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Abstract
Standard tests based on predictive regressions estimated over the full available sample data
have tended to find little evidence of predictability in stock returns. Recent approaches
based on the analysis of subsamples of the data have been considered, suggesting that
predictability where it occurs might exist only within so-called “pockets of predictability”
rather than across the entire sample. However, these methods are prone to the criticism
that the sub-sample dates are endogenously determined such that the use of standard
critical values appropriate for full sample tests will result in incorrectly sized tests leading
to spurious findings of stock returns predictability. To avoid the problem of endogenously-
determined sample splits, we propose new tests derived from sequences of predictability
statistics systematically calculated over sub-samples of the data. Specifically, we will
base tests on the maximum of such statistics from sequences of forward and backward
recursive, rolling, and double-recursive predictive sub-sample regressions. We develop
our approach using the over-identified instrumental variable-based predictability test
statistics of Breitung and Demetrescu (2015). This approach is based on partial-sum
asymptotics and so, unlike many other popular approaches including, for example, those
based on Bonferroni corrections, can be readily adapted to implementation over sequences
of subsamples. We show that the limiting distributions of our proposed tests are robust
to both the degree of persistence and endogeneity of the regressors in the predictive
regression, but not to any heteroskedasticity present even if the sub-sample statistics are
based on heteroskedasticity-robust standard errors. We therefore develop fixed regressor
wild bootstrap implementations of the tests which we demonstrate to be first-order
asymptotically valid. Finite sample behaviour against a variety of temporarily predictable
processes is considered. An empirical application to US stock returns illustrates the
usefulness of the new predictability testing methods we propose.

JEL: C12, C22
Keywords: predictive regression; rolling and recursive IV estimation; persistence;
endogeneity; conditional and unconditional heteroskedasticity.
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1. Introduction

A large body of empirical research has been undertaken investigating whether
stock returns can be predicted. Therein, a wide range of financial and
macroeconomic variables have been considered as putative predictors for
returns, including valuation ratios such as the dividend-price ratio, dividend
yield, earnings-price ratio, book-to-market ratio, various interest rates and
interest rate spreads, and macroeconomic variables including inflation and
industrial production; see, for example, Fama (1981), Keim and Stambaugh
(1986), Campbell (1987), Campbell and Shiller (1988a,b), Fama and French
(1988, 1989) and Fama (1990). Focusing on the in-sample predictability
of U.S. stock index returns these early studies found that although the
statistical evidence on predictability over short horizons is relatively weak,
as the forecasting horizon considered increases the evidence on predictability
strengthens, and for longer horizons is strongly statistically significant.

Several authors have argued that the findings from the studies cited above
could be spurious. Nelson and Kim (1993) and Stambaugh (1999) show that
high persistence predictors lead to biased coefficients in predictive regressions
if the innovations driving the predictors are correlated with returns, as is
argued to be the case for many of the popular macroeconomic and financial
variables used as predictors; for example, the stock price is a component of
both the return and the dividend yield. Goyal and Welch (2003) show that the
persistence of dividend-based valuation ratios increased significantly over the
typical sample periods used in empirical studies of predictability, and argue
that, as a consequence, out-of-sample predictions using these variables are no
better than those from a no-change strategy. Predictability tests which are
asymptotically valid when the predictor is strongly persistent and driven by
innovations which are correlated with returns have been proposed in Cavanagh,
Elliott and Stock (1995), Campbell and Yogo (2006), Kostakis, Magdalinos, and
Stamatogiannis (2015), Breitung and Demetrescu (2015), Elliott, Müller and
Watson (2015) and Jansson and Moreira (2006), inter alia. When such robust
techniques are used the statistical evidence of predictability is considerably
weaker and often disappears completely; see, among others, Ang and Bekaert
(2007), Boudoukh et al. (2007), Welch and Goyal (2008) and Breitung and
Demetrescu (2015).

The foregoing approaches are all based on the maintained assumption
that the coefficients of the predictive regression model are constant over
time. However, there are several reasons to suspect that if stock returns are
predictable, then it is likely to be a time-varying phenomenon. The business
cycle, time-varying risk aversion, rare disasters, structural breaks, speculative
bubbles, investor’s market sentiment, and regime changes in monetary policy
have all be cited as reasons for such time-varying behaviour; see, for example,
Pesaran and Timmermann (2002). As an example, significant changes in
monetary policy and financial regulations could lead to shifts in the relationship



Working Papers 4

between macroeconomic variables and the fundamental value of stocks, via the
impact of these changes on economic growth and the growth rates of earnings
and dividends. Timmermann (2008) argues that for most time periods returns
are not predictable but that there are ‘pockets in time’ where evidence of
local predictability is seen. In particular, if predictability exists as a result
of market inefficiency rather than because of time-varying risk premia, then
rational investors will attempt to exploit its presence to earn abnormal
profits. Assuming that a large-enough proportion of investors are rational, this
behaviour will eventually cause the predictive power of the relevant predictor
to be eliminated. If a variable begins to have predictive power for stock returns
then a window of predictability might exist before investors learn about the new
relationship between that variable and returns, but it will eventually disappear;
see, in particular, Paye and Timmermann (2006), Timmermann (2008) and
most recently Farmer, Schmidt and Timmermann (2018). It therefore seems
reasonable to consider the possibility that the predictive relationship might
change over time, so that over a long span of data one may observe some
windows of time during which predictability occurs.

A growing body of empirical evidence is supportive of the view that the
slope parameter in prediction models for returns varies over time. Henkel,
Martin, and Nardari (2011) find that return predictability in the stock market
appears to be closely linked to economic recessions with dividend yield and term
structure variables displaying predictive power only during recessions. Similarly,
Gargano, Pettenuzzo and Timmermann (2017) find that commodity returns are
predictable using macroeconomic information, but again only during recessions.
Lettau and Ludvigsson (2001) find evidence of instability in the predictive
ability of the dividend and earnings yield in the second half of the 1990s. Goyal
and Welch (2003) and Ang and Bekaert (2007) find instability in prediction
models for U.S. stock returns based on the dividend yield in the 1990s.
Other studies which report evidence of time-varying behaviour in stock return
predictability include Barberis (2000), Lettau and van Nieuwerburgh (2008),
Welch and Goyal (2008), Pástor and Stambaugh (2009, 2012), Pettenuzzo
and Timmermann (2011), Dangl and Halling (2012), Gonzalo and Pitarakis
(2012), Rapach and Wohar (2006) and Giannetti (2007), inter alia. In the
context of predicting the equity premium, Kolev and Karapandza (2017)
find that, for a given set of predictors, alternative data splits often lead to
strongly contradictory outcomes concerning return predictability. Paye and
Timmermann (2006) undertake a comprehensive analysis of prediction model
instability for international stock market indices using the structural break tests
developed by Bai and Perron (1998, 2003) and report statistically significant
evidence of structural breaks for many of the countries considered, arguing
that the “[e]mpirical evidence of predictability is not uniform over time and
is concentrated in certain periods” (op. cit. p. 312). Paye and Timmermann
(2006) also cite a number of applied studies which find significant evidence
of in-sample (ex post) predictability in returns data but yet find very weak



5 Testing for Episodic Predictability in Stock Returns

evidence of out-of-sample (ex ante) predictability, and argue that a possible
explanation is structural instability in the predictive relations involved.

A limitation of many of the statistical techniques used in previous research
on the instability of return prediction models is that they are not designed
for use with highly persistent, endogenous predictors. Paye and Timmermann
(2006) investigate the effects of persistence and endogeneity of the regressors
on the Bai-Perron tests for structural breaks using Monte Carlo simulations.
Their simulations reveal that size distortions, whereby parameter change is
falsely signalled when none is present, can be substantial. They also show
that some of the tests lack power in this context because of the large amount
of noise typically present in predictive regression models. Moreover, because
tests from predictive regression models based on the full sample of available
data will have relatively low power to detect short windows of predictability,
a number of these studies applied such tests to separate subsamples of the
data (data splits) with the timings of those subsamples either chosen by the
practitioner or performed over a large set of possible subsamples of the data.
In both cases the critical values which would apply to the test run on the
full sample cannot validly be used. In the former case because the subsamples
are endogenously determined. For the latter case the probability of spuriously
signalling a predictive relationship when none is present will tend to one as the
number of subsamples considered increases; see Inoue and Rossi (2005) for a
detailed discussion of this problem in relation to the use of t-tests.

With these issues in mind, our goal is to provide size controlled tests
designed to detect predictability regardless of whether it applies across the
entire available sample or within pockets of predictability. Our proposed tests
are based on predictability statistics obtained from sequences of predictive
regressions computed over subsamples of the data. In particular we will consider
forward and backward recursive sequences of predictive regressions as well
as rolling and double-recursive sequences. For each of these sequences of
statistics the proposed test will be given by the largest (in absolute value)
outcome. Because the range of subsamples considered in each sequence is set
without reference to the particular data set involved this avoids the problem of
endogenously chosen sample splits. Moreover, by considering the maximum
of the sequences we avoid the spurious detection issues discussed in Inoue
and Rossi (2005). As we will demonstrate in the Monte Carlo experiments
considered in the paper, each of these sequences has particular patterns of
local predictability that it is well designed to detect. For example, the test
based on the (forward) reverse recursive sequence of statistics is suited to
detecting (beginning-of-sample) end-of-sample pockets of predictability. As
such, the reverse recursive based tests could usefully be employed in an on-
going monitoring exercise for the emergence of predictive regimes. Because
both the forward and reverse recursive sequences contain the usual full
sample predictability test, they also deliver tests which have power to detect
predictability which holds over the whole sample. For a given window width,
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tests based on a rolling sequence of statistics are designed to pick up a window
of predictability, of roughly the same length, within the data. The double-
recursive sequence amounts to considering all possible window width rolling
sequences, subject to a minimum width. These then are useful for picking up
multiple predictive regimes of potentially different lengths within the data.

The approach we take does, however, have implications for the type of
predictability test statistics that we can use, because it will be necessary
to characterize the joint behaviour of the full sequence of statistics in order
to conduct inference. Some commonly used testing approaches such as those
based on the Bonferroni inequality (e.g. Campbell and Yogo 2006) or on bias
corrections (e.g. Amihud and Hurvich 2004) are difficult to implement for
sequences of statistics; the same holds for technically more involved procedures
such as those proposed by Jansson and Moreira (2006) or Elliott, Müller and
Watson (2015). Rather we will use tests based on instrumental variable [IV]
estimation which benefit from the fact that closed-form expressions for the test
statistics exist, which can be characterised using familiar partial-sum-based
asymptotics. Specifically we will adapt the full sample methods from Kostakis,
Magdalinos, and Stamatogiannis (2015) who propose the use of the so-called
extended IV, or IVX, approach, and Breitung and Demetrescu (2015) who
propose the combination of several instruments with complementary properties.
Using these methods we demonstrate that the limiting distributions of our
proposed tests are robust to both the degree of persistence and endogeneity
of the regressors in the predictive regression under both the null and local
alternatives. However, and in contrast to the marginal limiting distribution (at
least when based on heteroskedasticity-robust standard errors) of any one of the
subsample statistics in the sequences considered, we show that the maximum
statistics in these sequences depend on any (global) heteroskedasticity present
in the shocks. To solve this inference problem we propose fixed regressor wild
bootstrap implementations of the maximum tests and prove that these are
first-order asymptotically valid under heteroskedasticity.

The remainder of the paper is organised as follows. Section 2 introduces
the time-varying predictive regression model which we will consider in this
paper together with the necessary assumptions which we must place on this
data generating process [DGP]. Here we will also outline the details of IV
estimation and discuss relevant instruments that can validly be used in the
context of our proposed testing approach. Section 3 presents the standard full
sample IV-based predictability tests on which we build here. Section 4 then
details the subsample implementations of these statistics across the various
sequence types discussed above. Representations for the limiting distributions
of these tests under both the null and local alternatives are provided and shown
to be invariant to endogeneity and persistence driven nuisance parameters but
to depend on any heteroskedasticity present. Section 5 discusses fixed regressor
wild bootstrap implementation of our proposed tests and demonstrates the
first-order asymptotic validity of these under heteroskedasticity. Extensions
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to allow for multiple predictors and deterministic components beyond an
intercept/mean are discussed in section 6. Section 7 presents the results from
a detailed Monte Carlo analysis into the finite sample behaviour of the tests
under both the null hypothesis of no predictability and under alternatives where
local predictability occurs within the data. An empirical application to monthly
U.S. stock returns data is presented in section 8. The final section concludes.
Detailed proofs of the technical results given in the paper are relegated to a
series of mathematical appendices.

The notation Dk will be used to denote the space of càdlàg real functions
on [0, 1]k equipped with the Skorokhod topology, and we abbreviate D1 to
D. The weak convergence of probability measures on both function spaces (in
particular, on Dk) and on Rk is denoted by ⇒. We reserve the notation P,
E etc. for probability, expectation etc. with respect to the distribution of the
original data and use P∗, E∗ etc. for probability, expectation etc. induced by
the data and the wild bootstrap multipliers (denoted {Rt}) conditionally on the
data. The notation w⇒p stands for weak convergence in probability; specifically,
ζ∗T

w⇒p ζ holds for random elements ζ∗T and ζ, not necessarily defined on the
same probability space, if E∗ f(ζ∗T )→E f (ζ) in P-probability for all bounded
continuous real functions f with matching domain. In the special case ζ = 0 ∈R,
we recall that ζT

w⇒p 0 (equivalently, ζT = op∗(1) in P-probability) means that
P∗ (|ζT | > ε) → 0 in P-probability for every ε > 0. Finally, ζT = Op∗(1) in
P-probability signifies that for every ε > 0 there exists a K > 0 such that
P {P∗ (|ζT | > K) < ε} > 1− ε for all T . The op and Op symbols retain their
usual meaning.

2. The Episodic Predictive Regression Model

The basic predictive regression model for stock returns, yt, allowing for time-
variation in the slope coefficient on the predictor variable, is taken to be of the
form

yt = β0 + β1,txt−1 + ut, t = 1, . . . , T (1)

where xt, t = 0, ..., T , is an observed process, specified according to the DGP

xt = µx + ξt, t = 0, . . . , T (2a)
ξt = ρ ξt−1 + vt, t = 1, . . . , T (2b)

with ξ0 a mean zero Op(1) variate. The innovations ut and vt are
martingale difference [MD] sequences. For expositional simplicity we have
only allowed for a single predictive regressor, xt−1, and an intercept in (1).
The results which follow can be straightforwardly generalised to the case
where the predictive regression contains multiple predictors and/or a general
deterministic component of the form considered in section 3.2 of Breitung and
Demetrescu (2015). We will discuss these generalisations in section 6.
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The DGP in (1) generalises the constant parameter predictive regression
model by allowing the slope coefficient on xt−1 to vary over time, thereby
allowing for changes over time in the predictive content of the regressor
xt−1. The constant parameter predictive regression model obtains by setting a
constant slope parameter such that β1,t = β1, for all t = 1, . . . , T . Our interest
will focus in this paper on testing the usual null hypothesis that (yt − β0) is a
MD sequence and, hence, that yt is not predictable by xt−1, which entails that
β1,t = β1 = 0, for all t = 1, . . . , T , in (1). In contrast to the extant literature
which tests this null hypothesis against the alternative that yt is predictable by
xt−1 with a constant slope parameter holding across the whole sample, that is
β1 6= 0, under the maintained hypothesis that β1,t = β1, for all t = 1, . . . , T , we
will test against alternatives such that β1,t 6= 0 for some t but without imposing
constancy on β1,t. Some structure obviously needs to be placed on the class of
alternative hypotheses we may consider and this will be formalised below.

As discussed in the Introduction it is important for practical purposes to
allow for the possibility of high persistence in the predictor variable xt and
to allow the shocks driving the predictor, vt in (2), to be correlated with the
unpredictable component of stock returns, ut in (1). As regards the latter, we
will allow ut and vt to be contemporaneously correlated and heteroskedastic;
exact conditions will be detailed in Assumption 3 below. For the former, we
allow ρ in (2) to satisfy the following assumption.

Assumption 1. Exactly one of the two following conditions holds true:

1. Weakly persistent predictors: The autoregressive parameter ρ in (2) is
fixed and bounded away from unity, |ρ| < 1.

2. Strongly persistent predictors: The autoregressive parameter ρ in (2)
is local-to-unity with ρ := 1− c

T where c is a fixed non-negative constant.

Remark 1. Many predictors are strongly persistent, exhibiting sums of sample
autoregressive coefficients which are close to or only slightly smaller than unity.
Near-integrated asymptotics has been found to provide better approximations
for the behaviour of test statistics in such circumstances; see, inter alia, Elliott
and Stock (1994). However, not all (putative) predictors are strongly persistent
and a large part of the literature works with models which take xt to be
generated from a stable autoregressive process; see, for example, Amihud and
Hurvich (2004). Assumption 1 therefore allows for either of these possibilities
to hold on xt.

We will develop tests for the null hypothesis that yt is not predictable
by xt−1 in any subsample, which do not require the practitioner to know
which of Assumption 1.1 or Assumption 1.2 holds in (2), nor indeed what
the precise value of ρ is in either case. Moreover, we aim to develop tests which
possess non-trivial asymptotic local power against DGPs where predictability is
present. Predictive regressions for stock returns typically exhibit small R2 and
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low signal-to-noise ratios (see, inter alia, Campbell 2008, and Phillips 2015)
so departures from the null, should predictability be present, are small. We
will therefore conduct our theoretical analysis of the large sample properties of
the tests we discuss under local alternatives such that the slope parameter
β1,t is local-to-zero for an asymptotically non-vanishing set of the sample
observations. The localisation rate (or Pitman drift) will need to be such that
β1,t is specified to lie in a neighbourhood of zero which shrinks with the sample
size, T . The appropriate Pitman drift is dictated by which of Assumption 1.1
and Assumption 1.2 holds in (2). Where xt is near-integrated the appropriate
rate is T−1, while for weakly stationary xt−1, the rate is T−1/2. The different
localisation rates reflect the fact that near-integration implies a much stronger
signal from the predictor xt−1. Moreover, tests based on the maxima from
sequences of sub-sample predictability test statistics can only deliver non-trivial
asymptotic local power in cases where an asymptotically non-vanishing fraction
of the data is such that β1,t 6= 0 holds on the DGP. For example, if β1,t 6= 0
at one time point only, then although this would formally violate the null that
yt is not predictable by xt−1, this data point would, as T → ∞, however be
dominated by the remaining T − 1 data points where the null hypothesis holds.
Formally, in our framework we specify β1,t to satisfy the following assumption.

Assumption 2. In the context of (1) and (2), let β1,t := n−1
T b (t/T ) , where

b(·) is a piecewise Lipschitz-continuous real function on [0, 1], with nT =
√
T

under Assumption 1.1, and nT = T under Assumption 1.2.

Using the framework of Assumption 2 we can then equivalently write our
null hypothesis that β1,t = 0, for all t = 1, . . . , T , as

H0 : The function b(τ) is identically zero for all τ ∈ [0, 1]. (3)

We can now also formally specify the alternative hypothesis as,

H1,b(·) : The functionb(·) is non-zero over at least one non-empty

open interval contained ∈ [0, 1]. (4)

Remark 2. The alternative hypothesis specified by H1,b(·) is very general but
entails that at least one subset of the sample observations (this need not be
a strict subset, so it could contain all of the sample observations) comprising
contiguous observations exists for which β1,t 6= 0, and where the size of this
subset is proportional to the sample size T . Notice that under H1,b(·) the
integral of |b(·)| on [0, 1] is non-zero and it is this property which qualifies
H1,b(·) as a genuine (local) alternative. Moreover, as we will establish later, the
form that b(·) takes under H1 determines the local power offsets obtained in
the limiting distributions of the statistics we propose. Notice also that, under
H1,b(·), b(·) may be zero in certain parts of its domain and it may also change
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magnitude and/or sign over its domain; the former corresponds to data points
where β1,t = 0, while the latter where β1,t does not have a fixed magnitude
and/or sign across the full sample.

We conclude this section by detailing in Assumption 3 the conditions that
we will place on the disturbances ut and vt in (1) and (2).

Assumption 3. Let(
ut
vt

)
:=

(
1 0
0 B (L)

)
H(t/T )

(
at
et

)
, with

(
at
et

)
∼White Noise (0, I2) ,

(5)
where Ik denotes the k × k identity matrix and:

1. ζt := (at, et)
′ is a uniformly L4-bounded martingale difference sequence

which is such that suptE
∣∣E (ζtζ′t − I2|ζt−m, ζt−m−1, . . .

)∣∣→ 0 as m→∞;

2. H(·) :=

(
h11(·) h12(·)
h21(·) h22(·)

)
is a matrix of piecewise Lipschitz-continuous

bounded functions on (−∞, 1], which is of full rank at all but a finite
number of points;

3. B (L), where L denotes the usual lag operator, is an invertible lag
polynomial with b0 = 1 and 1-summable coefficients,

∑
j≥0 j |bj | <∞, for

which ω :=
∑
j≥0 bj > 0.

Remark 3. The structure given by (5) in Assumption 3 imposes that the
disturbances ut are uncorrelated with the increments of xt at all (positive)
lags. In the case where ζt is independent and identically distributed [IID],
this structure would entail that xt−1 is weakly exogenous with respect to ut,
and we will continue (with an abuse of language) to use the same term as
a shorthand to describe this structure in the rest of the paper irrespective of
whether ζt is IID or not. Assumption 3.3 allows the increments to the predictor
xt−1 to be serially correlated. These dynamics are not restricted beyond a 1-
summability regularity condition on the moving average representation as is
typically made in this literature; see, for example, Breitung and Demetrescu
(2015) and Kostakis, Magdalinos, and Stamatogiannis (2015).

Remark 4. Assumption 3 allows for quite general forms of heteroskedasticity
in the innovations (ũt, ṽt)

′ := H(t/T ) (at, et)
′ and therefore in ut and vt. In

particular, Assumption 3.1 imposes a MD structure on the innovations ζt
allowing for conditional heteroskedasticity which is natural for the empirical
applications to financial data we have in mind. Assumption 3.1 also imposes
finite fourth moments; while daily returns often display very fat tails (see, for
example, Nicolau and Rodrigues 2018, and Gabaix and Ibragimov 2012) such
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that the assumption of finite fourth order moments might not be a suitable
assumption for daily data, standard predictive regression models have tended
to be run on lower frequency data (monthly, quarterly or even annual data)
where infinite kurtosis does not appear to be a concern. Assumption 3.1 places
summability conditions on the cross-product moments of the innovations which
limits the degree of serial dependence allowed in the conditional variances;
these conditions are satisfied, for example, by strictly stationary and ergodic
MD sequences with finite variance. Assumption 3.2 allows for unconditional
time heteroskedasticity in the innovations through the matrix H(τ). Where
H(τ) is diagonal for all τ ∈ [0, 1] the innovations (ũt, ṽt)

′ can display time-
varying variances but are contemporaneously uncorrelated, so in the case
where ζt is IID with independent components, this would entail that xt is
strictly exogenous with respect to ut (again we will use this terminology in
the remainder of the paper, with an abuse of language, regardless of whether
ζt is IID or not). Importantly, the off-diagonal elements of H(τ)H(τ)′ (i.e.,
the covariance matrix of (ũt, ṽt)

′) are not imposed to be zero, thereby allowing
for contemporaneous and time-varying correlation among the innovations. The
structure placed on H(τ) under Assumption 3.2 allows for a wide class of
models for the behaviour of the variance matrix of the innovations including
single or multiple (co-) variance shifts, variances which follow a broken trend,
and smooth transition variance shifts.

Under Assumption 1.1, xt is a particular case of a locally stationary process
(cf. Dahlhaus 2000) which admits a time-varying variance when the series vt
displays time-varying volatility. In fact, the variance of the putative predictor
is given as

Var
(
xbτTc

)
≈ σ̄2

ξ (ρ)
(
h2

21(τ) + h2
22(τ)

)
,

where σ̄2
ξ (ρ) denotes the sum of the squared coefficients of the lag polynomial

(1− ρL)−1B(L) (which is finite in the stable autoregression case).
As we will see, this form of heteroskedasticity impacts on the inferential

procedures based on subsample sequences of statistics discussed in this paper.
Furthermore, time-varying volatility where present in the regression errors, ut,
and in the instrumental variables used in constructing the statistics can also
affect the behaviour the sequences of test statistics.

Heteroskedasticity has analogous effects under Assumption 1.2 (near-
integration), though the transmission mechanism is somewhat different. In
particular, under Assumption 3 we have

1√
T

bτTc∑
t=1

H(t/T )ζt ⇒
∫ τ

0

H(s)dW (s) =:

(
U(τ)
V (τ)

)
on D2, whereW is a two-dimensional standard Wiener process whose elements
are independent (see e.g. the invariance principle from Boswijk et al. 2016).
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Using standard arguments, it follows under Assumption 1.2 that

1√
T

bτTc∑
t=1

(
ut
vt

)
⇒
(

1 0
0 ω

)∫ τ

0

H(s)dW (s) =:

(
U(τ)
ωV (τ)

)
(6)

on D2. The processes U(τ) and ωV (τ) are individually time-transformed
Brownian motions whose correlation may also vary over time; their covariance
at time τ is given by ω

∫ τ
0 H(s)H(s)′ds. Under Assumption 1.2 xt satisfies the

invariance principle,
1√
T
xbτTc ⇒ ωJc,H(τ),

where Jc,H(τ) is an Ornstein-Uhlenbeck-type process driven by V (τ), i.e.,
Jc,H(τ) :=

∫ τ
0 e
−c(τ−s)dV (s). Notice that Jc,H(τ) is a heteroskedastic process

when H(·) is not constant: the quadratic variation processes of U (τ) and V (τ),

[U ] (τ) :=

∫ τ

0

(
h2

11(s) + h2
12(s)

)
ds and [V ] (τ) :=

∫ τ

0

(
h2

21(s) + h2
22(s)

)
ds,

respectively, are nonlinear in general, and their quadratic covariation process
is given by [UV ] (τ) :=

∫ τ
0 (h11(s)h21(s) + h12(s)h22(s)) ds.

3. Full Sample Predictability Tests

Consider the maintained hypothesis that the slope parameter β1,t in (1) is
constant, such that β1,t = β1, for all t = 1, . . . , T . Under this assumption we
obtain the standard constant parameter predictive regression

yt = β0 + β1xt−1 + ut, t = 1, . . . , T. (7)

A number of testing procedures have been developed in the literature for
testing H0 : β1 = 0 in (7) against the local alternative Hc : β1 = n−1

T b1, with
b1 a non-zero constant. Of these the simplest is the standard (full sample)
ordinary least squares [OLS] t-test for the significance of xt−1 in (7). While
standard normal asymptotic theory applies to the t-statistic under Assumption
1.1 provided the errors are homoskedastic (although this can be weakened by
using heteroskedasticity-robust standard errors), it does not under Assumption
1.2 where the limiting null distribution of the t-statistic is nonstandard and
depends on the local-to-unity parameter c unless xt is strictly exogenous with
respect to ut.

Tests robust to c have been developed in Elliott and Stock (1994), who
propose a Bayesian mixture procedure, and Cavanagh, Elliott and Stock (1995)
and Campbell and Yogo (2006) who develop tests based on conservative
bounds, or Jansson and Moreira (2006), who conduct inference on the basis of
conditionally sufficient statistics. However, these procedures are all developed
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for the case where xt is near-integrated, i.e. such that Assumption 1.2 holds,
and for the case of homoskedastic disturbances. Variable additional [VA]
techniques, most notably those developed in Toda and Yamamoto (1995),
Dolado and Lütkepohl (1996) and Bauer and Maynard (2012), can be used
to develop predictability tests which can be validly used regardless of whether
xt is local-to-unity or stationary. However, these VA-based tests have only
trivial asymptotic local power against the Pitman rate, T−1, where xt is near-
integrated. Breitung and Demetrescu (2015) show that the finite sample power
of the VA-based tests is indeed very low relative to the tests designed for the
use with near-integrated xt when the AR parameter ρ in (2) is close to unity.
They also develop modifications of the VA approach but some loss of power
still remains. Gorodnichenko, Mikusheva and Ng (2012) proposed tests based
on quasi-differencing but like the original VA-based tests these only have power
in T−1/2 neighbourhoods of the null.

