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Abstract
A new class of tests for fractional integration in the time domain based on M estimation is
developed. This approach offers more robust properties against non-Gaussian errors than
least squares or other estimation principles. The asymptotic properties of the tests are
discussed under fairly general assumptions, and for different estimation approaches based
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1. Introduction

Most unit root and cointegration tests build on least squares (LS) estimation.
This principle ensures efficiency under Gaussian conditions. In practice,
however, macroeconomic and financial variables are usually driven by heavy-
tailed distributions. In this context, LS-based tests remain asymptotically valid
under appropriate conditions, but are no longer efficient. Suitable alternatives,
which either accommodate the true likelihood of the data or ensure more robust
properties against deviations from normality, can exhibit improved power. This
consideration becomes particularly relevant in stochastic-trend detection and
persistence analysis because the relative losses in power from using inefficient
tests tend to be greater under nonstationarity; see, among others, Rothenberg
and Stock (1997) and Georgiev, Rodrigues and Taylor (2017).

This concern is extensible to fractionally integrated models (Beran, 1994;
Haldrup and Nielsen, 2003; Tolvi, 2003), which generalize the unit root setting
and provide a convenient form to describe long-range dependence; see Baillie
(1996) and Robinson (2003) for reviews. While the unit root literature has
suggested alternative procedures to deal with non-Gaussian errors (see, among
others, Lucas, 1993; Campbell and Dufour, 1995; Phillips, 1995; Herce, 1996;
Breitung and Gourieroux, 1997; Rothenberg and Stock, 1997; Hasan and
Koenker, 1997; Wright 2000; Ling and McAleer, 2004; Koenker and Xiao 2004;
and Galvao, 2009), there have been little attempts to develop robust tests for
fractional integration. To the best of our knowledge, only the tests in Delgado
and Velasco (2005), based on signed residuals, and Hassler, Rodrigues and
Rubia (2016), based on quantile regression (QR), ensure a form of robustness
in the estimation of the fractional parameter in a general context characterized
by either stationary or nonstationary dynamics with errors drawn from a heavy-
tailed distribution.1

In this paper, we propose a class of tests for fractional integration in the
time domain under M estimation; see Huber (1981) and Amemiya (1985)
for a review of this topic. This framework is fairly general and encompasses
different estimation techniques including, among others, LS, QR and maximum
likelihood (ML) estimation. The main interest is on the class of weighting
functions that reduce the influence of large observations and, therefore, lead to
robust properties against heavy-tailed distributions. This analysis extends the
tests for fractional integration in Breitung and Hassler (2002), Demetrescu,
Kuzin and Hassler (2008) and Hassler et al. (2009) to a non-Gaussian
framework. We discuss the asymptotic properties of the new tests under fairly

1. Beran (1994) proposes an approximated maximum likelihood estimator based on the
autoregressive representation of a stationary ARFIMA model which belongs to a class of M-
estimators; see also Agostinelli and Bisaglia (2010). Li and Li (2008) discuss the asymptotic
properties of LAD estimators of stationary ARFIMA models in a Laplace quasi-maximum
likelihood estimation setting.
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general conditions on the data generating process, and for different estimation
strategies based on direct optimization of the M loss-function and on iterated
k-step and reweighted LS numeric algorithms. As in the LS context, the null
asymptotic distribution of these tests is shown to be standard normal and
independent of the value of the fractional integration parameter. Monte Carlo
experimentation shows that M tests for fractional integration exhibit empirical
size close to the nominal level in finite samples and enhanced power in relation
to alternative procedures, such as LS and even QR, when innovations are drawn
from heavy-tailed distributions.

The empirical section addresses the long-run dynamics of different volatility
measures of stock market indices in developed and emerging markets. In
particular, we consider daily observations for the period 2000-2016 of log
absolute returns and log price range estimates (the log-transform of the
spread between the highest and lowest log-asset prices over the day). Absolute
returns and related transformations are well-known proxies of the conditional
variability of financial returns. Similarly, the high-low range is a highly
efficient proxy of conditional volatility, as it builds on the entire intraday price
path rather than on closing prices; see, among others, Alizadeh, Brandt and
Diebold (2002) and references therein. Both volatility measures exhibit the
distinctive pattern of long-range persistence in the autocorrelation function
that characterizes fractional integration, but they are drawn from statistical
distributions with completely different properties. Whereas log absolute returns
are highly non-normal, the distribution of log-range estimates can be reasonably
well approximated by a normal distribution; see Alizadeh et al. (2002).
Consequently, the use of different estimation techniques with complementary
properties in terms of efficiency/robustness given the distribution of the data
is naturally motivated in this context.

We provide formal insight on the long-term dynamics of volatility by
constructing confidence intervals of the fractional parameter using a large
battery of alternative estimation principles. Our analysis includes regression-
based tests for long-memory based on LS, QR and M estimation, the sign
test in Delgado and Velasco (2005), and the frequency-domain local Whittle
estimator in Shimotsu and Phillips (2005). Consistent with previous evidence,
the overall results from this analysis pinpoint that market return volatility is
driven by fractional integration. The analysis of log-range volatility estimates
systematically indicates a stronger degree of persistence than that based on log
absolute returns. Because the former is widely considered as a more efficient
volatility proxy (see, e.g., Andersen and Bollerslev 1998; Alizadeh et al. 2002;
Brandt and Diebold 2006), the related evidence is more reliable. In this analysis,
M estimation produces estimates which are not markedly different from those
based on LS, but which nevertheless tend to exhibit smaller amplitude (i.e.,
smaller parameter uncertainty). This evidence, which completely agrees with
the experimental results reported in the Monte Carlo section, suggests that
M-based testing can improve the empirical efficiency of LS-based inference,
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with relative gains that depend on the extent of non-normality of the data. In
practice, these gains come at the expense of little incremental computational
cost because iterated algorithms used in M estimation do not require numeric
optimization or complex operations. M-based inference, therefore, represents a
valuable alternative (or complement) since it provides significant refinements
over LS even in a quasi-Gaussian context.

The remainder of the paper is organized as follows. Section 2 outlines
the general fractional integration context analyzed in the paper. Section
3 details the asymptotic behavior of the test statistics. Section 4 reports
Monte Carlo simulation results on the small-sample performance of the tests.
Section 5 discusses the empirical application. Finally, Section 6 summarizes
and concludes. All proofs of the main theoretical statements are collected in a
technical appendix.

In what follows, ‘⇒’ and ‘ p→’ denote weak convergence and convergence in
probability, respectively, of a sequence of random elements when the sample
length is allowed to diverge. The terms op (1) and Op (1) represent a sequence of
random numbers converging to zero in probability and bounded in probability,
respectively.

2. Testing for fractional integration

2.1. The data generating process

Assume that the observable time series, {yt}Tt=1 , is generated as,

(1− L)d+θ yt = εtI(t > 1) (1)

where L denotes the lag operator, d+ θ is a real value, usually referred to as
the long-memory or fractional integration parameter, I(·) denotes the indicator
function, and {εt} is a covariance stationary and invertible noise process.

According to this specification, {yt} in (1) is generally said to be a (Type-
II) fractionally integrated process of order d + θ, which shall be referred to
as FI(d+ θ) in the sequel. The {yt} variable is driven by a unit root process
when d + θ = 1, and by a weakly-stationary process when d + θ = 0. Non-
integer values in (0, 1) give rise to long-range dependence characterized by
hyperbolically-decaying impulse response functions (Hassler and Kokoszka,
2010), offering an intermediate case between the characteristic exponential
decay of short memory and the infinite persistence of unit root processes.
In contrast to most of the existing tests, model (1) does not require that
d+ θ lies in the (−0, 5, 0.5) interval in which {yt} is stationary and invertible.
This outstanding property provides a considerable degree of generality in our
analysis.

For a real-valued d, our main purpose is to address whether {yt} is FI (d)
or, equivalently, to test the null hypothesis H0 : θ = 0. This hypothesis is tested
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against the two-sided alternative H1 : θ 6= 0, noting that one-sided alternatives
are also a straightforward possibility in this context. The following assumption
lays out the properties of {εt} in (1) and completes the characterization of the
DGP considered in this paper.

Assumption 1. The error process {εt} in (1) is characterized as A (L) εt = et,
with A (L) = 1−

∑p
j=1 ajL

j having all roots outside the unit root circle, and
{et,Ft} is a strictly stationary and ergodic Martingale Difference Sequence
(MDS) with E(et|Ft−1) = 0, E

(
e2
t |Ft−1

)
= σ2, and E

(
|et|2+ε

)
<∞ for some

ε ≥ 2/3, where Ft = {es : s ≤ t} denotes the σ-field generated by {es, s ≤ t} .

