 0.745 0.963 0.950 0.607 0.608 0.913 0.904
(0.9, 1, 0.9) 0.479 0.489 0.924 0.917 0.497 0.494 0.966 0.945 0.313 0.309 0.901 0.878

Table 6. Empirical power when the breaks in persistence are abrupt - linear trend case
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3.2. Serially correlated errors

The finite sample properties of the tests in the presence of autocorrelation are
examined considering that the error process follows an ARMA, i..,

εt = δεt−1 + θet−1 + et (19)

with et ∼ N(0, 1), y1 = ε1 ∼ N(0, 1), δ ∈ {0, 0.3, 0.6} and θ ∈
{−0.8,−0.4, 0, 0.4, 0.8}. The lags of the augmented test regression will be chosen
using the MAIC information criteria proposed by Ng and Perron (2001), as it
is one of the most popular lag selection criteria used in the literature.

Table 7 summarizes the finite sample results for the demeaned tests in the
presence of autocorrelation in εt. Although we also performed simulations for
T = 150 and 500, only the results for T = 250 are reported as the conclusions
are qualitatively the same for the other sample sizes. The T GLSµ

k̂
test shows

good finite sample size performance. Its empirical size only exceeds the nominal
5% significance level when the MA term is negative and even for those cases
the values are close to those (or slightly lower) of the DFGLSµ .

In the evaluation of the power performance, we considered ϕ = −0.1
and that the breaks in persistence are smooth and approximated by cosine
functions. The sign of the MA term also affects the power properties of the
proposed test. When the MA term is negative, the advantage of using it are less
clear. However, if the MA term is nonnegative and k > 0.5, there are relevant
power gains even for T = 150. For larger samples, the power differences relative
to DFGLSµ are more pronounced and occur for all values of k. The T GLSµ

k̂
test faces more difficulties in rejecting the null hypothesis when θ = −0.8 and
δ = 0.

Simulation results for the detrended case are presented in Table 8. As in
the demeaned case, the empirical size of the proposed test exceeds the nominal
5% level less than the DFGLSτ when the MA term is negative. In this case,
the two tests are more severely undersized when the MA term is positive. This
problem is attenuated as the sample size increases.

The results show that the power of the two tests considered is low when
a linear trend is used and the autoregressive parameter is large before the
increase in persistence (when the cosine functions is zero, the autoregressive
parameter equals 0.9). For T = 500, the results are less disappointing and the
superiority of the proposed test becomes evident, especially when the MA term
is nonnegative.
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DGP: yt = yt−1 + ϕ((1 + cos(2πkt/T ))/2)yt−1 + εt
εt = δεt−1 + θet−1 + et, et ∼ N(0, 1)

T = 250 DFGLSµ T GLSµ
k̂

(ϕ, k) θ / δ 0 0.3 0.6 0 0.3 0.6

(0, 0)

−0.8 0.078 0.091 0.104 0.063 0.074 0.091
−0.4 0.052 0.053 0.029 0.055 0.056 0.034

0 0.044 0.044 0.043 0.045 0.046 0.044
0.4 0.043 0.040 0.039 0.046 0.043 0.044
0.8 0.039 0.039 0.040 0.045 0.044 0.046

(−0.1, 0.5)

−0.8 0.235 0.317 0.426 0.164 0.266 0.433
−0.4 0.361 0.395 0.289 0.378 0.452 0.282

0 0.392 0.375 0.351 0.439 0.426 0.411
0.4 0.356 0.335 0.312 0.403 0.379 0.343
0.8 0.289 0.283 0.262 0.331 0.322 0.301

(−0.1, 1.0)

−0.8 0.290 0.389 0.512 0.226 0.350 0.550
−0.4 0.434 0.480 0.366 0.518 0.604 0.496

0 0.473 0.463 0.445 0.605 0.603 0.606
0.4 0.437 0.420 0.400 0.588 0.576 0.553
0.8 0.362 0.359 0.342 0.529 0.524 0.509

(−0.1, 1.5)

−0.8 0.275 0.364 0.492 0.204 0.330 0.523
−0.4 0.401 0.441 0.316 0.483 0.570 0.436

0 0.436 0.418 0.393 0.562 0.561 0.545
0.4 0.392 0.373 0.344 0.533 0.517 0.486
0.8 0.321 0.313 0.293 0.481 0.469 0.449

(−0.1, 2.0)

−0.8 0.323 0.432 0.576 0.249 0.380 0.592
−0.4 0.487 0.536 0.405 0.582 0.672 0.584

0 0.518 0.509 0.498 0.668 0.677 0.676
0.4 0.489 0.474 0.452 0.658 0.648 0.634
0.8 0.423 0.419 0.410 0.608 0.605 0.591

(−0.1, 2.5)

−0.8 0.308 0.411 0.553 0.243 0.378 0.584
−0.4 0.466 0.512 0.364 0.557 0.645 0.540

0 0.493 0.478 0.462 0.641 0.641 0.637
0.4 0.455 0.439 0.415 0.623 0.610 0.587
0.8 0.388 0.384 0.369 0.570 0.567 0.549

(−0.1, 3)

−0.8 0.355 0.476 0.642 0.269 0.415 0.624
−0.4 0.547 0.608 0.464 0.618 0.704 0.635

0 0.585 0.585 0.589 0.706 0.717 0.714
0.4 0.560 0.553 0.550 0.696 0.689 0.675
0.8 0.508 0.512 0.515 0.651 0.648 0.633

Table 7. Finite sample sizes and power with εt autocorrelated - constant case
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DGP: yt = yt−1 + ϕ((1 + cos(2πkt/T ))/2)yt−1 + εt
εt = δεt−1 + θet−1 + et, et ∼ N(0, 1)

T = 250 DFGLSτ T GLSτ
k̂

(ϕ, k) θ / δ 0 0.3 0.6 0 0.3 0.6

(0, 0)

−0.8 0.066 0.085 0.107 0.029 0.047 0.093
−0.4 0.046 0.046 0.013 0.050 0.054 0.022

0 0.033 0.032 0.034 0.039 0.040 0.043
0.4 0.030 0.027 0.026 0.037 0.033 0.033
0.8 0.022 0.022 0.023 0.035 0.033 0.034

(−0.1, 0.5)

−0.8 0.169 0.229 0.315 0.050 0.093 0.227
−0.4 0.218 0.254 0.104 0.170 0.228 0.076

0 0.231 0.204 0.186 0.196 0.185 0.176
0.4 0.188 0.161 0.138 0.162 0.136 0.116
0.8 0.118 0.109 0.099 0.112 0.107 0.102

(−0.1, 1.0)

−0.8 0.117 0.162 0.235 0.054 0.106 0.247
−0.4 0.151 0.172 0.067 0.201 0.254 0.123

0 0.155 0.138 0.132 0.227 0.218 0.211
0.4 0.128 0.112 0.097 0.201 0.179 0.160
0.8 0.078 0.075 0.069 0.159 0.154 0.145

(−0.1, 1.5)

−0.8 0.133 0.181 0.245 0.055 0.106 0.240
−0.4 0.160 0.182 0.071 0.190 0.234 0.101

0 0.167 0.146 0.133 0.206 0.195 0.184
0.4 0.130 0.111 0.092 0.174 0.152 0.138
0.8 0.079 0.073 0.065 0.137 0.134 0.126

(−0.1, 2.0)

−0.8 0.148 0.201 0.278 0.068 0.128 0.278
−0.4 0.175 0.201 0.078 0.242 0.295 0.168

0 0.181 0.161 0.151 0.268 0.258 0.248
0.4 0.144 0.127 0.109 0.241 0.219 0.196
0.8 0.094 0.088 0.082 0.201 0.192 0.178

(−0.1, 2.5)

−0.8 0.151 0.203 0.275 0.072 0.137 0.278
−0.4 0.172 0.194 0.068 0.228 0.287 0.157

0 0.17 0.151 0.141 0.252 0.246 0.236
0.4 0.135 0.117 0.099 0.230 0.211 0.190
0.8 0.089 0.081 0.070 0.187 0.183 0.171

(−0.1, 3)

−0.8 0.177 0.238 0.327 0.080 0.151 0.313
−0.4 0.209 0.232 0.088 0.277 0.334 0.207

0 0.202 0.186 0.179 0.305 0.293 0.289
0.4 0.168 0.146 0.134 0.276 0.257 0.237
0.8 0.113 0.108 0.105 0.234 0.226 0.213

Table 8. Finite sample sizes and power with εt autocorrelated - linear trend case
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3.3. Heteroskedasticity

3.3.1. Conditional heteroskedasticity . In order to investigate the finite sample
distortions caused by the existence of conditional heteroskedasticity, we
consider that the innovations, εt, follow a GARCH(1,1) process

εt = et
√
ht

with

ht = ω + ζε2
t−1 + ξht−1,

where y1 = ε1 ∼ N(0, 1), h1 = 1, et ∼ N(0, 1), ζ ∈ {0.7, 0.8, 0.9}, ξ ∈
{0, 0.05, 0.1, 0.2} and ω = 1− ζ − ξ, implying an unconditional variance of unity.