Breitung and Demetrescu (2015) also examine more closely tests based
on the instrumental variables [IV] approach. They show that these can be
validly implemented in the presence of endogeneity and uncertain regressor
persistence and heteroskedasticity of the form specified in section 2. The basic
idea underlying IV estimation of the predictive regression model is to use
instruments such that the instrument has lower persistence than the regressor
xt−1 (so-called type-I instruments), or is such that the instrument is strictly
exogenous with respect to ut (so-called type-II instruments). Formal conditions
which must hold on these instruments are given in Breitung and Demetrescu
(2015).

A range of type-I instruments which can validly be used is given in Breitung
and Demetrescu (2015, p. 361). These comprise: (i) a short memory instrument
whereby we generate zt−1 = (1 − ᾱL)−1

+ ∆xt−1 := ∆xt−1 + ᾱ∆xt−2 + · · · +
ᾱt−2∆x1 with |ᾱ| < 1; (ii) a mildly integrated instrument, generated as
zt−1 = (1 − αTL)−1

+ ∆xt−1, for αT := 1 − aT−γ with a > 0, 0 < γ < 1; (iii)
a fractionally integrated instrument, generated as zt−1 = (1−L)1−d∗xt−1I(t >
0) := ∆1−d∗

+ xt−1 for some d∗ ∈ (0, 1/2); (iv) a long differences instrument,
generated as zt−1 = xt−1 − xt−kT for KT := min{bKT υc, t − 1} for some
0< υ < 1 and positive constant K. The use of the mildly integrated instrument
in example (ii) is an example of the so-called IVX approach of Phillips and
Magdalinos (2009). In each case the generated instrument is, by design, free
of a stochastic trend and hence less persistent than a near-integrated process,
regardless of whether xt−1 is near-integrated or stationary. Being a filtered
version of xt−1, these instruments are driven by the same innovations and it
is expected for this reason that they provide valid instruments for xt−1; at the
same time, the reduced persistence leads to standard inference. Breitung and
Demetrescu (2015, p. 362) also discuss the following type-II instruments which
can validly be used: (i) a generated random walk, zt = (1 − L)−1

+ wt where
wt ∼ IID(0, σ2

w) with wt independent of ut and vt; (ii) deterministic functions
of time, such as zt = t or zt = sin(πt/2T ), and (iii) Cauchy instruments,
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zt = sign(xt). Each of these type-II instruments is exogenous with respect to ut
by construction. However, they do not exploit any specific information about
xt, other than where xt is near-integrated where they will be correlated with
xt; see Phillips (1998).

Simulation evidence in Breitung and Demetrescu (2015) shows that tests
based on type-II instruments are significantly more powerful than those based
on type-I instruments when xt is strongly persistent. However, the flip side
of this is that these instruments will be weak, in the sense that they will be
almost uncorrelated with the regressor, where xt is stationary. In such cases,
Breitung and Demetrescu (2015) show that the resulting IV test for β1 = 0 in
(7) will have only trivial power. In order to simultaneously exploit the settings
which result in superior power properties for the IV approach based on type-I
and type-II instruments, Breitung and Demetrescu (2015) recommend the use
of a test which combines two instruments for xt−1, one of each type, which we
denote by zI,t−1 and zII,t−1, collected into the vector zt−1 := (zI,t−1, zII,t−1)′

for t = 1, . . . , T . The general form of the resulting full sample IV-combination
test statistic of Breitung and Demetrescu (2015), implemented with Eicker-
White standard errors to account for heteroskedasticity satisfying Assumption
3, is given by

tβ1 :=
A′TB−1

T CT√
A′TB−1

T DTB−1
T AT

(8)

where

AT :=
T∑
t=1

x̂t−1ẑt−1, BT :=
T∑
t=1

ẑt−1ẑ
′
t−1,

CT :=
T∑
t=1

ẑt−1ŷt, and DT :=
T∑
t=1

ẑt−1ẑ
′
t−1û

2
t ,

and ŷt, x̂t−1 and ẑt−1 are demeaned versions of yt, xt−1 and zt−1, respectively,
so that, for wt generically denoting either yt, xt−1 or zt−1, ŵt := wt −
1
T

∑T
s=1ws, and where ût denotes the regression residuals from estimating (7).

For the reasons outlined in Remark 4 of Breitung and Demetrescu (2015), the
IV-combination test must be run as two-sided and so we accordingly consider
tests based on the square of tβ1 ; that is t2β1

. The limiting null distribution of t2β1

is χ2
1 under either Assumption 1.1 or 1.2; see Breitung and Demetrescu (2015)

for details.
A variety of choices for the residuals ût used in constructing DT is

possible. The natural choice would be to use the IV regression residuals so
that ût := yt − β̂iv0 − β̂iv1 xt−1, where β̂ivj denotes the two-stage least squares
[2SLS] estimator of βj , j = 0, 1. However, both Breitung and Demetrescu (2015)
and Kostakis, Magdalinos, and Stamatogiannis (2015) recommend the use of
OLS residuals on the grounds that they represent the best linear projection
of yt on xt−1 regardless of the persistence of the putative predictor, and
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that their finite-sample behaviour appears to be more stable than that of IV
residuals. Finally, one could also use residuals computed under the null; that is,
ût := yt − 1

T

∑T
s=1 ys. Under the local alternatives considered in Assumption

2, these three possible choices can be shown to be asymptotically equivalent
to one another in so far as the behavior of (the suitably normalised) DT is
concerned.

As we will subsequently see, a special case of the large sample results which
will be presented in section 4 is that the full-sample test based on t2β1

has
non-trivial asymptotic local power against H1,b(·) for both weakly and strongly
persistent regressors. This property of the full sample IV-based test statistic
obtains through the limiting behaviour of the sample cross-product moment
AT . In particular, its two components are not of the same order of magnitude;
therefore, upon normalisation, one of these terms will converges to zero and
so all weight is placed on the other instrument. Which instrument gets full
weight depends on the persistence of xt−1. The type-II instrument is selected
for strongly persistent predictors (i.e., those satisfying Assumption 1.2), while
the type-I instrument is selected for weakly persistent predictors (i.e., those
satisfying Assumption 1.1); see the proof of Lemma A.6 in the appendix for
details. As a result, regardless of the degree of persistence of the regressor, the
appropriate instrument is chosen in the limit.

However, as the simulation results we present in section 7 will demonstrate,
the finite sample power of the full sample test can be quite low against
such “pocket” alternatives. In the next section we therefore propose tests
based on sequences of subsample implementations of the IV-combination test
statistic. IV-based techniques are particularly useful to consider because the
corresponding subsample-specific statistics may be expressed in terms of partial
sums, whose behaviour may in turn be characterised in a tractable manner. This
is not the case, for instance, with the test of Campbell and Yogo (2006) or those
of Elliott and Müller (2006) and Elliott, Müller and Watson (2015), where the
analysis of the joint behavior of subsample-specific statistics is considerably
more involved.

4. Subsample IV-Combination Tests for Predictability

Our aim is to develop predictability tests which have good power to detect
temporary periods of predictability occurring within the available sample of
data irrespective of whether the putative predictor, xt−1 is stable or near-
integrated, and which are robust to the presence of heteroskedasticity in the
data. To that end we will base our testing approach on the computation of the
IV-combination predictability statistics outlined in the previous section in the
context of (8) computed not over the full available sample but over various
sequences of subsamples of the data. For each such sequence we consider, our
proposed test will be based on the maximum (in absolute value) statistic within
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that sequence. By taking the maximum over these sequences, we therefore base
our test on the particular subsample within the given sequence of subsamples
where the predictability statistic gives the strongest signal of predictability.1

4.1. Choice of Instruments

Before laying out our subsample IV-combination testing approach, we first need
to state some regularity conditions which must hold on the type-I and type-II
instruments such that we can validly use a testing strategy based on sequences
of subsample IV-combination predictability statistics. We will then discuss the
choice of instruments to use in practice which satisfy these conditions.

In Assumption 4 we first consider the conditions which need to hold on the
type-I instrument used.

Assumption 4.
Let zI,t obey the following conditions:

1. Under either Assumption 1.1 or Assumption 1.2: E
(
ζt|ζt−1, ζt−2, . . . ,

zI,t−1, zI,t−2, . . .) = 0, there exists δI ≥ 0 such that T−δIzI,t

is uniformly L4 -bounded, supτ∈[0,1]

∣∣∣ 1
T 1+δI

∑bτTc
t=1 zI,t−1

∣∣∣ p→ 0, and

supτ∈[0,1]

∣∣∣ 1
T 1+δI

∑bτTc
t=1 zI,t−1u

2
t

∣∣∣ = Op(1).
2. Under Assumption 1.1, and jointly on D

(a) 1
T 1+δI

∑bτTc
t=1 zI,t−1ξt−1 ⇒ KzIx (τ) , where KzIx (τ) is a Hölder-

continuous stochastic process of some order α > 0 and nonzero w.p.1;
(b) 1

T 1+2δI

∑bτTc
t=1 z2

I,t−1

p→ Kz2
I

(τ) , where Kz2
I

(τ) is a deterministic
Hölder-continuous function of some order α > 0 and strictly increasing;

(c) 1
T 1/2+δI

∑bτTc
t=1 zI,t−1ut ⇒ GI(τ), where GI(τ) is a continuous process

with independent increments (and therefore, Gaussian), with GI(0) = 0
a.s., zero mean function, strictly increasing variance function [GI ] (τ)

and variance profile defined as ηI(τ) := [GI ](τ)
[GI ](1) ;

(d) 1
T 1+2δI

∑bτTc
t=1 z2

I,t−1u
2
t
p→ [GI ] (τ).

3. Under Assumption 1.2,
(a) supτ∈[0,1]

∣∣∣ 1
T 3/2+δI

∑bτTc
t=1 zI,t−1ξt−1

∣∣∣ p→ 0;

(b) 1
T 1+2δI

∑bτTc
t=1 z2

I,t−1

p→ Kz2
I

(τ) on D, where Kz2
I

(τ) is a deterministic
Hölder-continuous function of some order α > 0 and strictly increasing;

(c) supτ∈[0,1]

∣∣∣ 1
T 1/2+δI

∑bτTc
t=1 zI,t−1ut

∣∣∣ = Op(1);
(d) 1

T 1+2δI

∑T
t=1 z

2
I,t−1u

2
t = Op(1).

1. Analogous tests based on subsample implementations of the tests from Breitung and
Demetrescu (2015) based on either only type-I instruments or on only type-II instruments
could also be developed, but we will not formally report results for such tests here.
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Remark 5. Notice that the required properties placed on zI,t−1 by
Assumption 4 can differ depending on whether Assumption 1.1 or Assumption
1.2 holds. This distinction is germane in cases where zI,t−1 is constructed from
xt−1; see the examples listed in section 3. In such cases δI may take different
values for the same instrument, and, similarly, Kz2

I
(τ) may take different

shapes under Assumptions 1.1 and 1.2. We do not, however, make this explicit
to ease notation. Assumption 4.1 complements the condition in Assumption
3.1 to ensure that the innovations ut are uncorrelated with the instruments.
Assumption 4.2 is new compared to Breitung and Demetrescu (2015), and is
required because we explicitly consider the behaviour of the IV-combination
statistics under DGPs which can allow for either weak or strong persistence
in the (putative) predictors; it requires the instruments to have stochastic
properties similar to those of a stable autoregression driven by heteroskedastic
innovations. Assumption 4.3 is the analogue of Assumption 3 of Breitung and
Demetrescu (2015) and is seen to be considerably less restrictive: rather than
the weak convergence of suitably normalised cross-product sample moments
required there, we only require uniform boundedness in probability. Assumption
4.3(b) regarding the partial sums of the squared instrument is new, but would
appear fairly mild. We are able to work with these weaker conditions relative to
Breitung and Demetrescu (2015) because we only consider the IV-combination
statistic with two instruments, one of type-I and the other of type-II.

Remark 6. Although the weak convergence in Assumption 4.2 is joint, we do
not specify the dependence structure between the limiting processes because
our asymptotic results will hold irrespective of this structure. We note, however,
that the variance profile, ηI(·), which turns out to play an important role in
our asymptotics under stability (Assumption 1.1) depends on both the choice
of type-I instrument and the DGP (specifically, on H(·) and the unconditional
variance of ut); see Lemma 1 for an example. Along the same lines, the limiting
processes KzIx(·) and Kz2

I
(·) also depend on both the DGP and the choice of

instrument; again, see Lemma 1 for an example.

Next, in Assumption 5, we detail the corresponding regularity conditions
needed on the type-II instrument used.

Assumption 5. The variable zII,t is deterministic and, for some function
Z (τ), Hölder-continuous of order α > 1/2, and some δII ≥ 0, satisfies
T−δIIzII,bτTc ⇒ Z (τ) in D where Z(·) is such that, for all 0 ≤ τ1 < τ2 ≤ 1,∫ τ2
τ1
Z̃2
τ1,τ2(s)ds 6= 0 with Z̃τ1,τ2(s) := Z(s)− 1

τ2−τ1

∫ τ2
τ1
Z(s)ds.

Remark 7. Notice that the conditions stated in Assumption 5 do not
involve the persistence of the regressor because the type-II instruments are
exogenous. Assumption 5 essentially coincides with Assumption 4 of Breitung
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and Demetrescu (2015), up to minor differences. While Assumption 4 of
Breitung and Demetrescu (2015) allows for stochastic zII,t, it also requires
the average cross-products of the instrument and the regression error to
have a mixed Gaussian limiting distribution, such that it actually affords
little additional flexibility in the choice of type-II instruments relative to
Assumption 5. Indeed, under the above assumptions it holds, for example,
that 1

T 1/2+δII

∑bτTc
t=1 zII,t−1ut ⇒

∫ τ
0 Z(s)dU(s) which is immediately seen to

be a Gaussian process, given that Z is deterministic. However, the quadratic
variation process of

∫ τ
0 Z(s)dU(s),

∫ τ
0 Z

2(s)
(
h2

11(s) + h2
12(s)

)
ds, is in general

nonlinear in τ and depends, analogously to the case of Assumption 1.1, on both
the DGP and the choice of the instrument zII,t−1. Finally, notice that Z(·) is
not permitted to be constant for any of the subsamples over which the test
statistics are computed, as this would entail perfect multicollinearity in those
subsamples.

We also require further regularity conditions regarding the interaction of the
type-I and type-II instruments used. These are now collected in Assumption 6.

Assumption 6. For instruments zI,t and zII,t satisfying the conditions of
Assumptions 4 and 5, respectively, it is also required that:

1. supτ∈[0,1]

∣∣∣ 1
T 1+δI+δII

∑bτTc
t=1 zI,t−1zII,t−1

∣∣∣ p→ 0 and

2. supτ∈[0,1]

∣∣∣ 1
T 1+δI+δII

∑bτTc
t=1 zI,t−1zII,t−1u

2
t

∣∣∣ = Op (1).

Remark 8. Breitung and Demetrescu (2015) do not impose such conditions
explicitly as they are implied by the stricter set of assumptions under which
they work. For instance, Assumption 6.1 would be implied by the weak
convergence of the partial sums of zI,t−1 in Assumption 3 of Breitung and
Demetrescu, but we do not require such weak convergence here because
Assumption 4.1 on the uniform boundedness of the partial sums of the type-
I instrument, supτ∈[0,1]

∣∣∣ 1
T 1+δI

∑bτTc
t=1 zI,t−1

∣∣∣ p→ 0, suffices for our purposes
(and is, for example, implied by Assumption 3 of Breitung and Demetrescu
under near-integration). Indeed, Assumption 6.1 only differs through the
weights T−δIIzII,t−1, which are deterministic; Assumption 6.2 can be seen
as a randomly weighted version thereof, with weights T−δIIzII,t−1u

2
t . Notice

that Assumption 6.1 entails that the (appropriately scaled) type-I and type-II
instruments are mutually asymptotically orthogonal for all subsamples of the
data, t = bτ1T c+ 1, . . . , bτ2T c, such that 0 ≤ τ1 < τ2 ≤ 1.

In the context of their full-sample predictability tests, Breitung and
Demetrescu (2015) consider the following choice for the type-II instrument,
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zII,t,

zII,t−1 = sin

(
kπ(t− 1)

2T

)
(9)

where k is a positive integer chosen by the practitioner. Breitung and
Demetrescu (2015) find that the best performing IV-combination test obtains
for k = 1 in (9). For the type-I instrument we use the IVX approach which
has become popular in predictive regressions; see, among others, Gonzalo
and Pitarakis (2012); Phillips and Lee (2013); Kostakis, Magdalinos, and
Stamatogiannis (2015) and Demetrescu and Rodrigues (2018). Specifically, this
amounts to setting

zI,t−1 :=

t−1∑
j=0

%j∆xt−1−j with % := 1− a

T γ
(10)

for some a > 0 and γ ∈ (0, 1), with the convention that ∆x0 = 0. In Lemma
1 we show that these two instruments satisfy the set of conditions required to
hold on the instruments by Assumptions 4–6.2

Lemma 1. Let Assumptions 1 and 3 hold with ζt strictly stationary and
ergodic such that, for some ϑ > 0, supt∈Z

∣∣E ((ṽ2
t − E

(
ṽ2
t

))
ṽt−j ṽt−k

)∣∣ ≤
C (jk)−

1/2−ϑ/2. Then, Assumptions 4–6 are satisfied by zt−1 := (zI,t−1, zII,t−1)′

when zII,t−1 and zI,t−1 are as defined in (9), for any positive integer k, and
(10), respectively. In particular, we have

1. Under Assumption 1.1, δI = 0, KzIx(τ) =Kz2
I
(τ) = σ̄2

ξ (ρ)[V ](τ) and GI(τ)

is a time-transformed Brownian motion given as T−1/2
∑bτTc
t=1 ξt−1ut ⇒

GI(τ), where this weak convergence result holds jointly on D3 with the
weak convergence given in (6), and

2. Under Assumption 1.2, δI = γ/2 and Kz2
I
(τ) = ω2

a [V ](τ).

Remark 9. The additional assumptions required to ensure the validity of
the IVX instrument are relatively mild. Strict stationarity and ergodicity
restrict the weak stationarity of ζt required in Assumption 3 such that the
asymptotic behaviour of sample averages can be accounted for, as required for
example in Assumption 4.2. The additional condition on the rate of decay of
E
((
ṽ2
t − E

(
ṽ2
t

))
ṽt−j ṽt−k

)
imposes a form of short memory on the conditional

variances. This rate is obviously satisfied when E
((
ṽ2
t − E

(
ṽ2
t

))
ṽt−j ṽt−k

)
= 0,

but is much weaker than that condition and, hence, still allows for asymmetric
volatility clustering.

2. We will formally establish this result for only these two instruments which will subsequently
be used in both our Monte Carlo study and empirical application. We conjecture, however, that
the other examples of type-I and type-II instruments considered in Breitung and Demetrescu
(2015, pp. 361-362) and outlined in section 3 will also satisfy Assumptions 4–6.
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Remark 10. Under Assumption 1.1, the processes KzIx(τ) and Kz2
I
(τ) are

both proportional to the quadratic variation of V (τ), the limit process of
the suitably normalised partial sums of ξt under stability. This demonstrates
the usefulness of the IVX instrument in that, under stability, zI,t−1 is
approximately equal to the stochastic component ξt−1 of the (putative)
predictor, xt−1, such that IVX effectively delivers the optimal instrument for
xt−1 under Assumption 1.1. For a choice of type-I instrument other than
IVX this is, in general, not true and one obtains different processes KzIx(τ)
and Kz2

I
(τ) whose properties depend on the particular choice made; see also

Corollary 2 of Breitung and Demetrescu (2015). Our large sample results
will, however, be established under Assumptions 4 and 5 and, as such, will
hold irrespective of the particular shape or properties of KzIx(τ) and Kz2

I
(τ).

Furthermore, under Assumption 1.2 the IVX instrument will turn out to be
dominated uniformly over all subsamples by the type-II instrument, such that
the precise properties of Kz2

I
will not be relevant under near-integration.3

4.2. Subsample-Based Predictability Tests

Given a choice of type-I and type-II instruments satisfying Assumptions 4-6,
we can proceed to develop subsample implementations of the IV-combination
predictability test discussed in section 3. In order to provide a unified
notation for such subsample statistics it will prove useful in what follows to
define the subsample-specific analogues AT (τ1, τ2), BT (τ1, τ2), CT (τ1, τ2) and
DT (τ1, τ2) of the full-sample quantities AT , BT , CT and DT , respectively,
used to construct the standard IV-combination statistic, tβ1 of (8). These are
defined analogously to their full-sample counterparts but for a sample consisting
of observations t = bτ1T c+ 1, . . . , bτ2T c, so that, for example, AT (τ1, τ2) :=∑bτ2Tc
t=bτ1Tc+1 x̃t−1z̃t−1 where ỹt, x̃t−1 and z̃t−1 are now subsample-specific

demeaned versions of yt, xt−1 and zt−1, respectively, so that, for wt generically
denoting either yt, xt−1 or zt−1, w̃t := wt − 1

bτ2Tc−bτ1Tc
∑bτ2Tc
s=bτ1Tc+1ws. In

each case the full-sample quantity is recovered on setting τ1 = 0 and τ2 = 1.
Precise definitions of all of these quantities are provided (in partial sum
notation) in section A.1 of the appendix.

If it was known to the practitioner that a pocket of predictability might
potentially occur over the particular subsample t = bτ1T c+ 1, . . . , bτ2T c, then

3. It should be noted, however, that Kz2
I
(τ) is also proportional to [V ](τ) under near-

integration, albeit with a different constant of proportionality; this is a consequence of the
fact that zI,t is mildly integrated in this case.
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it would be logical to compute the subsample IV-combination statistic4

tβ1(τ1, τ2) :=
A′T (τ1, τ2) B−1

T (τ1, τ2)CT (τ1, τ2)√
A′T (τ1, τ2) B−1

T (τ1, τ2) DT (τ1, τ2) B−1
T (τ1, τ2)AT (τ1, τ2)

(11)
and a test for predictability in this specific subsample could be obtained by
comparing (tβ1(τ1, τ2))2 with the χ2(1) distribution. Indeed, this would be
nothing more than the approach of Breitung and Demetrescu (2015) applied
to the particular subsample t = bτ1T c + 1, . . . , bτ2T c. Such a test would be
expected to have considerably more power to detect a regime of predictability
over the subsample t = bτ1T c + 1, . . . , bτ2T c than would the full sample test
based on tβ1 of (8) because the former would be calculated only for sample
points where a predictive relationship holds.

In practice, however, it is unlikely that the practitioner will know which
specific subsample(s) of the data might admit predictive regimes. While
some previous applied studies in the literature have considered a variety
of sample splits and also looked at the evolution of predictive regression
statistics over a sequence of subsamples, these studies have tended to signal the
presence of a predictive episode based on comparing each of these subsample
statistics with the critical value that would apply when running a test for
predictability on a single known subsample. As discussed in section 1, such
approaches induce either multiple testing and/or endogenously determined
breakdate problems and, hence, do not deliver size-controlled tests; see,
inter alia, Inoue and Rossi (2005). In order to control for these issues, the
critical value of the test needs to reflect the searching element involved. This
can be done by basing one’s test on certain functionals of the sequence of
subsample predictability statistics considered. Given that we are testing the
null hypothesis of no predictability against the alternative of predictability
in at least one subsample of the data, an approach based on the maximum
of the sequence of subsample predictability statistics considered would seem
appropriate. The specific sequences of statistics that we take the maximum over
must also be entirely agnostic of the data to avoid any endogenous selection
bias; that is, we could not, for example, validly choose to take the maximum
statistic from the sequence of subsamples where previous studies had argued
that predictability holds.

There is an extensive literature on testing for fluctuations in the parameters
of linear regression models; see, inter alia, Kuan and Hornik (1995) and

4. In the context of DT (τ1, τ2) :=
∑T
t=1 z̃t−1z̃

′
t−1ũ

2
t , the residuals, ũ2

t , are now the
subsample analogues of the full sample residuals, û2

t , used in the construction of the full-
sample statistic tβ1

in (8). The three possible choices discussed there can also be used here,
calculating them for the subsample t = bτ1T c+1, . . . , bτ2T c. As with the full sample statistic,
these three are asymptotically equivalent in so far as the behaviour of (the suitably normalised)
DT (τ1, τ2) is concerned.
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Kuan (1998). Common choices of agnostic sequences of statistics used in the
fluctuations testing literature include forward and reverse recursive sequences,
rolling sequences, and double-recursive sequences. We will adopt these choices
here and base our tests on the maximum statistic in each of these sequences of
statistics. These test statistics then can be formally defined as follows:

• The sequence of forward recursive test statistics is given by
{(tβ1(0, τ))2}τL≤τ≤1, where the parameter τL ∈ (0, 1) is chosen by the user.
The forward recursive regression approach uses bTτLc start-up observations,
where τL is the warm-in fraction, and then calculates the sequence of subsample
predictive regression statistics (tβ1(0, τ))2 for t = 1, ..., bτT c, with τ travelling
across the interval [τL, 1]. The test statistic formed as the maximum take across
this sequence is then defined as,

T f := max
τL≤τ≤1

(tβ1(0, τ))2. (12)

• The sequence of backward recursive test statistics is given by
{(tβ1(τ, 1))2}0≤τ≤τU with τU ∈ (0, 1) again chosen by the user. In this case one
calculates the sequence of subsample predictive regression statistics (tβ1(τ, 1))2

for t = bτT c + 1, ..., T , with τ travelling across the interval [0, τU ]. The
maximum test statistic from this backward recursive sequence is then defined
as,

T b := max
0≤τ≤τU

(tβ1(τ, 1))2. (13)

• The sequence of rolling test statistics is given by {(tβ1(τ, τ + ∆τ))2}0≤τ≤1−∆τ

where the user-defined parameter ∆τ ∈ (0, 1). The rolling regression approach
calculates the sequence of subsample statistics tβ1(τ, τ + ∆τ))2 for t = bτT c+
1, ..., bτT c+ bT∆τc, where ∆τ is the window fraction with bT∆τc the window
width, with τ travelling across the interval [0, 1 − ∆τ ]. The maximum test
statistic from this rolling sequence is then defined as,

T r := max
0≤τ≤1−∆τ

(tβ1(τ, τ + ∆τ))2. (14)

• Finally, the double-recursive sequence of test statistics is given by
{(tβ1(τ1, τ2))2}0≤τ1,τ2≤1

τ2−τ1≥∆τ
, where ∆τ ∈ (0, 1) is again a user-defined parameter.

The double-recursive approach calculates a double indexed sequence of
subsample statistics (tβ1(τ1, τ2))2 for t= bτ1T c+ 1, ..., bτ2T c, for all subsamples
such that 0 ≤ τ1 < τ2 ≤ 1 and where τ2 − τ1 ≥∆τ . Notice that this entails that
the forward recursive sequence discussed above is calculated across all possible
warm-in fractions such that τL ≥∆τ , which is why this sequence is referred to as
double-recursive. Notice that this double sequence also obtains by calculating
the rolling sequence discussed above for all possible rolling window widths
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between ∆τ and 1 inclusive. The maximum test statistic from the double-
recursive sequence is then defined as,

T d := max
0≤τ1,τ2≤1
τ2−τ1≥∆τ

(tβ1(τ1, τ2))2. (15)

Remark 11. The full sample IV-combination statistic t2β1
of (8) is contained

within the forward recursive sequence of statistics and obtains by setting τ = 1,
and similarly is contained within the backward recursive sequence for τ = 0. It
is also contained within the double-recursive sequence for τ1 = 0 and τ2 = 1.
Notice also that if we set ∆τ = 1 in the context of the rolling sequence then
this would collapse to the single full sample statistic, t2β1

.