Remark 1. Assumption 1 allows for AR(p) short-run dynamics. When the
innovations {et} are i.i.d., (1) is often referred to as an ARFIMA(p, d+ θ, 0)
process. For large values of p, this can be seen as a truncated approximation of
an ARFIMA(p∗, d+ θ, q∗) model with finite p∗ ≥ 0 and q∗ > 0. Assumption 1
allows {et} to be a conditionally homoskedastic MDS, a generalization of the
i.i.d. setting usually considered in the fractional integration literature; see, e.g.,
Hualde and Robinson (2007). In this literature it is also customary to assume
L4-bounded innovations, but a natural motivation for M estimators is that
they can downweigh the influence of innovations drawn from a heavy-tailed
distribution for which lower-order moments may not exist. Assumption 1 only
requires innovations to be L2+2/3-bounded. �

2.2. Regression-based tests for fractional integration

Given the {yt} series and the real value d, define the stochastic processes

εt,d := (1− L)d+ yt =
t−1∑
j=0

λj (d) yt−j , (2)

and

x∗t−1,d :=
t−1∑
j=1

j−1εt−j,d, t = 2, ..., T (3)

with {λj (d)}t−1
j=0 characterized by the truncated series of polynomial coefficients

in the binomial expansion (1− L)d :=
∑∞
j=0 λj (d)Lj , namely,

λ0 (d) := 1, and λj (d) :=
j − 1− d

j
λj−1 (d) , j ≥ 1. (4)

As discussed in Breitung and Hassler (2002) and Demetrescu et al. (2008),
testing the null hypothesis that d is the order of integration of {yt} in (1), or
H0 : θ = 0, is equivalent to testing H0 : ϕ = 0 in the LS auxiliary regression

εt,d = ϕx∗t−1,d +

p∑
j=1

πjεt−j,d + vt, (5)
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because this characterization holds exactly with ϕ := 0, πj := aj , and vt := et
under H0 : θ = 0 and Assumption 1. This is the result of the application
of the Lagrange Multiplier (LM) principle; see also Tanaka (1999). Under
local alternatives of the form H1 : θ = c/

√
T with a fixed c 6= 0, it can be

shown that ϕ = c/
√
T + O

(
T−1

)
and that the regression disturbances {vt}

have a fractionally integrated noise component. As a result, the heterogenous
behavior of ϕ and the different stochastic properties of the random disturbance
provide a sound statistical basis to identify the order of fractional integration
in {yt}. Despite the apparent theoretical simplicity of this framework, the
fact that x∗t−1,d converges in mean square sense to x∗∗t−1,d :=

∑∞
j=1 j

−1εt−j,d

under the null hypothesis and Assumption 1, with
{
x∗∗t−1,d

}
being a stationary

linear process with non-absolutely summable coefficients, is a source of major
technical difficulties for the asymptotic analysis in this context.

Demetrescu et al. (2008) and Hassler et al. (2009) derive the asymptotic
theory of the fractional integration tests under LS estimation of the set
of parameters κ := (ϕ,π1, ..., πp)

′, showing
√
T -consistency and asymptotic

normality under fairly general conditions. As a result, H0 : ϕ = 0 can be
tested by means of a standard t-ratio, or measurable transformations such
as its squares. If Assumption 1 is strengthened to require εt ∼ iidN

(
0, σ2

)
, the

specific harmonic weighting upon which
{
x∗t−1,d

}
is constructed in (3) ensures

efficient testing, and the squared t-statistic for H0 : ϕ = 0 is asymptotically
equivalent to the LM test for H0 : θ = 0 under ML; see also Robinson (1994)
and Tanaka (1999).

If Assumption 1 holds with non-Gaussian innovations, the regression-based
approach still ensures asymptotically correct nominal size, independently of
the underlying distribution of {et} , and consistency to detect departures
from the null. However, LS estimation is no longer efficient, and alternative
procedures may render more powerful tests. Hassler et al. (2016) discuss the
asymptotic theory for QR estimators, showing that median-based tests can
largely outperform LS-based inference when innovations are driven by heavy-
tailed distributions. Similarly, LS is known to be highly sensitive to extreme
values, which may lead to parameter bias and wrong inference even in large
samples. These considerations provide a natural motivation for developing
robust tests based on alternative estimation principles, such as M estimation.
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3. M estimation

3.1. Theoretical setup

We now proceed to the asymptotic analysis of M-based tests for fractional
integration. To this end, consider the following auxiliary regression:

εt,d = α+ ϕx∗t−1,d +

p∑
j=1

πjεt−j,d + ut, t = p+ 1, ..., T, (6)

or, in vector notation,
εt,d = β′x∗t−1,d + ut (7)

with β := (α,ϕ, π1, ..., πp)
′, x∗t−1,d := (1, x∗t−1,d, εt−1,d, ..., εt−p,d)

′ and {ut}
denoting a random disturbance. Although the similitudes with (5) are
straightforward, there are meaningful differences. In the LS context, the
restriction α = 0 follows directly from model (1) and, hence, there is no
need for an intercept. In contrast, in our generalized context it is necessary
to include this term because it can generally differ from zero. Specifically, the
theoretical value of the intercept in this framework, denoted αρ, is determined
by sample-dependent features of the data and the choice of the ρ (·) function
that characterizes M optimization.2 Consequently, under the null hypothesis,
it follows readily that ut := et − αρ, and hence Var(ut) = σ2.

The M estimator of β in (6), denoted β̂M , can generally be defined as the
solution of the optimization problem:

min
β∈Θ

Q∗T (β) := min
β∈Θ

T−1
T∑

t=p+1

ρ

(
εt,d − β′x∗t−1,d

σ̂

)
(8)

where ρ (·) is a measurable function, σ̂ is a preliminary consistent estimate
of the scale of the residuals, and Θ ∈ Rp+2 denotes the parameter space.
When θ = 0, then ϕ = 0 holds true in (6) , independently of the choice of
the ρ (·) function, and therefore the null hypothesis that {yt} is FI (d) can be
addressed by testing the restriction H0 : ϕ = 0 on the solution of (8) , with the
validity of this procedure relying once more on the LM principle under quasi-
ML estimation; see Appendix A for a discussion. The particular choice of the
ρ (·) function is in general driven by efficiency, robustness, or computational
issues and characterizes the properties of the resultant M estimator. For
instance, ρ (r/σ̂) = r2 leads to the LS estimator in Demetrescu et al. (2008);
ρ (r/σ̂) = r(τ − I(r < 0)), with τ ∈ (0, 1) , leads to the QR estimator in

2. For instance, the QR setting in Hassler et al. (2016) arises as a particular case under suitable
conditions. In this setting, the theoretical value of α corresponds to the τ -th conditional quantile
of {et}, which is dictated by the distribution of innovations and the (arbitrary) choice of the
quantile in the estimation.
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Hassler et al. (2016); and finally, ρ (r/σ̂) = − ln fε (r) , with fε (r) denoting
a differentiable density function, leads to the ML estimator.

3.2. Asymptotic distribution of the M estimator

In this section, we characterize the existence, consistency, and first-order
asymptotic distribution of the solution of minβ∈ΘQ

∗
T (β) for a class of ρ (·)

functions. This is the basis to construct tests for fractional integration. To
this end, we first introduce further notation and additional conditions that,
together with Assumption 1, conform the set of sufficient conditions in our
analysis. Thus, define the variables,

u∗t,s (β) :=
εt,d − β′x∗t−1,d

s
; and u∗∗t,s (β) :=

εt,d − β′x∗∗t−1,d

s
(9)

for all β ∈ Θ, where s > 0 is a generic scale factor and x∗∗t−1,d :=(
1, x∗∗t−1,d, εt−1,d, ..., εt−p,d

)′
, with x∗∗t−1,d :=

∑∞
j=1 j

−1εt−j,d. Similarly, given
the theoretical value αρ, formally defined in Assumption 2 below, define
ẽt,s := (et − αρ) /s, and note that under H0 : ϕ = 0, u∗∗t,s (β) := ẽt,s.

Assumption 2. ρ : R → R is a measurable function satisfying the following
conditions:
i) ρ (r) is twice differentiable;
ii) ψ (r) := ∂ρ (r) /∂r is bounded;
iii) ψ′ (r) := ∂ψ (r) /∂r is first-order Lipschitz continuous;
iv) E (ψ (ẽt,σ) |Ft−1) = 0, E(ψ′ (ẽt,σ) |Ft−1) > 0 almost surely, where αρ is the
unique, real-valued solution of min

c∈Θα
E
(
ρ
(
et−c
σ

)
|Ft−1

)
;

v) E (ψ′ (ẽt,σ) et|Ft−1) and E (ψ′ (ẽt,σ) |Ft−1) are constant.

Assumption 3. There exists an estimator σ̂ such that σ̂ − σ = op
(
T−1/4

)
.

Assumption 4. β0 ∈ Θ, where Θ = Θα × Θκ is a compact subset of Rp+2,
with β0 := (αρ, κ

′
0)
′ and κ0 := (0, a1, ..., ap)

′ denoting the true value of β when
H0 : θ = 0 and the previous assumptions hold true.

Remark 2. Assumption 2 is slightly more general than related conditions in
the extant literature; see, for instance, Lucas (1995). In this literature, it is
often assumed that ρ (r) is bounded, but this restriction is not essential and
can be dispensed since E

(
|ρ
(
u∗∗t,σ (β)

)
|
)
<∞, here implied under Assumption

1. Condition i) requires twice differentiability, which can be weakened by simply
requiring Lipschitz-continuity without affecting consistency, but i) plays a
role in deriving the limiting distributions; see Appendix B for details. The
boundedness and smoothness conditions in ii) and iii) aim to reduce the
influence of large observations. Condition iv) ensures that β0 is the unique
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solution of minβ∈ΘE
(
ρ
(
u∗∗t,σ (β)

))
under the null hypothesis. Condition v)

is a technical restriction that ensures the asymptotic negligibility of certain
remaining terms. It holds true, for instance, when {et} is an i.i.d. process, but
it may hold under more general conditions as well. Assumption 3 requires σ̂ to
be consistent at a rate greater than T 1/4, which could be obtained from the
residuals of any preliminary

√
T -consistent estimate of β; see Theorem 3 below.