Tables 9 and 10 report the empirical size of the T GLSµ
k̂

and T GLSτ
k̂

tests.
Results show that these tests suffer relevant size distortions in the presence of
conditional heteroskedasticity, especially when ζ is high. Its empirical size is
slightly higher than that of the DFGLSµ and considerably exceeds the nominal
5% level for all parameter values considered.

The results using the EW heteroskedasticity-consistent standard errors,
presented in Tables 11 and 12 (to save space, only results for T = 250 are
reported), show that the empirical sizes are close to the nominal 5% significance
level for both demeaned and de-trended cases. Moreover, the results obtained
employing the Wild bootstrap approach (see Tables 13 and 14), show that the
proposed test is relatively well behaved for all cases considered..

Regarding the empirical power, relevant power gains are observed relatively
to the DFGLS when EW heteroskedasticity-consistent standard errors are
considered. When the Wild bootstrap technique is employed, the superiority
relative to DFGLS is less pronounced for all parameter configurations
considered.

However, the conclusions are different for the demeaned and de-trended
cases when T=500. For this sample size, our tests exhibit considerable power
gains relative to the DFGLS tests, mainly when the constant is the only
deterministic component used. For some combinations of parameters, the
percentages of rejections are over 20% higher than those of the DFGLS test.

When these two techniques (EW and Wild bootstrap), used to control
the empirical size, are compared we see that Wild bootstrap provides higher
percentages of rejections of the false null hypothesis for almost all cases
investigated.
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DGP: yt = yt−1 + εt
εt = et

√
ht, ht = ω + ζε2t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

DFGLSµ T GLSµ
k̂

T = 150
ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9
0 0.063 0.065 0.071 0.083 0.093 0.106

0.05 0.065 0.071 0.079 0.086 0.099 0.114
0.1 0.068 0.075 - 0.089 0.102 -
0.2 0.077 - - 0.102 - -

T = 250
0 0.066 0.073 0.079 0.085 0.094 0.109

0.05 0.068 0.074 0.079 0.088 0.099 0.114
0.1 0.069 0.076 - 0.092 0.104 -
0.2 0.076 - - 0.102 - -

T = 500
0 0.061 0.067 0.071 0.071 0.085 0.096

0.05 0.064 0.068 0.074 0.078 0.091 0.104
0.1 0.066 0.071 - 0.086 0.098 -
0.2 0.069 - - 0.096 - -

Table 9. Empirical size assuming iid errors in the presence of GARCH effects -
constant case

DGP: yt = yt−1 + εt
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)
T = 150

DFGLSτ T GLSτ
k̂

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9
0 0.079 0.091 0.102 0.127 0.146 0.168

0.05 0.084 0.097 0.108 0.130 0.153 0.183
0.1 0.087 0.102 - 0.138 0.164 -
0.2 0.098 - - 0.157 - -

T = 250
0 0.075 0.084 0.099 0.120 0.142 0.168

0.05 0.076 0.089 0.106 0.126 0.149 0.178
0.1 0.081 0.097 - 0.133 0.161 -
0.2 0.093 - - 0.157 - -

T = 500
0 0.070 0.078 0.090 0.103 0.126 0.158

0.05 0.072 0.084 0.100 0.110 0.138 0.173
0.1 0.076 0.091 - 0.120 0.153 -
0.2 0.089 - - 0.147 - -

Table 10. Empirical size assuming iid errors in the presence of GARCH effects -
linear trend case
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DGP: yt = yt−1 + ϕ((1 + cos(2πkt/T ))/2)yt−1 + εt,
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

T = 250 DFGLSµ T GLSµ
k̂

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9

ϕ = 0

0 0.051 0.049 0.049 0.058 0.054 0.052
0.05 0.050 0.050 0.048 0.056 0.055 0.050
0.1 0.050 0.048 - 0.057 0.052 -
0.2 0.052 - - 0.053 - -

ϕ = −0.1

k = 0.5

0 0.396 0.370 0.336 0.434 0.399 0.348
0.05 0.386 0.352 0.299 0.422 0.379 0.306
0.1 0.375 0.335 - 0.407 0.352 -
0.2 0.340 - - 0.360 - -

k = 1

0 0.454 0.422 0.382 0.571 0.531 0.483
0.05 0.438 0.406 0.351 0.557 0.513 0.432
0.1 0.426 0.385 - 0.543 0.486 -
0.2 0.390 - - 0.496 - -

k = 1.5

0 0.429 0.396 0.359 0.520 0.482 0.432
0.05 0.415 0.380 0.325 0.505 0.46 0.391
0.1 0.400 0.360 - 0.488 0.437 -
0.2 0.366 - - 0.449 - -

k = 2

0 0.494 0.459 0.4138 0.613 0.581 0.532
0.05 0.482 0.440 0.3748 0.603 0.56 0.484
0.1 0.467 0.418 - 0.589 0.536 -
0.2 0.428 - - 0.545 - -

k = 2.5

0 0.475 0.435 0.3921 0.603 0.566 0.514
0.05 0.459 0.417 0.3579 0.589 0.546 0.462
0.1 0.444 0.395 - 0.576 0.518 -
0.2 0.404 - - 0.531 - -

k = 3

0 0.533 0.491 0.441 0.660 0.625 0.569
0.05 0.518 0.469 0.398 0.647 0.603 0.517
0.1 0.498 0.443 - 0.631 0.577 -
0.2 0.450 - - 0.587 - -

Table 11. Empirical size and power in the presence of GARCH effects using White
standard errors - constant case
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DGP: yt = yt−1 + ϕ((1 + cos(2πkt/T ))/2)yt−1 + εt,
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

T = 250 DFGLSτ T GLSτ
k̂

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9

ϕ = 0

0 0.041 0.037 0.035 0.049 0.044 0.040
0.05 0.039 0.035 0.033 0.049 0.043 0.040
0.1 0.038 0.033 - 0.047 0.042 -
0.2 0.027 - - 0.044 - -

ϕ = −0.1

k = 0.5

0 0.229 0.200 0.170 0.225 0.201 0.175
0.05 0.219 0.186 0.150 0.216 0.191 0.156
0.1 0.207 0.174 - 0.207 0.180 -
0.2 0.169 - - 0.184 - -

k = 1

0 0.168 0.147 0.126 0.227 0.210 0.188
0.05 0.159 0.139 0.114 0.219 0.201 0.174
0.1 0.153 0.127 - 0.213 0.193 -
0.2 0.125 - - 0.196 - -

k = 1.5

0 0.169 0.148 0.126 0.215 0.196 0.176
0.05 0.161 0.138 0.114 0.208 0.187 0.162
0.1 0.151 0.131 - 0.200 0.181 -
0.2 0.124 - - 0.185 - -

k = 2

0 0.189 0.165 0.139 0.283 0.262 0.244
0.05 0.180 0.155 0.128 0.276 0.252 0.227
0.1 0.168 0.145 - 0.265 0.242 -
0.2 0.138 - - 0.247 - -

k = 2.5

0 0.186 0.164 0.142 0.282 0.261 0.242
0.05 0.177 0.153 0.127 0.274 0.252 0.226
0.1 0.167 0.142 - 0.264 0.242 -
0.2 0.137 - - 0.245 - -

k = 3

0 0.203 0.182 0.156 0.332 0.310 0.289
0.05 0.193 0.169 0.139 0.324 0.299 0.268
0.1 0.184 0.157 - 0.315 0.287 -
0.2 0.148 - - 0.288 - -

Table 12. Empirical size and power in the presence of GARCH effects using White
standard errors - linear trend case
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DGP: yt = yt−1 + εt
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

T = 250 DFGLSµ T GLSµ
k̂

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9

ϕ = 0

0 0.046 0.055 0.056 0.060 0.064 0.067
0.05 0.051 0.055 0.055 0.057 0.063 0.064
0.1 0.052 0.051 - 0.058 0.068 -
0.2 0.053 - - 0.058 - -