Tests based on the maximum from each of the foregoing sequences of
subsample statistics have particular patterns of local predictability that they
will be well designed to detect. Tests based on the forward recursive sequence
of statistics are designed to detect pockets of predictability which start at
or near the start of the full sample period available to the practitioner. The
longer the duration of such an episode the more powerful these tests will be,
other things being equal, because they are based on a sequence of increasing
subsamples all starting from the first data point. By analogy, tests based on
the reverse recursive sequence of subsample statistics are designed to detect
end-of-sample pockets of predictability. As such, reverse recursive based tests
could therefore usefully be employed in an on-going monitoring exercise for
the emergence of predictive regimes. Because both the forward and reverse
recursive sequences, and indeed the double-recursive sequence, contain the
usual full sample predictability statistic, regardless of the choice of the trimming
parameters, they also deliver tests which have power to detect predictability
which holds over the whole sample, although in this particular case they would
not be expected to be as powerful as the standard full sample IV-combination
test which is clearly designed for that specific alternative hypothesis.

For a given window width, tests based on a rolling sequence of statistics are
designed to pick up a window of predictability, of (roughly) the same length,
within the data. As discussed above, the double-recursive sequence amounts to
considering all possible window width rolling sequences, subject to a minimum
window width. These then are useful for picking up multiple predictive regimes,
of potentially different lengths, within the data. However, because the double-
recursive sequence considers such a large number of possible subsamples of
the data a test based on the maximum from this sequence would necessarily
be expected to be less powerful than the recursive or rolling-based tests in
scenarios for which the latter are designed. This is because the more statistics
one considers in a sequence over which the maximum is taken the stricter the
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critical value needs to be to maintain a correctly sized test. So, for example, in
the case where a pocket of predictability existed in the middle of the sample
data of length say m observations, a test based on the maximum from the
rolling sequence using a window width of m observations would be expected to
be more powerful than a test based on the maximum of the double-recursive
sequence because the critical value for the latter would be considerably larger
than the former. However, a power advantage over the double-recursive test
would not necessarily be expected to hold for the corresponding rolling tests
where the window width was either smaller than m or greater than m. In the
former case this would be because the maximum subsample length available
over which predictability held (m observations) could never be utilised because
the window width is less than m, while in the latter case all subsamples in the
sequence will contain a mix of data points where predictability holds and where
it does not. It is of course very hard to analytically predict what the relative
finite sample power properties of the recursive, rolling and double recursive
based tests tests will be in cases like these and so we will investigate these
further using Monte Carlo experimentation in section 7.

Before progressing to establish the asymptotic properties of the maximum
subsample statistics, it is worth briefly commenting on estimation of the
location of any predictive windows that tests based on these maxima might
signal the presence of. Even for the simplest possible case where H1,b(·) of
(4) implies predictability over just a single subsample of the data, say t =
bτ1T c+ 1, ..., bτ2T c, with τ1 < τ2 and where either τ1 > 0 or τ2 < 1, consistent
estimation of τ1 and τ2 is not possible because of the Pitman localisation to
zero placed on β1,t in this interval under Assumption 2. In practice, however, if
a given maximum statistic rejects the null hypothesis then a sensible estimate
of τ1 and τ2 would be given by the start and end points of the subsample
corresponding to the maximum value from the sequence of statistics from which
a rejection was obtained. If one was looking to date possibly multiple windows
of predictability then one could reapply the procedures outlined above to the
data set excluding those sample points for which a first stage rejection occurred,
and so repeatedly until no rejection was obtained. A similar sequential strategy
was proposed in the context of testing for a dating regimes of persistence change
in Leybourne, Kim and Taylor (2007).

4.3. Asymptotic Distributions

In Proposition 1 we now provide representations for the asymptotic
distributions of the maximum subsample statistics defined in section 4.2.
These representations are stated under the local alternative. Expressions for
the limiting null distributions of these statistics can be obtained simply by
omitting those terms involving the function b(·) from these representations,
and these are provided in Corollary 1 after the statement of Proposition 1.
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Taken together these results provide analytical expressions for the asymptotic
local power functions of the associated tests from these.

Proposition 1. Consider the model in (1) and (2) and let Assumptions 2 –
6 hold. Then under the local alternative H1,b(·) of (4):

(i). Under Assumption 1.1, as T →∞, it holds that,

T f ⇒ sup
τ∈[τL,1]

(
GI (τ) +

∫ τ
0 b(s)dKzIx(s)

)2
[GI ] (1) ηI (τ)

;

T b ⇒ sup
τ∈[0,τU ]

(
GI (1)−GI (τ) +

∫ 1

τ b(s)dKzIx(s)
)2

[GI ] (1) (1− ηI (τ))
;

T d ⇒ sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

(
GI (τ2)−GI (τ1) +

∫ τ2
τ1
b(s)dKzIx(s)

)2

[GI ] (1) (ηI (τ2)− ηI (τ1))
;

T r ⇒ sup
0≤τ≤1−∆τ

(
GI (τ + ∆τ)−GI (τ) +

∫ τ+∆τ

τ b(s)dKzIx(s)
)2

[GI ](1) (ηI(τ + ∆τ)− ηI(τ))

where GI(·), [GI ](·), KzIx(·), and the variance profile, ηI(·), are as defined
in Assumption 4.2.

(ii). Under Assumption 1.2, as T →∞, it holds that,

T f ⇒ sup
τL≤τ≤1

(∫ τ
0 Z̃0,τ (s)dU(s) + ω

∫ τ
0 Z̃0,τ (s)b(s)Jc,H(s)ds

)2

∫ τ
0 Z̃

2
0,τ (s)d[U ](s)

;

T b ⇒ sup
0≤τ≤τU

(∫ 1

τ Z̃τ,1(s)dU(s) + ω
∫ 1

τ Z̃τ,1(s)b(s)Jc,H(s)ds
)2

∫ 1

τ Z̃
2
τ,1(s)d[U ](s)

;

T d ⇒ sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

(∫ τ2
τ1
Z̃τ1,τ2(s)dU(s) + ω

∫ τ2
τ1
Z̃τ1,τ2(s)b(s)Jc,H(s)ds

)2

∫ τ2
τ1
Z̃2
τ1,τ2(s)d[U ](s)

;

T r ⇒ sup
0≤τ≤1−∆τ

(∫ τ+∆τ

τ Z̃τ,τ+∆τ (s)dU(s) + ω
∫ τ+∆τ

τ Z̃τ,τ+∆τ (s)b(s)Jc,H(s)ds
)2

∫ τ+∆τ

τ Z̃2
τ,τ+∆τ (s)d[U ](s)

where Jc,H(·), U(·) and [U ](·) are as defined in section 2, and Z̃·,·(·) is as
defined in Assumption 5.
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In Corollary 1, both for completeness and for future reference, we next state
the limiting null distributions of the subsample maximum statistics.

Corollary 1. Let the conditions of Proposition 1 hold. Then under the null
hypothesis H0 of (3):

(i). Under Assumption 1.1, as T →∞, it holds that,

T f ⇒ sup
τ∈[τL,1]

(GI (τ))2

[GI ](1) ηI (τ)
:= T f,I∞ ;

T b ⇒ sup
τ∈[0,τU ]

(GI (1)−GI (τ))2

[GI ](1) (1− ηI (τ))
:= T b,I∞ ;

T d ⇒ sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

(GI (τ2)−GI (τ1))2

[GI ](1) (ηI (τ2)− ηI (τ1))
:= T d,I∞ ;

T r ⇒ sup
0≤τ≤1−∆τ

(GI (τ + ∆τ)−GI (τ))2

[GI ](1) (ηI(τ + ∆τ)− ηI(τ))
:= T r,I∞ .

(ii). Under Assumption 1.2, as T →∞, it holds that,

T f ⇒ sup
τL≤τ≤1

(∫ τ
0 Z̃0,τ (s)dU(s)

)2

∫ τ
0 Z̃

2
0,τ (s)d[U ](s)

:= T f,II∞ ;

T b ⇒ sup
0≤τ≤τU

(∫ 1

τ Z̃τ,1(s)dU(s)
)2

∫ 1

τ Z̃
2
τ,1(s)d[U ](s)

:= T b,II∞ ;

T r ⇒ sup
0≤τ≤1−∆τ

(∫ τ+∆τ

τ Z̃τ,τ+∆τ (s)dU(s)
)2

∫ τ+∆τ

τ Z̃2
τ,τ+∆τ

(s)d[U ](s)
:= T r,II∞ ;

T d ⇒ sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

(∫ τ2
τ1
Z̃τ1,τ2(s)dU(s)

)2

∫ τ2
τ1
Z̃2
τ1,τ2(s)d[U ](s)

:= T d,II∞ .

Remark 12. Notice that, because all of the statistics in the sequences are
based on subsample demeaned variables, they are all exact invariant to both µx
and β0. Moreover, notice that the vector of instruments used is by construction
invariant to µx, because zI,t is based on differences of xt for the instruments
mentioned in section 3, and zII,t is a deterministic function of time chosen by
the user without reference to µx. As a consequence, the limiting representations
given in Proposition 1 and Corollary 1 do not depend on either µx or β0.

Remark 13. Although the limiting null distributions in Corollary 1 do not
depend on the magnitude of ρ under Assumption 1.1, local power depends
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indirectly on the persistence of the putative predictor, as measured by ρ and
B(L), by way of the properties of KzIx(·); see Lemma 1 for the particular
example of the IVX instrument. Similarly, under Assumption 1.2, although the
mean-reversion parameter c does not affect the limiting null behaviour of the
maximum statistics, the local power functions do depend on c through Jc,H(·).
For both cases, the rule-of-thumb that the stronger the mean reversion, the
lower the local power, seems to hold; see the Monte Carlo results reported in
section 7.

Remark 14. Under Assumptions 4-6, the matrix BT (τ1, τ2), whose inverse is
needed for computing the tβ1(τ1, τ2) statistic of (11), is asymptotically diagonal
for all 0 ≤ τ1 < τ2 ≤ 1; cf. Remark 8. Consequently, subsample predictability
statistics and their bootstrap analogue statistics based on a computationally
simpler form of tβ1(τ1, τ2) which imposes diagonality on BT (τ1, τ2) would also
attain the large sample results given in Proposition 1 (and its subsequent
corollaries) and Proposition 2, respectively.

In the case of weakly persistent regressors, a time transformation can
shed further light on the influence of heteroskedasticity. Under Assumption
4.2(c), the process W (·) := GI(η

−1(·))/
√

[GI ](1) is continuous with stationary
independent increments, W (0) = 0 a.s. and VarW (τ) = τ , and therefore, W (·)
is a standard Wiener process. It follows that GI(·) =

√
[GI ](1)W (ηI (·)) is a

time-transformed Wiener process. Consequently, taking the limiting functional
associated with T f as an example, we have that

sup
τ∈[τL,1]

(
GI (τ) +

∫ τ
0 b(s)dKzIx(s)

)2
[GI ](1) ηI (τ)

d
= sup

τ∈[τL,1]

(
W (ηI(τ)) +

∫ τ
0 b(s)d

KzIx(s)√
[GI ](1)

)2

ηI (τ)

with similar distributional identities holding for the remaining statistics. As
the maximum of a function is invariant to monotonic transformations of the
argument, we may set r = ηI (τ) and therefore obtain the following alternative
representations, given in Corollary 2, of the limiting results in part (i) of
Proposition 1 and part (i) of Corollary 1.

Corollary 2. Let the conditions of Proposition 1 hold. Then under
Assumption 1.1, as T →∞, it holds that,

T f ⇒ sup
r∈[ηI(τL),1]

(
W (r) +

∫ η−1
I (r)

0 b(s)dK̄zIx(s)
)2

r
;

T b ⇒ sup
r∈[0,ηI(τU )]

(
W (1)−W (r) +

∫ 1

η−1
I (r) b(s)dK̄zIx(s)

)2

1− r
;
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T d ⇒ sup
0≤r1,r2≤1

η−1
I (r2)−η−1

I (r1)≥∆τ

(
W (r2)−W (r1) +

∫ η−1
I (r2)

η−1
I (r1)

b(s)dK̄zIx(s)

)2

r2 − r1
;

T r ⇒ sup
0≤r≤ηI(1−∆τ)

(
W
(
ηI
(
η−1
I (r) + ∆τ

))
−W (r) +

∫ η−1
I (r)+∆τ

η−1
I (r)

b(s)dK̄zIx(s)

)2

ηI
(
η−1
I (r) + ∆τ

)
− r

where W (·) := GI(η
−1(·))/

√
[GI ](1) is a standard Wiener process and

K̄zIx(·) := KzIx(·)/
√

[GI ](1). Moreover, the limiting null distributions from
part (i) of Corollary 1 are such that,

T f,I∞
d
= sup

r∈[ηI(τL), 1]

(W (r))2

r
;

T b,I∞
d
= sup

r∈[0, ηI(τU )]

(W (1)−W (r))2

1− r
;

T r,I∞
d
= sup

0≤r≤ηI(1−∆τ )

(
W
(
ηI
(
η−1
I (r) + ∆τ

))
−W (r)

)2
ηI
(
η−1
I (r) + ∆τ

)
− r

;

T d,I∞
d
= sup

0≤r1,r2≤1

η−1
I (r2)−η−1

I (r1)≥∆τ

(W (r2)−W (r1))2

r2 − r1
.

Remark 15. The results in Proposition 1 and Corollaries 1 and 2 highlight
the fact that both the limiting null distribution and the local power functions
of all of the tests depend, in general, on any unconditional heteroskedasticity
present through the resulting non-constancy of H(·). This holds irrespective
of the persistence of the regressor xt; indeed, heteroskedasticity has differing
effects on the limiting distributions depending on the degree of persistence
of xt. At least under the null hypothesis, this may seem surprising, as Eicker-
White standard errors are designed to robustify any of the subsample statistics,
0 ≤ τ1 < τ2 ≤ 1, to heteroskedasticity (conditional or unconditional). However,
this asymptotic invariance only holds marginally for a given statistic in the
sequence; indeed, it can be shown for each of the sequences of statistics, and
regardless of which of Assumption 1.1 and Assumption 1.2 holds, that any
given statistic in the sequence has a marginal χ2

1 limiting null distribution. The
representations in Corollary 2, for example, show that under Assumption 1.1
the suprema are taken over statistics computed for various intervals whose
endpoints depend on the variance profile ηI(·) defined in Assumption 4.2,
which depends in turn on both the DGP and the choice of type-I instrument.
Moreover, under Assumption 1.2, the same phenomenon explains part (ii) of
Proposition 1 and the limiting null results given in part (ii) of Corollary 1, with
the additional complication that one may not even represent the subsample
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statistics more tractably using a time transformation due to the presence of
the subsample-demeaned process Z. Here, too, heteroskedasticity depends on
the choice of instrument (this time the type-II instrument) in addition to the
DGP. Under local alternatives, heteroskedasticity additionally enters by means
of KzIx(·) and Jc,H(·), under Assumption 1.1 and Assumption 1.2, respectively.
It is important to emphasise that the precise effect of non-constancy of H(·)
due to unconditional heteroskedasticity on the limiting distributions of our
maximum statistics depends on which of Assumptions 1.1 or 1.2 holds on the
DGP. This dependence present in the subsample maximum statistics raises the
question of how to conduct asymptotically valid inference without assuming
which of Assumptions 1.1 and 1.2 holds on xt.

Remark 16. More generally, the impact of the DGP on the large sample
behaviour of the statistics depends on the choice of instrument and on
the persistence of the (putative) predictor. Consider first the results under
Assumption 1.1. Here the limiting null distributions, T s,I∞ , s = f, b, d, r, all
depend on ηI(·) which in turn depends on the unconditional variance of ut. In
the case where ηI(s) = s, these limiting null distributions can be seen to simplify
to the suprema of squared standardised Wiener processes taken over the range
of the subsamples. However, constancy of H(·) is not sufficient to ensure
linearity of ηI(·), because heteroskedasticity can still enter via the instrument
zI,t−1. Under the local alternative, the key quantity controlling power isKzIx(·)
which can be deterministic under Assumption 1.1 (see, for example, Lemma 1
for the case of the IVX instrument), and (upon normalisation) characterises
the strength of the instrument zI,t−1. However, KzIx(·) also characterises the
signal; other things equal, if xt has a large marginal variance relative to ut, then
local power will increase. In the case of Assumption 1.2, local power depends on
the process Jc,H(·) in a more intricate way, due to the fact that Jc,H and

∫
Z̃dU

may well be dependent. Clearly, local power is influenced by all three factors
c, ω and H(·). The effect of the elements of H(·) is not easy to disentangle, as
can be seen from the expressions given for the quadratic variation processes of
U(·) and V (·) at the end of section 2.

In Corollary 3 we detail the limiting distributions of the full sample statistic
t2β1

of (8) under the local alternative, H1,b(·) of (4).

Corollary 3. Let the conditions of Proposition 1 hold. Then under the local
alternative H1,b(·)

(i). Under Assumption 1.1, as T →∞, it holds that,

t2β1
⇒
(
W (1) +

∫ 1

0

b(s)dK̄zIx(s)

)2

;
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(ii). under Assumption 1.2, as T →∞, it holds that,

t2β1
⇒
(∫ 1

0

Z̃2(s)d[U ](s)

)−1(∫ 1

0

Z̃(s)dU(s) + ω

∫ 1

0

Z̃(s)b(s)Jc,H(s)ds

)2

where Z̃(s) := Z(s)−
∫ 1

0 Z(s).

Remark 17. It can be seen from the results in Corollary 3 that, under
the null hypothesis H0 of (3), t2β1

⇒ W (1)2 under Assumption 1.1, while

t2β1
⇒

(∫ 1

0 Z̃
2(s)d[U ](s)

)−1 (∫ 1

0 Z̃(s)dU(s)
)2

under Assumption 1.2 with∫ 1

0 Z̃(s)dU(s) ∼ N
(

0,
∫ 1

0 Z̃
2(s)d[U ](s)

)
. Consequently, the full sample IV-

combination statistic, t2β1
, is seen to possess a standard χ2

1 limiting null
distribution regardless of whether xt is stable or near-integrated. Moreover,
the results in Corollary 3 show that the full sample IV-combination test
exhibits non-trivial power against the class of local alternatives we consider
in this paper; that is, it has power to detect predictive episodes. However, local
power depends indirectly on heteroskedasticity which influences the stochastic
properties of KzIx(·) and Jc,H(·); see Remarks 15 and 16.

Remark 18. Where β1,t = β1 6= 0, for all t = 1, ..., T , the results in Corollary
3 specialise to the standard local power of the full sample IV-combination test
based on t2β1

. For type-II instruments without demeaning, one recovers the
result of Breitung and Demetrescu (2015, Theorem 2.2).

To sum up, the limiting null distributions of the maximum subsample
statistics considered here all depend both on any heteroskedasticity present
and (since the effect of heteroskedasticity depends on which of Assumptions
1.1 or 1.2 holds) on whether the putative predictor xt is near-integrated or
stable. This poses significant problems for conducting inference that are not
encountered with tests based on the full sample IV-combination statistic, t2β1

of (8). However, as we will demonstrate in the next section these issues can
be solved by using a fixed regressor wild bootstrap implementation of the
subsample tests.

5. Bootstrap Implementation

As the results in the previous section show, implementing tests based on
the T s, s = f, b, d, r, statistics from section 4.2 will require us to address
the fact that their limiting null distributions depend on any unconditional
heteroskedasticity present in ut and vt, and on whether the predictor xt−1 is
weakly dependent or near-integrated. To account for the former we employ a
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wild bootstrap resampling scheme applied to the demeaned dependent variable
ŷt := yt − 1

T

∑T
t=1 yt, while for the latter we use the observed outcomes on

x := [x0, x1, ..., xT ]′ and z := [z′0,z
′
1, ...,z

′
T ]′ as a fixed regressor and fixed

instrument vector, respectively, when implementing the bootstrap procedure.
We now outline our fixed regressor wild bootstrap approach in Algorithm

1. We will then demonstrate the asymptotic validity of this approach in
Proposition 2.

Algorithm 1.

Step 1 Construct the wild bootstrap innovations y∗t := ŷtRt, where ŷt := yt −
1
T

∑T
t=1 yt are the demeaned sample observations on yt, and Rt, t = 1, ..., T ,

is an IIDN(0, 1) sequence independent of the data.5

Step 2 Using the bootstrap sample data
(
y∗t , xt−1,z

′
t−1

)′, in place of the original
sample data

(
yt, xt−1,z

′
t−1

)′, construct the bootstrap analogues of the statistics
T s, s = f, b, d, r, from section 4.2. Denote these bootstrap statistics as T s∗,
s = f, b, d, r.

Step 3 For each statistic define the bootstrap p-value as P s,∗T := 1 − Gs,∗T (T s),
s = f, b, d, r, with Gs,∗T (·) denoting the conditional (on the original data)
cumulative distribution function (cdf) of T s∗, s = f, b, d, r. In practice, the
Gs,∗T (·), s = f, b, d, r, will be unknown, but can be simulated in the usual way
by repeating Steps 1 and 2 a large number, say B, times to obtain empirical
analogues of Gs,∗T (·), s = f, b, d, r. Here the {Rt}Tt=1 variables used in Step 1
must also be independent across the B bootstrap replications.

Step 4 The wild bootstrap test of the null hypothesis H0 of (3) at level α based on T s
rejects if P s,∗T ≤ α, s = f, b, d, r.

Remark 19. Notice that the bootstrap statistics T s∗, s = f, b, d, r, are
calculated treating xt−1 as a fixed regressor; that is, the bootstrap statistics
are calculated using the same observed xt−1 as was used in the construction of
the statistics T s, s = f, b, d, r. Importantly, the same is also true of the vector
of instruments, zt−1, used in constructing the tests. While this distinction is
of course irrelevant for the type-II instrument, zII,t−1, which is deterministic,
fixing the instruments (which, for example, under near-integration either do
not depend on or are asymptotically invariant to c) ultimately implies that the
fixed regressor bootstrap we propose will be asymptotically valid regardless of
whether xt satisfies Assumption 1.1 or 1.2.

5. The Gaussianity assumption on Rt is standard in the literature and simplifies the proof
of Proposition 2 below. This can, however, be generalised such that Rt is any IID sequence of
random variables with E(Rt) = 0, E(R2

t ) = 1 and E(R4
t ) <∞. A well-known further example

satisfying these conditions is the Rademacher distribution where P(Rt = −1) = P(Rt = 1) =
0.5.
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Remark 20. The wild bootstrap scheme used to generate y∗t in Step 1 of
Algorithm 1 is constructed so as to replicate the pattern of heteroskedasticity
present in the original innovations; this follows because, conditionally on
ŷt, y∗t is independent over time with zero mean and variance ŷ2

t . Any
heteroskedasticity present in xt−1 and zI,t−1 is replicated through the fixed
regressor aspect of the bootstrap statistics.

Remark 21. Step 1 of Algorithm 1 is based on residuals obtained under the
restriction of the null hypothesis. It is straightforward to show that the large
sample properties of the resulting bootstrap tests which instead use either the
OLS or IVX residuals from estimating the predictive regression over the full
sample are unaltered from those given here. Moreover, although considerably
more computationally intensive, one could also use the analogous subsample
implementations of any of these three full sample residuals in Step 1.

In Proposition 2 we now demonstrate the large sample validity of the
fixed regressor wild bootstrap implementation of the tests from section 4.2.
In particular, we show that our proposed bootstrap in Algorithm 1 correctly
replicates the first order asymptotic null distributions of the statistics given in
Corollary 1 under both the null hypothesis and local alternatives.

Proposition 2. Let the conditions of Proposition 1 hold. Then under either
the null hypothesis H0 of (3) or the local alternative H1,b(·) of (4):

(i). Under Assumption 1.1, as T → ∞, it holds that T f∗ w⇒p T f,I∞ , T b∗ w⇒p

T b,I∞ , T r∗ w⇒p T r,I∞ , and T d∗ w⇒p T d,I∞ .
(ii). Under Assumption 1.2 as T →∞, it holds that, T f∗ w⇒p T f,II∞ , T b∗ w⇒p

T b,II∞ , T r∗ w⇒p T r,II∞ , and T d∗ w⇒p T d,II∞ .

A consequence of Proposition 2 is that we obtain asymptotically correctly
sized tests when using bootstrap critical values obtained using Algorithm 1.
We now formalise this result in Corollary 4.

Corollary 4. As T →∞, under H0, P∗(T s∗ ≤ T s)⇒ Unif [0, 1], for each
of s = f, b, d, r, where P∗ denotes probability conditional on the original sample(
yt, xt−1,z

′
t−1

)′, t = 1, . . . , T .

Remark 22. The result in Corollary 4 establishes the asymptotic validity
of our proposed bootstrap tests. Importantly, this result holds without the
practitioner needing to know whether the (putative) predictor xt satisfies
Assumption 1.1 or 1.2, and holds regardless of any heteroskedasticity present
in ut and vt provided this satisfies Assumption 3.
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Remark 23. It is immediate from Proposition 2 that each of the bootstrap
statistics T s∗, s = f, b, d, r, attains the same first order limiting distribution
under both the null hypothesis and local alternatives as that which is attained
under the null hypothesis by the corresponding original (non-bootstrap)
statistic T s, s = f, b, d, r. An immediate consequence of this result is that
each of the wild bootstrap tests proposed in Algorithm 1 will admit the same
asymptotic local power function as the (infeasible) size-adjusted test based on
the corresponding original statistic T s, s = f, b, d, r.

Remark 24. A simplified (although perhaps somewhat less intuitive) version
of Algorithm 1 may also be considered. Examining the proof of Proposition
2, it can be seen that certain terms (e.g. D∗T and DT ) either have the same
deterministic limits in both the original and bootstrap sampling spaces, or
cancel out in the limit. In fact, we only need to replicate the behaviour of the
term CT (τ1, τ2) and use the other quantities (AT , BT and DT ) as computed in
the original sample. This simplified version of Algorithm 1 is given in Algorithm
2 below.

Algorithm 2.
Step 1 Construct y∗t := ŷtRt with Rt standard normal IID variables independent of

the data.
Step 2 Construct C∗T (τ1, τ2) :=

∑bτ2Tc
t=bτ1Tc+1 zt−1ỹ

∗
t with

ỹ∗t := y∗t − 1
bτ2Tc−bτ1Tc

∑bτ2Tc
s=bτ1Tc+1 y

∗
s .

Step 3 Build the bootstrap statistics T s∗, s = f, b, d, r, as detailed in section 4.2 for
the T s, s = f, b, d, r, statistics but with C∗T (τ1, τ2) replacing CT (τ1, τ2) in the
computation of the tβ1

(τ1, τ2) statistic in (11).
Step 4 For a test of the null hypothesis with asymptotic size α, reject the null

hypothesis H0 of (3) if P∗(T s∗ ≤ T s) ≥ 1− α, s = f, b, d, r.

The results given in Proposition 2 also apply to the bootstrap tests obtained
using Algorithm 2.