Finally, Assumption 4 is standard in this framework. �

The following Theorems characterize the existence, consistency, and
asymptotic null distribution of β̂M under H0 : θ = 0 and Assumptions 1 to
4. Detailed proofs of all these theoretical statements are provided in Appendix
B.

Theorem 1. Let {yt}Tt=1 be a sample generated according to (1). Consider
the optimization problem min

β∈Θ
Q∗T (β) as characterized in (8) , with {εt,d} and{

x∗t−1,d

}
generated as in (2) and (3), respectively. Under the null hypothesis,

H 0 : θ = 0, and Assumptions 1 to 4, there exists a random vector β̂M which
solves min

β∈Θ
Q∗T (β) such that,

β̂M
p→ β0 (10)

with β0 := (αρ, 0, a1, ..., ap)
′ denoting the vector of true parameters.

Theorem 2. For constants K and ζ such that K > 0 and 3/8< ζ < 1/2, define
ΦT := {β ∈Θ : T ζ ||β − β0|| ≤ K} and let β̃M be the solution of min

β∈ΦT
Q∗T (β) .

Then, under the null hypothesis, H 0 : θ = 0, and Assumptions 1-4, it follows
that:

√
T
(
β̃M − β0

)
⇒N (0,Ωβ) (11)

where Ωβ := σ2A−1
β BβA−1

β , Aβ := E
(
ψ′ (ẽt,σ) x∗∗t−1,dx

′∗∗
t−1,d

)
, Bβ :=

E
(
ψ2 (ẽt,σ) x∗∗t−1,dx

′∗∗
t−1,d

)
.
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Remark 3. When the ρ function is strictly convex such that ψ is monotonically
increasing, Q∗T (β) is a strictly convex function with a unique minimum
attainable in Θ, so β̂M exists and is unique. Unfortunately, strict convexity
is not compatible with the class of ρ-functions typically used in related
literature and, hence, we do not impose this restriction. As a result, min

β∈Θ
Q∗T (β)

may present multiple solutions corresponding to local minima, a well-known
practical concern in M estimation; see Amemiya (1985). Theorem 1 ensures
the existence of a ‘correct’ solution which converges in probability to the true
parameter vector. In order to characterize the asymptotic distribution of this
solution, Theorem 2 considers the compact ball ΦT ⊂Θ in a local neighborhood
of β0. The bounds on ζ are chosen to ensure that any

√
T -consistent preliminary

estimator of β belongs to ΦT with probability one. Since Q∗T (β) is continuous
on Θ and ΦT is compact, the objective function takes its minimum value in ΦT ,
which ensures the existence of a local solution, denoted β̃M , which necessarily
corresponds to the global minimum in large samples. Consequently, Theorem 2
characterizes the asymptotic behavior of the consistent solution in Theorem 1,
showing that β̂M is

√
T -consistent and asymptotically normal distributed with

zero mean and covariance matrix σ2A−1
β BβA−1

β . �

Remark 4. Consistency holds if twice differentiability in Assumption 2i) is
replaced by Lipschitz continuity, a more general condition; see Lemma A1
in Appendix B. This allows us to extend consistency to the QR context
as a corollary of Theorem 2. QR is characterized by ρ(r/σ̂) = r(τ − I(r <
0)), τ ∈ (0, 1) , i.e., a Lipschitz-continuous function not differentiable at
the origin. Hence, the QR test in Hassler et al. (2016) –derived under
i.i.d. innovations– is shown to generate consistent estimates under the more
general conditions considered here. Since Hassler et al. (2016) require L2+ε-
bounded innovations for some ε > 0, and Assumption 1 requires ε ≥ 2/3,
this property may seem to come at the cost of a slight strengthening of the
moment condition. Nevertheless, this requirement is due to scaling the residuals
under ρ in Assumption 2 which, unlike the check function used for QR, is not
homogenous. Consequently, for the specific purpose of showing consistency in
QR, Assumption 1 could be weakened to simply require ε > 0 as in Hassler et
al. (2016); see Appendix B. �

3.3. Asymptotic distribution of iterated estimators

Alternatively to the direct optimization ofQ∗T (β), a consistent M estimator of β
can be obtained using iterated numerical methods. These build on a preliminary√
T -consistent estimate, say β̂(0), which can be obtained from the optimization

of a strictly convex function. This preliminary estimate is then iterated in
a numeric algorithm without engaging in further optimization, obtaining an
estimator which can be shown to be asymptotically distributed as β̂M ; see, for
example, Kreiss (1985), Welsh and Ronchetti (2002), and Ling and Li (2003).
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In this section, we first propose a suitable methodology to determine
β̂(0), and then characterize the asymptotic null distribution of two alternative
estimators building on iterated algorithms, namely, the k-iterated Newton-
Raphson and the Iterated Reweighted Least Squares (IRLS) algorithms.

Theorem 3. Let κ̂(0) be a
√
T -consistent estimate of κ : = (ϕ,π1, ..., πp)

′

under Assumption 1. Denote ê(0)t := εt,d− κ̂′(0)z
∗
t−1,d and let σ̂2

(0) be the sample
variance of ê(0)t. Furthermore, let α̂(0) := arg minc∈Θα

∑∞
t=p+1 ρ

(
ê(0)t−c
σ̂(0)

)
and

β̂(0) :=
(
α̂(0), κ̂

′
(0)

)′
. Under Assumptions 1 to 4 and H0 : θ = 0, it then follows

that β̂(0) = β0 +Op
(
T−1/2

)
and σ̂(0) − σ = op

(
T−1/4

)
.

Remark 5. The simplest method to construct a
√
T -consistent estimate

of κ under Assumption 1 is LS, but other methods are possible as well.
Given the resulting residuals, it is straightforward to construct a consistent
estimate of σ satisfying Assumption 3. The simplest alternative is the standard
deviation of residuals. Other alternatives building on absolute residuals, such
as transformation of the mean absolute deviation, may render this property as
well. Finally, given the regression residuals

{
ê(0)t

}
, a preliminary estimate of

αρ arises by solving the M equation. Optimization at this stage only involves
a single parameter and, hence, grid-search methods are highly effective in
ensuring convergence to the global minimum. As a result, β̂(0) :=

(
α̂(0), κ̂

′
(0)

)′
can be seen as a two-stage consistent preliminary estimator of β0. �

3.3.1. Iterated Newton-Raphson estimators. Given β̂(0) and σ̂(0), the one-step
M estimator of β based on the Newton-Raphson algorithm, denoted β̂NR, is
determined as

β̂NR = β̂(0) −

 1

σ̂(0)

T∑
t=p+1

ψ′
(
u∗t,σ̂(0)

(β)
)

x∗t−1,dx
∗′
t−1,d

−1

β=β̂(0)

×

 T∑
t=p+1

ψ
(
u∗t,σ̂(0)

(β)
)

x∗t−1,d


β=β̂(0)

(12)

see Lehmann (1983, Theorems 3.1 and 4.2 of Chapter 6). This procedure can
be iterated a finite k number of times, leading to the k-step Newton-Raphson
M estimator of β. In practice, the most common choice is k = 1, since a
single iteration starting from a

√
T -consistent pre-estimate suffices to ensure

the asymptotic properties of M estimators. The following result formally proves
this statement in our context and characterizes the asymptotic distribution of
β̂NR under the set of assumptions considered.
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Theorem 4. Let β̂(0) be a preliminary estimator of β such that
√
T
(
β̂(0) − β0

)
= Op (1) and σ̂(0) − σ = op

(
T−1/4

)
under H 0 : θ = 0 and

Assumptions 1 to 4. Denote β̂NR as the M estimator of β based on a one-step
iteration of the Newton-Raphson algorithm as defined in (12). Then, under the
set of conditions considered:

√
T
(
β̂NR − β0

)
⇒N (0,Ωβ) . (13)

Remark 6. Theorem 4 shows that iterated estimators from the Newton-
Raphson algorithm, based on a preliminary

√
T -consistent estimate, have

the same asymptotic null distribution as the consistent solution from
minβ∈ΘQ

∗
T (β) . The null asymptotic distribution of β̂NR is not affected by

the distribution of the preliminary estimate β̂(0) and, remarkably, even a single
iteration suffices to produce an estimator which is asymptotically equivalent to
that obtained from the direct numerical optimization of Q∗T (β) . Furthermore,
because a single iteration produces a

√
T -consistent estimator of β, Theorem

4 applies trivially to any of the subsequent iterations, thereby characterizing
the distribution of k-iterated Newton-Raphson estimators for any k ≥ 1 when
building on the estimates of the previous iteration. �

3.3.2. Iterated Reweighted Least Squares (IRLS). The k-step Newton-
Raphson algorithm involves the computation of the Hessian. Alternative
methods which do not rely upon this estimation may result more attractive.
Among these alternatives, the IRLS estimator is probably the most
common numerical technique implemented in practice. This procedure
exploits the analogy between the first-order condition of the optimization
problem and the equation vector that characterizes a simple Weighted
Least Squares (WLS) problem. In particular, if we denote ω (rt) :=
ψ (rt) /rt, setting ω (0) := 0, the first-order condition equation system∑T
t=p+1 ψ