ϕ = −0.1

k = 0.5

0 0.442 0.436 0.413 0.468 0.459 0.428
0.05 0.442 0.427 0.405 0.473 0.453 0.400
0.1 0.446 0.426 - 0.465 0.44
0.2 0.445 - - 0.458

k = 1

0 0.531 0.518 0.491 0.556 0.528 0.487
0.05 0.525 0.506 0.469 0.541 0.515 0.448
0.1 0.516 0.499 - 0.533 0.492 -
0.2 0.497 - - 0.513 - -

k = 1.5

0 0.523 0.518 0.488 0.551 0.526 0.494
0.05 0.523 0.514 0.469 0.544 0.515 0.447
0.1 0.526 0.514 - 0.525 0.493 -
0.2 0.524 - - 0.485 - -

k = 2

0 0.556 0.55 0.534 0.637 0.612 0.554
0.05 0.553 0.543 0.511 0.627 0.592 0.496
0.1 0.544 0.532 - 0.619 0.551 -
0.2 0.538 - - 0.573 - -

k = 2.5

0 0.544 0.542 0.520 0.621 0.599 0.555
0.05 0.546 0.535 0.495 0.618 0.587 0.516
0.1 0.546 0.524 - 0.597 0.569 -
0.2 0.519 - - 0.574 - -

k = 3

0 0.613 0.585 0.560 0.684 0.643 0.575
0.05 0.595 0.582 0.527 0.663 0.621 0.519
0.1 0.596 0.562 - 0.650 0.598 -
0.2 0.571 - - 0.613 - -

Table 13. Empirical size and power in the presence of GARCH effects when the
Wild Bootstrap technique is employed - constant case
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DGP: yt = yt−1 + εt
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

T = 250 DFGLSτ T GLSτ
k̂

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9

ϕ = 0

0 0.049 0.051 0.057 0.064 0.069 0.074
0.05 0.049 0.055 0.061 0.068 0.068 0.076
0.1 0.058 0.056 - 0.068 0.075 -
0.2 0.058 - - 0.070 - -

ϕ = −0.1

k = 0.5

0 0.321 0.323 0.311 0.297 0.290 0.275
0.05 0.323 0.318 0.306 0.296 0.283 0.26
0.1 0.322 0.307 - 0.295 0.282 -
0.2 0.308 - - 0.281 - -

k = 1

0 0.217 0.214 0.219 0.251 0.234 0.224
0.05 0.218 0.22 0.216 0.245 0.227 0.208
0.1 0.219 0.218 - 0.237 0.22 -
0.2 0.226 - - 0.219 - -

k = 1.5

0 0.238 0.240 0.241 0.246 0.24 0.232
0.05 0.249 0.243 0.238 0.252 0.242 0.218
0.1 0.246 0.242 - 0.247 0.237 -
0.2 0.243 - - 0.239 - -

k = 2

0 0.250 0.249 0.251 0.265 0.259 0.246
0.05 0.249 0.249 0.249 0.274 0.258 0.254
0.1 0.257 0.257 - 0.277 0.259 -
0.2 0.262 - - 0.260 - -

k = 2.5

0 0.250 0.247 0.251 0.286 0.267 0.246
0.05 0.246 0.249 0.245 0.279 0.257 0.228
0.1 0.250 0.257 - 0.267 0.243 -
0.2 0.255 - - 0.259 - -

k = 3

0 0.281 0.284 0.279 0.319 0.297 0.285
0.05 0.285 0.289 0.285 0.313 0.295 0.260
0.1 0.287 0.291 - 0.306 0.283 -
0.2 0.287 - - 0.293 - -

Table 14. Empirical size and power in the presence of GARCH effects when the
Wild Bootstrap technique is employed - linear trend case
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3.3.2. Unconditional heteroskedasticity . To analyze the impact of uncondi-
tional heteroscedasticity on the performance of the tests, we next consider the
simulation design of DGP1 with the following specification for the innovation
process: 

ε1,t ∼ N(0, σ2
1) for t = 1, ..., bτ̄1T c

ε2,t ∼ N(0, σ2
2) for t = bτ̄1T c+ 1, ..., bτ̄2T c

ε3,t ∼ N(0, σ2
3) for t = bτ̄2T c+ 1, ..., T,

(20)

where y1 = ε1,t ∼ N(0, σ2
1).

Structural breaks in the unconditional volatility was investigated in several
works. For instance, McConnell and Perez-Quiros (2000) identified a structural
decline in U.S. output volatility in the early 1980’s. Sensier and van Dijk
(2003) found similar evidence for a large number of macroeconomic time series.
Moreover, they claimed that nominal variables such as inflation also witnessed
temporary increases in volatility during the 1970s and therefore, may have
suffered more than one structural break.

Thus, in order to infer how changes in the innovation variance affect the
finite sample properties of the proposed test, we carried out some simulations.
To save space, only DGP1 with ϕ=−0.1 is examined. Moreover, only two cases
were considered. In the first case a single break is allowed that either increases
or decreases the innovation variance; and in the other case investigated, two
breaks in volatility are allowed, the first causing an increase in the innovation
variance and the second a reduction of this parameter to the value it assumed
before the occurrence of any break. The values considered in the simulations for
the standard deviations allow for large changes in the unconditional volatility.

The size results for the constant case are reported in Table 15. Results
show that the proposed test reveals in some cases finite sample size distortions.
However, the rejection rates are, overall, not too far from those of the DFGLSµ
test. Over-rejections are more severe when the innovation variance faces a
large increase (e.g. σ2

2 = 4), even if negative variation of the same magnitude
occurs later. Moreover, for breaks closer to the end of the sample empirical
size distortions are the largest. For decreases in volatility, there are also small
over-rejections of the null, especially when these occur at the beginning of the
sample (τ̄1 = 0.3).

Table 16 presents the size results for the linear trend case. Although the
nominal size of the proposed test shows the same patterns reported for the
constant case, the rejection rates are larger.

The Wild bootstrap procedure was employed to control the empirical size
of the proposed test and the results show that this technique achieves the goal.
Table 17 presents the results using the Wild bootstrap for the demeaned case
with T = 250. The empirical sizes of the proposed test are close to the nominal
5% significance level for all cases investigated. Regarding the power properties,
comparing the results in Table 17 with those reported in Table 3, where the
innovation variance is constant, we observe that the power loss is greater for
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an increase in volatility, for instance, for (σ1, σ2, σ3) = (1, 2, 2), with k = 0.5 or
τ̄1 = 0.7. When a decrease in the unconditional variance is observed, the power
loss is greater if k > 0.5 and τ̄1 = 0.3. Finally, the occurrence of two breaks in
volatility causes more severe power losses when k = 1 and the magnitude of the
changes is larger (σ2 = 2).

The superior power performance of the proposed test relatively to DFGLSµ
also depends on k, τ̄1 and σ. For instance, when the innovation variance
increases, the percentage of rejections of the proposed test is greater for k > 0.5
and the difference relative to the DFGLSµ test reaches its maximum for
τ̄1 = 0.3. For a decrease in volatility, the proposed test shows better power
properties for all k and the superiority relative to DFGLSµ is more prominent
for τ̄1 = 0.7. On the other hand, if two breaks in volatility occur, the positive
difference in the percentage of rejection relative to the DFGLSµ test is greater
when k = 1 and the change in the innovation variance is smaller (σ2 = 1.5).

Table 18 presents the results for the linear trend case with T = 250.
Power losses (when compared to Table 4) caused by the occurrence of breaks
in volatility are similar to those reported for the constant case. Regarding
the comparison with the DFGLSτ test, we see that power gains are small or
nonexistent here. For instance, if k > 0.5 the percentage of rejections is always
higher for the DFGLSτ test and for the combinations of parameter where there
are some power gains, the differences relative to the DFGLSτ test are small.
Thus, simulations show that, for the linear trend case, it is extremely difficult
to reject the null of a unit root in small and moderate samples when ϕ = −0.1
if, besides the breaks in persistence, the time series also faced breaks in the
innovation variance. In this case, the advantages of using the proposed test
only becomes clear for larger samples (T = 500).
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DGP: yt = yt−1 + εi,t, i = 1, 2, 3

ε1,t∼N(0, σ21) if t ≤ τ̄1T,
ε2,t∼N(0, σ22) if τ̄1T < t ≤ τ̄2T,
ε3,t∼N(0, σ23) if t ≤ τ̄2T.
σ = (σ1, σ2, σ3) and τ̄ = (τ̄1, τ̄2)

T = 150

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

σ/τ̄ (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)
(1, 2, 2) 0.068 0.077 0.070 0.082 0.069 0.083
(2, 1, 1) 0.059 0.071 0.062 0.073 0.057 0.052
σ/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(1, 1.5, 1) 0.058 0.059 0.058 0.062 0.060 0.066
(1, 2, 1) 0.068 0.078 0.065 0.079 0.071 0.084

T = 250

σ/τ̄ (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)
(1, 2, 2) 0.069 0.077 0.069 0.080 0.072 0.088
(2, 1, 1) 0.063 0.070 0.061 0.069 0.056 0.058
σ/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(1, 1.5, 1) 0.056 0.059 0.059 0.058 0.060 0.063
(1, 2, 1) 0.069 0.072 0.069 0.078 0.069 0.080