Remark 25. The full sample IV-combination statistic, t2β1
, of Breitung and

Demetrescu uses Eicker-White standard errors to correct the limiting null
distribution of the statistic for non-constancy in H(·) due to unconditional
heteroskedasticity in the innovations. Because it is still necessary to implement
the subsample maximum tests using a wild bootstrap it would be feasible
to replace the Eicker-White standard errors used in the computation of the
subsample (tβ1(τ1, τ2))2 statistic in (11) and its bootstrap equivalent, computed
in Step 2 of Algorithm 1, with conventional standard errors. While this
would alter the limiting representations given for the maximum statistics in
Proposition 1 and Corollaries 1 and 2, it can be shown that the resulting wild
bootstrap tests would still be asymptotically valid with an analogous result
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to that in Corollary 4 holding. In this case the wild bootstrap tests would
attain the same asymptotic local power functions as (infeasible) size-corrected
implementations of the (non-bootstrap) maximum tests based on conventional
standard errors. These asymptotic local power functions will not in general
coincide with those obtained for the statistics based on Eicker-White standard
errors, but they would where H(·) is constant.

Remark 26. The bootstrap asymptotic validity results given in this section
also apply to the corresponding fixed regressor wild bootstrap implementation
of the full sample IV-combination test based on t2β1

(which, as discussed
previously, obtains as an element of each of the three recursive sequences of
bootstrap statistics). In particular, the bootstrap implementation of the full
sample test will satisfy a result of the form given in Corollary 4 and will have
the same asymptotic local power function as the test based on t2β1

using χ2
1

critical values, discussed in section 4.3. Again, as with the discussion for the
subsample maximum statistics in Remark 25, one could replace Eicker-White
standard errors with conventional standard errors in the computation of this
statistic without losing asymptotic validity.

6. Extensions: Deterministic Components and Multiple Predictors

In this section we briefly outline how the subsample predictability tests
developed in the context of (1) and (2) with a single predictive regressor, xt−1,
and an intercept can be generalised to the case where the predictive regression
contains multiple predictors and/or a general deterministic component.

6.1. Deterministic Components

To allow for a more flexible deterministic component, we can generalise
equations (1) and (2) to

yt = ψ′yf t + β1,txt−1 + ut (16)

and
xt = ψ′xf t + ξt (17)

respectively, where f t is a vector whose elements are deterministic satisfying
typical conditions. In particular, f t := L−1

T F (t/T ) for some vector F (·) of
(piecewise) smooth deterministic functions and LT diagonal weighting matrix
with diagonal elements lii := T−δl for δl ≥ 0. An obvious example is the
case of constant and trend, which obtains for f t := (1, t)′, where LT :=
diag{1, T−1} and F (s) = (1, s)′. Following Breitung and Demetrescu (2015,
p. 365), f t can be regarded as collecting together, or “pooling”, all of the
deterministic variables that feature in either (16) or (17) or both, so that
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different deterministic components can feature in (16) and (17) by setting the
appropriate elements of ψy and/or ψx to zero.

Under this extended deterministic form, the instruments used in calculating
the subsample sequences of statistics must be such that they are not linear
combinations of the pooled deterministic trend function on any of the
subsamples considered in a given sequence; that is, we require that the condition∣∣∣∣∫ τ2

τ1

(
F (s)
Z(s)

)(
F (s)′, Z(s)

)
ds

∣∣∣∣ 6= 0 (18)

holds for all possible τ1 and τ2 considered in the sequence of subsamples; for
example, in the case of the forward recursive sequence it must hold for all τ1, τ2
such that τ1 = 0 and τL ≤ τ2 ≤ 1.

Remark 27. To gauge the impact of the condition in (18) on the validity of our
test procedures, consider again the leading linear trend example, f t := (1, t)′.
Here we may not choose as type-II instrument any linear combination of the
intercept and linear trend terms. The choice of type-II instrument given in (9)
therefore remains valid in this example. This family of instruments is motivated
by the Karhunen-Loéve decomposition of Wiener and OU processes; see Phillips
(1998). The Karhunen-Loéve representation of a deterministic linear trend is
formed from a weighted infinite series of terms of the form given in (9) over
k = 1, 2, ...., and therefore the linear trend cannot be collinear with just one of
them. In the unlikely event that sin

(
k πt2T

)
is an element of the deterministic

trend vector f t, one could simply pick sin
(
` πt2T

)
, for some ` ≥ 1 such that

` 6= k, as the type-II instrument. We also note that any failure of condition
(18) in practice would be immediately apparent as one would encounter singular
matrices in the computation of the test statistics for those subsamples were the
condition failed.

In order to obtain tests which are exact invariant to the vectors of
parameters ψy and ψx, the sequences of subsample statistics from which our
maximum statistics are obtained need to be based on appropriately detrended
data. To that end, let y̆t, z̆t−1 and x̆t−1 denote the residuals from the projection
of yt, zt−1 and xt−1, respectively, onto the deterministic component f t for the
subsample t = bτ1T c+ 1, ..., bτ2T c; that is, for wt generically denoting any of
yt, zt−1 and xt−1,

w̆t := wt −
bτ2Tc∑

s=bτ1Tc+1

wsf
′
s

 bτ2Tc∑
s=bτ1Tc+1

fsf
′
s

−1

f t. (19)

In order to obtain exact invariance one then simply replaces ỹt by y̆t, z̃t−1

by z̆t−1 and x̃t−1 by x̆t−1, respectively, in computing AT (τ1, τ2), BT (τ1, τ2),
CT (τ1, τ2) and DT (τ1, τ2) in (11). The limiting distributions for the resulting
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maximum statistics can be shown to be the same as those given in part (i) of
Proposition 1 for the case where Assumption 1.1 holds. However, the results
under Assumption 1.2 do change relative to those given in Proposition 1. In
particular, the results given in part (ii) of Proposition 1 hold for the extended
deterministic form discussed here provided Z̃τ1,τ2 is replaced by

Z̆τ1,τ2(s) := Z(s)−
∫ τ2

τ1

Z(s)F (s)′
(∫ τ2

τ1

F (r)F (r)′dr

)−1

F (s).

We note in passing that the detrending scheme will affect the local power in
the case of near-integrated regressors, but not when the regressors admit stable
autoregressions.6

The bootstrap Algorithms 1 and 2 will need to be modified accordingly.
In particular, in Step 1 of Algorithms 1 and 2 the bootstrap sample data, y∗t ,
should now be constructed from full sample detrended data; that is, y∗t := ŷft Rt,
where

ŷft := yt −
T∑
s=1

ysf
′
s

(
T∑
s=1

fsf
′
s

)−1

f t.

The bootstrapped statistics are then computed analogously to the original
statistics, as outlined above, using the subsample detrended data, y̆∗t (the
subsample detrended y∗t , obtained setting wt = y∗t in the generic detrending
formula in (19)), z̆t−1 and x̆t−1. The key result given in Proposition 2, that the
fixed regressor wild bootstrap implementation of the subsample predictability
tests are asymptotically valid, continues to hold.

6.2. Multiple Predictors

In empirical work one might wish to consider predictive regression models with
several (putative) predictors. This can help avoid the problem of spurious
predictive regression effects in the case where relevant strongly persistent
predictors are omitted from the estimated predictive regression; cf. Georgiev et
al. (2018a).

6. It should, however, be noted that some care may be required when generating the type-I
instrument, zI,t, from the regressor xt. Depending on the form of the deterministic component
of xt and on the mechanism used to generate the instrument, zI,t could exhibit some form
of deterministic component itself (notice that this does not occur with the IVX instrument
given in (10) in the case considered there where xt contains a constant mean because the mean
is purged in the construction of the IVX instrument). It would then be imperative to check
that the instrument zI,t still obeys Assumptions 4-6 in spite of any such induced deterministic
component.
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To that end consider replacing (1) by its multivariate counterpart

yt = β0 +
k∑
i=1

βi,txi,t−1 + ut, t = 1, . . . , T (20)

where the xi,t are generated analogously to the form given in (2), or the
extended form including additional deterministic variables given in (17).
Precisely, denoting the k × 1 vector of predictive regressors as xt−1 :=
(x1,t−1, ...., xk,t−1)′, these are assumed to satisfy the DGP

xt = Ψxf t + ξt

where the ith row of Ψx gives the trend coefficients of the ith putative predictor
xi,t, and

ξt = Γξt−1 + vt

with vt and ut obeying a multivariate version of Assumption 3. Assume that
there exists an ordering of the elements of xt such that Γ is block-diagonal. The
first block relates to any near-integrated variables in xt−1 and, as in Equation
(16) of Breitung and Demetrescu (2015), is specified as Γ1 = Ir − 1

T C with C
a (not necessarily diagonal) r× r matrix, for some 0 ≤ r ≤ k. The second block
relates to any stable regressors in xt−1, and is such that the (k − r)× (k − r)
matrix Γ0 has all of its k − r eigenvalues smaller than unity in absolute value.
Notice that, because we do not specify the dimensions r and k − r of the
diagonal blocks, any given element of xt−1 may be either stable or near-
integrated; indeed, we could have only near-integrated regressors (r = k), or
only regressors generated from stable autoregressive processes (r = 0). We will
not require knowledge which of these any given element of xt−1 satisfies because
when implementing 2SLS-based inference the same mechanism discussed for
the single-regressor case will ensure that the suitable instrument gets full
GMM weight in the limit. This is an important advantage of our approach,
as correctly classifying the individual variables in xt−1 as either stable or near
integrated would be infeasible in practice. For each predictor, xi,t−1, i= 1, ..., k,
the associated slope parameter βi,t needs to satisfy the relevant localisation
given in Assumption 2, so that nT =

√
T where xi,t−1 is stable and nT = T

where xi,t−1 is near-integrated. Here the piecewise function b(·) in Assumption
2, which defines local power, need not be the same for each of the xi,t−1,
i = 1, ..., k.

The extension of the approach proposed in this paper to multiple
predictors is in principle straightforward. For each predictor variable, xi,t−1,
i = 1, ..., k, we use exactly one type-I and one type-II instrument like
before. Let the resulting vector of instruments be given as zt−1 :=
(z1,I,t−1, z1,II,t−1, . . . , zk,I,t−1, zk,II,t−1)′, where zi,I,t−1 and zi,II,t−1 are the
instruments for xi,t−1, i = 1, ..., k. As discussed in Breitung and Demetrescu
(2015, p. 366), we will require multivariate versions of Assumptions 4-6 to hold.
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For computational reasons (specifically, to avoid perfect multicollinearity), it
must also hold that, for all of the subsamples over which the statistics of
interest are computed, the instruments are linearly independent and are linearly
independent of the deterministic component.

For the type-I instruments, an obvious choice is again given by the IVX
approach, setting

zi,I,t−1 :=
t−1∑
j=0

%ji∆xi,t−1−j with %i := 1− ai
T γi

, i = 1, ..., k

where ai > 0 and γi ∈ (0, 1), i= 1, ..., k, and with the convention that ∆xi,0 = 0,
i = 1, ..., k. For the type-II instruments we could simply adopt a different
spectral frequency for each of the type-II instruments; viz.,

zi,II,t−1 = sin

(
ωi(t− 1)

2T

)
, i = 1, ..., k

where ωi ∈ (0, π], i = 1, ..., k, are fixed and distinct spectral frequencies. Along
the lines of the proof of Lemma 1 it can be shown that these choices of
instruments satisfy the required regularity conditions on the instruments as
long as the condition in (18) is fulfilled with Z(s) replaced by Z(s), the vector
of limit functions of the k type-II instruments.

Assuming that with a given subsample t = bτ1T c+ 1, . . . , bτ2T c, the slope
parameters in (20) are constant, such that βi,t = βi, i = 1, ..., k, then the 2SLS
estimator of β := (β1, ..., βk)′ using the set of instruments, zt−1, defined above
for the subsample t = bτ1T c+ 1, . . . , bτ2T c is given by

β̂1(τ1, τ2) := M−1
T A′T (τ1, τ2) B−1

T (τ1, τ2) CT (τ1, τ2)

where MT := C′T (τ1, τ2) B−1
T (τ1, τ2) CT (τ1, τ2), with

AT (τ1, τ2) :=
∑[τ2T ]
t=[τ1T ]+1 z̆t−1x̆

′
t−1, and where the matrices BT , CT , and DT

retain their definitions from the previous subsection but for the form of zt−1

defined above.
Based on β̂1(τ1, τ2), we can then form IV-combination predictability tests,

for the given subsample t = bτ1T c+ 1, . . . , bτ2T c, along the same principles as
outlined in section 4.2 for the single predictor statistic tβ1(τ1, τ2) in (11). To
that end, define the q× k full row rank matrix R of constants defining q linearly
independent restrictions on β. The 2SLS-based Wald statistic for testing the
null hypothesis that Rβ = 0 holds over the subsample t = bτ1T c+ 1, . . . , bτ2T c
is then given by

WR
β1

(τ1, τ2) :=
(
Rβ̂1(τ1, τ2)

)′(
R

̂
Cov

(
β̂1(τ1, τ2)

)
R′
)−1

Rβ̂1(τ1, τ2),
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where ̂
Cov

(
β̂1(τ1, τ2)

)
:= M−1

T

(
A′T (τ1, τ2) B−1

T (τ1, τ2) DT (τ1, τ2) B−1
T (τ1, τ2) AT (τ1, τ2)

)
M−1

T .

A test statistic for the significance of any given predictor, xi,t−1, i ∈
{1, ..., k}, obtains by setting R equal to the 1× k selection (row) vector whose
ith element is equal to unity and all other elements are equal to zero. Test
statistics for the joint significance of any subset of q of the predictors can be
formed by merging such selection vectors into a q × k matrix. For q = k, so
that R = Ik, we obtain a test statistic for the joint significance of all of the
predictors xi,t−1, i = 1, ..., k. Notice also that the joint predictability statistic
proposed in section 3.3 of Breitung and Demetrescu (2015) in the context of
the full sample obtains for τ1 = 0 and τ2 = 1. It can be shown that WR

β1
(τ1, τ2)

has a χ2
q limiting null distribution.

Along exactly the lines detailed in section 4.2, for a given choice of R,
we can form forward and backward recursive, rolling, and double-recursive
sequences of the WR

β1
(τ1, τ2) statistic calculated over the relevant sequences

of subsamples. Tests for the null hypothesis that the subset of the elements of
xt−1 chosen by R has no predictive power anywhere in the available sample
against the alternative that they have joint (local) predictive power within
some subset of the sample can then be based, as with the single regressor
case, on the maxima of these sequences of subsample Wald statistics. The
limiting distributions of these maximum statistics are multivariate variants of
Proposition 1 which we do not provide here to save space. Clearly, they are
not invariant to time-varying volatility for the same reasons as were outlined
previously in the discussion of Proposition 1. Fixed regressor wild bootstrap
versions of these tests can be implemented with an obvious generalisation of
Algorithms 1 and 2. The behaviour of these bootstrapped maximum statistics
can be derived in a similar way to those established in Proposition 2 and we omit
the details here; the important point is that the leading conclusion regarding
the asymptotic validity of the bootstrap given in Corollary 4 also holds for
these multivariate tests.

7. Numerical Results

7.1. Setup

In this section, we use Monte Carlo simulation methods to investigate the finite
sample performance of the bootstrap implementations of the subsample-based
predictability tests T f , T b, T r and T d proposed in section 4 for testing the
null hypothesis of no predictability given by (3); that is, H0 : β1,t = 0, for all
t= 1, . . . , T , against the alternativeH1,b(·) of (4) that predictability holds across
some subset of the sample data. In all of the reported experiments, data are
generated from the DGP in (1)-(2). First, in section 7.2 we explore the empirical
size properties of these tests and compare these with the corresponding full
sample IV-combination test of Breitung and Demetrescu (2015), t2β1

of (8).
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Then in section 7.3 we compare the finite sample local power properties of
these tests against a variety of DGPs displaying temporary predictability.

Following the discussion in section 4.1 and the results of Lemma 1, we base
both the full sample tβ1 IV-combination statistic in (8) and the corresponding
sub-sample tβ1(τ1, τ2) statistics in (11) on the instrument vector zt−1 :=
(zI,t−1, zII,t−1)′ with the type-II instrument, zII,t−1, defined as in (9) with
k = 1, and the type-I instrument, zI,t−1, given by the IVX choice of Kostakis,
Magdalinos, and Stamatogiannis (2015) defined as in (10), with a = 1 and
γ = 0.95.7 With the exception of the IVX instrument, zI,t−1, all variables and
instruments entering the estimated predictive regressions are demeaned, as in
the main text. As discussed in Kostakis, Magdalinos, and Stamatogiannis (2015,
p. 1514) the IVX instrument, zI,t−1, does not need to be demeaned because
the slope estimator in the predictive regression is invariant to whether zI,t−1

is demeaned or not. In calculating our statistics we implemented the finite-
sample correction factor outlined in Kostakis, Magdalinos, and Stamatogiannis
(2015, p. 1516) as this was found to improve the finite sample properties of the
tests especially in the case of highly persistent regressors which are strongly
correlated with the predictive model’s innovations.

All simulations are preformed in MATLAB, versions R2018a and R2018b,
using the Mersenne Twister random number generator function. All results
pertain to the nominal 5% significance level; qualitatively similar results were
obtained for other conventional significance levels. All of the subsample tests
are computed using a fixed regressor wild bootstrap of the form given in
Algorithm 1 using 399 bootstrap replications; the bootstrap tests are denoted
T s∗, s = f, b, d, r. Following Banerjee, Lumsdaine and Stock (1992), we set
τL = 1/4 and τU = 3/4 in the context of the forward and backward recursive
statistics, respectively, and ∆τ = 1/3 for the rolling and double recursive
statistics. The empirical size simulations were based on 5000 Monte Carlo
replications and the local power simulations on 1000 replications, with the
exception of the double recursive tests where 1000 replications were used for
size and 500 for power because of the much higher computing time required for
these. For the full sample t2β1

test, results for versions based on the asymptotic
χ2

1 critical value and on a fixed regressor wild bootstrap are reported, the
latter again using 399 bootstrap replications. For all of the bootstrap tests, two
versions are reported. The first, as in the definitions of the statistics given in the
main text, is based on the use of Eicker-White standard errors. The second,
following the discussion in Remark 25, is based on the use of conventional
rather than Eicker-White standard errors. These two variants of each test are
distinguished from one another by the additional “NW” nomenclature in the

7. We also considered tests based on using the fractionally integrated instrument suggested
on page 363 of Breitung and Demetrescu (2015) for zI,t−1. We do not report these results here
as the IVX choice performed better in our results, but they can be obtained from the authors
on request.



41 Testing for Episodic Predictability in Stock Returns

subscripts of the former. Following the discussion in section 3 and in footnote
4, all of the reported statistics utilise residuals, ût, computed under the null
hypothesis.

7.2. Empirical Size

We first investigate the finite sample size properties of our proposed tests. To
that end, we consider the simulation DGP given by (1)-(2) with β1,t = β1 = 0 for
all t = 1, ..., T . Results are reported for samples of length T = 250 and T = 500.
In generating the simulation data we set the intercepts β0 and µx in (1) and
(2), respectively, to zero without loss of generality. The autoregressive process
characterising the dynamics of the putative predictor, xt, in (2) was initialised
at ξ0 = 0. Results are reported for a range of values of the autoregressive
parameter ρ in (2) that cover both stationary and persistent predictors; in
particular, for ρ := 1− c/T we consider c ∈ {0, 2.5, 5, 10, 20, 0.5T}. Notice
that c = 0.5T corresponds to ρ = 0.5, such that the autoregressive parameter
is fixed and stable.

In our simulation DGP the innovation vector (ut, vt)
′ is drawn from an

i.i.d. bivariate Gaussian distribution with mean zero and covariance matrix
Σt : =

[
σ2
ut ϕσutσvt

ϕσutσvt σ2
vt

]
. Notice, therefore, that ϕ corresponds to the

correlation between the innovations ut and vt. Results are reported in Table
1 for the case where ϕ = 0, and in Table 2 for the case where ϕ = −0.90.8
We report results for the case where the innovations are homoskedastic,
σ2
ut = σ2

vt = 1 (labelled DGP1 in the Tables 1 and 2), and for the case where
there is a contemporaneous one-time break of equal magnitude in the variances
of ut and vt. Following the simulations designs considered in Georgiev et al.
(2018a), two such heteroskedastic cases are considered: (i) an upward change
in variance (labelled DGP2 in Tables 1 and 2) such that σ2

ut = σ2
vt = 1I(t ≤

b0.5T c) + 4I(t > b0.5T c), and (ii) a downward change (labelled DGP3 in Tables
1 and 2) where σ2

ut = σ2
vt = 1I(t ≤ b0.5T c) + 1

4I(t > b0.5T c), where in each case
I(·) denotes the indicator function, taking the value one when its argument is
true and zero otherwise. DGP2 and DGP3 allow us to examine the impact of
unconditional heteroscedasticity, both in isolation and in its interaction with
ϕ, on the finite sample size of the tests. In each of DGP2 and DGP3 a fourfold
change in variance is seen which is likely to be of rather larger magnitude than
we might expect to see in practice, but serves to illustrate how the tests behave
in the presence of a large change in unconditional volatility.

8. In predictive regression models for the equity premium employing valuation ratios as
predictors (e.g. the dividend-price ratio, earnings-price ratio), as we shall do in the empirical
application in section 8, the relevant innovation terms are strongly negatively correlated, hence
our choice of ϕ = −0.90.
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Consider first the results pertaining to the homoskedastic DGP1. A
comparison of the results in Table 1 for ϕ = 0 and Table 2 for ϕ = −0.90
shows that, in the homoskedastic case at least, the correlation parameter ϕ
has relatively little impact on the size properties of the tests. For the full
sample tests there is relatively little difference between the tests based on the
asymptotic χ2

1 critical value and the fixed regressor wild bootstrap. Similarly,
as might be expected, for the full sample tests there is little to choose between
the versions of the tests with Eicker-White standard errors and those with
conventional standard errors. In the case of the subsample tests, there is a
general trend towards undersizing in the Eicker-White versions of the tests for
cases where the putative predictor, xt−1, displays persistence at or close to that
of a unit root process. This effect is most pronounced in the rolling and double
recursive statistics. However, this undersizing is not seen with the versions of
the subsample tests based on conventional standard errors. It is well known
that Eicker-White standard errors can be heavily downward biased in small
samples leading to incorrectly sized tests; see, for example, MacKinnon and
White (1985).

We next turn to the results for the two unconditionally heteroskedastic
DGPs, DGP2 and DGP3. Consider first the full sample predictability tests. As
expected, it is immediately seen in the results that the full sample test based
on conventional standard errors and the asymptotic χ2

1 critical value, t2β1,NW
,

is unreliable in the presence of heteroskedasticity. These size distortions are
considerably worse for ϕ=−0.90 than for ϕ= 0 when c= 0; for the other values
of c considered the differences between ϕ = 0 and ϕ = −0.90 are much smaller.
The size distortions observed with t2β1,NW

are significantly ameliorated by the
use of Eicker-White standard errors (t2β1

) in all but the case of DGP2 with c= 0
where no apparent improvements are seen. The bootstrap implementations of
the full sample tests, however, do a much better job at controlling finite sample
size, regardless of whether Eicker-White or conventional standard errors are
used, although some over-sizing is still seen for ϕ = −0.90 when c = 0. There
therefore appears to be no need to use Eicker-White standard errors when using
the fixed regressor bootstrap implementation of the full sample test.

Consider next the subsample predictability tests. Undersizing, in many cases
substantial, is again seen with the subsample bootstrap tests based on Eicker-
White standard errors. As with the full sample tests, these effects tend to be
larger, other things equal, for ϕ = −0.90 vis-à-vis ϕ = 0. As with the results for
DGP1, the subsample bootstrap tests based on conventional standard errors are
much less prone to this undersizing phenomenon, albeit some undersizing is seen
in the case of DGP2 with ϕ = −0.90 for small values of c, most notably so for
the rolling and double recursive tests. Moreover, under DGP3 with ϕ = −0.90
some oversizing is seen in the persistent xt−1 cases for the backward recursive,
rolling and double recursive tests. For ϕ = 0 all of the subsample bootstrap
tests implemented with conventional standard errors would appear to display
good finite sample size control.
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7.3. Finite Sample Local Power

We now turn to an investigation into the relative finite sample local power
properties of the tests. We again generate simulation data from DGP (1)–(2)
but now for a variety of local alternatives satisfying H1,b(·) of (4). To keep the
set of results to a manageable level we report results only for ϕ = −0.90, for
the homoskedastic case, σ2

ut = σ2
vt = 1, for a sample of size T = 250 and for

three values of the persistence parameter, c, associated with xt; specifically,
c = {0, 10, 0.5T}. In all of our experiments the slope parameter β1t in (1) is
set to be local-to-zero. As specified by Assumption 2, for c = 0 and c = 10,
where xt−1 is strongly persistent, we parameterise the slope parameter in (1)
as β1t = b1t/T , and here we consider the following values of the Pitman drift
parameter, b1t ∈ {0, 5, ..., 80}. For the case of a weakly dependent predictor,
c = 0.5T , we parameterise the slope parameter as β1t = b1t/

√
T , and here we

consider the Pitman drift values b1t ∈ {0, 1, ..., 21}.
We report results for three distinct experimental cases, in which episodes

of predictability occur once in the sample (Experiments 1, 2 and 3 below).
Specifically, in these experiments the episodes of predictability occur at the
beginning, the end and within the sample, respectively. To that end, we consider
the following three simulation DGPs, where in each case where b1t is non-zero
it satisfies the range of values given above.

Experiment 1:

{
b1t > 0 for t = 1, ..., bT/5c
b1t = 0 for t = bT/5c+ 1, ..., T

Experiment 2:

{
b1t = 0 for t = 1, ..., b4T/5c
b1t > 0 for t = b4T/5c+ 1, ..., T

Experiment 3:


b1t = 0 for t = 1, ..., bT/5c
b1t > 0 for t = bT/5c+ 1, ..., b3T/5c

b1t = 0 for t = b3T/5c+ 1, ..., T

All other aspects of the simulation design are as described previously.
Figures 1–3 graph the simulated finite sample local power curves for each of

Experiments 1–3, respectively. Each figure contains power curves for the fixed
regressor wild bootstrap implementations of the full sample t2∗β1,NW

test along
with the subsample-based predictability tests T f∗NW , T b∗NW , T r∗NW and T d∗NW . To
aid presentation of the graphs, we have chosen only to report the versions of
the bootstrap tests that are implemented with conventional standard errors.
Results for the corresponding versions with Eicker-White standard errors are
available on request. In general the latter were less powerful (often considerably
so) than the reported tests based on conventional standard errors.
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Consider first the results pertaining to Experiment 1 in Figure 1. Recall
from the discussion in section 4.2 that the temporary predictability model
embodied in the DGP for Experiment 1, with a pocket of predictability at
the start of the sample, is one where we would expect the forward recursive
T f∗NW test to perform best. Figure 1 bears out this prediction. Regardless of the
value of c, T f∗NW is significantly more powerful than the other tests considered.
The double recursive test, T d∗NW , also displays significant power gains over the
full sample t2?β1,NW

test, for all of the values of c considered. The rolling test,
T r∗NW , displays a similar power profile to T d∗NW for c = 0 and c = 0.5T , but is
significantly less powerful than T d∗NW for c = 10. The least powerful tests among
those considered is the backward recursive test, as would be expected, and the
full sample t2?β1,NW

test. To illustrate, the empirical power of t2?β1,NW
at bT = 50

is approximately 50% for both c = 0 and c = 10 while for T f∗NW power is around
75%. For c = 0.5T and bT = 10 the power of t2β1,NW

is about 55% while that
of T f∗NW is in excess of 95%. In the latter example both the rolling (T r∗NW ) and
double recursive (T d∗NW ) tests have power of approximately 80%.