(
u∗t,σ̂ (β)

)
x∗t−1,d = 0 that characterizes M estimators can be

rewritten as
∑T
t=p+1 ω

(
u∗t,σ̂ (β)

)
u∗t,σ̂ (β) x∗t−1,d = 0. As a result, β̂M :=

min
β∈Θ

Q∗T (β) admits an implicit WLS-type representation of the form:

 T∑
t=p+1

ω
(
u∗t,σ̂ (β)

)
x∗t−1,dx

′∗
t−1,d

−1
T∑

t=p+1

ω
(
u∗t,σ̂ (β)

)
x∗t−1,dεt,d. (14)

This property suggests an iterated algorithm to approximate the solution in the
optimization problem by recursive methods using (14). In particular, starting
from a preliminary estimate β̂(0), one obtains the scaled residuals u∗t,σ̂

(
β̂(0)

)
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and the corresponding weights ωt
(
u∗t,σ̂

(
β̂(0)

))
and, hence, a new estimator,

say β̂IRLS,(1), by direct computation of (14). This procedure is then repeated
a number of times until convergence, leading to the IRLS M estimator of β,
which we shall denote as β̂IRLS . Theorem 5 below characterizes the asymptotic
distribution of this estimator upon additional regularity conditions.

Theorem 5. Let β̂(0) be a preliminary estimate of β satisfying Theorem 3,
and denote β̂IRLS as the M estimator of β based on k iterations of the IRLS
algorithm. Under the null hypothesis, Assumptions 1 to 4, and when i) ψ (r)
is odd such that ψ(0) = 0 and ψ′′(0) is finite, ii) ω (r) is Lipschitz continuous,
and iii) the eigenvalues of Dβ := I − C−1

β Aβ are smaller than unity, with
Cβ := plimT→∞T

−1
∑T
t=p+1 ωt (ẽt,σ) x∗∗t−1,dx

′∗∗
t−1,d, it follows that:

√
T
(
β̂IRLS − β0

)
⇒N (0,Ωβ)

when k is allowed to diverge.

Remark 7. The condition that ψ is odd is standard in this literature; e.g.,
Welsh and Ronchetti (2002). In contrast to the Newton-Raphson algorithm,
the IRLS method generally yields a numerical approximation of the true global
solution. When Cβ = Aβ , the term Dβ = 0 and the approximation of the
asymptotic distribution of the test is exact for any finite iteration. This may
be the case, for instance, if ρ has a constant, non-trivial third derivative. More
generally, Cβ may differ from Aβ , but if the difference is small enough because
the eigenvalues of Dβ are smaller than unity, the asymptotic null distribution
of β̂IRLS is the same as β̂M when the number of iterations is allowed to diverge.
It can be seen from the proof (see Appendix B) that the k-step IRLS estimator,
as T diverges, has a different limiting distribution for each k. In this context,
condition iii) in Theorem 5 guarantees numerical convergence of this sequence
of approximations for a finite, large enough value of k. This is the case, for
instance, when using Huber’s function. �

3.4. Testing for fractional integration

Building on any of the previous estimates of β and on a consistent estimate of
the asymptotic covariance matrix, a test for the order of fractional integration of
{yt} can readily be implemented through a standard t-statistic. The asymptotic
distribution of this test is formally stated in the following Theorem.

Theorem 6. Let β̂M ∈ S, S :=
{
β̂M , β̂NR, β̂IRLS,

}
, be the M estima-

tor of β such that
√
T
(
β̂M − β0

)
= Op (1) holds true under the respec-

tive conditions outlined in Theorems 2, 4 and 5. Given ût := εt,d −
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β̂′Mx
∗
t−1,d, define σ̂2

M := T−1
∑T
t=p+1 (ût − u)2, and the matrices AβT :=

T−1
∑T
t=p+1 ψ

′
(
ût
σ̂M

)
x∗t−1,dx

′∗
t−1,d, BβT := T−1

∑T
t=p+1 ψ

2
(
ût
σ̂M

)
x∗t−1,dx

′∗
t−1,d,

and ΩβT := σ̂2
M A−1

βT BβT A−1
βT , it then follows that σ̂2

M
p→ σ2, AβT

p→ Aβ ,

BβT
p→ Bβ , and, consequently,

ΩβT
p→ Ωβ .

Hence, under the null hypothesis, H 0 : θ = 0, and the remaining assumptions
considered,

tM :=
ϕ̂M√
ω̂22/T

⇒N (0, 1)

where ϕ̂M and ω̂22 denote the second element in β̂M and in the diagonal of
ΩβT , respectively.

Remark 8. Theorem 6 gives a theoretical basis for the construction of
confidence intervals that include the true value of the fractional parameter
with 100 (1− λ) % asymptotic coverage by inverting the non-rejection region of
tM; see Hassler et al. (2016). More specifically, let tM(l) denote the value of
tM when testing H0 : yt ∼ FI (l) for an arbitrary l. For a closed interval Ψ in
R, define Dλ = {s ∈ Ψ : Pr [Z ≤ |tM(s)|] ≤ 1− λ} with λ ∈ (0, 1) , and Z the
standard normal variate, i.e., the subset of Ψ for which the null hypothesis
cannot be rejected at the λ significance level. From Theorem 6, it follows
that if Dλ is in the interior of Θ, then the probability of the true order of
integration being within Dλ is at least (1− λ). Thus, a confidence interval can
be constructed through a grid-search process in Ψ, which is computationally
feasible because the fractional parameter typically lies in the interval (0, 1). �

Finally, the following theorem characterizes the asymptotic distribution
of tM under sequences of local alternatives in a

√
T neighbourhood of the

null hypothesis and, hence, completes the theoretical discussion. It is shown
that M-based tests for fractional integration exhibit non-trivial power against
such alternatives, so departures from the null hypothesis will be detected with
increasing probability.

Theorem 7. Consider a sequence of local alternatives of the form H1 : θ =
c/
√
T for some finite c 6= 0. Under the assumptions of Theorem 6, it then

follows under the alternative hypothesis that:

tM ⇒N
(

c
√
ω22

, 1

)
where ω22 is the second element in the diagonal of Ωβ . Consequently,
Pr
(
|tM| > z1−λ/2

)
is an increasing sequence on c, with z1−λ/2 denoting the

two-sided critical value of the standard normal distribution for theλ% nominal
size level.
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4. Monte Carlo analysis

In this section, we analyze the finite-sample properties of the M tests for
fractional integration by means of Monte Carlo simulation. We consider
two alternative ρ-functions widely used in related literature, namely, the so-
called Huber and Bisquare (or Biweight) ρ-functions defined, respectively, as
ρ (r) = 0.5r2I (|r| ≤ cH) +

[
cH |r| − k2

2

]
I (|r| > k) with cH = 1.345, and ρ (r) =[

c2B
6

{
1−

[
1−

(
r
k

)2]3}]
I (|r| ≤ cB) +

c2B
6 I (|r| > cB) with cB = 4.685. Since

IRLS is the most common approach used in practice, we report results based
on this algorithm, noting that results based on Newton-Raphson estimation are
similar. In the empirical implementation of the IRLS algorithm, we first use
LS to estimate a preliminary value of the slope parameters in the augmented
regression, and then infer the scatter of the residuals using the Mean Absolute
Deviation, as usual in this literature. We iterate until convergence setting max
k = 100.

The t-statistics from the Huber and Bisquare ρ-functions are denoted as tHM
and tBM, respectively. For benchmarking purposes, we consider the LS-based
test statistics with standard errors computed either for i.i.d. innovations as in
Breitung and Hassler (2000), denoted tLS , or using Eicker-White’s correction
against heteroskedasticity as in Demetrescu et al. (2008), denoted tHCLS . In
addition, we compute the QR t-test in Hassler et al. (2016), estimating equation
(6) with QR at the 50th quantile, and using Powell’s robust standard errors
with a Gaussian kernel and bandwidth parameter hT = 0.3×min {σ̂u, IQRu}×
T−1/5, where σ̂u and IQRu denote the sample standard deviation and the
sample interquartile range of the residuals of the regression, respectively.
We shall denote the resultant test as tQR. As discussed previously, both LS
and QR can be seen as particular cases of the generalized M estimation
framework, exhibiting different properties because of the different choices of
the weighting function implemented. LS-based inference is expected to provide
more powerful results under normality, whereas QR-based inference can lead
to enhanced power in relation to LS under departures from normality, as
shown experimentally in Hassler et al. (2016). Finally, we also consider the
sign test in Delgado and Velasco (2005), denoted DV . This test is based on
the same harmonic weighting structure that characterizes the regression-based
tests discussed in this paper, but has the outstanding property of being formally
valid even if E

(
e2
t

)
=∞. On the other hand, it requires the median of et to be

zero, i.e., requires symmetric errors, which in practice may result excessively
restrictive, but which holds true in our experimental analysis. The DV test
statistic is asymptotically distributed as a standard normal distribution under
the null hypothesis and, given St,d := sign (εt,d) , can be computed as

DV =

√
6

π2T

T−1∑
j=1

1

j

T∑
t=j+1

St,dSt−j,d. (15)