T = 500

σ/τ̄ (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)
(1, 2, 2) 0.065 0.075 0.071 0.083 0.068 0.089
(2, 1, 1) 0.058 0.066 0.057 0.068 0.057 0.060
σ/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(1, 1.5, 1) 0.051 0.058 0.058 0.061 0.054 0.059
(1, 2, 1) 0.061 0.072 0.070 0.078 0.063 0.073

Table 15. Empirical size assuming constant volatility when one or two changes in
the variance of εt occur - constant case
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DGP: yt = yt−1 + εi,t, i = 1, 2, 3

ε1,t∼N(0, σ21) if t ≤ τ̄1T,
ε2,t∼N(0, σ22) if τ̄1T < t ≤ τ̄2T,
ε3,t∼N(0, σ23) if t ≤ τ̄2T.
σ = (σ1, σ2, σ3) and τ̄ = (τ̄1, τ̄2)

T = 150

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

DFGLSµ T GLSµ
k̂

σ/τ̄ (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)
(1, 2, 2) 0.074 0.074 0.077 0.088 0.081 0.107
(2, 1, 1) 0.074 0.083 0.076 0.079 0.070 0.066
σ/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(1, 1.5, 1) 0.061 0.063 0.059 0.065 0.058 0.065
(1, 2, 1) 0.074 0.096 0.070 0.102 0.069 0.095

T = 250

σ/τ̄ (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)
(1, 2, 2) 0.063 0.073 0.065 0.089 0.068 0.108
(2, 1, 1) 0.059 0.077 0.058 0.075 0.052 0.063
σ/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(1, 1.5, 1) 0.058 0.063 0.054 0.062 0.058 0.062
(1, 2, 1) 0.069 0.091 0.065 0.101 0.071 0.093

T = 500

σ/τ̄ (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)
(1, 2, 2) 0.065 0.078 0.066 0.088 0.067 0.105
(2, 1, 1) 0.059 0.075 0.056 0.070 0.054 0.062
σ/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(1, 1.5, 1) 0.058 0.062 0.062 0.069 0.059 0.064
(1, 2, 1) 0.071 0.089 0.077 0.103 0.074 0.093

Table 16. Empirical size assuming constant volatility when one or two changes in
the variance of εt occur - linear trend case
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DGP: yt = yt−1 + ϕ((1 + cos(2πkt/T ))/2)yt−1 + εit, i = 1, 2, 3
ε1,t∼N(0, σ2

1) if t ≤ τ̄1T,
ε2,t∼N(0, σ2

2) if τ̄1T < t ≤ τ̄2T,
ε3,t∼N(0, σ2

3) if t ≤ τ̄2T.
τ̄ = (τ̄1, τ̄2)

DFGLSµ T GLSµ
k̂

T = 250 σ1 = 1, σ2 = 2 and σ3 = 2
(ϕ, k)/τ̄ (0.3, 0.3) (0.5, 0.5) (0.7, 0.7) (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)

(0, 0) 0.051 0.054 0.055 0.058 0.046 0.044
(−0.1, 0.5) 0.372 0.312 0.313 0.323 0.276 0.276
(−0.1, 1.0) 0.428 0.575 0.650 0.590 0.654 0.676
(−0.1, 1.5) 0.519 0.552 0.463 0.581 0.571 0.423
(−0.1, 2.0) 0.604 0.538 0.534 0.689 0.649 0.640
(−0.1, 2.5) 0.569 0.510 0.570 0.652 0.597 0.577
(−0.1, 3.0) 0.607 0.641 0.589 0.736 0.716 0.654

σ1 = 2, σ2 = 2 and σ3 = 1
(0, 0) 0.057 0.053 0.041 0.052 0.037 0.049

(−0.1, 0.5) 0.624 0.683 0.651 0.683 0.699 0.671
(−0.1, 1.0) 0.582 0.452 0.463 0.606 0.552 0.576
(−0.1, 1.5) 0.490 0.491 0.583 0.564 0.549 0.685
(−0.1, 2.0) 0.486 0.573 0.562 0.591 0.685 0.688
(−0.1, 2.5) 0.532 0.613 0.599 0.601 0.670 0.712
(−0.1, 3.0) 0.597 0.606 0.670 0.638 0.658 0.733

σ1 = 1, σ2 = 1.5 and σ3 = 1
(ϕ, k)/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(0, 0) 0.046 0.052 0.056 0.042 0.052 0.050
(−0.1, 0.5) 0.505 0.460 0.486 0.520 0.455 0.482
(−0.1, 1.0) 0.422 0.458 0.424 0.569 0.588 0.548
(−0.1, 1.5) 0.528 0.610 0.566 0.663 0.685 0.671
(−0.1, 2.0) 0.667 0.616 0.629 0.754 0.692 0.696
(−0.1, 2.5) 0.574 0.550 0.580 0.695 0.679 0.700
(−0.1, 3.0) 0.640 0.653 0.667 0.729 0.747 0.749

σ1 = 1, σ2 = 2 and σ3 = 1
(0, 0) 0.052 0.056 0.052 0.059 0.058 0.057

(−0.1, 0.5) 0.505 0.434 0.461 0.509 0.387 0.436
(−0.1, 1.0) 0.352 0.401 0.339 0.442 0.482 0.444
(−0.1, 1.5) 0.520 0.647 0.581 0.625 0.684 0.667
(−0.1, 2.0) 0.707 0.592 0.604 0.727 0.643 0.648
(−0.1, 2.5) 0.558 0.514 0.573 0.653 0.618 0.650
(−0.1, 3.0) 0.602 0.617 0.649 0.677 0.710 0.740

Table 17. Empirical size and power employing the Wild Bootstrap technique when
changes in the variance of εt occur - constant case
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DGP: yt = yt−1 + ϕ((1 + cos(2πkt/T ))/2)yt−1 + εit, i = 1, 2, 3
ε1,t∼N(0, σ2

1) if t ≤ τ̄1T,
ε2,t∼N(0, σ2

2) if τ̄1T < t ≤ τ̄2T,
ε3,t∼N(0, σ2

3) if t ≤ τ̄2T.
τ̄ = (τ̄1, τ̄2)

DFGLSµ T GLSµ
k̂

T = 250 σ1 = 1, σ2 = 2 and σ3 = 2
(ϕ, k)/τ̄ (0.3, 0.3) (0.5, 0.5) (0.7, 0.7) (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)

(0, 0) 0.045 0.054 0.051 0.050 0.050 0.060
(−0.1, 0.5) 0.259 0.230 0.200 0.188 0.178 0.176
(−0.1, 1.0) 0.175 0.262 0.332 0.234 0.285 0.341
(−0.1, 1.5) 0.260 0.317 0.244 0.254 0.287 0.222
(−0.1, 2.0) 0.294 0.258 0.236 0.279 0.263 0.256
(−0.1, 2.5) 0.276 0.241 0.322 0.274 0.242 0.265
(−0.1, 3.0) 0.266 0.315 0.273 0.311 0.319 0.269

σ1 = 2, σ2 = 2 and σ3 = 1
(0, 0) 0.044 0.044 0.051 0.057 0.049 0.046

(−0.1, 0.5) 0.470 0.520 0.493 0.391 0.386 0.352
(−0.1, 1.0) 0.264 0.202 0.171 0.302 0.228 0.203
(−0.1, 1.5) 0.245 0.199 0.259 0.234 0.192 0.290
(−0.1, 2.0) 0.213 0.250 0.255 0.218 0.262 0.264
(−0.1, 2.5) 0.223 0.269 0.226 0.235 0.279 0.244
(−0.1, 3.0) 0.245 0.230 0.288 0.279 0.262 0.304

σ1 = 1, σ2 = 1.5 and σ3 = 1
(ϕ, k)/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(0, 0) 0.051 0.049 0.049 0.053 0.051 0.050
(−0.1, 0.5) 0.365 0.317 0.326 0.290 0.254 0.262
(−0.1, 1.0) 0.163 0.180 0.156 0.184 0.208 0.181
(−0.1, 1.5) 0.231 0.270 0.249 0.249 0.284 0.278
(−0.1, 2.0) 0.312 0.268 0.266 0.320 0.289 0.282
(−0.1, 2.5) 0.238 0.218 0.235 0.300 0.247 0.262
(−0.1, 3.0) 0.261 0.263 0.283 0.327 0.313 0.353

σ1 = 1, σ2 = 2 and σ3 = 1
(0, 0) 0.053 0.053 0.054 0.043 0.050 0.049

(−0.1, 0.5) 0.361 0.302 0.317 0.267 0.208 0.245
(−0.1, 1.0) 0.126 0.146 0.124 0.126 0.128 0.124
(−0.1, 1.5) 0.220 0.278 0.254 0.226 0.278 0.252
(−0.1, 2.0) 0.321 0.267 0.253 0.302 0.279 0.255
(−0.1, 2.5) 0.228 0.210 0.226 0.276 0.194 0.237
(−0.1, 3.0) 0.240 0.253 0.278 0.276 0.270 0.316

Table 18. Empirical size and power employing the Wild Bootstrap technique when
changes in the variance of εt occur - linear trend case
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4. Empirical application

In this section, we investigate inflation rate persistence, which is defined here
as the speed at which inflation converges to equilibrium after a shock in the
disturbance term. Thus, the parameter ϕ in the test regression

∆π̂t = ϕcos(k ,t)π̂t−1 +

p∑
j=1

δj∆π̂t−j + εt, (21)

is a reasonable indicator of persistence dynamics and its statistical significance
is tested using the procedure introduced in Section 2, i.e.,

T GLSµ
k̂

= min
k∈K

t̂
GLSµ
k , K = {0.5, 1, 1.5, 2, 2.5, 3} . (22)

Although a large literature, mostly based on U.S. data, has investigated the
nature of inflation persistence over the last decades, findings are not consensual.
One possible reason is the use of different measures of persistence, by different
authors.