Consider next the results for Experiment 2, given in Figure 2, where the
pocket of predictability now occurs at the end of the sample. When xt is weakly
persistent the simulation DGP is approximately time-reversible and, as such,
we would anticipate that all but the forward and backward recursive tests,
whose relative behaviour would be expected to switch around, will behave
similarly to how they behaved in Experiment 1 for the weakly dependent
case. This is clearly seen to be the case in Figure 2(c), with the backward
recursive test now clearly the most powerful, the forward recursive test the least
powerful, and the other tests all displaying almost identical power properties
in Figures 1(c) and 2(c). These patterns are also seen, albeit not as clearly,
in a comparison of Figures 1(b) and 2(b); the main difference being that
the most of the tests (although not the double recursive test) tend to be
slightly more powerful for c = 10 vis-à-vis c = 0.5T . The pattern of a general
increase in power of the tests as c decreases for an end-of-sample pocket of
predictability is very clearly continued in Figure 2(a) for the case where c = 0
and xt follows a pure unit root. Here, comparing with Figure 1(a), we see
that all of the tests display considerably higher local power against an end-
of-sample pocket of predictability than against a pocket of predictability at
the start of the sample, and, comparing with Figures 2(b) and 2(c), that the
power of the tests is considerably higher than for c = 10 and c = 0.5T . A
possible explanation for this improvement in power is the shape of the non-
centrality term,

∫ τ2
τ1
Z̃τ1,τ2(s)b(s)Jc,H(s)ds, entering the limiting distributions of

the statistics under local alternatives in the case where xt is strongly persistent.
Clearly, end of sample predictability will be boosted from the larger magnitude
of Jc,H(τ) when τ is close to 1, and this will be most evident when c = 0.
Interestingly, the full sample t2?β1,NW

test displays competitive power in Figure
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2(a) although it should be recalled from Table 2 that t2?β1,NW
is significantly

over-sized in this case while the subsample tests are not.
Finally, consider the results in Figure 3 pertaining to Experiment 3, where

the simulation DGP admits a window of predictability of size b2T/5c within
the sample. Here the double recursive test, T d∗NW , displays superior power to
the other tests considered for both c = 10 and c = 0.5T (Figures 3(b) and 3(c)
respectively), and is jointly most powerful along with the forward recursive
T f∗NW test for c = 0 (Figure 3(a)). Notice also that for a given value of c, T d∗NW
displays considerably higher power under Experiment 3 than it does under
both Experiments 1 and 2. This is to be expected given that a larger window
of predictive data is now present in the sample which the double recursive
procedure is best able to exploit. Indeed, most of the tests considered display
improved power performance compared to Figures 1 and 2. This is particularly
evident for the rolling test, T r∗NW , and again is to be expected given that a
greater number of the subsample predictability statistics in the rolling sequence
will contain data from a predictive period relative to the DGPs in Experiments
1 and 2. In this experiment, the T b∗NW test (as expected, given that the window
of predictability begins early in the sample) and the full sample t2β1,NW

test
display the lowest power among the tests considered.

8. Empirical Application

The dataset used for our empirical application consists of monthly observations
on the equity premium for the S&P Composite index calculated using CRSP’s
month-end values together with 14 different putative predictors, generically
denoted xt. The data cover the period 1950:01-2017:12 (T = 817). We define
the equity premium as in Goyal and Welch (2003) as the log return on the
value-weighted CRSP stock market index minus the log return on the risk-free
Treasury bill: yt = ept = log(1 +Rm,t)− log(1 +Rf,t) where Rm,t is the CRSP
return and Rf,t is the Treasury bill return.

The data used to construct the equity premium and the predictors
are taken from the updated monthly data set on Amit Goyal’s website
(www.hec.unil.ch/agoyal/) which is an extended version of the data set used
by Welch and Goyal (2008). The variables are in log form (as in Goyal and
Welch, 2003) and each of the predictors is lagged one period. A full list of the
predictors is given in Table 4. Graphs of the excess returns and the predictors
are provided in Figure 5.

We begin with a conventional full sample predictability analysis of the data.
To that end, Table 3 reports the outcome of the full sample IV-combination test
from bivariate predictive regression models applied to the full sample of data.
We report versions of the statistic using Eicker-White (t2β1

) and conventional
(t2β1,NW

) standard errors. All of the IV-based test statistics computed in the
empirical analysis follow the same specification as was used in the Monte Carlo



Working Papers 46

experiments; that is, they are based on a combination of the IVX instrument,
zI,t−1 (as defined in (10), with a = 1 and γ = 0.95), and the sine instrument,
zII,t−1 (as defined in (9) with k = 1), with all of the observed variables and
zII,t−1 (but not zI,t−1) entering the estimated predictive regressions demeaned,
and with the finite-sample correction factor of Kostakis, Magdalinos, and
Stamatogiannis (2015, p. 1516) implemented. Fixed regressor wild bootstrap
p-values computed according to Algorithm 1 with 999 bootstrap replications
are reported in parentheses. For most of the putative predictors considered,
the results in Table 3 yield no statistically significant evidence of predictability.
Exceptions are seen for the treasury bill rate (tblt−1), the long term government
bond yield and rate of return series (ltyt−1 and ltrt−1, respectively), and
inflation (inflt−1) all of which are significant at the 5% level. Rejections of
the null of no predictability are also seen at the 10% level for the term spread
(tmst−1) and the equity premium volatility (rvolt−1) series.

In order to provide an insight into how stable the full sample predictive
regressions are, Table 3 also reports the tests proposed in Georgiev et al.
(2018b) for the stability of the slope coefficient in the bivariate predictive
regression of the equity premium on each (lagged) predictor. These tests are
denoted LMx and supFx. The former is designed to test for the stability of
the slope coefficient against a smoothly evolving slope change model and the
latter against a one-time change in the slope. Bootstrap p-values calculated as
outlined in Georgiev et al. (2018b) for 999 bootstrap replications are reported
in parentheses. Significant rejections at the 5% level by at least one of these
tests are observed for the predictive regressions involving the dividend price
ratio (dpt−1), dividend yield (dyt−1), earnings price ratio (e/pt−1), book to
market ratio (bmt−1), term spread (tmst−1) and inflt−1. The rejections seen
for dpt−1 and e/pt−1 are particularly strong. A rejection at the 10% level is
also seen for the net equity expansion ratio (ntist−1) predictor. Interestingly,
for three of the four series (tblt−1, ltyt−1 and ltrt−1) for which the full sample
IV-combination tests are significant at the 5% level these stability tests provide
no evidence of structural instability in the slope coefficient.

To provide some additional insight into any time-varying behaviour present
in the slope coefficients, Figures 6 and 7 plot forward recursive and rolling IV
(using the same choice of instruments as detailed above for the full sample
IV-combination tests) slope estimates from the predictive regression of yt on
xt−1 and associated approximate 95% marginal confidence bands.9 The warm-
in fraction for the recursive sequence, τL, and the rolling window fraction, ∆τ ,
were both set at 1/4. In each case the horizontal axis dates correspond to

9. Denoting the IV slope estimate as β̂1, the confidence bands were computed as β̂1 ±
1.96se(β̂1), where se(β̂1) are the associated IV Eicker-White standard errors. These confidence
bands should, however, be treated with caution as they are not joint 95% confidence bands for
the entire sequence of slope estimates, but rather represent the marginal 95% confidence band
at each point in the sequences of estimated slope coefficients.
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the end of a given sub-sample. Commensurate with the results of the formal
stability tests of Georgiev et al. (2018b), these graphs highlight the presence of
considerable time variation in the sequences of subsample slope estimates. A
general pattern evident in Figure 6 is a decline over time in the absolute value
of the estimated slope coefficient with the recursive slope estimates generally
tending to move closer to zero over time. This general pattern can also be seen,
albeit less clearly, in the rolling estimates in Figure 7. This suggests that for
some of these variables, any predictive ability they might have for the equity
premium weakens over time. As a further heuristic device, rather than a formal
statistical test, we can see that many of the graphs show some periods where
the 95% marginal confidence intervals do not include zero, which is at least
suggestive that pockets of predictability may be present in the data. Most of
these episodes occur nearer the start of the data, such as, for example, is seen
with dyt−1, but some are much longer lived as with, for example, the sequences
of recursive coefficient estimates for tblt−1, ltrt−1, tmst−1 and inflt−1; recall
that for tblt−1, ltrt−1 and inflt−1, the full sample IV-combination tests gave
significant rejections at the 5% level.

To pursue these findings further using statistically rigorous size-controlled
methods, we next apply the subsample-based predictability statistics proposed
in this paper to the data. We report versions of the statistics using Eicker-
White (T f , T b, T r and T d) and conventional (T fNW , T bNW , T rNW and T dNW )
standard errors. Fixed regressor wild bootstrap p-values computed according to
Algorithm 1 with 999 bootstrap replications are again reported in parentheses.
In the computation of the forward and backward recursive test statistics we
set τL = 1/4 and τU = 3/4, respectively, while we set ∆τ = 1/4 for the rolling
and double recursive test statistics. The instruments used are as described
above for the full sample statistics. Focusing on the forward recursive tests we
see significant rejections at the 5% level (or stricter) of the null hypothesis of
no predictability for each of dpt−1, dyt−1, e/pt−1, det−1, tblt−1, ltyt−1, ltrt−1,
tmst−1 and inflt−1; indeed, in many cases these rejections are also significant at
the 1% level. While these rejections tally with those delivered by the full sample
test for tblt−1, ltyt−1, ltrt−1 and inflt−1, for the other series, all of which (other
than det−1) fail the structural stability tests of Georgiev et al. (2018b), these
are series for which the full sample tests delivered no significant evidence of
predictability. With the exception of dpt−1 and e/pt−1, those series for which
T fNW delivers a rejection at the 5% significance level also show rejections at
the 5% level for at least one of the other subsample maximum tests reported.
Additional evidence of temporary predictability at the 5% level (or stricter) is
provided for dfyt−1 by both T rNW and T dNW (notice that for this series the supFx
test is in fact very close to giving a rejection at the 10% level). A significant
rejection at the 10% level is also provided for ntist−1 by the T rNW test.

To gain further insight, Figure 8 graphs the forward recursive sequences
of tβ1(τ1, τ2) subsample statistics for each case where a rejection at the 5%
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level is observed for the corresponding maximum test10. Also reported on these
graphs are the 5% and 10% bootstrap critical values for the null distribution of
the maximum statistic in the sequence, together with the 5% and 10% critical
values from the χ2

1 distribution (the marginal critical values which apply for
any given subsample).

Consider first the graph in part (a) of Figure 8 for the dividend price ratio,
dpt−1. Looking at the time path of the forward recursive subsample statistic
we can see that for much of the first half of the sequence (up until roughly
the early 1980s) the statistic exceeds the χ2

1 5% critical value, suggesting that
running the IV-combination test on any subsample of the data selected up
until this point would have delivered a significant rejection at the (marginal)
5% level. After this sample endpoint no significant evidence of predictability
would have been found. We can also see that a large number of exceedances
of the 10% bootstrap critical value for the maximum are seen in the early
part of the data, with exceedances of the 5% bootstrap critical value also seen,
most notably in the mid 1970s. These results are suggestive that a pocket of
predictability for returns existed for the predictor dpt−1 in the 1970s with
peak predictability seen in the middle of that decade, and that since the
1980s onwards predictability appears to have evaporated. For the dividend
yield, dyt−1, a pocket of predictability appears to be present again from the
early 1970s but lasting much longer, and with apparently stronger magnitude,
displaying many more contiguous exceedances of the bootstrap critical values
for the maximum than were seen for dpt−1; indeed, here predictability appears
to run until the early to mid 1990s. From the mid to late 1990s onwards the
evidence for predictability disappears. Evidence for both the earnings price
ratio, e/pt−1, in part (c) and the dividend pay out ratio, det−1, in part (d) is
less strong than for the previous two series (reflected in the considerably larger
p-values for the maximum statistics for those series in Table 3), but again the
period of predictability appears to be concentrated in mid 1970s. For both the
treasury bill rate, tblt−1, in part (e) and the long term bond yield, ltyt−1, in
part (f) there appears to be evidence of predictability across a window from the
early 1970s until the mid 1980s, albeit the strength of predictability appears to
waver somewhat over this period, particularly so for ltyt−1. For both of these
series, there is also evidence that predictability is re-emerging from around
the period of the recent financial crisis onwards, most notably so for tblt−1

where a number of exceedances of the bootstrap critical values occur. In the
case of tblt−1 running the IV-combination test on almost any subsample of the
data would yield at rejection at the 5% using the marginal χ2

1 critical value.
This observation is also true for the long term rate, ltrt−1, in part (g) and for
inflation, inflt−1, in part (i). Recall that these are the three series for which

10. Where both the maximum tests based on Eicker-White and conventional standard errors
reject we report the version with the smallest p-value; cf. Table 3. Corresponding graphs for
the rolling sequences are available on request.
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the full sample IV-combination tests gave significant rejections at the 5% level.
Finally for the tmst−1 series in part (h) predictability appears evident and
consistently strong up until the mid 1990s onwards where the magnitude of
predictability starts to tail off and then falls markedly around the time of the
financial crisis onwards. In contrast, the full sample tests reveal no significant
evidence (at the 5% level) of predictability from tmst−1.

The examples above highlight some of the advantages of considering the
recursive sequence of statistics and their evolution through time rather than
just full sample IV-combination tests, with evidence for predictability appearing
to be much stronger earlier in the sample than later for a number of the putative
predictors considered.

9. Conclusions

Recent research has suggested that should stock returns be predictable, then
this is likely to be a temporary phenomenon characterised by so-called “pockets
of predictability”. Our motivation in this paper has been to develop tests
of predictability which have good power to detect predictive episodes of
this kind. In order to avoid the problem of endogenously-determined sample
splits, the tests we have proposed are derived from sequences of predictability
statistics calculated over systematic sub-samples of the data. In particular,
our proposed tests are based on the maxima of the instrumental variable-
based predictability test statistics of Breitung and Demetrescu (2015) taken
across sequences of forward and backward recursive, rolling, and double-
recursive predictive regressions. The limiting distributions of these statistics
were shown to be robust to both the degree of persistence and endogeneity of
the regressors in the predictive regression, but not to any heteroskedasticity
present and, as a consequence, fixed regressor wild bootstrap implementations
of the tests were proposed and shown to be first-order asymptotically valid.
Monte Carlo simulation demonstrated that the tests display good finite sample
size control and display considerably superior finite sample power to detect
pockets of predictability than do the corresponding standard full sample tests.
An empirical application to a well-known US monthly stock returns data set
highlighted the ability of the new tests to detect predictability within the data
where the full sample tests could not.
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c t2∗β1
t2∗β1,NW

t2β1
t2β1,NW

T f∗ T b∗ T f∗NW T b∗NW T r∗ T r∗NW T d∗ T d∗NW
DGP1: T = 250, ϕ = 0 and σ2

ut = σ2
vt = 1

0.0 0.045 0.046 0.046 0.045 0.037 0.036 0.049 0.051 0.017 0.057 0.015 0.067
2.5 0.047 0.047 0.049 0.045 0.032 0.032 0.048 0.049 0.013 0.053 0.008 0.059
5.0 0.043 0.044 0.043 0.041 0.031 0.032 0.047 0.044 0.009 0.050 0.012 0.062
10.0 0.042 0.043 0.040 0.039 0.033 0.039 0.046 0.048 0.014 0.050 0.015 0.057
20.0 0.049 0.048 0.046 0.044 0.039 0.039 0.044 0.048 0.025 0.050 0.028 0.056
0.5T 0.049 0.047 0.046 0.047 0.058 0.053 0.052 0.047 0.061 0.045 0.070 0.044

DGP2: T = 250, ϕ = 0 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c)
0.0 0.047 0.048 0.032 0.059 0.040 0.044 0.057 0.050 0.024 0.052 0.020 0.048
2.5 0.044 0.047 0.036 0.066 0.033 0.033 0.053 0.048 0.018 0.055 0.009 0.059
5.0 0.043 0.043 0.035 0.068 0.036 0.033 0.056 0.046 0.015 0.054 0.008 0.061
10.0 0.046 0.045 0.037 0.078 0.037 0.038 0.057 0.048 0.018 0.054 0.020 0.055
20.0 0.048 0.047 0.041 0.084 0.044 0.041 0.058 0.049 0.027 0.051 0.028 0.055
0.5T 0.052 0.051 0.047 0.090 0.062 0.058 0.051 0.050 0.066 0.050 0.070 0.057

DGP3: T = 250, ϕ = 0 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c)

0.0 0.045 0.047 0.076 0.061 0.036 0.043 0.047 0.057 0.029 0.059 0.037 0.072
2.5 0.045 0.047 0.058 0.072 0.031 0.033 0.046 0.061 0.022 0.058 0.017 0.063
5.0 0.044 0.045 0.045 0.067 0.029 0.036 0.043 0.056 0.016 0.060 0.012 0.062
10.0 0.044 0.045 0.042 0.069 0.033 0.038 0.040 0.051 0.018 0.057 0.020 0.059
20.0 0.045 0.043 0.040 0.071 0.041 0.044 0.046 0.049 0.027 0.053 0.031 0.057
0.5T 0.047 0.045 0.045 0.084 0.056 0.062 0.049 0.053 0.069 0.049 0.063 0.038

DGP1: T = 500, ϕ = 0 and σ2
ut = σ2

vt = 1

0.0 0.046 0.046 0.043 0.045 0.043 0.039 0.049 0.051 0.017 0.052 0.011 0.050
2.5 0.048 0.049 0.047 0.047 0.042 0.039 0.052 0.052 0.016 0.054 0.014 0.048
5.0 0.047 0.048 0.047 0.046 0.044 0.045 0.053 0.056 0.015 0.054 0.013 0.050
10.0 0.050 0.051 0.049 0.048 0.047 0.042 0.056 0.049 0.027 0.055 0.027 0.056
20.0 0.053 0.052 0.053 0.053 0.051 0.043 0.052 0.052 0.041 0.051 0.043 0.062
0.5T 0.047 0.047 0.044 0.045 0.053 0.053 0.048 0.050 0.065 0.054 0.072 0.058

DGP2: T = 500, ϕ = 0 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c)
0.0 0.052 0.053 0.036 0.061 0.050 0.039 0.063 0.055 0.025 0.061 0.033 0.062
2.5 0.051 0.052 0.036 0.065 0.046 0.040 0.062 0.053 0.023 0.060 0.022 0.060
5.0 0.050 0.050 0.037 0.073 0.046 0.044 0.056 0.052 0.026 0.061 0.028 0.058
10.0 0.050 0.050 0.041 0.083 0.050 0.045 0.055 0.054 0.033 0.058 0.038 0.055
20.0 0.050 0.051 0.045 0.088 0.053 0.050 0.051 0.056 0.046 0.055 0.048 0.054
0.5T 0.052 0.050 0.045 0.092 0.066 0.054 0.053 0.050 0.063 0.056 0.064 0.052

DGP3: T = 500, ϕ = 0 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c)

0.0 0.050 0.051 0.085 0.073 0.045 0.042 0.056 0.062 0.029 0.066 0.030 0.073
2.5 0.052 0.053 0.065 0.077 0.043 0.041 0.056 0.060 0.028 0.063 0.025 0.067
5.0 0.053 0.051 0.050 0.075 0.042 0.053 0.051 0.060 0.025 0.065 0.024 0.064
10.0 0.052 0.053 0.049 0.076 0.044 0.049 0.054 0.058 0.030 0.062 0.033 0.064
20.0 0.052 0.051 0.048 0.081 0.047 0.056 0.053 0.058 0.041 0.057 0.044 0.064
0.5T 0.051 0.051 0.048 0.092 0.056 0.061 0.050 0.053 0.066 0.056 0.062 0.045

Notes: A superscript ∗ denotes tests run using the fixed regressor wild bootstrap outlined in
Algorithm 1; t2β1

and t2β1,NW
denote the full sample IV-combination predictability tests of

Breitung and Demetrescu (2015) based on the 5% asymptotic critical value from the χ2
1

distribution and computed with Eicker-White [EW] and conventional standard errors,
respectively, and t2∗β1

and t2∗β1,NW
their bootstrap analogues; T f∗, T b∗ and T f∗NW , T b∗NW ,

denote the maximum forward and backward recursive tests computed with EW and
conventional standard errors, respectively; T r∗ and T r∗NW denote the maximum rolling tests
computed with EW and conventional standard errors, respectively; T d∗ and T d∗ols denote the

maximum double recursive tests computed with EW and conventional standard errors,
respectively.

Table 1. Empirical Rejection Frequencies under the Null Hypothesis, H0. Nominal
5% significance level. DGP1-DGP3 with ϕ = 0.
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c t2∗β1
t2∗β1,NW

t2β1
t2β1,NW

T f∗ T b∗ T f∗NW T b∗NW T r∗ T r∗NW T d∗ T d∗NW
DGP1: T = 250, ϕ = −0.90 and σ2

ut = σ2
vt = 1

0.0 0.069 0.073 0.069 0.074 0.037 0.035 0.047 0.055 0.011 0.053 0.018 0.055
2.5 0.055 0.056 0.055 0.057 0.030 0.040 0.037 0.058 0.011 0.052 0.020 0.062
5.0 0.053 0.052 0.051 0.050 0.034 0.045 0.039 0.055 0.012 0.051 0.021 0.064
10.0 0.057 0.055 0.056 0.058 0.038 0.048 0.044 0.059 0.017 0.055 0.029 0.065
20.0 0.060 0.060 0.057 0.056 0.046 0.051 0.050 0.062 0.029 0.061 0.034 0.067
0.5T 0.055 0.053 0.051 0.052 0.059 0.067 0.057 0.060 0.073 0.058 0.067 0.055

DGP2: T = 250, ϕ = −0.90 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c)
0.0 0.057 0.057 0.044 0.071 0.032 0.031 0.026 0.046 0.009 0.030 0.018 0.021
2.5 0.052 0.053 0.044 0.076 0.035 0.032 0.027 0.051 0.011 0.028 0.012 0.031
5.0 0.054 0.053 0.046 0.076 0.037 0.037 0.033 0.054 0.013 0.032 0.014 0.038
10.0 0.054 0.051 0.046 0.077 0.042 0.043 0.037 0.055 0.018 0.039 0.019 0.051
20.0 0.054 0.052 0.049 0.080 0.047 0.046 0.042 0.054 0.032 0.045 0.036 0.055
0.5T 0.058 0.055 0.053 0.097 0.067 0.059 0.054 0.057 0.063 0.056 0.073 0.058

DGP3: T = 250, ϕ = −0.90 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c)

0.0 0.072 0.078 0.125 0.118 0.029 0.036 0.049 0.076 0.007 0.072 0.009 0.084
2.5 0.046 0.048 0.059 0.068 0.022 0.046 0.038 0.071 0.008 0.071 0.005 0.077
5.0 0.049 0.048 0.055 0.068 0.027 0.049 0.040 0.064 0.010 0.068 0.006 0.075
10.0 0.058 0.051 0.052 0.073 0.033 0.049 0.041 0.056 0.018 0.061 0.013 0.062
20.0 0.053 0.053 0.049 0.077 0.040 0.052 0.050 0.050 0.028 0.055 0.036 0.061
0.5T 0.053 0.052 0.047 0.091 0.058 0.067 0.056 0.056 0.064 0.056 0.070 0.061

DGP1: T = 500, ϕ = −0.90 and σ2
ut = σ2

vt = 1

0.0 0.076 0.079 0.077 0.078 0.041 0.054 0.045 0.072 0.015 0.055 0.023 0.060
2.5 0.059 0.060 0.056 0.058 0.034 0.060 0.037 0.075 0.020 0.053 0.016 0.045
5.0 0.061 0.060 0.058 0.061 0.038 0.064 0.041 0.075 0.023 0.057 0.023 0.056
10.0 0.062 0.063 0.061 0.063 0.045 0.065 0.049 0.076 0.034 0.059 0.035 0.053
20.0 0.063 0.062 0.060 0.061 0.050 0.065 0.054 0.072 0.047 0.063 0.046 0.064
0.5T 0.050 0.049 0.049 0.050 0.060 0.058 0.053 0.053 0.070 0.059 0.067 0.058

DGP2: T = 500, ϕ = −0.90 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c)
0.0 0.072 0.067 0.055 0.082 0.041 0.047 0.029 0.066 0.022 0.037 0.021 0.033
2.5 0.060 0.057 0.052 0.079 0.041 0.049 0.030 0.063 0.021 0.036 0.030 0.039
5.0 0.061 0.060 0.052 0.085 0.045 0.057 0.033 0.068 0.024 0.040 0.039 0.043
10.0 0.058 0.058 0.053 0.088 0.049 0.055 0.040 0.064 0.034 0.043 0.049 0.045
20.0 0.061 0.058 0.052 0.095 0.056 0.060 0.044 0.066 0.044 0.045 0.056 0.051
0.5T 0.048 0.048 0.045 0.084 0.063 0.052 0.051 0.050 0.067 0.057 0.073 0.054

DGP3: T = 500, ϕ = −0.90 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c)

0.0 0.082 0.089 0.133 0.129 0.043 0.054 0.060 0.092 0.019 0.092 0.022 0.091
2.5 0.053 0.053 0.066 0.074 0.029 0.071 0.047 0.090 0.022 0.093 0.021 0.090
5.0 0.054 0.054 0.056 0.076 0.033 0.068 0.047 0.077 0.027 0.083 0.024 0.084
10.0 0.060 0.058 0.057 0.086 0.040 0.069 0.048 0.070 0.033 0.076 0.030 0.075
20.0 0.061 0.058 0.055 0.092 0.047 0.063 0.054 0.063 0.044 0.070 0.047 0.072
0.5T 0.053 0.052 0.051 0.096 0.057 0.068 0.053 0.058 0.069 0.054 0.075 0.057

Notes: See notes to Table 1

Table 2. Empirical Rejection Frequencies under the Null Hypothesis, H0. Nominal
5% significance level. DGP1-DGP3 with ϕ = −0.90.
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t2β1
t2β1,NW

T f T fNW T b T bNW T r T rNW T d T dNW LMx supFx

dpt−1 0.472 0.457 10.088 11.480 5.608 6.885 6.882 8.280 10.284 12.519 2.229 131.915
(0.481) (0.492) (0.121) (0.006) (0.340) (0.182) (0.729) (0.287) (0.998) (0.194) (0.000) (0.000)

dyt−1 0.581 0.568 15.565 12.616 6.241 7.849 11.143 9.318 10.252 11.891 0.295 11.178
(0.414) (0.408) (0.041) (0.005) (0.252) (0.133) (0.507) (0.182) (0.072) (0.029) (0.028) (0.038)

e/pt−1 0.335 0.451 8.459 9.189 2.163 4.744 8.583 9.419 8.583 11.742 0.209 38.229
(0.510) (0.513) (0.316) (0.043) (0.617) (0.398) (0.360) (0.152) (0.990) (0.231) (0.116) (0.000)

det−1 0.291 0.490 12.553 17.087 0.291 0.490 13.399 20.112 15.145 21.400 0.192 5.031
(0.594) (0.575) (0.029) (0.023) (0.852) (0.851) (0.058) (0.017) (0.099) (0.010) (0.210) (0.355)

rvolt−1 1.809 2.288 3.765 4.432 2.657 3.200 4.230 6.187 4.624 6.692 0.124 6.614
(0.096) (0.114) (0.308) (0.313) (0.182) (0.167) (0.694) (0.698) (0.455) (0.278) (0.525) (0.192)

bmt−1 0.037 0.042 7.150 7.125 5.959 7.321 7.612 8.299 7.612 8.299 0.342 7.555
(0.841) (0.844) (0.222) (0.229) (0.287) (0.154) (0.764) (0.322) (0.989) (0.544) (0.012) (0.148)

ntist−1 0.041 0.059 5.634 5.235 1.648 2.600 9.383 10.543 9.679 10.874 0.375 8.102
(0.830) (0.821) (0.180) (0.312) (0.623) (0.546) (0.074) (0.059) (0.101) (0.114) (0.070) (0.180)

tblt−1 7.001 9.408 11.763 15.989 7.001 9.408 8.203 11.618 11.764 16.588 0.131 12.348
(0.004) (0.004) (0.003) (0.001) (0.096) (0.040) (0.293) (0.035) (0.267) (0.029) (0.174) (0.132)

ltyt−1 4.178 5.524 11.036 13.410 6.529 6.547 8.224 10.070 11.135 14.308 0.103 7.985
(0.029) (0.026) (0.013) (0.009) (0.140) (0.152) (0.446) (0.115) (0.487) (0.044) (0.303) (0.182)

ltrt−1 4.172 5.724 8.479 10.313 4.438 6.021 8.145 9.702 8.902 10.709 0.163 6.407
(0.045) (0.044) (0.034) (0.055) (0.136) (0.167) (0.082) (0.115) (0.061) (0.094) (0.341) (0.325)

tmst−1 2.726 3.075 15.839 17.534 4.769 5.133 12.142 12.611 15.839 17.534 0.350 10.877
(0.084) (0.084) (0.001) (0.001) (0.145) (0.150) (0.061) (0.008) (0.042) (0.003) (0.060) (0.026)

dfyt−1 0.011 0.020 2.777 3.079 0.996 2.872 7.431 19.169 8.805 19.473 0.063 9.773
(0.908) (0.909) (0.617) (0.587) (0.695) (0.546) (0.246) (0.044) (0.216) (0.046) (0.788) (0.106)

dfrt−1 0.768 1.535 4.487 5.475 2.407 5.398 11.218 7.685 11.218 13.141 0.156 6.134
(0.477) (0.434) (0.475) (0.416) (0.336) (0.346) (0.228) (0.521) (0.295) (0.336) (0.537) (0.377)

inflt−1 3.042 4.890 9.083 16.834 3.999 6.138 11.705 11.516 12.195 16.839 0.326 11.517
(0.070) (0.048) (0.276) (0.003) (0.269) (0.155) (0.477) (0.060) (0.722) (0.026) (0.102) (0.032)

Notes: Numbers in parentheses are bootstrap p-values. Bold entries are those which are statistically significant at the 5%
level (or stricter).