Working Papers 16

4.1. Finite-sample rejection frequencies

In this experiment, we consider a DGP characterized by (1 − a1L)(1 −
L)1+θyt = et, t = 1, ..., T, where a1 ∈ {0, 0.5} , {et} are i.i.d. innovations
drawn from a Student-t distribution with v ∈ {2, 3, 1000} degrees of freedom,
and T ∈ {250, 500}. The case v = 1000 corresponds close to the Gaussian
distribution, whereas v ∈ {2, 3} are characterized by heavy-tailed distributions,
having infinite variance when v = 2. As in Breitung and Hassler (2002) and
Hassler et al. (2016), under the null hypothesis we test for a unit root, namely,
H0 : yt ∼ FI(1), noting that the true order of integration is given by d0 = 1 + θ
with θ ∈ {−0.3, ...,−0.1, 0, 0.1, ..., 0.3}. We then compute the different test
statistics against a two-sided alternative at the 5% significance level and analyze
the average rejection frequencies given 5, 000 replications of the experiments.
The case θ = 0 determines the empirical size of the tests in this context,
while values θ 6= 0 characterize the finite-sample power behaviour. Finally,
the autoregressive coefficients a1 = 0 and a1 = 0.5 allow us to analyze the
performance of the tests under errors driven by i.i.d. innovations and short-
run dependence, respectively. In the latter case, LS- and M-based tests are
computed from auxiliary regressions augmented with one lag of the dependent
variable, while the DV test is computed on the residuals of a first-order
autoregression.

[Insert Table 1 around here]
Table 1 reports the rejection frequencies in the i.i.d. experiment (a1 = 0).

Under the null hypothesis, all regression-based tests exhibit approximately
correct empirical size with rejection frequencies close to 5%. LS-based
estimation tends to yield more stable results than QR in small samples,
since the latter requires numerical optimization, but these differences tend to
disappear quickly as the sample size increases. For v = 2 and T = 500, tLS and
tQR suffer size departures in this experiment, which is not surprising because
errors have infinite variance and this possibility is ruled out in their theoretical
derivations. In contrast, the remaining tests, including tHCLS , exhibit good size
performance in this context, even though only DV is theoretically ensured to
exhibit correct nominal size (asymptotically) when errors have infinite variance.

Under the alternative hypotheses, the Gaussian environment v = 1000
provides the conditions for the optimality of tLS , which generally outperforms
the alternative tests. The differences are fairly small under M estimation and
tend to be more substantial for the QR and DV tests. When v = 2 or v = 3,
LS-based tests tend to become conservative in relation to QR- and M-based
tests. In this context, tLS is no longer efficient, and the Monte Carlo analysis
confirms that M-estimation leads to large gains in relative power. For instance,
for T = 250, v = 3 and θ = −0.1, the power of tLS and tHCLS is 54.00%
and 61.22%, respectively, whereas that of tHM and tBM is 73.62% and 72.96%,
respectively. The differences in power between tHM and tBM are small and tend



17 Testing the fractionally integrated hypothesis using M estimation

to disappear as the sample length increases. The QR test exhibits enhanced
properties under heavy-tailed distributions, as reported in Hassler et al. (2016),
but the power of this test tends to be dominated by M testing. For instance,
for T = 250, v = 3 and θ = −0.1, tQR has power of 64.10%. The DV test
displays considerably smaller power in comparison to the other tests, which is
not surprising because sign tests are fairly robust, but known to exhibit reduced
power in small samples.

The ability to reject the false null increases with the sample length. In
the case of M-based tests, this is formally expected from Theorem 7. For
instance, for T = 500, v = 3 and θ = −0.1, the power of tLS and tHCLS is
82.24% and 83.64%, showing sizeable increments. Similarly, the power of the
M-based tests, tHM and tBM, is 96.04% and 95.74%, respectively, while the power
of tQR is 90.98%. All these tests exhibit good power, and the differences tend
to disappear in large samples, but M-based tests clearly outperform the other
alternatives under heavy-tailed innovations. Interestingly, power exhibits an
asymmetric pattern such that the relative gains tend to be much larger when
θ < 0, a feature noted in previous literature (see e.g. Hassler et al., 2016). This
pattern is data-dependent and, for instance, tends to disappear as v approaches
2, for which power exhibits a more symmetric behavior.

[Insert Table 2 around here]

Table 2 reports the rejection frequencies when the DGP is driven by weakly-
dependent errors with a1 = 0.5. Under the null hypothesis all tests, and
particularly the DV test, display finite sample size departures as a consequence
of augmentation. These departures are more evident for T = 250, and with
Gaussian errors. The size distortion caused by augmentation is a small-sample
feature and, it is almost completely eliminated when the sample length increases
to T = 500. For the DV test, the overall distortion still remains sizeable with
T = 500. Finally, under the alternative hypotheses, all tests display significant
power reductions in relation to the i.i.d. context, a well-known feature caused
by augmentation. Nevertheless, power increases as θ| and/or the sample size
increases, showing that these distortions are a finite-sample result. In this
context, the power of all tests is characterized by a strong asymmetric pattern
such that when θ < 0 alternatives are easier detected. As in the i.i.d. case,
the power of the M- and QR-based tests largely improves in relation to the
LS-based alternatives as the degree of excess kurtosis increases, particularly.
when θ < 0.

In summary, the overall picture that emerges from this experiment supports
the asymptotic theory discussed in Theorems 6 and 7, showing that M-
based tests are well-suited in finite-samples and exhibit approximately correct
empirical size. Short-run dependence can be handled successfully through
augmentation, particularly in large samples, and M estimation can provide
improved performance over LS- and even QR-based alternatives when the data
is driven by non-Gaussian distributions.
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4.2. MDS with time-varying volatility

The second experiment addresses the empirical power when errors exhibit
dependence in volatility. Assumption 1 does not formally allow for this
possibility, but our interest is motivated by the empirical relevance of this
pattern in financial variables. As in the previous experiment, data are generated
from (1 − L)1+θyt = εt, where εt := σtηt, σ

2
t characterizes the GARCH

dynamics and ηt are i.i.d. innovations drawn from a Student-t distribution with
v ∈ {2, 3, 1000} degrees of freedom. For σ2

t we consider two GARCH processes,
namely, a GARCH A which is characterized by σ2

t = 0.01 + 0.10ε2
t−1 + 0.60σ2

t−1,
and a GARCH B characterized by a more persistent volatility process such as
σ2
t = 0.01 + 0.05ε2

t−1 + 0.90σ2
t−1. Time-varying volatility is a distinctive feature

of high-frequency data, so the number of available observations in samples of the
variables involved is fairly large and typically spans thousands of observations
(see, for instance, the empirical analysis in Section 5). In order to make results
comparable to those reported previously, we set T = 1000 in this experiment.
As in the previous experiment, LS- and M-based tests are computed from
augmented regressions with one lag of the dependent variable.

[Insert Table 3 around here]
Table 3 presents the rejection frequencies when the volatility dynamics

is generated by the GARCH A and GARCH B processes. Although we still
observe some small size distortions, these are in general acceptable from an
empirical point of view. In general, under the alternative, the empirical rejection
frequencies of all tests are very similar regardless of whether GARCH A
or GARCH B is considered. Moreover, as also observed in Tables 1 and 2,
departures from normality lead the M-tests (tHM and tBM) to display improved
power performance, even in relation to QR-based tests.

Thus, the overall picture that emerges from these experiments confirms that
M-based tests exhibit improved performance in relation to LS and even QR
alternatives when the data are driven by heavy-tailed distributions. While the
empirical implementation of these tests may seem more involved than simple
LS, it can produce inference with more reliable results against a backdrop of
non-Gaussianity.

5. Empirical analysis: volatility of financial assets

Volatility modeling has taken a predominant position in financial econometrics
because of the empirical relevance of this topic in asset pricing, asset allocation,
and risk management. In this section, we analyze the long-term dynamics of
two alternative daily volatility measures which are characterized by different
statistical properties. On the one hand, we consider log absolute returns.
Functions of absolute returns, such as log-power transformations, are the
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most common proxy of the conditional variability of financial assets. These
proxies typically exhibit autocorrelations with hyperbolic rates of decay (e.g.,
Bollerslev and Wright 2000) and a considerable degree of non-normality owing
to the influence of extreme observations; see, e.g., Brand and Jones (2006) and
references therein. In addition, we consider the log transform of the high-low
range price range, a simple, yet highly effective empirical proxy of volatility.
This is defined as the logarithm of the spread between the highest and lowest
log-asset prices in a day. This measure displays the characteristic pattern of
strong persistence of volatility measures, but in contrast to log absolute returns,
its distribution is close to be normal. This framework poses an interesting
scenario to empirically compare the performance of M tests in relation to LS.

We compute both volatility measures on daily prices of stock market
indices in both developed and emerging markets over the period 01/01/2000
to 31/12/2016. These include indices for the U.S. (SP500 and NASDAQ
Composite), France (CAC40), Germany (DAX30), Japan (NIKKEI250), Spain
(IBEX35), U.K. (FTSE100), Brazil (BOVESPA), Hong Kong (HANG SENG),
Argentina (MERVAL), and Mexico (MXX).3 For both volatility measures,
Table 3 reports standard descriptive statistics (mean, standard deviation,
skewness, and kurtosis) as well as the Ljung-Box Q-test statistic for absence of
serial correlation up to the first 100 lags, and the Jarque-Bera test statistic for
normality based on sample deviations from the theoretical values of kurtosis
and skewness under Gaussianity. The main features of this analysis shall be
commented in greater detail below.