An important branch of this literature considered the order of integration
as a measure of inflation persistence. Thus, traditional unit root tests have
been widely used in this context in order to determine whether inflation rate
series are I(0) or I(1), (see, for instance, Evans and Wachtel 1993, Culver and
Papell 1997, and Crowder and Wohar 1999). In the I(0) case, shocks have only
a transitory impact, while for I(1) they are highly persistent. Applications
of these tests to inflation data has led to mixed evidence about the order of
integration, which is not surprising given their poor power performance in finite
samples when the coefficient of the underlying linear model changes.

More recently, in response to the difficulty of conventional unit root tests
to reject the unit root hypothesis, new methodologies have been proposed to
infer about the order of integration of inflation series. One possible way is
to employ stationarity or unit root tests that take the existence of structural
breaks and non-linearities, which may be present in the variables’ dynamics,
into account. Chang et al. (2013) employed the stationarity tests proposed
by Becker et al. (2006), which use Fourier functions to approximate structural
breaks in the deterministic terms. Their results show that inflation series exhibit
mean reversion behavior for all 22 OECD countries investigated. Chen and
Hsu (2016) present similar conclusions using the unit root tests developed by
Leybourne et al. (1998) which employ a logistic function aiming at capturing
the occurrence of smooth breaks in the deterministic component. However, it
should be noted that they do not discard the questionable hypothesis that
inflation rates have a deterministic trend (linear or nonlinear). Moreover, these
authors also found evidence, applying TAR and ESTAR-type nonlinear unit
root tests, supporting the existence of nonlinear dynamics in inflation behavior.

A possible cause of change in persistence is the interdependence between
monetary policy decisions and the persistence of inflation. Alogoskoufis
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and Smith (1991) found evidence that inflation persistence is a positive
function of the degree of monetary and exchange-rate accommodation. Higher
accommodation following a price shock has been associated not only with
high inflation values but also with higher persistence of inflation. Therefore,
specifications that allow for the order of integration to exogenously change
over time must also be considered in this context. This statement is supported
by more recent works. For instance, Harvey et al. (2006) found evidence, using
tests for a change in persistence, that CPI inflation in the U.S. suffered a
change in persistence from I(1) to I(0). Halunga et al. (2009) applied the
same tests to the UK and US inflation data and reported similar results. They
attempt to circumvent the single change in persistence limitation of these tests
by partitioning the sample when a break is found. The findings achieved using
this approach point to the existence of a first change from I(0) to I(1) in the
early 1970s and a subsequent reversion to I(0) in the early 1980s, suggesting
that the nonstationary dynamics of inflation lasted only about ten years.

Lastly, some works use the order of fractional integration as a measure
of inflation persistence, but considered that the order of integration is time-
varying. For instance, Kumar and Okimoto (2007) and Martins and Rodrigues
(2014) opted for this approach and detected a change from more persistent to
less persistent behavior over the last decades in the inflation rate series.

An alternative branch of literature uses AR model-based measures, such
as, the largest autoregressive root (LAAR) and the sum of the autoregressive
coefficients (SARC). Taylor (2000) estimated both LAAR and SARC and found
a large decline in persistence in the early 80’s. Levin and Piger (2003) argue
that if structural breaks in the intercept of the AR equation are considered, the
estimated SARC is lower and far from that of a random walk process. Thus,
they conclude that high inflation persistence is not an inherent characteristic of
industrial economies. Beechey and Österholm (2012) used an ARMA model of
inflation with a time-varying autoregressive parameter for the US and suggested
that the preference for inflation stability since the 1980s lead to a decrease in
inflation persistence (see also Pivetta and Reis 2007).

Almost all of the recently proposed methodologies provide strong evidence
against the statement that inflation dynamics is described by a pure I(1)
process. This work intends to contribute to this literature, where the focus has
been mostly to attenuate the effects of structural breaks in the deterministic
structure, by proposing an easy to implement approach for which the considered
specification under the alternative hypothesis is sufficiently flexible to allow for
the dynamics of inflation to change between integrated and mean reversion
over the sample. Thus, the proposed test does not simply classify inflation
as either an I(0) or I(1) process, but is closely related to the literature that
investigate the occurrence of changes in the order of integration (Kim 2000
and Harvey et al. 2006). However, as our test retains the whole sample in a
unified estimation, we expect it to provide relevant power gains when changes
in inflation persistence are gradual.
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Therefore, the main objective of this section is to gather empirical evidence
of structural breaks in inflation persistence by applying the proposed test
procedures to inflation data from several industrial economies. Our approach
allows for a maximum of three breaks, which seems adequate given the sample
sizes available in practice (this can however be relaxed if needed).

Our sample consists of quarterly CPI data for the G7 countries obtained
from OECD Statistics for the period from 1955Q1 to 2018Q2. The quarterly
CPI is then used to compute the year-on-year and the quarterly growth rate of
the CPI data.

According to Hassler and Demetrescu (2005), the power performance of the
ADF test crucially depends on whether inflation is assumed to be equal to the
year-on-year growth or to the quarterly growth of CPI. For instance, when the
quarterly growth is stationary, the year-on-year growth of the CPI introduces
a noninvertible moving average component in the resulting time series, which
is responsible for a loss of power of the ADF tests. However, since the year-on-
year growth of CPI is relevant for monetary policy decisions (inflation targeting
regimes typically observe its evolution) we will consider the two definitions.

Figures 2 and 3 display, respectively, the year-on-year and the quarterly
growth rates of the CPI time series for the G7 countries. Simple visual
inspection suggests that the 1970s was the period with the highest inflation
rates for almost all countries. Over these years, which have as a milestone the
collapse of Bretton Woods, the world economy faced a period of turbulence in
which the option for a highly accommodative monetary policy seems to have
triggered an unusual increasing inflation persistence only attenuated in the
early 80’s with the shift to a more restrictive monetary policy. This option,
characterized by the introduction of inflation targeting as a framework for
monetary policy, contributed to a long period of low and stable inflation in
developed countries. Since the 2008 global financial crisis, price stability is once
more a concern but this time because of the risk that inflation could remain
too low for too long. In order to avoid deflation and to bring inflation back to
a desirable level, central banks implemented an expansionary monetary policy,
which may have had an impact on inflation persistence. Thus, for the sample
period considered in this work, two breaks in persistence may have occurred
associated with periods of turbulence and relevant changes in monetary policy.

Since breaks in the autoregressive parameter have impact on the
deterministic component of the process, we also consider the unit root test
proposed by Rodrigues and Taylor (2012) to infer if allowing for exogenous
structural breaks in the intercept is sufficient to gather evidence against the
null hypothesis. Moreover, Wild bootstrap p-values of the proposed test are
also computed in order to prevent that the results are influenced by breaks in
the unconditional volatility (or even by the presence of GARCH effects). The
values considered in the simulation studies for the variance parameters are more
extreme than, for instance, the changes in the standard deviation reported by
Sensier and van Dijk (2003) for consumer prices time series.
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Table 19 reports the results for the year-on-year growth rate of CPI.
Considering the proposed test, the null hypothesis of a unit root is rejected for
three countries (Canada, France and Germany) at the 5% level of significance,
and for the UK at the 10% level of significance. The chosen frequencies (k̂ = 1.5
and 2) suggest that there were two periods of higher persistence. When k = 1.5,
the trigonometric function employed to approximate the breaks reaches its
minimum values (zero) for t/T ∼= 0.33(3) and for t/T ∼= 1. Therefore, for
Canada, France and Germany there is statistically evidence that persistence is
higher before the middle and at the end of the sample. For k = 2, the minimum
occurs for t/T ∼= 0.25 and for t/T ∼= 0.75 and persistence is, if the unit root
test rejects the null hypothesis, far below unity at the end of the sample.