Table 3. Application to updated Welch and Goyal (2008) data: bivariate regressions - (1950:01 - 2017:12)
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1. the log dividend price ratio (dpt).
2. the log dividend yield (dyt).
3. the log earnings price ratio (e/pt).
4. the log dividend payout ratio (det).
5. the equity risk premium volatility, rvolt.
6. the book to market ratio (bmt).
7. the net equity expansion (ntist).
8. the treasury bill rate (tblt).
9. the long-term government bond yield (ltyt).
10. the long-term government bond rate of return (ltrt).
11. the term spread (tmst).
12. the default yield spread (dfyt).
13. the default return spread (dfrt).
14. inflation (inflt).

Notes: Detailed description of the variables used can be found on Amit
Goyal’s web page (see http://www.hec.unil.ch/agoyal/docs/AllTables.pdf).
The equity risk premium volatility (rvolt) is computed as in Neely et al.

(2014).

Table 4. List of predictors used
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Figure 1: Finite sample local power: Experiment 1, T = 250.
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Figure 2: Finite sample local power: Experiment 2, T = 250.
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Figure 5: Graphs of excess returns and predictors



63 Testing for Episodic Predictability in Stock Returns

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

(a) yt = ept, xt−1 = dpt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

(b) yt = ept, xt−1 = dyt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

(c) yt = ept, xt−1 = e/pt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.1

-0.05

0

0.05

0.1

0.15

(d) yt = ept, xt−1 = det−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.2

-0.1

0

0.1

0.2

0.3

(e) yt = ept, xt−1 =
rvolt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-15

-10

-5

0

5

10

(f) yt = ept, xt−1 = bmt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.05

0

0.05

0.1

0.15

(g) yt = ept, xt−1 =
ntist−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-1.5

-1

-0.5

0

0.5

1

(h) ntist

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-12

-10

-8

-6

-4

-2

0

2
#10-3

(i) yt = ept, xt−1 = tblt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-14

-12

-10

-8

-6

-4

-2

0

2
#10-3

(j) yt = ept, xt−1 = ltyt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-2

0

2

4

6

8
#10-3

(k) yt = ept, xt−1 = ltrt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.005

0

0.005

0.01

0.015

0.02

0.025

(l) yt = ept, xt−1 =
tmst−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

(m) yt = ept, xt−1 = dfyt−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.015

-0.01

-0.005

0

0.005

0.01

(n) yt = ept, xt−1 = dft−1

1970:01 1980:01 1990:01 2000:01 2008:01 2017:12
-0.08

-0.06

-0.04

-0.02

0

0.02

(o) yt = ept, xt−1 =
inflt−1

Figure 6: Forward recursive slope estimates (solid line) and 95% confidence bands
(dotted lines). Sample period 1950:01 - 2017:12.
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Figure 7: Rolling slope estimates (solid line) and 95% confidence bands (dotted lines).
Sample period 1950:01 - 2017:12
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Figure 8: Plots of forward recursive subsample statistics with marginal and bootstrap
10% and 5% critical values.
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Appendix: On-Line Supplementary Appendix

For the purposes of this supplementary appendix we set µx = 0 and β0 = 0 in
(1) and (2), respectively, throughout. This is done without loss of generality
given that the statistics proposed in the paper are, by design, exact invariant
to both µx and β0. Moreover, we will establish the validity of the large sample
results given in the paper for the case where the residuals used in computing the
statistics are constructed under the null hypothesis; see again the discussion
following Equation (8) and in Footnote 4. This simplifies the algebra in the
proofs, but can straightforwardly be shown to be asymptotically equivalent
to the two other possible choices (OLS and 2SLS) of residuals discussed.
Throughout this supplementary appendix we will use ‘null hypothesis’ as
shorthand for H0 of (3), and ‘local alternative’ as shorthand for H1,b(·) of
(4).

A.1. Notation

With the convention stated above that we set µx = β0 = 0, we may define the
following partial sums:

Sy (τ) :=

bτTc∑
t=1

yt , Sx (τ) :=

bτTc∑
t=1

xt−1 , Sz (τ) :=

bτTc∑
t=1

zt−1

(and analogously SzI (τ) and SzII (τ) for the partial sums involving each of the
two instruments zI,t and zII,t taken alone),

Sxz (τ) :=

bτTc∑
t=1

xt−1zt−1 , Szz (τ) :=

bτTc∑
t=1

zt−1z
′
t−1

(and analogously SxzI (τ), SxzII (τ), Sz2
I

(τ), SzIzII (τ), Sz2
II

(τ)), as well as

Szzy2 (τ) :=

bτTc∑
t=1

zt−1z
′
t−1y

2
t , Szzy (τ) :=

bτTc∑
t=1

zt−1z
′
t−1yt , Szy (τ) :=

bτTc∑
t=1

zt−1yt,

Szy2 (τ) :=

bτTc∑
t=1

zt−1y
2
t , Sy2 (τ) :=

bτTc∑
t=1

y2
t

(and analogously SzIy (τ) etc.). For 0 ≤ τ1 < τ2 ≤ 1, we then
have (with the standard convention that

∑0
t=1 = 0) the follow-

ing alternative representations for the objects AT (τ1, τ2), BT (τ1, τ2),
CT (τ1, τ2) and DT (τ1, τ2) used in the definition of tβ1(τ1, τ2) of (11):
AT (τ1, τ2) := Sxz (τ2)− Sxz (τ1)− 1

bτ2Tc−bτ1Tc (Sx (τ2)− Sx (τ1)) (Sz (τ2)− Sz (τ1)) ,
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BT (τ1, τ2) := Szz (τ2)− Szz (τ1)− 1
bτ2Tc−bτ1Tc (Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′ ,

CT (τ1, τ2) := Szy (τ2)− Szy (τ1)− 1
bτ2Tc−bτ1Tc (Sz (τ2)− Sz (τ1)) (Sy (τ2)− Sy (τ1))

and

DT (τ1, τ2) := Szzy2 (τ2)− Szzy2 (τ1)

− 2

bτ2T c − bτ1T c
(Sy (τ2)− Sy (τ1)) (Szzy (τ2)− Szzy (τ1))

+
1

(bτ2T c − bτ1T c)2 (Sy (τ2)− Sy (τ1))2 (Szz (τ2)− Szz (τ1))

− 1

bτ2T c − bτ1T c
(
Szy2 (τ2)− Szy2 (τ1)

)
(Sz (τ2)− Sz (τ1))′

+
2

(bτ2T c − bτ1T c)2 (Sy (τ2)− Sy (τ1)) (Szy (τ2)− Szy (τ1))×

× (Sz (τ2)− Sz (τ1))′

− 2

(bτ2T c − bτ1T c)3 (Sy (τ2)− Sy (τ1))2 (Sz (τ2)− Sz (τ1))×

× (Sz (τ2)− Sz (τ1))′

− 1

bτ2T c − bτ1T c
(Sz (τ2)− Sz (τ1))×

×
(
Szy2 (τ2)− Szy2 (τ1)

)′
+

2

(bτ2T c − bτ1T c)2 (Sy (τ2)− Sy (τ1)) (Sz (τ2)− Sz (τ1))×

× (Szy (τ2)− Szy (τ1))′

+
1

(bτ2T c − bτ1T c)2 (Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′ ×

×
(
Sy2 (τ2)− Sy2 (τ1)

)
− 1

(bτ2T c − bτ1T c)3 (Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′ ×

× (Sy (τ2)− Sy (τ1))2 .

Next the bootstrap analogue of the subsample tβ1(τ1, τ2) statistic in (11)
can be written as

t∗β1
(τ1, τ2) :=

A′T (τ1, τ2) B−1
T (τ1, τ2)C∗T (τ1, τ2)√

A′T (τ1, τ2) B−1
T (τ1, τ2) D∗T (τ1, τ2) B−1

T (τ1, τ2)AT (τ1, τ2)
.

where C∗T (τ1, τ2) and D∗T (τ1, τ2) denote the bootstrap analogues of CT (τ1, τ2)
and DT (τ1, τ2) , respectively, which can be written in the same way as was
done above for the original tβ1(τ1, τ2) statistic by replacing the original yt with
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the bootstrap regressand y∗t in the definitions of the partial sum and product
moment terms Sy (τ), Sy2 (τ), Szy (τ), Szy2 (τ), Szzy (τ) and Szzy2 (τ) above
to obtain the bootstrap analogues of these quantities, denoted S∗y (τ), S∗y2 (τ),
S∗zy (τ), S∗zy2 (τ), S∗zzy (τ) and S∗zzy2 (τ), respectively.

Finally, we denote by WT the diagonal normalisation matrix
diag(T−1/2−δI , T−1/2−δII ) and adopt the convention that, throughout, for
random processes indexed by τ weak convergence is always understood in
the functional sense, with reference to a space equipped with the Skorokhod
topology.

A.2. Preparatory Lemmas

Lemma A.1. Let d̃t be mildly integrated in the sense of Phillips and
Magdalinos (2009), i.e. d̃t =

∑t−1
j=0 %

jψt−j where ψt =
∑
j≥0 b̃j ṽt−j with b̃j

a 1-summable sequence of coefficients such that
∑
j≥0 b̃j = ω̃ > 0, and ṽt the

innovations of the process vt from Assumption 3. Then,

1. 1
T 1/2+γ

∑bτTc
t=1 d̃t ⇒ ω̃

aV (τ) and
2. T−γ/2d̃t is uniformly L4bounded if assuming that

sup
t∈Z

∣∣E ((ṽ2
t − E

(
ṽ2
t

))
ṽt−j ṽt−k

)∣∣ ≤ C (jk)−
1/2−ϑ/2

for some ϑ > 0. �

Lemma A.2.
Under Assumptions 1.1 and 2 – 6, we have as T →∞ that, jointly:

1. 1√
T
Sx (τ)⇒ ω

1−ρV (τ);
2. 1√

T
Sy (τ)⇒ U (τ);

3. 1√
T

WTSz (τ)⇒
(

0∫ τ
0 Z(s)ds

)
;

4.
( 1

T 1+δI
0

0 1
T 1/2+δII

)
Sxz (τ)⇒

(
KzIx (τ)

ω
1−ρ

∫ τ
0 Z(s)dV (s)

)
;

5. WTSzz (τ) WT ⇒
(
Kz2

I
(τ) 0

0
∫ τ

0 Z
2(s)ds

)
with WT defined in section

A.1;
6. supτ∈[0,1] ‖WTSzzy2 (τ) WT ‖=Op(1) and, in particular, T−1−2δISz2

Iy
2(τ)⇒

[GI ] (1) · ηI(τ) and T−1−2δIISz2
IIy

2(τ)⇒
∫ τ

0 Z
2(s)d[U ](s);

7. WTSzzy (τ) WT ⇒ 0;

8. WTSzy (τ)⇒
(
GI (τ) +

∫ τ
0 b(s)dKzIx(s)∫ τ

0 Z(s)dU(s)

)
;

9. supτ∈[0,1] ‖T−1/2WTSzy2 (τ) ‖=Op(1) and, in particular, T−1−δIISzIIy2 (τ)⇒∫ τ
0 Z(s)d[U ](s);
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10. 1
T Sy2 (τ)⇒ [U ] (τ).

�

Lemma A.3.
Under Assumptions 1.2 and 2 – 6, we have as T →∞ that, jointly:

1. 1
T
√
T
Sx (τ)⇒ ω

∫ τ
0 Jc,H(s)ds;

2. 1√
T
Sy (τ)⇒ U (τ) + ω

∫ τ
0 b(s)Jc,H(s)ds;

3. T−1/2WTSz (τ)⇒
(

0∫ τ
0 Z(s)ds

)
;

4. T−1WTSxz (τ)⇒
(

0
ω
∫ τ

0 Z(s)Jc,H(s)ds

)
;

5. WTSzz (τ) WT ⇒
(
Kz2

I
(τ) 0

0
∫ τ

0 Z
2(s)ds

)
;

6. ‖WTSzzy2 (τ) WT ‖ = Op (1) and, in particular, T−1−2δIISz2
IIy

2 (τ) ⇒∫ τ
0 Z

2(s)d[U ](s);
7. WTSzzy (τ) WT ⇒ 0;
8. ‖WTSzy (τ) ‖=Op (1) and, in particular, T−1/2−δIISzIIy(τ)⇒

∫ τ
0 Z(s)dU(s) +

ω
∫ τ

0 Z(s)b(s)Jc,H(s)ds;
9. supτ∈[0,1] ‖T−1/2WTSzy2 (τ) ‖=Op(1) and, in particular, T−1−δIISzIIy2 (τ)⇒∫ τ

0 Z(s)d[U ](s);
10. 1

T Sy2 (τ)⇒ [U ] (τ). �

Lemma A.4. Consider a two-dimensional zero-mean Gaussian process
(U∗(τ),G∗I (τ)), τ ∈ [0, 1], with independent increments, independent
components U∗ and G∗I and component variance functions [U∗](τ) :=∫ τ

0

(
h2

11(s) + h2
12(s)

)
ds = [U ](τ) and [G∗I ](τ) := [GI ](τ). Under Assumption

1.1, the bootstrap partial sum processes converge jointly as follows, under the
null and under local alternatives:

1. T−1/2 S∗y (τ)
w⇒p U

∗ (τ);
2. T−1/2−δIS∗zIy(τ)

w⇒p G
∗
I (τ) and T−1/2−δII supτ∈[0,1] |S∗zIIy(τ)|=Op∗(1) in

P -probability.

Moreover, it holds that:

3. supτ∈[0,1] ‖WT (S∗zzy2 (τ)− Szzy2(τ)]WT ‖
w⇒p 0;

4. supτ∈[0,1] ‖WTS∗zzy (τ) WT ‖
w⇒p 0;

5. T−1/2 supτ∈[0,1] ‖WT (S∗zy2 (τ)− Szy2 (τ))‖ w⇒p 0;
6. T−1 supτ∈[0,1] |S∗y2 (τ)− Sy2 (τ) | w⇒p 0.

�
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Lemma A.5. Let U∗ be defined as in Lemma A.4. Under Assumptions 1.2
and 2 – 6, under the null hypothesis as well as under local alternatives, we have
as T →∞ that, jointly:

1. T−1/2S∗y (τ)
w⇒p U

∗ (τ);
2. supτ∈[0,1] ‖WTS

∗
zy (τ)‖ = Op∗(1) in P-probability and, in particular,

T−1/2−δIIS∗zIIy
w⇒p

∫ τ
0 Z(s)dU∗(s).

Moreover, the convergence statements in parts 3, 4, 5 and 6 of Lemma A.4
hold.

�

Lemma A.6.
Under the conditions of Proposition 1, it holds,

(i). under Assumption 1.1 that,

sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

∣∣∣∣t2β1
(τ1, τ2)− Q2

I (τ1, τ2)

PI (τ1, τ2)

∣∣∣∣ p→ 0

where tβ1(τ1, τ2) is defined in (11),

QI (τ1, τ2) :=
1

T 1/2+δI
SzIy (τ2)− 1

T 1/2+δI
SzIy (τ1)

and
PI (τ1, τ2) :=

1

T 1+2δI
Sz2

Iy
2 (τ2)− 1

T 1+2δI
Sz2

Iy
2 (τ1) ;

(ii). under Assumption 1.2 that

sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

∣∣∣∣t2β1
(τ1, τ2)− Q2

II (τ1, τ2)

PII (τ1, τ2)

∣∣∣∣ p→ 0

where

QII (τ1, τ2) :=
1

T 1/2+δII
SzIIy (τ2)− 1

T 1/2+δII
SzIIy (τ1)

− 1

τ2 − τ1

(
1

T 1+δII
SzII (τ2)− 1

T 1+δII
SzII (τ1)

)
×

×
(

1√
T
Sy (τ2)− 1√

T
Sy (τ1)

)
and

PII (τ1, τ2) :=
1

T 1+2δII
Sz2

IIy
2 (τ2)− 1

T 1+2δII
Sz2

IIy
2 (τ1)

− 2

τ2 − τ1

(
1

T 1+δII
SzIIy2 (τ2)− 1

T 1+δII
SzIIy2 (τ1)

)
×
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×
(

1

T 1+δII
SzII (τ2)− 1

T 1+δII
SzII (τ1)

)
+

1

(τ2 − τ1)2

(
1

T 1+δII
SzII (τ2)− 1

T 1+δII
SzII (τ1)

)2

×

×
(

1

T
Sy2 (τ2)− 1

T
Sy2 (τ1)

)
.

�

Lemma A.7.
Under the conditions of Proposition 2 and under local alternatives, it holds,

(i). under Assumption 1.1 that

sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

∣∣∣∣t∗2β1
(τ1, τ2)− Q∗2I (τ1, τ2)

PI (τ1, τ2)

∣∣∣∣ w⇒p 0,

where Q∗I (τ1, τ2) := S∗zIy (τ2)−S∗zIy (τ1) and PI (τ1, τ2) is defined in Lemma
A.6;

(ii). under Assumption 1.2 that

sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

∣∣∣∣t∗2β1
(τ1, τ2)− Q∗2II (τ1, τ2)

PII (τ1, τ2)

∣∣∣∣ w⇒p 0,

where

Q∗2II,b (τ1, τ2) : =
1

T 1/2+δII
S∗zIIy (τ2)− 1

T 1/2+δII
S∗zIIy (τ1)

− 1

τ2 − τ1

(
1

T 1+δII
SzII (τ2)− 1

T 1+δII
SzII (τ1)

)
×

×
(

1√
T
S∗y (τ2)− 1√

T
S∗y (τ1)

)
and PII (τ1, τ2) is defined in Lemma A.6.

�

A.3. Proofs

Proof of Lemma A.1

Begin by using the Phillips-Solo decomposition to conclude that ψt = ω̃ṽt + ∆¯̃vt
with ¯̃vt a linear process in ṽt with absolutely summable coefficients, where,
recall, (ũt, ṽt)

′ := H(t/T )ζt.
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To establish the first result, write then

1

T 1/2+γ

bτTc∑
t=1

d̃t = ω̃
1

T 1/2+γ

bτTc∑
t=1

t−1∑
j=0

%j ṽt−j

+
1

T 1/2+γ

bτTc∑
t=1

t−1∑
j=0

%j∆¯̃vt−j

 .

(A.1)
To discuss the first term on the r.h.s. of (A.1), let Ṽt =

∑t
j=1 ṽt (with the usual

convention that Ṽ0 = Ṽ−1 = . . . = 0) and note that, upon re-arranging sum
elements, we have

bτTc∑
t=1

t−1∑
j=0

%j ṽt−j

 =

bτTc∑
t=1

t−1∑
j=0

%j∆Ṽt−j

 =

bτTc∑
t=1

∆

t−1∑
j=0

%j Ṽt−j


=

[τT ]−1∑
t=0

%tṼ[τT ]−t

=

bτTc−1∑
t=0

%t

 Ṽ[τT ] −
bτTc−1∑
t=1

%t

 bτTc∑
j=bτTc−t

ṽj

 .

It is easily shown that Var
(∣∣∣∑bτTcj=bτTc−t ṽj

∣∣∣) ≤ Ct, ∀t ∈ {1, . . . , bτT c − 1}.

Therefore, E
(∣∣∣∑bτTcj=bτTc−t ṽj

∣∣∣) ≤ C
√
t, and the arguments of Breitung and

Demetrescu (2015, proof of Corollary 1.2) may be applied to show the second
summand to be dominated uniformly in t. We may therefore focus on

1

T 1/2+γ

bτTc−1∑
t=0

%t

 ṼbτTc =
1

a
√
T
ṼbτTc −

1

a
√
T
%bτTcṼbτTc

The first summand on the r.h.s. leads to the desired weak convergence,
but the second must be shown to vanish uniformly in τ ∈ [0, 1]. While
this is trivial at τ > 0, it requires more care at 0, where we examine
lim supτ→0

∣∣∣ 1
a
√
T
%bτTcṼbτTc

∣∣∣ ≤ lim supτ→0

∣∣∣ 1
a
√
T
ṼbτTc

∣∣∣, which, in turn, is easily
shown to vanish as required and we may write

1

T 1/2+γ

bτTc∑
t=1

t−1∑
j=0

%j ṽt−j

 =
1

a
√
T

bτTc∑
t=1

ṽt + op(1)

with the op term uniform in τ ∈ [0, 1] as required. To show the second term on
the r.h.s. of (A.1) to vanish uniformly in τ , notice that

bτTc∑
t=1

t−1∑
j=0

%j∆¯̃vt−j

 =

bτTc∑
t=1

¯̃vt − %t−1 ¯̃v0 − (1− %)
t−2∑
j=0

%j v̄t−1−j





Working Papers [A.8]

where d̄t =
∑t−2
j=0 %

j v̄t−1−j is mildly integrated. Now, supτ

∣∣∣∑bτTct=1
¯̃vt

∣∣∣ =

Op

(√
T
)
, ¯̃v0

∑bτTc
t=1 %t−1 = Op (T γ) and, like above, it can be shown that

1
T 1/2+γ

∑bτTc
t=1 d̄t =C 1√

T

∑bτTc
t=1 ṽt+ op(1) such that (1− %)

∑bτTc
t=1

∑t−2
j=0 %

j v̄t−1−j =

Op

(√
T
)
uniformly as required.

To show the second result, notice that ¯̃vt in the the Phillips-Solo
decomposition of ψt is uniformly L4-bounded, just like ṽt. Examining

d̃t = ω̃
t−1∑
j=0

%j ṽt−j +
t−1∑
j=0

%j∆¯̃vt,

it is easily seen that
∑t−1
j=0 %

j∆¯̃vt is uniformly L4-bounded, so it suffices to show
that the first summand on the r.h.s. is uniformly L4-bounded upon division by
T γ/2. Write to this end

E


t−1∑
j=0

%j ṽt−j

4
=

t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

t−3∑
m=0

%j%k%l%mE (ṽt−1−j ṽt−1−kṽt−1−lṽt−1−m)

which, upon exploiting the MD property of ṽt, gives

E


t−1∑
j=0

%j ṽt−j

4
 =

t−3∑
j=0

%4j E
(
ṽ4
t−1−j

)
+ 3

t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k E(ṽ3
t−j ṽt−k)

+3
t−3∑
j=0

t−3∑
k=0

j 6=k

%2j%2k E
(
ṽ2
t−1−j ṽ

2
t−1−k

)

+6
t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

j 6=k 6=l

%2j%k%l E
(
ṽ2
t−1−j ṽt−1−kṽt−1−l

)
.

The Hölder inequality leads to
∣∣E(ṽ3

t−j ṽt−k)
∣∣≤ E

(∣∣ṽ3
t−j ṽt−k

∣∣)≤ ∥∥ṽ3
t−j
∥∥

4/3
‖ṽt−k‖4

where the latter L norms are uniformly bounded, so∣∣∣∣∣∣∣∣
t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k E(ṽ3
t−j ṽt−k)

∣∣∣∣∣∣∣∣≤ C
t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k ≤ C

t−3∑
j=0

%3j

(t−3∑
k=0

%k

)
≤ CT 2γ ,

and, analogously, 3
∑t−3
j=0

∑t−3
k=0

j 6=k
%2j%2k E

(
ṽ2
t−1−j ṽ

2
t−1−k

)
= O

(
T 2γ

)
. Further-

more, since E (ṽt−1−kṽt−1−l) = 0 and E
(
ṽ2
t−1−j ṽt−1−kṽt−1−l

)
= 0 for j 6= k 6= l
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whenever j ≥ l or j ≥ k,∣∣E (ṽ2
t−1−j ṽt−1−kṽt−1−l

)∣∣ ≤ Var
(
ṽ2
t−1−j

)
|E (ṽt−1−kṽt−1−l)|

+
∣∣E ((ṽ2

t−1−j −Var
(
ṽ2
t−1−j

))
ṽt−1−kṽt−1−l

)∣∣
≤ C√

(k − j)1+ϑ (l− j)1+ϑ

for all t, and thus, with the variance of ṽt uniformly bounded under our
assumptions, ∣∣∣∣∣∣∣∣

t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

j 6=k 6=l

%2j%k%l E
(
ṽ2
t−1−j ṽt−1−kṽt−1−l

)∣∣∣∣∣∣∣∣ ≤
≤ C

t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

k 6=l

%k−j%l−j√
(k − j)1+ϑ (l− j)1+ϑ

≤ C
t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

k 6=l

%k−j%l−j√
(k − j)1+ϑ (l− j)1+ϑ

≤ C
t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

%k−j%l−j√
(k − j)1+ϑ (l− j)1+ϑ

≤ C
t−3∑
j=0

%4j


√√√√t−j−3∑

k=1

%2k

√√√√t−j−3∑
k=1

1

k1+ϑ

2

≤ C

T−1∑
j=0

%4j

(T−1∑
k=0

%2k

)(
T−1∑
k=1

1

k1+ϑ

)
.

Summing up, we have for all t = 2, . . . , T that E

((∑t−1
j=0 %

j ṽt−j

)4
)
≤ CT 2γ

as required. �
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Proof of Lemma 1

Proof of part 1 . We work under Assumption 1.1 such that ξt is a stable
autoregression, and begin by showing that Assumption 4.1 is fulfilled. Notice
that

zI,t−1 = ξt−1 − %t−2ξ0 + (%− 1)
t−3∑
j=0

%jξt−2−j ,

where

(%− 1)
t−3∑
j=0

%jξt−2−j = − a

T γ

t−3∑
j=0

%jξt−2−j = − a

T γ
dt−2

with dt−2 zero-mean mildly integrated.
Then, E

(
ζt|ζt−1, ζt−2, . . . , zI,t−1, zI,t−2, . . .