Given these series,we construct 95% confidence intervals for the fractional
parameter by inverting the non-rejection regions of the following test statistics:
the LS-based test in Demetrescu et al. (2008) computed with robust standard
errors to (conditional) heteroskedasticity, denoted tHCLS ; the QR test in Hassler
et al. (2016) computed at the median with robust standard errors, as described
in the Monte Carlo section, denoted tQR; the Kolmogorov-Smirnov joint QR
test to simultaneously address the null hypothesis at the quantiles [0.1, 0.9],
as described in Hassler et al. (2016), denoted KS; and, finally, the M-based
tests computed from IRLS and one-step Newton-Raphson algorithms, denoted
IRLS (tIRLS) and NR (tNR), respectively, with Huber and Bisquare weighting
ρ-functions, denoted with superscripts H and B, respectively (e.g., tHIRLS and
tBIRLS). These algorithms are iterated starting from the LS estimation, setting
the initial value of the intercept equal to zero and allowing the iterative
procedure to freely determine all the parameters involved.

In the implementation of these tests, we follow two common methodological
approaches. First, in order to account for a likely non-zero deterministic mean
in the level of the volatility measures, we use the demeaning process described in

3. The data used to compute these measures (maximum, minimum and closing prices) are
available from commercial data providers and can be obtained freely from Yahoo Finance.
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Robinson (1994); see also Demetrescu et al. (2008) and Hassler et al. (2016). In
particular, model (1) can be generalized by setting yt = µ+ (1− L)−d−θ εtI(t >

1) with µ 6= 0. Under H0 : θ = 0, (1− L)d+ yt = µ (1− L)d+ + εtI(t > 1), so
µ can be estimated consistently under Assumption 1 from the regression of
∆d

+yt :=
∑t−1
j=0 λj (d) yt−j on bt,d :=

∑t−1
j=0 λj (d) , t = 2, ..., T, with {λj (d)} as

defined in (4) . The residuals of this regression correspond to {εt} and, therefore,
it suffices to redefine (2) as εt,d := ∆d

+yt − µ̂bt,d, with µ̂ denoting the estimate
of µ, to remove the effects of the deterministic mean. We determine µ̂ from a
LS regression in all cases, noting that alternative estimation methods (e.g., M
or QR estimation) may be valid as well. Secondly, the auxiliary regressions are
augmented based on Schwert’s rule, i.e., p :=

[
4 (T/100)1/4

]
; see Demetrescu

et al. (2008) for a discussion on the convenience of this procedure.
Finally, together with these tests, we implement the DV sign test and

the Exact Local Whittle (ELW) estimator in Shimotsu and Phillips (2005).
In order to account for short-run dependence in the DV test, this test is
computed on the residuals of an AR(p). The 95% confidence intervals are then
constructed by inverting the empirical non-rejection regions of this test. The
confidence intervals from the ELW are constructed from point-estimates based
on estimation with bandwidth parameter

[
T 0.6

]
, using asymptotic standard

errors, and building on the asymptotic normality of this estimator.

[Insert Table 4 around here]

5.1. Log absolute returns

For illustrative purposes, Figure 1 displays the time-series dynamics, the sample
histogram (confronted with the theoretical normal distribution), and the sample
autocorrelation function (with asymptotic 95% confidence bands) of the log
absolute-valued returns of the SP500 index. As expected, log absolute returns
exhibit a pattern of slow-decaying autocorrelations that suggests long-range
persistence. Furthermore, as discussed previously, these series are highly non-
normal owing to the occurrence of extreme returns that cause excess kurtosis
and skewness, even after applying the log-transform. For instance, the log
absolute return of the SP500 index has sample skewness and kurtosis of −1.09
and 5.27, respectively, so normality is strongly rejected according to the Jarque-
Bera test owing to extreme observations in the left tail of the distribution. The
remaining series are characterized by similar characteristics; see Table 4, Panel
A.

[Insert Figure 1 around here]

Table 5 reports the 95% confidence interval estimates for the fractional
parameter from the different testing procedures. In this analysis, the DV test
always rejects the null hypothesis, failing to provide reasonable estimates, so we
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do not report results for this statistic. This evidence should not be surprising
in view that log absolute returns are strongly left-skewed and that the DV test
builds on the critical assumption that the underlying distribution is symmetric.
As a result, the test is largely biased towards overrejection, with rejection
signalling that (at least) one of the key assumptions that define the DGP under
the null is not supported by the data.

[Insert Table 5 around here]

In contrast, the results from the alternative time- and frequency-domain
tests suggest strong evidence of fractional integration, with the hypotheses
of FI(0) or FI(1) dynamics being largely rejected in all cases. Excluding
MERVAL, all confidence intervals include d = 0.4, considered as the
“characteristic” value of the long-memory parameter in empirical studies
involving daily transformations of squared returns or realized volatility; see,
for instance, Bollerslev and Wright (2000) and Andersen et al. (2001, 2003).
For summarizing purposes, the column labelled Intersection in Table 5 shows
the set of values for which the null hypothesis cannot be rejected by any
of the regression-based tests, i.e., a “core” set of values for which there is
methodological agreement. This region is essentially formed by values smaller
than the cut-off level d < 0.5, essentially suggesting that log absolute returns
are driven by a stationary long-memory process. The results from local Whittle
estimation agree with this evidence.

Particularizing on M estimates, there are minor differences attending to
the choice of the weighting function or the iterative algorithm. Confidence
intervals are not markedly different from those based on LS estimation, which
is not surprising since the empirical analysis involves a fairly large sample and
LS-based inference is consistent and should not be affected critically by the
distribution of the data provided regularity conditions. As discussed previously,
however, LS is not efficient in a non-Gaussian context, and it is worth noting
that the amplitudes of the M confidence intervals tend to be smaller than their
LS counterparts in all cases. As shown in the Monte Carlo section, this evidence
is consistent with relative gains in power performance. Similarly, M confidence
intervals are smaller than their QR counterpart, which, again, agrees with the
finite-sample performance exhibited by M and QR tests under heavy-tailed
innovations in the Monte Carlo analysis.

In order to give a sense of the relative size of these reductions, the last
two columns in Table 5 report the average relative change in the amplitude
of the confidence intervals when moving from LS to M estimation with
IRLS and NR algorithms, respectively.4 Relative changes are determined as

4. Note that this is an intuitive way to appraise the differences in the estimation. We do not
pursue a formal, statistical analysis to determine if, for instance, reductions are statistically
significant.
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RC := (AM −ALS) /ALS , with AM and ALS denoting the amplitude of the
M- and LS-based confidence interval, respectively. For ease of presentation, we
report the average values of RC based on the estimates from the two different
weighting functions. For instance, for the log absolute return of the SP500,
the LS confidence interval is [0.37, 0.53], whereas the tHIRLS and tBIRLS yield
confidence intervals of [0.38, 0.49] and [0.37, 0.49], respectively. Hence, IRLS
estimation leads to an average relative change (ARC) in the amplitude of the
LS interval of -28.13%. Table 5 shows that the ARC tend to be larger for IRLS
and somewhat more conservative for NR, with values ranging, respectively, from
-25.00% and -15.63% (MERVAL) to -50.00% and -38.24% (NASDAQ). The
overall cross-sectionally averaged values are -37.66% and -24.16%, respectively.

5.2. Log-price range volatility

Under the assumptions that the asset price Ps follows a driftless geometric
Brownian motion, Parkinson (1980) shows that the variance estimator σ̂2

t :=

κ1 (Ht − Lt)2 is about five times more efficient than the squared return over
the same interval, with κ1 := 1

4 ln 2 and Ht := maxs∈[t−∆,t] lnPs and Lt :=
mins∈[t−∆,t] lnPs denoting the log-transform of the high and low prices over
the interval [t−∆, t]; see also Andersen and Bollerslev (1998). This property
holds independently of the discrete amplitude ∆ (Martens and van Dijk, 2007),
but the typical interval considered in the literature is the trading day. Alizadeh
et al. (2002) discuss the statistical properties of the daily log-range volatility
estimator Lt := ln (Ht − Lt), arguing that this is approximately distributed as a
normal distribution. Since ln σ̂t = 0.5 lnκ1 +Lt, Lt is a noisy linear proxy of the
log-volatility process of returns; see also Brand and Jones (2006). Consequently,
the evidence based on this variable can be compared directly to that obtained
for the log absolute-valued returns.

[Insert Figure 2 around here]
Paralleling the analysis on log absolute returns, Figure 2 shows the dynamics

of the log-range volatility of the SP500 index and the related histogram
and sample autocorrelation function. The most striking differences are that
persistence is now much more evident, with autocorrelations exhibiting a
stronger pattern of dependence (i.e., a greater degree of fractional integration),
and that the distribution of the log-range volatility estimator is close to be
normal in most cases; see Table 4, Panel B. For instance, the Jarque-Bera test
is unable to reject normality for the variability of the IBEX index. Nevertheless,
Panel B in Table 4 still shows significant departures in terms of skewness and
excess kurtosis, leading to rejections of normality in most cases. For instance,
kurtosis in the log-range of NIKKEI is nearly 5.2, not very different from
the value reported for the log absolute return. In a context characterized by
nearly-Gaussianity and large sample sizes, the performance of LS- and M-based
tests is expected to be similar. Nevertheless, M tests may still produce more
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efficient results, reflected in narrower confidence intervals, when departures
from normality are larger.