As the timing of the breaks influences the power performance of the
proposed unit root test, we also considered the time series in reverse
chronological order. It is easy to prove that in this case the proposed test
has the following asymptotic distribution (see, for instance, ?):

T GLSµ
k̂,r

:= min
k∈K

t̂
GLSµ
k ⇒

min
k∈K

−cos(k, 0)W (1)2 + 1
2(2πk)2

∫ 1

0 cos(2πkr)W (r)2dr − 1

2
(∫ 1

0 cos2(k, r)W (r)2dr
)1/2

.
(23)

The values of c̃ for a given k ∈ K = {0.5, 1, 1.5, 2, 2.5, 3} and the critical
values of the T GLSµ

k̂,r
test are very close to those obtained using the normal

chronological order (which are not presented here for the sake of space). This
approach also allows, when fractional values of k are considered, to approximate
the cases in which the process starts with a period of higher persistence.

With the exception of Japan, the proposed test with this transformation
rejects at the 5% level of significance for all countries. Comparing with previous
evidence using the normal chronological order, the unit root hypothesis is
rejected for two additional countries at the 5% level of significance. The
estimated k̂ parameter equals one for all countries, suggesting that attenuating
the effect of a period of higher persistence somewhere around the middle
of the sample is sufficient to gather strong evidence against the unit root
hypothesis. These results may be related with the findings using the ESTAR
model previously reported. The shape of the exponential transition function (as
function of the lagged dependent variable) is similar to the shape considered by
the cosine function with k = 1. The main difference between the two approaches
is the assumption made about the causes that lead to breaks in inflation
persistence. The ESTAR model employed in this context assumes that the
switch from the stationary to the highly persistent regime is endogenous, a
function of the transition variable. So, for this model to be globally stationary,
there must be a mean-reverting mechanism towards equilibrium, which implies
the existence of a unique natural rate of inflation. This hypothesis is not
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compatible with the assumption that there have been exogenous changes in
monetary policy which had permanent effects on the inflation dynamics.

Thus, regarding the apparent power gains when the reverse chronological
order is used, the results in Table 19 seem to confirm that the proposed test
has more difficulties in detecting breaks in persistence at the beginning of
the sample (as suggested by the simulation studies) since a simple reversion
of the chronological order leads to three additional rejections of the unit
root hypothesis (for Italy, Japan and the US). Table 5 shows that when
the process is highly persistent in the interval 0.4 < t/T < 0.7, the rate of
rejection of the null hypothesis is larger than when the same occurs in the
interval 0.3 < t/T < 0.6. With this in mind, assume that the 1970s was the
the only period of highly persistent inflation. The first observations of this
decade correspond to t/T ∼= 0.23 and the last ones to t/T ∼= 0.39. Thus,
reversed chronological order suggests that the break in persistence occurred
at t/T ∼= 0.61, which is associated with better power performance. Therefore,
these results appear to reveal that there was an important structural change
in persistence before the first half of the sample when the normal chronological
order is considered. Nonetheless, regardless of the chronological order, the
proposed test always rejects more often the unit root than the other two tests
employed in this empirical application.

However, as we computed the test statistic in normal, T GLSµ
k̂

, and in reverse

chronological order, T GLSµ
k̂,r

, it is expected that the empirical size is above
the nominal 5% level. Therefore, we also considered the critical values of the
minimum between these two statistics (see note to Table 19), and we observe
that the unit root hypothesis is rejected at the 1% significance level for Canada,
France, Germany and the US, at the 5% significance level for Italy and the UK
and at the 10% significance level for Japan. For France and Germany, using
the time series in normal chronological order leads to stronger rejection of
the null hypothesis. For these cases, two breaks in persistence seem to have
occurred. One before the middle of the sample and the other at the end of the
sample, suggesting that the 2008/2009 financial crisis originated a statistically
significant change in inflation persistence.

Table 20 reports the results for the quarterly growth CPI. The test proposed
in this paper rejects the null hypothesis of nonstationarity for three countries
(Canada, France and the UK) at the 5% significance level and for the US at
the 10% significance level. The estimated frequency k is the same as for the
year-on-year inflation series for six of the seven countries. Using the data in
reverse chronological order leads to similar conclusions as those drawn from
Table 19. When the minimum between T GLSµ

k̂
and T GLSµ

k̂,r
is considered, there

is statistical evidence against the unit root hypothesis for all countries at the
5% significance level.

It is important to note that the proposed cosine term can only provide
a rough approximation of the exogenous breaks in persistence and, for the
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chosen values of k, it implies that the persistence parameter only assumes
two values: one close to unity when the function reaches its minimum value
and a lower persistence value when the function reaches its maximum value.
Furthermore, considering k̂ = 3 as the maximum value for the frequency
parameter implies that there were a maximum of three periods of shorter
duration with higher persistence in inflation. Given the sample length available
in practice, this number may even be large in some cases. Lastly, simulations
show that the power gains achieved by the new test are maximized when k is
smaller. Even with these limitations, we found relevant evidence against the
unit root hypothesis of the inflation rate series for several industrial countries.

Summing up, the proposed test provides statistical evidence of breaks in
persistence for several countries considering both year-on-year and quarterly
growth of CPI. When time series in reverse chronological order are considered,
the null hypothesis is rejected more times and k̂ = 1 for most countries.

Comparing the results obtained using normal and reverse chronological
orders seems to suggest that the difficulty in rejecting the I(1) hypothesis
is largely due to the Great Inflation of the 1970s (beyond the limitations of
available unit root tests such as, for instance, low power in small samples).
Regarding the last ten years, the plausible change in persistence after the crisis
seems not to have such a large influence, since the proposed unit root test
continues to provide strong rejections of the unit root hypothesis even when a
frequency parameter which is not able to approximate a break in persistence
occurring in this period is chosen.
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Figure 2: Year-on-year growth of the CPI (percentage change relative to the same
quarter of the previous year) for the G7 countries.
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Figure 3: Quarterly growth of the CPI (percentage change relative to the previous
quarter) for the G7 countries.
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Country DFGLSµ k̂ T GLSµ
k̂

WB p-value k t
ERSµf
α

Canada −1.040 1.5 −2.900 b 0.028 1 −2.276
France −1.348 1.5 −3.494 a 0.016 1 −2.724

Germany −2.481 b 1.5 −3.692 a 0.002 1 −3.040 c

Italy −1.719 c 1.5 −2.280 0.161 1 −3.109 c

Japan −1.320 2 −2.002 0.230 1 −2.378 c

United Kingdom −1.392 2 −2.446 c 0.111 1 −1.951
United States −1.065 1.5 −2.031 0.235 1 −2.343

reverse chronological order
Canada −1.348 1 −3.748 a 0.000 1 −2.432

France −1.109 1 −3.108 b 0.045 1 −2.381

Germany −2.051 b 1 −3.583 a 0.007 1 −3.104 c

Italy −1.432 1 −3.174 b 0.033 1 −3.114 c

Japan −1.647 1 −2.586 c 0.091 1 −2.805

United Kingdom −1.278 1 −2.894 b 0.054 1 −2.068
United States −1.471 1 −4.096 a 0.002 1 −2.533

Table 19. Results for the year-on-year growth of the CPI

Country DFGLS
µ

k̂ T GLSµ
k̂

WB p-value k t
ERSµf
α

Canada −1.499 1.5 −3.021 b 0.016 1 −2.790
France −1.303 1.5 −3.313 a 0.034 1 −2.713
Germany −0.901 1.5 −1.706 0.325 1 −1.905
Italy −1.375 2 −2.243 0.170 1 −2.487
Japan −1.355 2 −1.967 0.219 1 −2.561

United Kingdom −1.383 2 −3.178 b 0.029 1 −2.108
United States −1.417 1.5 −2.528 c 0.235 1 −2.460

reverse chronological order
Canada −1.745 b 1 −2.697 b 0.044 1 −1.887

France −1.005 1 −3.013 b 0.046 1 −2.046

Germany −1.635 1 −3.125 b 0.017 1 −3.156 b

Italy −1.591 1 −3.205 a 0.037 1 −2.447

Japan −1.654 2.5 −3.016 b 0.036 1 −3.055 c

United Kingdom −0.988 2.5 −2.516 c 0.124 1 −2.079

United States −1.798 b 1 −3.411 a 0.007 1 −2.329

Table 20. Results for the quarterly growth of the CPI

Notes for Tables 19 and 20: (1) a, b and c denote significance at the 1%, 5% and 10%

respectively; (2) t
ERSµf
α is the test proposed by Rodrigues and Taylor (2012) which assumes

that the frequency k is known (k = 1, 2, ..., 5); (3) the lags of the unit root tests were chosen
using the MAIC information criterion; (4) the values of the critical values of T GLSµ

k̂
with

reverse chronological order equals, when T=250, -3.198, -2.634 and -2.352 for 1%, 5% and
10% respectively; (5) the critical values for the minimum between T GLSµ

k̂
with normal and

reverse chronological order are, when T=250, -3.382, -2.839 and -2.568 for 1%, 5% and 10%.
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5. Conclusions

In this paper, we propose a simple approach to detect potential persistence
changes and allow for the possibility of the occurrence of up to three breaks
in persistence (note that more breaks can be allowed for if deemed necessary).
The unknown shape and timing of the breaks are approximated using a cosine
term. The test procedure is based on a one-sided t-statistic where this statistic
is minimized over a set of values chosen a priori for the frequency parameter
k. We considered fractional and integer values for k, since using integer values
only may be restrictive as it implies that the autoregressive parameter has the
same value at the beginning and at the end of the sample.