)
= 0 obviously holds; ξt−1 and

%t−2ξ0 are uniformly L4-bounded, and so is 1
Tγ/2 dt−2 (see Lemma A.1), such

that T−δIzI,t−1, with δI = 0, is itself uniformly L4-bounded due to Minkowski’s
norm inequality.

Furthermore,

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτTc∑
t=1

zI,t−1

∣∣∣∣∣∣ ≤ sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτTc∑
t=1

ξt−1

∣∣∣∣∣∣+ sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτTc∑
t=1

%t−2ξ0

∣∣∣∣∣∣
+ sup
τ∈[0,1]

∣∣∣∣∣∣ a

T 1+γ

bτTc∑
t=1

dt−2

∣∣∣∣∣∣ p→ 0

since
∑bτTc
t=1 %t−2 = O(T γ) = o(T ) and a

T 1/2+γ

∑bτTc
t=1 dt−2 ⇒ ω

1−ρV (τ), see
Lemma A.1.

Similarly,

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτTc∑
t=1

zI,t−1u
2
t

∣∣∣∣∣∣ ≤ 1

T
sup
τ∈[0,1]

bτTc∑
t=1

(∣∣ξt−1u
2
t

∣∣+ |ξ0|%t−2u2
t +

∣∣∣∣ 1

T γ
dt−2u

2
t

∣∣∣∣)

≤ 1

T

T∑
t=1

(∣∣ξt−1u
2
t

∣∣+ |ξ0|%t−2u2
t +

∣∣∣∣ 1

T γ
dt−2u

2
t

∣∣∣∣) .
But all summands on the r.h.s. are easily shown to have bounded expecta-

tion, and Markov’s inequality then indicates that supτ∈[0,1]

∣∣∣ 1
T

∑bτTc
t=1 zI,t−1u

2
t

∣∣∣=
Op(1) as required.

Moving on to assumption 4.2 (a), write

1

T

bτTc∑
t=1

zI,t−1ξt−1 =
1

T

bτTc∑
t=1

ξ2
t−1 −

ξ0
T

bτTc∑
t=1

%t−2ξt−1 −
1

T 1+γ

bτTc∑
t=1

dt−2ξt−1
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where it is easily shown using standard arguments that 1
T

∑bτTc
t=1 ξ2

t−1 ⇒
σ̄2
ξ (ρ)[V ](τ) with σ̄2

ξ (ρ) the sum of the squared coefficients of (1− ρL)−1B(L).
Moreover,

sup
τ∈[0,1]

∣∣∣∣∣∣
bτTc∑
t=1

%t−2ξt−1

∣∣∣∣∣∣ ≤
T∑
t=1

%t−2 |ξt−1|

where the expectation of the r.h.s. is bounded by C
∑T
t=1 %

t−2 since ξt−1 is uni-
formly L4-bounded, so supτ∈[0,1]

∣∣∣ 1
T

∑bτTc
t=1 %t−2ξt−1

∣∣∣ = Op

(
1
T

∑T
t=1 %

t−2
)

=

Op
(
T γ−1

)
= op(1) as required, and the term 1

T 1+γ

∑bτTc
t=1 dt−2ξt−1 is shown to

vanish analogously given that T−γ/2dt−2 is uniformly L4-bounded.
The term 1

T

∑bτTc
t=1 z2

I,t−1 in (b) can be shown to have the same limit
behaviour using similar derivations.

For (c), consider

1√
T

bτTc∑
t=1

zI,t−1ut =
1√
T

bτTc∑
t=1

ξt−1ut −
ξ0√
T

bτTc∑
t=1

%t−2ut −
1

T 1/2+γ

bτTc∑
t=1

dt−2ut.

The second and third term on the r.h.s. are easily shown to vanish using
Doob’s martingale inequality. To discuss the convergence of the first, note that
(ut, vt, ξtut)

′ form an MD array. Since we are dealing with partial sums of
positive semi-definite matrices, uniform convergence of

1

T

bτTc∑
t=1

 u2
t vtut ξt−1u

2
t

vtut v2
t ξt−1vtut

ξt−1u
2
t ξt−1vtut ξ2

t−1u
2
t


can be established, and a MD invariance principle (e.g. Boswijk et al. 2016,
Lemma 1) leads as required to

1√
T

bτTc∑
t=1

 ut
vt

ξt−1ut

⇒
 U(τ)

V (τ)
GI(τ)

 .

Assumption 4.2 part (d) is established along the lines of the proof of (b) by
first showing that

1

T

bτTc∑
t=1

z2
I,t−1u

2
t =

1

T

bτTc∑
t=1

ξ2
t−1u

2
t + op (1)

where the op term is uniform in τ . This is straightforward and, hence, we omit
the details. Here, 1

T

∑bτTc
t=1 ξ2

t−1u
2
t clearly converges uniformly to the quadratic

variation of GI from (c).
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To complete the proof of part 1 of this lemma, notice that Assumption 4.3
refers to the near-integrated case, while Assumption 5 is obviously fulfilled with
δII = 0 and Z(τ) = sin(k π2 τ) irrespective of which assumption, 1.1 or 1.2, holds
true. Finally, Assumption 6 follows along the lines of the derivations above; the
key observation is that the type-II instrument only adds a deterministic weight
component to 1

T 1+δI

∑bτTc
t=1 zI,t−1 and 1

T 1+δI

∑bτTc
t=1 zI,t−1u

2
t and the order of

magnitude of the maxima do not change.
Proof of part 2 . We now work under Assumption 1.2, and use the Phillips-

Solo decomposition to write vt = ωṽt + ∆v̄t where v̄t is a linear process with
absolutely summable coefficients driven by ṽt. It holds that

zI,t−1 =

t−2∑
j=0

%j∆ξt−1−j =

t−2∑
j=0

%j
(
vt−1−j −

c

T
ξt−2−j

)

= ωz̃t−1 +
t−2∑
j=0

%j
(

∆v̄t−1−j −
c

T
ξt−2−j

)
with z̃t−1 =

∑t−2
j=0 %

j ṽt−j and z̃0 = z̃−1 = . . . = 0.
We now deal with assumption 4.1. With δI = γ/2, we have

sup
τ∈[0,1]

∣∣∣∣∣∣
bτTc∑
t=1

zI,t−1

∣∣∣∣∣∣ ≤ ω sup
τ∈[0,1]

∣∣∣∣∣∣
bτTc∑
t=1

z̃t−1

∣∣∣∣∣∣+ sup
τ∈[0,1]

∣∣∣∣∣∣
bτTc∑
t=1

t−2∑
j=0

%j∆v̄t−1−j

∣∣∣∣∣∣
+
c

T
sup
τ∈[0,1]

∣∣∣∣∣∣
bτTc∑
t=1

t−2∑
j=0

%jξt−2−j

∣∣∣∣∣∣ ,
where 1

T 1/2+γ

∑bτTc
t=1 z̃t−1 ⇒ CV (τ) (see Lemma A.1), and

supτ∈[0,1]

∣∣∣∑bτTct=1

∑t−2
j=0 %

j∆v̄t−1−j

∣∣∣ = Op

(
max

{√
T , T γ

})
like in the proof of

Lemma A.1; moreover, c
T supτ∈[0,1]

∣∣∣∑bτTct=1

∑t−2
j=0 %

jξt−2−j

∣∣∣ is easily shown to
be of order Op

(
T 1/2+γ

)
itself, such that

1

T 1+γ/2
sup
τ∈[0,1]

∣∣∣∣∣∣
bτTc∑
t=1

zI,t−1

∣∣∣∣∣∣ = Op

(
T γ/2−1/2

)
= op(1)

as required. Using similar arguments, it follows that supτ∈[0,1]

∣∣∣ 1
T

∑bτTc
t=1 zI,t−1u

2
t

∣∣∣=
Op(1), while E

(
ζt|ζt−1, ζt−2, . . . , zI,t−1, zI,t−2, . . .

)
= 0 holds as in the proof of

part 1.
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Assumption 4.2 refers to the stable autoregression case, so we move on to
dealing with assumption 4.3. We have for (a) that

bτTc∑
t=1

zI,t−1ξt−1 = ω

bτTc∑
t=1

z̃t−1ξt−1 +

bτTc∑
t=1

ξt−1

t−2∑
j=0

%j∆v̄t−1−j −
c

T

bτTc∑
t=1

ξt−1

t−2∑
j=0

%jξt−2−j

where, since sup1≤t≤T |ξt| = Op

(√
T
)
, it can be shown as above that∑bτTc

t=1 ξt−1

∑t−2
j=0 %

j∆v̄t−1−j = Op
(
max

{
T, T 1/2+γ

})
and

c
T

∑bτTc
t=1 ξt−1

∑t−2
j=0 %

jξt−2−j = Op
(
T 1+γ

)
uniformly, such that they vanish

upon division by T 3/2+γ/2. Furthermore, with S̃t−1 =
∑t−1
j=1 z̃j (and S0 = 0),

bτTc∑
t=1

z̃t−1ξt−1 =

bτTc∑
t=2

(
S̃t−1 − S̃t−2

)
ξt−1 = S̃[τT ]−1ξt−1 −

bτTc−1∑
t=2

S̃t−1∆ξt.

But we know from the proof of Lemma A.1 that 1
T 1/2+γ S̃[τT ] ⇒ CV (τ) and it

immediately follows that
∑bτTc
t=1 z̃t−1ξt−1 = Op

(
T 1+γ

)
uniformly, as required.

In establishing (b), it is not difficult to show that, given the Phillips-Solo
decomposition of vt,

1

T 1+γ

bτTc∑
t=1

z2
I,t−1 =

ω2

T 1+γ

bτTc∑
t=1

z̃2
t−1 + op(1)

uniformly in τ . The leading term may be written with z̃0 = 0 as

ω2

T 1+γ

bτTc∑
t=1

z̃2
t−1 =

ω2

T 1+γ

bτTc∑
t=2

t−2∑
j=0

%2j ṽ2
t−1−j +

2ω2

T 1+γ

bτTc∑
t=3

t−3∑
j=0

t−2∑
k=j+1

%j%kṽt−1−j ṽt−1−k,

(A.2)
and, after, re-arranging the summands of the first term on the r.h.s. we have

ω2

T 1+γ

bτTc∑
t=2

t−2∑
j=0

%2j ṽ2
t−1−j =

1

1− %
ω2

T 1+γ

bτTc∑
t=2

ṽ2
t−1 +

1

1− %
ω2

T 1+γ

bτTc∑
t=2

ṽ2
t−1%

2t−2

where T−1
∑bτTc
t=2 ṽ2

t−1
p→
∫ τ

0

(
h2

21(s) + h2
22(s)

)
ds and

0 ≤ 1

T

bτTc∑
t=2

ṽ2
t−1%

2t−2 ≤ 1

T

T∑
t=2

ṽ2
t−1%

2t−2 = op(1)

since E
(

1
T

∑T
t=2 ṽ

2
t−1%

2t−2
)
≤ supt=1,...,T E

(
ṽ2
t−1

)
1
T

∑T
t=2 %

2t−2 = O
(
T γ−1

)
,

so the first term on the r.h.s. of (A.2) delivers the desired limit (point wise in
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τ). The second term on the r.h.s. of (A.2) may be expressed as

2ω2

T 1+γ

bτTc∑
t=3

t−3∑
j=0

ṽt−1−j%
2j
t−j−2∑
k=1

%kṽt−j−1−k

=
2ω2

T 1+γ

bτTc∑
t=3

ṽt−1

[τT ]−1∑
s=t−1

%2(s−t+1)
t−2∑
k=1

%kṽt−1−k

after re-arranging terms. Notice that qt := ṽt−1

∑[τT ]−1
s=t−1 %

2(s−t+1)
∑t−2
k=1 %

kṽt−1−k
has the MD property, where, after some algebra as in the proof of Lemma
A.1, T−γ/2

∑t−2
k=1 %

kṽt−1−k is seen to be uniformly L4-bounded. Then,
T−3γ/2

∑[τT ]−1
s=t−1 %

2(s−t+1)
∑t−2
k=1 %

kṽt−1−k is uniformly L4-bounded due to the
Minkowski’s norm inequality, so T−3γ/2qt is uniformly L2 bounded. Therefore,
the variance of the sum of the qt is of order O

(
T 1+3γ

)
due to the MD property,

and the entire term is then Op
(
T γ/2−1/2

)
, also pointwise in τ .

Uniform convergence of ω2

T 1+γ

∑bτTc
t=1 z̃2

t−1 follows from the fact that both
the partial sums and the limit are nondecreasing functions of τ .

For (c), we may similarly show that

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T 1/2+γ/2

bτTc∑
t=1

zI,t−1ut

∣∣∣∣∣∣ = sup
τ∈[0,1]

∣∣∣∣∣∣ ω

T 1/2+γ/2

bτTc∑
t=1

z̃t−1ut

∣∣∣∣∣∣+Op(1),

where the z̃t−1ut have the MD property; since E

(
1

T 1+γ

(∑T
t=1 z̃t−1ut

)2
)

=

1
T 1+γ

∑T
t=1 E

(
z̃2
t−1u

2
t

)
≤ 1

T

∑T
t=1

√∥∥ 1
Tγ/2 z̃t−1

∥∥4

4
‖u2
t‖

4
4 is bounded, we may

apply Doob’s martingale inequality to conclude that supτ∈[0,1]

∣∣∣ 1
T 1/2+γ/2

∑bτTc
t=1 zI,t−1ut

∣∣∣=
Op(1).

In dealing with (d), it can be shown that

1

T 1+γ

bτTc∑
t=1

z2
I,t−1u

2
t =

ω2

T 1+γ

T∑
t=1

z̃2
t−1u

2
t +Op(1)

where 1
T 1+γ

∑T
t=1 z̃

2
t−1u

2
t = Op(1) due to the Markov inequality.

Assumption 5 obviously holds, and Assumption 6 can again be reduced to
the behaviour of 1

T 1+δI

∑bτTc
t=1 zI,t−1 and 1

T 1+δI

∑bτTc
t=1 zI,t−1u

2
t like in the proof

of part 1, and so we omit the details. �

Proof of Lemma A.2

1. Under Assumption 1.1, we have that xt =
∑t−1
j=0 ρ

jvt−j + ρtx0. Using the
Phillips-Solo decomposition and the 1-summability of the coefficients of
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B (L) (and thus of (1− ρL)−1B (L) when |ρ| < 1), it follows that

1√
T

bτTc∑
t=1

xt−1 =
1

1− ρ
1√
T

bτTc∑
t=1

vt−1 +
1√
T
v̄bτTc −

1√
T
v̄0 + op(1)

uniformly in τ ∈ [0, 1], where v̄t is a linear process driven by vt with
absolutely summable coefficients. Then, the uniform L4-boundedness of ζt
and the boundedness of the function H(·) imply uniform L4-boundedness
of v̄t such that maxτ∈[0,1]

∣∣v̄bτTc∣∣ = op

(√
T
)

and the result then follows
from (6).

2. Notice that

1√
T
Sy (τ) =

1√
T

bτTc∑
t=1

ut +
1√
T

 1√
T

bτTc∑
t=1

b

(
t

T

)
xt−1


where we recall that 1√

T

∑bτTc
t=1 ut ⇒ U (τ). Because of the piecewise

Lipschitz continuity of b(·) and the well-known Hölder continuity of any
order α ∈ (0, 1/2) of Gaussian processes with independent increments,
and thus of V (·), the Stjeltjes integral ω

1−ρ
∫ τ

0 b(s)dV (s) exists (pathwise)
and, with item 1 of this Lemma, it follows that 1√

T

∑bτTc
t=1 b

(
t
T

)
xt−1 ⇒

ω
1−ρ

∫ τ
0 b(s)dV (s) as required for the result.

3. Follows directly from Assumptions 4 and 5 and the CMT.
4. Follows directly from Assumptions 4 and 5 and item 1 of this Lemma.
5. Follows directly from Assumptions 4-6 and the CMT.
6. We have elementwise

1

T 1+2δI

bτTc∑
t=1

z2
I,t−1y

2
t =

1

T 1+2δI

bτTc∑
t=1

z2
I,t−1u

2
t (A.3)

+
2√
T

 1

T 1+2δI

bτTc∑
t=1

z2
I,t−1utb

(
t

T

)
xt−1


+

1

T

 1

T 1+2δI

bτTc∑
t=1

z2
I,t−1b

2

(
t

T

)
x2
t−1

 .(A.4)

The first summand on the r.h.s. gives the desired limit directly from
Assumption 4. For the second summand, an application of Markov’s
inequality shows it to be op (1) uniformly in τ , as

max
τ∈[0,1]

∣∣∣∣∣∣ 1

T 1+2δI

[τT ]∑
t=1

z2
I,t−1utb

(
t

T

)
xt−1

∣∣∣∣∣∣ ≤
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≤ max
τ∈[0,1]

|b(τ)| max
τ∈[0,1]

1

T 1+2δI

[τT ]∑
t=1

∣∣z2
I,t−1utxt−1

∣∣
≤ C

1

T 1+2δI

T∑
t=1

∣∣z2
I,t−1utxt−1

∣∣
which is independent of τ and has expectation bounded by

C 1
T

∑T
t=1

4

√
E
(
z4
I,t−1

T 4δI

)
E (u4

t ) E
(
x4
t−1

)
= O (1), given the uniform L4-

boundedness of T−δIzI,t−1, of ut and, under Assumption 1.1, of xt. For
the third summand, write

max
τ∈[0,1]

∣∣∣∣∣∣ 1

T 1+2δI

bτTc∑
t=1

z2
I,t−1b

2

(
t

T

)
x2
t−1

∣∣∣∣∣∣ ≤
≤ max

τ∈[0,1]
b2(τ)

1

T 1+2δI

bτTc∑
t=1

z2
I,t−1x

2
t−1

≤ C
1

T 1+2δI

T∑
t=1

z2
I,t−1x

2
t−1,

where again the uniform upper bound is Op (1) since E
(
z2
I,t−1x

2
t−1

)
≤√

E
(
z4
I,t−1

)
E
(
x4
t−1

)
is uniformly bounded. Next,

1

T 1+2δII

bτTc∑
t=1

z2
II,t−1y

2
t =

1

T 1+2δII

bτTc∑
t=1

z2
II,t−1u

2
t

+
2

T 3/2+2δII

bτTc∑
t=1

z2
II,t−1utb

(
t

T

)
xt−1

+
1

T

 1

T 1+2δII

bτTc∑
t=1

z2
II,t−1b

2

(
t

T

)
x2
t−1

 .

The first summand delivers the desired limit since,

1

T 1+2δII

bτTc∑
t=1

z2
II,t−1u

2
t =

1

T 1+2δII

bτTc∑
t=1

z2
II,t−1 E

(
u2
t

)
+

1

T 1+2δII

bτTc∑
t=1

z2
II,t−1

(
u2
t − E

(
u2
t

))
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where supτ∈[0,1]

∣∣∣ 1
T 1+2δII

∑bτTc
t=1 z2

II,t−1

(
u2
t − E

(
u2
t

))∣∣∣ vanishes, since the
assumption that we have suptE

∣∣E (ζtζ′t − I2|ζt−m, ζt−m−1, . . .
)∣∣ → 0 as

m → ∞ allows us to use the arguments of Hansen (1992, Theorem 3.3);
the second and the third summands are dealt with analogously to those in
(A.4) and we omit the details here. Finally, the result that

max
τ∈[0,1]

∣∣∣∣∣∣ 1

T 1+δI+δII

bτTc∑
t=1

zI,t−1zII,t−1y
2
t

∣∣∣∣∣∣ = Op(1)

follows directly from the positive definiteness of WTSzzy2WT given the
previous conclusions regarding its diagonal elements.

7. We have elementwise

1

T 1+2δI

bτTc∑
t=1

z2
I,t−1yt =

1√
T

 1

T 1/2+2δI

bτTc∑
t=1

z2
I,t−1ut


+

1

T 3/2+2δI

bτTc∑
t=1

z2
I,t−1b

(
t

T

)
xt−1.

We note that T−2δIz2
I,t−1ut is a uniformly L2-bounded MD sequence; there-

fore, by means of Doob’s martingale inequality, T−1/2−2δI
∑bτTc
t=1 z2

I,t−1ut
is shown to be uniformly bounded in probability, and the first summand
on the r.h.s. is op (1). For the second summand, write for any τ ∈ [0, 1]∣∣∣∣∣∣ 1

T 3/2+2δI

bτTc∑
t=1

z2
I,t−1b

(
t

T

)
xt−1

∣∣∣∣∣∣≤ max
τ∈[0,1]

|b (τ)| max
t=1,...,T

|xt−1|√
T

1

T 1+2δI

T∑
t=1

z2
I,t−1

where 1
T 1+2δI

∑T
t=1 z

2
I,t−1 ⇒ Kz2

I
(1) due to Assumption 4 and the fact

that maxt=1,...,T |xt−1| = op

(√
T
)
with xt−1 being uniformly L4-bounded.

Then,

1

T 1+2δII

bτTc∑
t=1

z2
II,t−1yt =

1√
T

1

T 1/2+2δII

bτTc∑
t=1

z2
II,t−1ut

+
1

T

1

T 1/2+2δII

bτTc∑
t=1

z2
II,t−1b

(
t

T

)
xt−1,
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where we have 1
T 1/2+2δII

∑bτTc
t=1 z2

II,t−1ut ⇒
∫ τ

0 Z
2(s)dU(s) and

1
T 1/2+2δII

∑bτTc
t=1 z2

II,t−1b
(
t
T

)
xt−1 ⇒ ω

1−ρ
∫ τ

0 Z
2(s)b(s)dV (s). Finally,

1

T 1+δI+δII

bτTc∑
t=1

zI,t−1zII,t−1yt =
1√
T

1

T 1/2+δI+δII

bτTc∑
t=1

zI,t−1zII,t−1ut

+
1

T

1

T 1/2+δI+δII

bτTc∑
t=1

zI,t−1zII,t−1b

(
t

T

)
xt−1

where the weak convergence of 1
T 1/2+δI

∑bτTc
t=1 zI,t−1ut and the continuity

requirements from Assumptions 4 and 5 lead to

1

T 1/2+δI+δII

bτTc∑
t=1

zII,t−1 (zI,t−1ut)⇒
∫ τ

0

Z(s)dGI (s)

and, correspondingly, to

1

T 1/2+δI+δII

bτTc∑
t=1

zII,t−1b

(
t

T

)
(zI,t−1xt−1)⇒

∫ τ

0

Z(s)b(s)dKzIx (s)

as required.
8. We have elementwise that

1

T 1/2+δI

bτTc∑
t=1

zI,t−1yt =
1

T 1/2+δI

bτTc∑
t=1

zI,t−1ut+
1

T 1+δI

bτTc∑
t=1

zI,t−1b

(
t

T

)
xt−1

where the behaviour of the first summand on the r.h.s. follows directly from
Assumption 4 and, for the second,

1

T 1+δI

bτTc∑
t=1

b

(
t

T

)
(zI,t−1xt−1)⇒

∫ τ

0

b(s)dKzIx(s)

as in the proof of item 7. Then,

1

T 1/2+δII

bτTc∑
t=1

zII,t−1yt =
1

T 1/2+δII

bτTc∑
t=1

zII,t−1ut

+
1√
T

 1

T 1/2+δII

bτTc∑
t=1

zII,t−1b

(
t

T

)
xt−1


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where 1
T 1/2+δII

∑bτTc
t=1 zII,t−1ut ⇒

∫ τ
0 Z(s)dU(s) and

1

T 1/2+δII

bτTc∑
t=1

zII,t−1b

(
t

T

)
xt−1 ⇒

ω

1− ρ

∫ τ

0

Z(s)b(s)dV (s).

9. We have elementwise

1

T 1+δI

bτTc∑
t=1

zI,t−1y
2
t =

1

T 1+δI

bτTc∑
t=1

zI,t−1u
2
t +

2

T 3/2+δI

bτTc∑
t=1

zI,t−1utb

(
t

T

)
xt−1

+
1

T 2+δI

bτTc∑
t=1

zI,t−1b
2

(
t

T

)
x2
t−1.

The first summand is uniformly bounded in probability, see Assumption 4,
while the second and third summands vanish analogously to the proof of
item 6. Then,

1

T 1+δII

bτTc∑
t=1

zII,t−1y
2
t =

1

T 1+δII

bτTc∑
t=1

zII,t−1u
2
t

+
2

T 3/2+δII

bτTc∑
t=1

zII,t−1utb

(
t

T

)
xt−1

+
1

T 2+δII

bτTc∑
t=1

zII,t−1b
2

(
t

T

)
x2
t−1.

The first summand delivers the desired limit like in the proof of item 6,
while the second and the third can be shown to vanish uniformly in τ as
follows. First, since utxt−1 is a uniformly L2-bounded MD sequence, so is
T−δIIzII,t−1b

(
t
T

)
xt−1ut, such that 1

T 1/2+δII

∑bτTc
t=1 zII,t−1utb

(
t
T

)
xt−1 is

uniformly Op(1) by Doob’s martingale inequality and we therefore have
that

max
τ∈[0,1]

∣∣∣∣∣∣ 2

T 3/2+δII

bτTc∑
t=1

zII,t−1utb

(
t

T

)
xt−1

∣∣∣∣∣∣ = Op
(
T−1

)
and, second,

1

T 1+δII

bτTc∑
t=1

zII,t−1b
2

(
t

T

)
x2
t−1 ≤

≤ max
τ∈[0,1]

b2(τ) max
τ∈[0,1]

zII,bτTc−1

T δII
1

T

bτTc∑
t=1

x2
t−1
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≤ C
1

T

T∑
t=1

x2
t−1 = Op (1)

uniformly in τ , as required.
10. Write

1

T
Sy2 (τ) =

1

T

bτTc∑
t=1

u2
t +

2

T

 1

T 1/2

bτTc∑
t=1

b

(
t

T

)
xt−1ut

+
1

T

 1

T

bτTc∑
t=1

b2
(
t

T

)
x2
t−1

 .

Using standard methods, the first summand on the r.h.s. delivers the
desired limit,

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτTc∑
t=1

u2
t − [U ] (τ)

∣∣∣∣∣∣ p→ 0,

while, for the second summand, 1
T 1/2

∑bτTc
t=1 b

(
t
T

)
xt−1ut is uniformly Op(1)

by Doob’s martingale inequality, since b
(
t
T

)
xt−1ut is a uniformly L2-

bounded MD sequence, and thus

max
τ∈[0,1]

∣∣∣∣∣∣ 2

T

 1

T 1/2

bτTc∑
t=1

b

(
t

T

)
xt−1ut

∣∣∣∣∣∣ = Op
(
T−1

)
.

The third summand is easily analyzed, with

1

T

∣∣∣∣∣∣ 1

T

bτTc∑
t=1

b2
(
t

T

)
x2
t−1

∣∣∣∣∣∣≤ max
τ∈[0,1]

b2(τ)
1

T 2

bτTc∑
t=1

x2
t−1 ≤C

1

T 2

T∑
t=1

x2
t−1 =Op

(
1

T

)

uniformly in τ as required. �

Proof of Lemma A.3

1. Follows directly from 1√
T
xbτTc ⇒ ωJc,H (τ) using the CMT.

2. Write 1√
T
Sy (τ) = 1√

T

∑bτTc
t=1 ut + 1

T
√
T

∑bτTc
t=1 b

(
t
T

)
xt−1 where, recall,

1√
T
xbτTc⇒ ωJc,H (τ) such that 1

T
√
T

∑bτTc
t=1 b

(
t
T

)
xt−1⇒ ω

∫ τ
0 b(s)Jc,H (s) ds

as required.
3. Follows directly from Assumptions 4 and 5 and the CMT.
4. Follows directly from Assumptions 4 and 5 and the CMT.
5. Follows directly from Assumptions 4-6 and the CMT.
6. Note that, under Assumption 1.2, maxt=1,...,T |xt−1| = Op

(√
T
)

while
β1,t = O

(
1
T

)
, so it is not difficult to show that the local alternative does

not influence the limit and, hence, we omit the details here. The result then
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follows along the lines of the proof of Lemma A.2 item 6 and we omit the
details.