[Insert Table 6 around here]

Table 6 reports the confidence interval estimates for the log-range series.
Consistent with the results reported for log absolute returns, all regression-
based tests and the ELW estimator strongly reject FI(0) or FI(1) dynamics.
On the other hand, the DV test fails to reject FI(0) dynamics in most cases
because the confidence intervals are so wide that they include the origin. For
similar reasons, the DV cannot reject that the volatility of the HANG SENG
index is driven by a unit root process. As shown in the Monte Carlo section,
the DV test may suffer important finite-sample undersizing effects when dealing
with short-run dependence and, like other sign-based tests, tends to exhibit low
power. Finite-sample underrejections, therefore, seem a likely explanation to
understand the unusual performance of this test in relation to the alternative
approaches.

The conclusions drawn from the results of the other tests lead to a consistent
picture. In contrast to the results reported in the previous section, confidence
intervals now tend to include values above and below the cut-off limit of 0.5.
Consequently, there is more uncertainty about the non-stationarity of many
of these series and, in some cases, such as DAX, stationarity is rejected by all
tests. In our view, this evidence is reasonable because the total sample analyzed
comprises the 2007-2009 financial crisis, a period of considerable distress in
financial markets in which market volatility increased to unprecedented levels.
This is a form of nonstationarity which could be accommodated by a fractional
integrated model with a long-memory coefficient close to or larger than 0.5, as
reflected in the estimates.

Particularizing on the outcomes from M estimation, once again the results
are not critically affected by the choices of the weighting ρ-function nor the
iterative algorithm implemented. For instance, for the volatility of SP500,
tHIRLS and tBIRLS yield 95% confidence intervals of [0.49, 0.66] and [0.48, 0.66],
respectively, while tHNR and tBNR yield [0.47, 0.68] and [0.47.0.67]. As expected
in view of the quasi-Gaussian nature of log-ranges, M estimates are not very
different from LS estimates; e.g., the LS confidence interval in the SP500 case
is [0.50, 0.69]. The ARC, shown in the last columns of Table 6, suggest more
moderate changes which tend to be larger for the IRLS algorithm, ranging
from -3.57% (NASDAQ) to -31.03% (BOVESPA). The overall cross-sectional
mean value of ARC for IRLS is -18.09%, which is about 50% smaller than
the corresponding value in log absolute returns. The difficulties to improve LS
estimates in this context are more evident under the NR algorithm. The ARC
exhibits noisier behavior around zero, ranging from -15.52% (BOVESPA) to
14.29% (NASDAQ). The overall cross-sectional value is 0.1%, suggesting that,
on average, the parameter uncertainty embedded in this procedure is similar
to that in LS.
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Nevertheless, this analysis shows that M estimation may yield sizeable
reductions in the amplitude of the confidence intervals. In particular, the largest
values of the ARC when implementing the IRLS and NR algorithms correspond
to BOVESPA, with relative changes of -31.03% and -15.52%, respectively, and
NIKKEI, with relative gains of -28.57% and -14.29%, respectively. In fact, for
these series, M estimation leads to smaller confidence interval estimation than
any of the other procedures considered. As reported in Table 4, Panel B, it
is precisely these series that present the largest combined skewness-kurtosis
departures of normality, leading to the largest values of the Jarque-Bera test
statistics in the sample. This evidence, therefore, suggests that M estimators
can still take advantage of non-normality and successfully refine the outcomes
from LS estimation.

5.3. Discussion

Whereas the results based on both volatility measures essentially agree that the
dynamics of this latent process is driven by fractional integration, the estimates
for the log absolute returns tend to be significantly smaller than those based
on the log-range series, suggesting smaller persistence. These differences may
partially be related to differences in the distribution of the data, but they more
likely stem from the negative influence of measurement errors on log absolute
returns, causing a well-known problem of attenuation bias when inferring the
order of fractional integration.

To see this, note that discrete returns can generally be written as rt = µt +
σtηt, where µt and σt denote the conditional mean and volatility of the process,
and ηt is a short-run innovation component, typically assumed to be i.i.d. in
theoretical models. At the daily frequency, µt is typically small, so rt ' σtηt and
hence ln |rt| ' lnσt + ln |ηt|. As a result, innovation to returns introduce random
measurement errors in log absolute returns. Intuitively, this term weakens the
pattern of correlation in {ln |rt|} because the short-run component ln |ηt| makes
this series noisier. This causes seemingly smaller persistence (an effect that is
evident through the differences in the autocorrelation functions shown in Figure
3 and 4) and downward-biased estimates of the long-memory coefficient; see, for
instance, Haldrup and Nielsen (2007).5 As discussed by Bollerslev and Wright
(2000), the problem can be related to temporal aggregation. Even at a relatively
high sampling frequency such as daily, aggregation induces downward biases
in the estimates based on the squared, log-squared or absolute returns because
the variability of the term ln |ηt| largely increases with temporal aggregation.

5. This effect has been documented for log-periodogram based estimators, but is extensible
to regression-based tests because the properties of the tests are critically determined by the
stochastic properties of the regressor. Since measurement errors would feed into the right-hand
side variables, the pattern of correlation that serves as a basis to identify long-memory is
distorted, leading to similar biases as in the case of log-periodogram estimation.
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The log-range volatility estimator relies on a different form of aggregation,
as it essentially builds on the spread of the high and low log-prices over the
session. Whereas this difference may still be contaminated with measurement
errors, the variability of the long-range volatility estimate is much smaller than
that of log absolute returns, which implies that the log-volatility process is
more accurately captured, or, in other words, that measurement errors have a
much weaker influence.6 Andersen and Bollerslev (1998) argue that the daily
range has approximately the same informational content as sampling intradaily
returns every 4 hours; see also Brandt and Diebold (2006). Higher efficiency,
comparable to realized variance estimates over such intraday intervals, must
necessarily reduce the downward bias in long-memory estimation caused by
aggregation, following the arguments in Andersen and Bollerslev (1998). The
evidence reported in Table 5 seems entirely consistent with this statement.
Consequently, the results from the range-based estimation are, in our view,
more reliable and likely to capture the long-term behavior of the volatility
process.

6. Conclusion

This paper has discussed the theory under M estimation for the class of
regression-based tests for fractional integration put forward in Breitung and
Hassler (2002), Demetrescu et al. (2008) and Hassler et al. (2009). These
tests are derived under the Lagrange Multiplier principle of a Gaussian score
function, which ensures efficiency in the appropriate context of normality.
Because normality is not a crucial assumption in order to characterize the
asymptotic distribution of these tests, they still are valid when the series of
interest display non-normal features. In the empirically relevant context in
which variables are not normally distributed, however, alternative estimation
procedures, such as M estimation, may exhibit better properties. This paper has
discussed the asymptotic null distribution for M tests for fractional integration,
showing that they retain the most appealing properties of LS tests, namely,
asymptotic normality, which holds independently of the degree of fractional
integration, and power to detect (local) departures from the null hypothesis.
Monte Carlo analysis confirms that these tests can be more appropriate under
non-Gaussian innovations, largely improving the power exhibited by LS tests.

6. Under the assumption that log stock price follows a martingale process with constant
variance, Alizadeh et al. (2002) showed that the log range obeys approximately a normal
distribution with mean of 0.43+ lnσt and a variance of 0.292, whereas the log absolute return
has a mean of −0.64+ lnσt, and a variance of 1.112. As remarked by Brand and Jones (2006),
both measures are linear proxies of the log-volatility process (with the same loading of one), but
the variability of the latter is about four times larger. Measurement errors, consequently, have
a smaller impact on the variability of the variable and the range is a much more informative
proxy of the true log-volatility process.



Working Papers 26

The empirical analysis has addressed the existence of long-memory
dynamics in some well-known proxies of volatility, characterized by strong
persistence in their autocorrelation function, but with very different
distributional properties. Log absolute returns is a highly non-normal proxy
of volatility, whereas log-range volatility is very well approximated by a normal
distribution. The evidence put forward for the latter is more reliable, because
log-range is a more efficient proxy of volatililty. In a nearly-Gaussian context,
LS-based estimation is expected to produce reliable and (approximately)
efficient results, and the evidence obtained from alternative methods essentially
matches that of LS estimation. Interestingly, the empirical evidence in our
paper suggests that M-based estimators may still be able to introduce finite-
sample refinements, leading to more accurate estimates of the long-memory
parameter in the form of confidence intervals with smaller amplitude. While
these refinements may generally be conservative in a quasi-Gaussian context,
in practice they do not imply an incremental computational burden, since
iterative methods used in M estimation essentially refine the preliminary LS-
based estimation without involving further optimization or complex operations.
Consequently, M estimation seems to provide a valuable complementary
alternative to LS.
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Appendix A: M estimation and the LM principle

For ease of exposition, consider that Assumption 1 holds with εt ∼ iid
(
0, σ2

)
,

having a differentiable, continuous probability density function fε (r) . Let
∆θ

+ := (1− L)θ+ , noting that εt = ∆θ
+εt,d. Then, for a parameter αρ and a

constant s > 0, define ε̃t,d,s := (εt,d − αρ) /s such that

ε̃t,d,s = ∆θ
+

εt,d
s
− αρ

s
.