We find via Monte Carlo simulations that our proposed test has interesting
power performance when compared to local GLS detrended unit root tests
when breaks in persistence are present. The advantages of the T GLS

k̂
are

more pronounced when applied to demeaned data and moderate sample sizes
(T = 250).

In addition to the DGPs suggested by the specification of the alternative
hypothesis, which implies smooth breaks in persistence, we also investigated the
power properties of the proposed test when abrupt breaks in the autoregressive
parameter occur and the results remain favorable. The power gains relative to
the DFGLS test are even greater if increases in persistence induce temporary
nonstationary behavior. Moreover, we also performed simulations to investigate
the effects of conditional heteroskedasticity and of changes in the innovation
variance (unconditional heteroscedasticity). Although our proposed test shows
some size distortions when the homoskedasticity assumption does not hold, this
problem is attenuated using the Wild bootstrap which produces empirical sizes
close to the nominal 5% level.

Applications of the proposed test to the G7 countries’ inflation data
provided relevant statistical evidence of breaks in persistence. When year-
on-year growth of CPI in reverse chronological order is considered, the null
hypothesis of a unit root is rejected for all countries. Comparing these results
with those obtained considering the normal chronological order suggests that
the evidences of nonstationarity of the inflation series previously reported in
the literature is possibly due to the occurrence of a period of higher persistence
in the first half of the sample.

Summing up, this paper alerts for the consequences of ignoring the
occurrence of breaks in persistence. Most of the work on unit root testing that
employed Fourier series to approximate smooth structural breaks has focused
on changes in the constant parameter. However, changes in the behaviour of
economic and financial variables caused by, for instance, exogenous events,
shifts in monetary policy or improvements in the available technology may
have altered not only the equilibrium value but also the speed of reversion to
equilibrium after a shock. As previously mentioned, changes in the persistence
parameter affect the conditional mean, the unconditional mean and the
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unconditional variance of the process. Thus, it is possible that some of the
evidence in the literature regarding the occurrence of structural breaks in
volatility (e.g, Sensier and van Dijk 2003, McConnell and Perez-Quiros 2000)
may have been influenced by the occurrence of changes in persistence.
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Appendix

Proof of Theorem 2.1
a) No deterministics

From a test regression as in (5) with no deterministic terms (that is when
ûc̃,t = yt), it follows that the OLS t-statistics to test the significance of ϕ,
H0 : ϕ = 0, is

t̂GLSk :=

∑T
t=2 ∆ûc̃,tcos(k ,t)ûc̃,t−1[

σ̂2
k

∑T
t=2 cos2(k , t)û2

c̃,t−1

]1/2 . (24)

Considering the identity ûc̃,t = ∆ûc̃,t + ûc̃,t−1 , squaring both sides and
multiplying by cos(k, t) leads to
cos(k, t)û2

c̃,t = cos(k, t)
[
(∆ûc̃,t)

2 + 2∆ûc̃,tûc̃,t−1 + û2
c̃,t−1

]
.

Summing over t and rearranging, gives

T∑
t=2

∆ûc̃,tcos(k, t)ûc̃,t−1 =

1

2

[
T∑
t=2

cos(k , t)û2
c̃,t −

T∑
t=2

cos(k , t)û2
c̃,t−1 −

T∑
t=2

cos(k , t)(∆ûc̃,t)
2

]
.

(25)

Since under the null ∆ûc̃,t = ε̂t, it follows that,

T∑
t=2

∆ûc̃,tcos(k, t)ûc̃,t−1 =

1

2

[
cos(k ,T )û2

c̃,T − cos(k ,2 )û2
c̃,1 −

T∑
t=3

∆cos(k , t)û2
c̃,t−1 −

T∑
t=2

cos(k , t)ε̂2
t

]
.

(26)
In what follows the following limit results will prove useful. In specific, as

T →∞,

cos(k ,T )
1

T
û2
c̃,T ⇒ σ2cos(k ,1 )W (1)2; (27)

cos(k ,2 )
1

T
û2
c̃,1 ⇒ σ2cos(k ,0 )W (0)2 = 0; (28)

1

T

T∑
t=3

∆cos(k , t)û2
c̃,t−1 ⇒ σ2

2
(2πk)2

∫ 1

0

cos(2πkr)W (r)2dr; (29)

1

T

T∑
t=2

cos(k , t)(∆ûc̃,t−1)2 → σ2

∫ 1

0

cos(k, r)dr =
σ2

2
. (30)

Note that the result in (29) is obtained given that ∆cos(k , t) =
−1

2(2πk/T )sin(2πkt/T ) + o(1) (see Enders and Lee, 2012), and Lemma A.1
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in Bierens (1997)). Recall that cos(k, t) := 1
2(1 + cos(2πkt/T )). Hence, for (26)

we establish, as T →∞, that,

1

T

T∑
t=2

∆ûc̃,tcos(k, t)ûc̃,t−1 ⇒

σ2

2

{
cos(k, 1)W (1)2 +

1

2
(2πk)2

∫ 1

0

cos(2πkr)W (r)2dr − 1

}
.

(31)

Finally, for the denominator of (24) it follows from the CMT that,

1

T 2

T∑
t=2

cos2(k , t)û2
c̃,t−1 ⇒ σ2

∫ 1

0

cos2(k , r)W (r)2dr. (32)

Taking the results in (31) and (32) it follows, under joint convergence, that
the statistic in (24) converges to,

t̂GLSk ⇒
cos(k, 1)W (1)2 + 1

2(2πk)2
∫ 1

0 cos(2πkr)W (r)2dr − 1

2
(∫ 1

0 cos2(k, r)W (r)2dr
)1/2

, (33)

where k is a fixed value.

b) Local GLS demeaning
To analyse the effects of local GLS demeaning on the limit distribution of

the statistics, we consider estimation of the parameter vector β in (1) using
xt = 1. Hence, for local GLS demeaning as in Elliott et al. (1996), we consider
yc̃,1 := y1, yc̃,t := yt − ρ̃tyt−1, xc̃,1 := x1, xc̃,t := xt − ρ̃txt−1, and compute the
OLS estimates as,

β̂c̃ =

[
T∑
t=1

xc̃,txc̃,t
′

]−1 [ T∑
t=1

xc̃,tyc̃,t

]
.

Consequently, the local GLS demeaned data is,

ûc̃,t = yt − x
′

t β̂c̃ = ut − x
′

t(β̂c̃ − β) (34)

or equivalently,

ûc̃,t = ut − xt

[
T∑
t=1

xc̃,txc̃,t
′

]−1 [ T∑
t=1

xc̃,tuc̃,t

]
. (35)

Now, given that,

T∑
t=1

xc̃,txc̃,t
′ = 1 +

(
c̃

T

)2 T∑
t=2

cos2(k, t) (36)

= 1 + o(1). (37)
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and

T∑
t=1

xc̃,tuc̃,t = u1 −
(
c̃

T

) T∑
t=2

cos(k, t)

[
∆ut −

c̃

T
cos(k , t)ut−1

]

= u1 −
(
c̃

T

) T∑
t=2

cos(k , t)∆ut +

(
c̃

T

)2 T∑
t=2

cos2(k , t)ut−1.(38)

It follows that,

1√
T

[
T∑
t=1

xc̃,txc̃,t
′

]−1 T∑
t=1

xc̃,tuc̃,t → 0.

Note that since 1
T

∑T
t=2 cos2(k , t) →

∫ 1

0 cos2(k , r)dr, it follows that(
c̃
T

)2∑T
t=2 cos2(k , t) = o(1).

c) Local GLS detrending
Regarding local GLS detrending the procedure is similar to that adopted

with only a constant term. Thus, we have to prove the convergence of the
expressions DT

∑T
t=1 xc̃,txc̃,t

′DT and DT
∑T
t=1 xc̃,tuc̃,t where the scaling is

given by the diagonal matrix DT := diag
(
1, T−1/2

)
.