7. The proof of this result is straightforward but tedious and, hence, is omitted
in the interests of brevity.

8. We have elementwise that

1

T 1/2+δI

bτTc∑
t=1

zI,t−1yt =
1

T 1/2+δI

bτTc∑
t=1

zI,t−1ut+
1

T 3/2+δI

bτTc∑
t=1

zI,t−1b

(
t

T

)
xt−1

where the behaviour of the first summand on the r.h.s. follows directly from
Assumption 4 and, for the second, the Cauchy-Schwarz inequality implies
that∣∣∣∣∣∣ 1

T 3/2+δI

bτTc∑
t=1

zI,t−1b

(
t

T

)
xt−1

∣∣∣∣∣∣≤
√√√√ 1

T 1+2δI

bτTc∑
t=1

z2
I,t−1

1

T 2

bτTc∑
t=1

b2
(
t

T

)
x2
t−1

where the r.h.s. is easily seen to be uniformly bounded in probability as
required. Then,

1

T 1/2+δII

bτTc∑
t=1

zII,t−1yt =
1

T 1/2+δII

bτTc∑
t=1

zII,t−1ut

+
1

T 3/2+δII

bτTc∑
t=1

zII,t−1b

(
t

T

)
xt−1

where 1
T 1/2+δII

∑bτTc
t=1 zII,t−1ut ⇒

∫ τ
0 Z(s)dU(s) and

1

T 3/2+δII

bτTc∑
t=1

zII,t−1b

(
t

T

)
xt−1 ⇒ ω

∫ τ

0

Z(s)b(s)Jc,H(s)ds.

9. The proof of this result is straightforward and so again is omitted in the
interests of brevity.

10. Analogous to the proof of Lemma A.2 item 10 and, hence, omitted here.

�

Proof of Lemma A.4

Consider a special probability space where the original data samples indexed
by T are redefined as a triangular array (with a slight abuse, we maintain
the original notation) such that the convergence results in Lemma A.2 hold
a.s.; this is standard in proofs of bootstrap convergence and is possible due
to Corollary 5.12 of Kallenberg (1997). Let the special probability space be
extended by a product construction in order to support an IID standard
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normal sequence {Rt} independent of the redefined data. We show that on
this probability space the convergence relations asserted in Lemma A.4 hold
weakly a.s. (θ∗T

w⇒a.s. θ defined as E∗ f(θ∗T )→E f (θ) P-a.s. for all bounded
continuous real functions f with matching domain, where θ∗T , θ are random
elements defined on the special probability space). Then on general probability
spaces these relations hold weakly in probability (since the limit measures
concerned, or equivalently, the E f (θ) concerned, are non-random). For the
purposes of unified exposition, ‘Op∗(1) in P-probability’ statements are also
established on the special probability space, and transfer to general probability
spaces automatically, depending exclusively on the distributions involved.

1 & 2. Let MT := diag(T−1/2, T−1/2−δI , T−1/2−δII ) and S∗·y(τ) :=
∑bτTc
t=1 (1,z′t−1)′ytRt.

It holds that (S∗y (τ) ,S∗zy (τ)′)′ − S∗·y(τ) = T−1Sy(1)
∑bτTc
t=1 (1,z′t−1)′Rt,

where (i) T−1Sy(1) → 0 P-a.s. by Lemma A.2(2) recast on the special
probability space, and (ii), conditionally on the data,

∑bτTc
t=1 (1,z′t−1)′Rt is

a zero-mean process with independent increments and

MT Var∗

{
T∑
t=2

(1,z′t−1)′Rt

}
MT = MT

(
T Sz(1)′

Sz(1) Szz(1)

)
MT

is P-a.s. convergent to a P-a.s. finite limit, by Lemma A.2(3,5) recast on the
special probability space. Therefore, by Kolmogorov’s inequality applied
conditionally,

sup
τ∈[0,1]

∥∥MT (S∗y (τ) ,S∗zy (τ)′)′ −MTS
∗
·y(τ)

∥∥ w⇒a.s. 0,

or equivalently, MT (S∗y (τ) ,S∗zy (τ)′)′ = MTS
∗
·y(τ) + op∗(1) P-a.s.

uniformly over τ . On the other hand, MTS
∗
·y(τ) conditionally on the

data is a zero-mean Gaussian process with independent increments and
MTS

∗
·y(0) = 0. For such processes weak convergence a.s. follows from the

a.s. convergence of the conditional variance function uniformly over τ ; cf.
the proof of Lemma A.5 in Cavaliere, Rahbek, and Taylor (2010). The
process MTS

∗
·y(τ) conditionally on the data has variance function

τ 7→MT

(
Sy2(τ) S′zy2(τ)

Szy2(τ) Szzy2(τ)

)
MT =

=

(
T−1Sy2(τ) T−1/2S′zy2(τ)WT

T−1/2WTSzy2(τ) WTSzzy2(τ)WT

)
. (A.5)

By Lemma A.2(6,9,10) recast on the special probability space and applied
to the respective blocks of the variance function in (A.5), it follows
that T−1/2

∑bτTc
t=1 (1, T−δIzI,t−1)′ytRt and T−1/2−δII

∑bτTc
t=1 zII,t−1ytRt,

which are components of MTS
∗
·y(τ), each converge w⇒a.s. to Gaussian



[A.23] Testing for Episodic Predictability in Stock Returns

processes starting at 0, with independent increments and variance
functions given by diag([U ](τ), [GI ](τ)) and

∫ τ
0 Z

2(s)d[U ](s), respectively.
Note that there is no claim about the two w⇒a.s. convergence facts
being joint. Indeed, we only need to establish the precise limit of
T−1/2(S∗y (τ) , T−δIS∗zIy (τ))′ = T−1/2

∑bτTc
t=1 (1, T−δIzI,t−1)′ytRt + op∗(1)

P-a.s., whereas for T−1/2−δII
∑bτTc
t=1 zII,t−1ytRt it suffices to note that it

is Op∗(1) P-a.s. as a result of its w⇒a.s. convergence.
3. We decompose ∆(τ) := S∗zzy2 (τ)− Szzy2(τ) into

∆(τ) = ∆(1)(τ)− 2
{
T−1Sy(1)

}
∆(2)(τ) +

{
T−1Sy(1)

}2
∆(3) (τ)

with ∆(1)(τ) :=
∑bτTc
t=1 zt−1z

′
t−1y

2
t (R2

t − 1), ∆(2) (τ) :=
∑bτTc
t=1 zt−1z

′
t−1ytR

2
t

and ∆(3) (τ) :=
∑bτTc
t=1 zt−1z

′
t−1R

2
t . The term ∆(1)(τ) is, conditionally on

the data, a zero-mean process with independent increments and

Var∗{vec(∆(1)(1))} = 2
T∑
t=1

vec(zt−1z
′
t−1){vec(zt−1z

′
t−1)}′y4

t ,

where the factor 2 arises because Var(R2
t − 1) = 2, such that

‖Var∗{vec(WT∆(1)(1)WT )}‖ ≤ 2
T∑
t=1

‖WTzt−1‖4y4
t

≤ 4T−2
T∑
t=1

(|T−δIzI,t−1|4 + |T−δIIzII,t−1|4)y4
t

≤ 4
∑

r∈{I,II}

T−1−2δrSz2
ry

2(1) max
τ∈(0,1]

|T−1−2δr∆Sz2
ry

2(τ)| → 0

P-a.s. because each of T−1−2δrSz2
ry

2(τ), r ∈ {I, II}, converges P-a.s. to a
pathwise continuous limit process, by Lemma A.2(6) recast on the special
probability space. A conditional application of Kolmogorov’s inequality
shows that supτ∈[0,1] ‖WT∆(1)(τ)WT ‖

w
=⇒a.s. 0. The term ∆(2)(τ) equals

Szzy(τ) +
∑bτTc
t=1 zt−1z

′
t−1yt(R

2
t − 1), with supτ∈[0,1] ‖WTSzzy(τ)WT ‖ →

0 P-a.s. by Lemma A.2(7) recast on the special probability space and

sup
τ∈[0,1]

∥∥∥∥∥∥WT

bτTc∑
t=1

zt−1z
′
t−1yt(R

2
t − 1)WT

∥∥∥∥∥∥ w
=⇒a.s. 0

similarly to supτ∈[0,1] ‖WT∆(1)(τ)WT ‖, so also
supτ∈[0,1] ‖WT∆(2)(τ)WT ‖

w
=⇒a.s. 0. Finally, it holds that

supτ∈[0,1] ‖T−1WT∆(3)(τ)WT ‖ ≤maxt=1,...,T (T−1R2
t ) supτ∈[0,1] ‖WTSzz(τ)WT ‖

w
=⇒p 0 by the distributional assumption on Rt and Lemma A.2(5) recast
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on the special probability space. As T−1/2Sy(1) converges P-a.s. to a P-a.s.
finite r.v. on the special probability space, item 3 follows.

4, 5 & 6 These results follow similarly and, hence, we omit the details here.

�

Proof of Lemma A.5

Similarly to the proof of Lemma A.4, consider a special probability space where
the convergence results established in Lemma A.3 hold P-a.s. and on whose
extension an IID standard Gaussian sequence {Rt} independent of the redefined
data is available. We show that on this extended special probability space the
convergence relations asserted in Lemma A.5 hold P∗-weakly P-a.s.

1 & 2. By the same argument as in the proof of Lemma A.4, it holds that

sup
τ∈[0,1]

‖MT (S∗y (τ) ,S∗zy (τ)′)′ −MTS
∗
·y(τ)‖ w⇒a.s. 0.

The component T−1/2
∑bτTc
t=1 (1, T−δIIzII,t−1)′ytRt of MTS

∗
·y(τ) is,

conditionally on the data, a zero-mean Gaussian process starting at 0,
with independent increments and variance function(

T−1Sy2 T−1−δIISzIIy2

T−1−δIISzIIy2 T−1−2δIISz2
IIy

2

)
→

∫ τ

0

(
1 Z (s)

Z (s) Z2 (s)

)
d[U ](s)

=: C (τ) P -a.s.,

the convergence by Lemma A.3(6,9,10) recast on the special probability
space. This proves that the process T−1/2

∑bτTc
t=1 (1, T−δIIzII,t−1)′ytRt

converges w
=⇒a.s. to a zero-mean Gaussian process starting at 0, with

independent increments and variance function C (τ), and as required, the
same convergence holds for the process T−1/2(S∗y (τ) , T−δIIS∗zIIy (τ))′ =

T−1/2
∑bτTc
t=1 (1, T−δIIzII,t−1)′ytRt + op∗(1) P-a.s. The component∑bτTc

t=1 T−1/2−δIzI,t−1ytRt of MTS
∗
·y(τ) is, conditionally on the data, a

process with zero-mean independent increments and

Var∗

(
T∑
t=1

T−1/2−δIzI,t−1ytRt

)
= T−1−2δISz2

Iy
2(1) = Op (1)

by Lemma A.3(6), such that by Kolmogorov’s inequality applied condition-
ally on the data it follows that supτ∈[0,1]

∣∣∣∑bτTct=1 T−1/2−δIzI,t−1ytRt

∣∣∣ =

Op∗(1) in P-probability.
3, 4, 5 & 6. Identical to Lemma A.4.

�
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Before progressing to the proof of Lemma A.6 we require some additional
definitions and notation.

Let T∆ := [0, 1]2 ∩ {(τ1, τ2) ∈ R2 : τ2 − τ1 ≥ ∆τ} for some ∆τ ∈ (0, 1).
Let D(T∆) be the set of real functions on T∆ which are continuous from the
’right’ (i.e., f(τ

(n)
1 , τ

(n)
2 ) → f (τ1, τ2) when τ

(n)
i ↓ τi, i = 1, 2, for (τ

(n)
1 , τ

(n)
2 ),

(τ1, τ2) ∈ T∆ and f ∈ D(T∆)) and have limits from within each of the four
right angles [A1 ×A2] ∩ T∆, Ai ∈ {[0, τi), [τi, 1]}, i = 1, 2, when the angles are
non-empty. For clarity, note that all bivariate cdf’s with domain restricted
to T∆ belong to D(T∆). It is well-known (e.g., Bickel and Wichura 1971,
p. 1662) that D (T∆) can be quipped with a Skorokhod-like metric which
makes it a separable and complete metric space such that stochastic process
with values in D(T∆) are measurable w.r.t. the resulting Borel σ-algebra.
Moreover, the resulting topology relativised to C(T∆) ⊂ D (T∆) , the subspace
of continuous real functions on T∆, coincides with the uniform topology. As
we will only be interested in convergence to limits in C(T∆), in what follows
convergence and continuity issues involving elements of D(T∆) are always
discussed w.r.t. the uniform metric on D(T∆). It is then straightforward to
see that the function from D2 to D(T∆) which associates to every (f1, f2) ∈ D2

the element (τ1, τ2) 7→ f2 (τ2)− f1 (τ1) of D (T∆) is continuous on the subspace
of continuous functions C2 of D2. Moreover, linearly combining functions in
D (T∆), multiplication of functions in D (T∆) and division of functions in D(T∆)
(for denominators bounded away from zero) are continuous transformations of
the product subspace C(T∆)×C(T∆) ofD (T∆)×D (T∆). Finally, the functional
from D (T∆) to R defined by f 7→ supT∆

|f | is continuous on C(T∆); it arises in
the discussion of the statistic T d. Although the statistics T s, s ∈ {f, b, r}, can be
most naturally discussed by considering maxima of single-parameter processes,
to unify the exposition we note that the functionals supAs |f |, s ∈ {f, b, r}, are
also continuous on C(T∆), where Af := {0} × [τL, 1], Ab := [0, τU ]× {1} and
Ar := {(τ, τ + ∆τ ) : τ ∈ [0, 1−∆τ ]} with τL ≥ ∆τ and 1− τU ≥ ∆τ .

Proof of Lemma A.6

Proof of (i). Using WT = diag(T−1/2−δI , T−1/2−δII ), the expression for
t2β1

(τ1, τ2) in (11) can be equivalently written as

(
1√
T

(WTAT (τ1, τ2))′ (WTBT (τ1, τ2)WT )−1 WTCT (τ1, τ2)

)2

(
1√
T

WTAT (τ1, τ2)

)′
(WTBT (τ1, τ2)WT )−1 WTDT (τ1, τ2)WT (WTBT (τ1, τ2)WT )−1 1√

T
WTAT (τ1, τ2)

.

Consider first
1√
T

WTAT (τ1, τ2) =
1√
T

WTSxz (τ2)− 1√
T

WTSxz (τ1)
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−
√
T

bτ2T c − bτ1T c

(
1√
T
Sx (τ2)− 1√

T
Sx (τ1)

)
×

×
(

1√
T

WTSz (τ2)− 1√
T

WTSz (τ1)

)
.

Recalling the discussion of the space D(T∆), by Lemma A.2 and the CMT we
obtain that

1√
T

WTAT (τ1, τ2)⇒
(
KzIx (τ2)−KzIx (τ1)

0

)
on D(T∆)2. Next,

WTBT (τ1, τ2) WT = WTSzz (τ2) WT −WTSzz (τ1) WT

− T

bτ2T c − bτ1T c
1

T
(WTSz (τ2)−WTSz (τ1))×

× (WTSz (τ2)−WTSz (τ1))′

such that, using Lemma A.2 and the CMT again, we have

(WTBT (τ1, τ2) WT )−1 ⇒

(
Kz2

I
(τ2)−Kz2

I
(τ1) 0

0
∫ τ2
τ1
Z2(s)ds− 1

τ2−τ1

(∫ τ2
τ1
Z(s)ds

)2

)−1

on D(T∆)4, since Kz2
I

(τ2)−Kz2
I

(τ1) > 0 ∀τ2 > τ1. Notice furthermore, using
continuity of the limiting processes involved, that

1√
T

(WTAT (τ1, τ2))′ (WTBT (τ1, τ2) WT )−1 ⇒

(
KzIx (τ2)−KzIx (τ1)

Kz2
I

(τ2)−Kz2
I

(τ1)
; 0

)
(A.6)

such that, in the limit, only the first element of WTCT (τ1, τ2) and the first
diagonal element of WTDT (τ1, τ2) WT play a role (the other elements are all
bounded in probability uniformly on T∆ and so vanish upon multiplication by
the zero limit on the right hand side of A.6). For the first of these asymptotically
relevant terms, write

WTCT (τ1, τ2) = WTSzy (τ2)−WTSzy (τ1)

− T

bτ2T c − bτ1T c

(
1√
T

WTSz (τ2)− 1√
T

WTSz (τ1)

)
×

×
(

1√
T
Sy (τ2)− 1√

T
Sy (τ1)

)
=

( 1
T 1/2+δI

(SzIy (τ2)− SzIy (τ2))
1

T 1/2+δII
(SzIIy (τ2)− SzIIy (τ2))

)
−

(
0

1
τ2−τ1

1
T 1+δII

(SzII (τ2)− SzII (τ2)) 1√
T

(Sy (τ2)− Sy (τ1))

)
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+op (1)

with the op(1) remainder term applying uniformly on T∆. For the second, a
tedious but straightforward application of Lemma A.2 yields that

DT (τ1, τ2) = RT + Szzy2 (τ2)− Szzy2 (τ1)

− 1

bτ2T c − bτ1T c
(
Szy2 (τ2)− Szy2 (τ1)

)
(Sz (τ2)− Sz (τ1))′

− 1

bτ2T c − bτ1T c
(Sz (τ2)− Sz (τ1))

(
Szy2 (τ2)− Szy2 (τ1)

)′
+

1

(bτ2T c − bτ1T c)2 (Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′ ×

×
(
Sy2 (τ2)− Sy2 (τ1)

)
where RT is uniformly dominated by the other terms on T∆ due to Lemma
A.2, such that

WTDT (τ1, τ2) WT = WTSzzy2 (τ2) WT −WTSzzy2 (τ1) WT

−2
1

τ2 − τ1

(
0 R1T (τ1, τ2)

R1T (τ1, τ2)
1

T 1+δII
(SzII (τ2)− SzII (τ1)) 1

T 1+δII

(
SzIIy2 (τ2)− SzIIy2 (τ1)

) )
+

1

(τ2 − τ1)2

(
0 0

0 1
T 2+2δII

(SzII (τ2)− SzII (τ1))
2 1
T

(
Sy2 (τ2)− Sy2 (τ1)

) )+ op (1)

with both R1T (τ1, τ2) = R2T (τ1, τ2) = Op(1) and the op(1) remainder term applying
uniformly on T∆. After some further algebra we then obtain that

t2β1
(τ1, τ2) =

Q2
I (τ1, τ2)

PI (τ1, τ2)
+ op (1)

with the op(1) remainder term applying uniformly on T∆, as required.

Proof of (ii). Consider now the equivalent expression(
1
T

(WTAT (τ1, τ2))′ (WTBT (τ1, τ2)WT )−1 WTCT (τ1, τ2)
)2(

1
T

WTAT (τ1, τ2)
)′

(WTBT (τ1, τ2)WT )−1 WTDT (τ1, τ2)WT (WTBT (τ1, τ2)WT )−1 1
T

WTAT (τ1, τ2)
.

Let us first examine AT (τ1, τ2), for which we have using Lemma A.3 and the CMT,
1

T
WTAT (τ1, τ2) =

1

T
WTSxz (τ2)−

1

T
WTSxz (τ1)

−
T

bτ2T c − bτ1T c

(
1

T
√
T
Sx (τ2)−

1

T
√
T
Sx (τ1)

)
×

×
(

1
√
T
WTSz (τ2)−

1
√
T
WTSz (τ1)

)
⇒(

0
ω
∫ τ2
τ1
Z (s)Jc,H (s) ds− ω

τ2−τ1

∫ τ2
τ1
Jc,H(s)ds

∫ τ2
τ1
Z(s)ds

)
on D(T∆). Then, the weak limit of (WTBT (τ1, τ2)WT )

−1 has the same expression as given
in item (i) (recall that the actual shape of Kz2

I
may be different under the two cases spelled
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out in Assumption 1), such that
1

T
(WTAT (τ1, τ2))

′ (WTBT (τ1, τ2)WT )
−1 ⇒

⇒

0,
ω
∫ τ2
τ1
Z (s)Jc,H (s) ds− ω

τ2−τ1

∫ τ2
τ1
Jc,H(s)ds

∫ τ2
τ1
Z(s)ds∫ τ2

τ1
Z2(s)ds− 1

τ2−τ1

(∫ τ2
τ1
Z(s)ds

)2


on D(T∆)2 and, in the limit, it is now only the second element of WTCT (τ1, τ2) and the
second diagonal element of WTDT (τ1, τ2)WT that play a role compared to item (i) of this
lemma. The result follows with a tedious, yet straightforward application of Lemma A.3 and
the CMT. �

Proof of Lemma A.7

On the (extended) special probability spaces where Lemmas A.4 and A.5 were established to
hold weakly a.s., the proof is analogous to that of Lemma A.6. First, WTC

∗
T (τ1, τ2) can be

expanded similarly to WTCT (τ1, τ2) into

WT

(
S∗zIy (τ2)− S

∗
zIy

(τ2)

S∗zIIy (τ2)− S
∗
zIIy

(τ2)− 1
T (τ2−τ1)

(SzII (τ2)− SzII (τ2))
(
S∗y (τ2)− S∗y (τ1)

) )+ op∗ (1)

P-a.s. and uniformly on T∆, by using Lemmas A.2(3), A.3(3), A.4(1,2) and A.5(1,2) recast on
the special probability space. Here we have also used the fact that fT → f a.s. for measurable
Rm×k-valued transformations fT of the (redefined) data and g∗T

w⇒a.s. g for Rk×n random
matrices defined on the special probability space imply that fT g∗T

w⇒a.s. fg. Second, Lemmas
A.4 and A.5 can be used to see that supT∆

‖WT {D∗T (τ1, τ2) −DT (τ1, τ2)}WT ‖ = o∗p(1)
P-a.s. in both the stationary and the (near-)unit root case, such that the effect of replacing
D∗T (τ1, τ2) by DT (τ1, τ2) in the expression(

A′T (τ1, τ2)B
−1
T (τ1, τ2)C

∗
T (τ1, τ2)

)2

A′T (τ1, τ2)B
−1
T (τ1, τ2)D∗T (τ1, τ2)BT (τ1, τ2)AT (τ1, τ2)

is o∗p(1) P-a.s., uniformly on T∆. The rest of the proof replicates the proof of Lemma A.6.
On general probability spaces the o∗p(1) in P-probability approximations of Lemma A.7

remain valid because weak convergence in probability to zero is equivalent to the o∗p(1) in
P-probability property. �

Proof of Proposition 1

Proof of (i). We prove the result for T d, the other cases being similar. From Lemma A.6, we
have that, with a uniform remainder term on T∆,

t2β1
(τ1, τ2) =

T−1−2δI {SzIy (τ2)− SzIy (τ1)}2

T−1−2δI {Sz2
Iy

2 (τ2)− Sz2
Iy

2 (τ1)}
+ op(1)⇒

⇒

(
GI (τ2)−GI (τ1) +

∫ τ2
τ1
b(s)dKzIx(s)

)2

[GI ] (1) (ηI (τ2)− ηI (τ1))

on D(T∆), the convergence by Lemma A.2(6,8) for T−1−2δISz2
Iy

2(τ) and T−1/2−δISzIy(τ),
and the CMT (regarding the continuity of the involved transformations of T−1−2δISz2

Iy
2(τ)

and T−1/2−δISzIy(τ), see the introductory discussion of D (T∆) and C (T∆)). Since the limit
process of t2β1

(τ1, τ2) is a random element of C(T∆) and the functional f 7→ supT∆
|f | is
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continuous on C(T∆), by the CMT we obtain that

T d ⇒ sup
(τ1,τ2)∈T∆

(
GI (τ2)−GI (τ1) +

∫ τ2
τ1
b(s)dKzIx(s)

)2

[GI ] (1) (ηI (τ2)− ηI (τ1))

as required.
Proof of (ii). The proof is entirely analogous under Assumption 1.2; applying Lemma A.6
item (ii) where

QII (τ1, τ2) ⇒
∫ τ2

τ1

Z(s)dU(s) + ω

∫ τ2

τ1

Z(s)b(s)Jc,H(s)ds

−
1

τ2 − τ1

∫ τ2

τ1

Z(s)ds

(
U (τ2)− U (τ2) + ω

∫ τ2

τ1

b(s)Jc,H(s)ds

)
and

PII (τ1, τ2) ⇒
∫ τ2

τ1

Z2(s)d[U ](s)

−
2

τ2 − τ1

(∫ τ2

τ1

Z(s)d[U ](s)

)(∫ τ2

τ1

Z(s)ds

)
+

1

(τ2 − τ1)2

(∫ τ2

τ1

Z(s)ds

)2

([U ](τ2)− [U ](τ1))

give the desired result after defining Z̃τ1,τ2(s) := Z(s)− 1
τ2−τ1

∫ τ2
τ1
Z(s). �

Proof of Proposition 2

On the special probability spaces where the convergence results in Lemmas A.4 and A.5 were
established to hold weakly a.s., an argument similar to that for Proposition 1 establishes
the weak a.s. convergence of the distributions of the bootstrap statistics, under the null and
under local alternatives, to the limiting null distributions of the original statistics. On general
probability spaces this convergence remains valid weakly in probability.

For instance, on the special probability space from the proof of Lemma A.4 it holds, by
the proof of Lemma A.7 that, with a uniform remainder term on T∆ P-a.s.,

t∗2β1
(τ1, τ2) =

T−1−2δI {S∗zIy (τ2)− S
∗
zIy

(τ1)}2

T−1−2δI {Sz2
Iy

2 (τ2)− Sz2
Iy

2 (τ1)}
+ op∗(1)

w⇒a.s.

(
G∗I (τ2)−G

∗
I (τ1)

)2
[GI ] (1) (ηI (τ2)− ηI (τ1))

(A.7)
on D (T∆), the convergence by Lemmas A.2(6) for T−1−2δISz2

Iy
2(τ) (in a.s. sense), Lemma

A.4(2) for T−1/2−δIS∗zIy(τ) (in w⇒a.s.sense), and the CMT applied conditionally on the
(redefined) data. As the limit process of t∗2β1

(τ1, τ2) takes values in C (T∆) a.s. and the functional
f 7→ supT∆

|f | is continuous on C(T∆), by applying the CMT again it follows that

T d∗ w⇒a.s. sup
(τ1,τ2)∈T∆

(
G∗I (τ2)−G

∗
I (τ1)

)2
[GI ] (1) (ηI (τ2)− ηI (τ1))

d
= sup

0≤r1,r2≤1

η−1
I (r2)−η−1

I (r1)≥∆τ

(W (r2)−W (r1))
2

r2 − r1
≡ T d,I∞ ,

the latter being the limiting null distribution of the original statistic T d under stable
predictors. On a general probability space, therefore, T d∗ w⇒p T d,I∞ . Convergence of the
remaining bootstrap distributions is established similarly.

Returning to the pair T d,T d∗ under the conditions of Proposition 1(i), the weak
convergence (

P
(
T d ≤ ·

)
P∗
(
T d∗ ≤ ·

) ) =⇒ P(T d,I∞ ≤ ·)
(

1
1

)
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on D(R)2 and the continuity of the cdf F (·) = P(T d,I∞ ≤ ·) lead, by means of a standard
argument, to P∗

(
T d∗ ≤ T d

)
=⇒ F (T d,I∞ )

d
= U [0, 1]. The proof of bootstrap validity in the

near-unit root case and for the remaining test statistics is analogous. �
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