It can be shown that

DT

T∑
t=1

xc̃,txc̃,t
′DT = DTx1x1

′DT +DT

T∑
t=2

xc̃,txc̃,t
′DT

=

[
1 T−1/2

T−1/2 T−1

]
+DT

[
Ξ1 Ξ2

Ξ2 Ξ3

]
DT

⇒
[

1 0

0
∫ 1

0

[
1− 2c̃rcos2(k , r) + r2c̃2cos2(k , r)

]
dr

]
, (39)

where, x1 = (1, 1)′ and xc̃,t =
(
−c̃cos(k , t)T−1, 1− (t− 1)c̃cos(k , t)T−1

)′ for
t > 1, with

Ξ1 :=

(
c̃

T

)2 T∑
t=2

cos2(k , t),

Ξ2 :=

(
1− (t− 1)c̃cos(k , t)

T

)
c̃

T
cos(k , t),

Ξ3 :=

(
1− (t− 1)c̃cos(k , t)

T

)2

.
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Moreover, note that,

1

T

T∑
t=2

cos(k , t) ⇒
∫ 1

0

cos(k , r)dr; (40)

1

T 2

T∑
t=2

tcos(k , t) ⇒
∫ 1

0

rcos(k , r)dr; (41)

1

T 3

T∑
t=2

t2cos2(k , t) ⇒
∫ 1

0

r2cos2(k , r)dr; (42)

T−5/2
T∑
t=3

tcos(k, t)ut−1 ⇒
∫ 1

0

rcos(k, r)W (r), 0 ≤ r ≤ 1. (43)

Finally,

DT

T∑
t=1

xc̃,tuc̃,t =

[
Ξ4

Ξ5

]

⇒

 0

σW (1)(1− c̃cos(k ,T ))− σπkc̃
∫ 1

0 rsin(2πkt/T )W (r)dr

+σc̃2
∫ 1

0 rcos(k , r)W (r)dr


where Ξ4 is defined as in (41) and since uc̃,t = ∆uc̃,t − c̃cos(k , t)T−1,
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Ξ5 = u1 + uT − u1 −
c̃

T

T∑
t=2

cos(k , t)ut−1−

c̃

T

T∑
t=2

(t− 1)cos(k , t)∆ut +

(
c̃

T

)2 T∑
t=2

(t− 1)cos(k , t)2ut−1

= uT −
c̃

T

T∑
t=2

cos(k , t)ut−1

+

(
c̃

T

)2
[
T∑
t=2

tcos(k , t)2ut−1 −
(
c̃

T

)2 T∑
t=2

tcos(k , t)2ut−1

]

− c̃

T

[
T cos(k ,T )uT − 2cos(k ,2 )u1 −

T∑
t=3

t∆cos(k , t)ut−1

]

− c̃

T

[
−

T∑
t=3

cos(k , t − 1 )ut−1 −
c̃

T

T∑
t=2

cos(k , t)∆ut

]

= (1− c̃cos(k ,T ))uT + 2c̃cos(k ,2 )u1T
−1 − πk

T

c̃

T

T∑
t=3

tsin(2πkt/T)ut−1

+
c̃

T

T∑
t=3

cos(k , t − 1 )ut−1 −
c̃

T

T∑
t=2

cos(k , t)ut−1 +

(
c̃

T

)2 T∑
t=2

tcos(k , t)2ut−1

−
(
c̃

T

)2 T∑
t=2

cos(k , t)2ut−1 +
c̃

T

T∑
t=2

cos(k , t)∆ut.

It follows from the FCLT and CMT that

T−1/2û[Tr] = T−1/2u[Tr]−T−1/2x
′

[Tr]

[
DT

T∑
t=1

xc̃,txc̃,t
′DT

]−1 [
DT

T∑
t=1

xc̃,tuc̃,t

]

⇒ σW (r)−

σr

[
(1− c̃cos(k , r))W (1) + c̃2

∫ 1

0 rcos2(k , r)W (r)dr − c̃kπ
∫ 1

0 rsin(2πkr)W (r)dr∫ 1

0 [1− 2c̃rcos2(k , r) + r2c̃2cos(k, r)]dr

]
.
(44)

�
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Proof of Proposition 1

An extension of the FCLT near integrated process, ρt = 1− c
T , states that,

1√
T
u[Tr] ⇒ σJc(r), 0 ≤ r ≤ 1,

where Jc is a standard OU process (see Phillips, 1987). The Pc̃ test statistic is
given by

Pc̃ =

∑T
t=1 ε̂

2
c̃,t −

[
1 + c̃

T cos(k , t)
]∑T

t=1 ε̂
2
0,t

σ̂2
,

where ε̂0,t is the residual term under H0 : ρ̃t = 0 and ε̂c̃,t is the residual term
under H1 : ρ̃t := 1 + c̃

T for a given c̃. The null hypothesis is rejected for small
values of this statistic. Note that, in the case of demeaning,

ε̂c̃,t = yt −
(

1 +
c̃

T
cos(k, t)

)
yt−1 − β1

(
1−

(
1 +

c̃

T
cos(k, t)

))
→ ∆ut −

c̃

T
cos(k, t)ut−1,

ε̂2
c̃,t → ∆u2

t −
2c̃

T
∆utcos(k, t)ut−1 +

(
c̃

T

)2

cos2(k, t)u2
t−1,

ε̂2
0,t = (∆ut)

2 ,

Putting these results together we have that,

T∑
t=1

ε̂2
c̃,t −

[
1 +

c̃

T
cos(k, t)

] T∑
t=1

ε̂2
0,t = −2c̃

T

T∑
t=2

∆utcos(k , t)ut−1

− c̃
T

T∑
t=2

cos(k , t)ε̂2
0,t +

(
c̃

T

)2 T∑
t=2

cos2(k, t)u2
t−1,

and given that

−2c̃

T

T∑
t=2

∆utcos(k, t)ut−1 ⇒ c̃

[
σ2

∫ 1

0

cos(k, r)dr − σ2cos(k,T)J2
c (1)

]
,

(
c̃

T

)2 T∑
t=2

cos2(k, t)u2
t−1 ⇒ c̃2σ2

∫ 1

0

cos2(k, r)J2
c (r),

c̃

T

T∑
t=2

cosj (k, t)ε̂
2
0,t ⇒ c̃σ2

∫ 1

0

cos(k , r)dr,
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the asymptotic distribution of Pc̃ is

Pc̃ ⇒ c̃2
∫ 1

0

cos2(k, r)J2
c (r)− c̃ cos(k,T)J2

c (1).

Finally, when detrending is considered

ε̂c̃,t = yt − ρtyt−1 − β1(1− ρt)− β2(t− ρt (t− 1)).

Thus, using the FCLT result presented previously it follows that,

Pc̃ ⇒ c̃2
∫ 1

0

cos2(k, r) [Jτc (r)]2 + (1− c̃ cos(k,T) [Jτc (1)]2 ,

where Jτc is the local GLS detrended OU process. �

Proof of Proposition 2

The proposed test statistic with White standard errors is defined as,

t̂GLSk,W :=

∑T
t=2 ∆ûtcos(k ,t)ût−1(∑T
t=2 cos2(k , t)û2

t−1ε̂
2
t

)1/2
.

As the numerator is the same as in equation (6), we only need to examine the
denominator. Hence, considering

1

T 2

T∑
t=2

cos2(k, t)û2
t−1ε̂

2
t =

1

T 2

T∑
t=2

cos2(k, t)û2
t−1σ

2+

1

T 2

T∑
t=2

cos2(k, t)û2
t−1

(
ε̂2
t − σ2

) (45)

and noting that,

σ2 1

T 2

T∑
t=2

cos2(k, t)u2
t−1 ⇒ σ2

∫ 1

0

cos2(k, r)W (r)2,

we only need to prove that the second term in (45) is op(1). Thus, from the
result in Demetrescu (2008),

1

T 2

T∑
t=2

û2
t−1

(
ε̂2
t − σ2

) p→ 0,

it follows that,

1

T 2

T∑
t=2

cos2(k, t)û2
t−1

(
ε̂2
t − σ2

)
≤ 1

T 2

T∑
t=2

û2
t−1

(
ε̂2
t − σ2

)
,
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and therefore 1
T 2

∑T
t=2 cos2(k, t)û2

t−1

(
ε̂2
t − σ2

)
is also op(1) since cos2(k , t) ≤ 1

for fixed k > 0. �

Proof of Proposition 3
We need to show that,

1

T 2

T∑
t=2

û2
t−1

(
ε̂2
t − σ2

) p→ 0

is still true when the process is near integrated. That is, when ut = (1 −
c cos(k ,t)/T )ut−1 + εt. Since, y0 = 0, we have

ut =
t−1∑
i=0

(
1− c

T
cos(k , i)

)i
εt−i

(
1− c

T
cos(k ,i)

)i
= 1− c

T
i cos(k ,i) +O(T−1),

and

ut =
t−1∑
i=0

εt−i −
c

T

t−1∑
i=0

i cos(k , i) εt−i +O(T−0.5).

Since i/T = O(1), the result can be derived in the same way as in the proof of
Proposition 2. �
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