The log-likelihood considered for the estimation of λ := (αρ, θ)
′ conditional on

{εt,d; s} can be written as ` (λ) :=
∑T
t=1 ln fε (ε̃t,d,s) . The score vector is given

by:  `(λ)
∂αρ

= −1
s

∑T
t=1

(
∂ ln fε(r)

∂r

)∣∣∣
r=ε̃t,d,s

`(λ)
∂θ =

∑T
t=1

(
∂ ln fε(r)

∂r

)∣∣∣
r=ε̃t,d,s

∆θ
+ ln (1− L)

εt,d
s

 .
Using the series expansion of the logarithm

− ln (1− L) = L+
L2

2
+
L3

3
+ . . . ,

and setting ψML(r) := −∂ ln fε(r)/∂r, the score vector can equivalently be
written as:

1

s

(
−

T∑
t=1

ψML(ε̃t,d,s),
T∑
t=1

ψML (ε̃t,d,s)x
∗
t−1,d

)′
.

Under H0 : θ = 0, we have εt,d := εt and ε̃t,d,σ̂ = ε̃t,σ + op (1) under Assumption
3, with ε̃t,σ := (εt − αρ) /σ. Then, the ML first-order condition ` (λ) /∂λ′ = 0

with s = σ̂ leads to the vector equation system:

T∑
t=1

ψML

(
εt − αρ
σ̂

)
x∗t−1,d = 0; x∗t−1,d :=

(
1, x∗t−1,d

)′
; (16)

which, as discussed in Section 3.3.1, would characterize M estimation in the
regression of εt,d on x∗t−1,d and a constant. More generally, consider an arbitrary
ψ-function in (16), and let β̂M be the solution of

∑T
t=1 ψ

(
u∗t,σ̂ (β)

)
x∗t−1,d = 0,

with u∗t,σ̂ (β) =
(
εt,d − β′x∗t−1,d

)
/σ̂. When ψ = ψML, β̂M matches the ML

solution under H0 : θ = 0 and subsequent inference has optimal asymptotic
properties under regularity conditions, but this typically requires knowledge
of fε. On the other hand, under suitable conditions that do not impose a
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parametric assumption on fε, we typically have ψ 6= ψML, but β̂M will still
retain consistency and asymptotic normality, so it is possible to design tests for
H0 : θ = 0 with non-trivial power, as formally proven in Appendix B. The case
of dependent errors can be handled similarly, using p-th order augmentation
such that x∗t−1,d :=

(
1, x∗t−1,d, εt−1,d, ..., εt−p,d

)′
.

Appendix B: Technical Proofs

In what follows, recall that x∗∗t−1,d :=
∑∞
j=0 j

−1εt−j,d, x∗∗t−1,d

=
(

1, x∗∗t−1,d, εt−1,d, ..., εt−p,d

)′
, u∗∗t,s (β) :=

(
εt,d − β′x∗∗t−1,d

)
/s, u∗t,s (β) :=(

εt,d − β′x∗t−1,d

)
/s for any β ∈ Θ and for any finite s > 0, and that ẽt,s :=

(et − αρ) /s.

Lemma A1. Under the null hypothesis, H 0 : θ = 0, Assumptions 1, 3
and 4, and a first-order Lipschitz continuous ρ-function, it follows that
arg min
β∈Θ

Q∗∗T (β)
p→ β0, where Q∗∗T (β) := T−1

∑T
t=p+1 ρ

(
u∗∗t,σ (β)

)
, β0 :=

(αρ, 0, a1, ..., ap)
′, and αρ := arg minc∈Θα E

(
ρ
(
et−c
σ

))
.

Proof of Lemma A.1.
The proof takes two steps. In the first step (Step 1) we show, under H0 : θ = 0

and the assumptions considered, that the random function Q∗∗T (β) converges
uniformly in probability to E

(
ρ
(
u∗∗t,σ (β)

))
on Θ. In the second step (Step

2), we show that E
(
ρ
(
u∗∗t,σ (β)

))
is uniquely minimized at β0 on Θ under

these restrictions. Because Θ is compact and the continuity of ρ ensures that
the measurable functions Q∗∗T (β) and E

(
ρ
(
u∗∗t,σ (β)

))
are continuous in β,

conditions (A) to (C) in Thm. 4.1.1 in Amemiya (1985) are verified and, hence,
arg minβ∈ΘQ∗∗T (β)

p→ arg minβ∈ΘE
(
ρ
(
u∗∗t,σ (β)

))
.

Proof of Step 1.
Under H0 : θ = 0 and Assumption 1,

(
εt,d,x

′∗∗
t−1,d

)′
is a strictly stationary

and ergodic vector, and so are the measurable transformations u∗∗t,σ (β) and
ρ
(
u∗∗t,σ (β)

)
for all β ∈Θ and σ > 0. Since E|ρ

(
u∗∗t,σ (β)

)
| < ∞, the Ergodic

Theorem ensures that Q∗∗T (β)
a.s→ E

(
ρ
(
u∗∗t,σ (β)

))
for any fixed β ∈Θ, and

hence Q∗∗T (β) converges point-wise to E
(
ρ
(
u∗∗t,σ (β)

))
in Θ. A sufficient
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condition for uniform convergence in probability (Newey 1989; Andrews 1989;
and Pötscher and Prucha 1994) is thatQ∗∗T (β) be stochastically equicontinuous,
i.e., if for any ε > 0,

lim
δ→0

lim
T→∞

sup
β1,β2:‖β1−β2‖<δ

Pr (|Q∗∗T (β1)−Q∗∗T (β2)| > ε) = 0

which follows if

lim
δ→0

lim
T→∞

sup
β1,β2:‖β1−β2‖<δ

|Q∗∗T (β1)−Q∗∗T (β2)| p→ 0. (17)

Recall that a function f (x) : R→R is said to be first-order Lipschitz continuous
if |f (c1)− f (c2) | ≤C|c1− c2| for some finite C > 0 and all c1, c2 ∈ R. Therefore,

sup
β1,β2:‖β1−β2‖<δ

|Q∗∗T (β1)−Q∗∗T (β2) | ≤ T−1
T∑

t=p+1

|ρ
(
u∗∗t,σ (β1)

)
− ρ

(
u∗∗t,σ (β2)

)
|

≤ Cδ

σ

T−1
T∑

t=p+1

∥∥x∗∗t−1,d

∥∥ = op (1)

as T → ∞ and δ → 0, irrespectively of β1 or β2, noting that
T−1

∑T
t=p+1

∥∥∥x∗∗t−1,d

∥∥∥=Op (1) from Chebyshev’s inequality becauseE||x∗t−1,d||2 <
∞ under Assumption 1. Consequently, supβ∈Θ

∣∣Q∗∗T (β)−E
[
ρ
(
u∗∗t,σ (β)

)]∣∣ =

op (1) as required.

Proof of Step 2.
Consider the partitions β = (α,κ′)

′, β0 = (αp, κ
′
0)
′, and x∗∗t−1,d =(

1,z′∗∗t−1,d

)′
, with these terms defined implicitly. Under the null hypothesis

and Assumptions 1 to 3, the characterization εt,d = κ′0z
∗∗
t−1,d + et holds true

and we have

arg min
β∈Θ

E

(
ρ

(
εt,d − β′x∗∗t−1,d

σ

))

= arg min
β∈Θ

E

(
ρ

(
et
σ
− (κ− κ0)′

z∗∗t−1,d

σ
− α

σ

))

= arg min
β∈Θ

E

(
ρ

(
et − αp
σ

−
[
(κ− κ0)′

z∗∗t−1,d

σ
+

(α− αp)
σ

]))

= arg min
β∈Θ

E

(
ρ

(
et − αp
σ

− (β − β0)′
x∗∗t−1,d

σ

))
. (18)
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The orthogonality restriction E
(
ψ
(
et−αρ
σ

)∣∣∣Ft−1

)
= 0 and the con-

dition E
(
ψ′
(
et−αρ
σ

)∣∣∣Ft−1

)
> 0 in Assumption 2 iv) imply that

minλE
(
ρ
(
et−αp
σ − λ

)∣∣∣λ) for adapted λ is uniquely solved at λ = 0. Hence,
the Law of Iterated Expectations (LIE) indicates that E

[
ρ
(
u∗∗t,σ (β)

)]
attains

its global minimum at β = β0. �

Lemma A2. Let RT (β) := T−1
∑T
t=p+1 ψ (ξt)

(
u∗t,σ̂ (β)− u∗∗t,σ (β)

)
, with ξt

lying between u∗∗t,σ (β) and u∗t,σ̂ (β) for each t. Under the null hypothesis
H0 : θ = 0, and Assumptions 1 to 4 holding true, RT (β)

p→ 0 uniformly on
Θ.

Proof of Lemma A2.
For any arbitrary, finite constant K > 0,

sup
||β||≤K

|RT (β)| ≤ sup
||β||≤K

∣∣∣∣∣∣ 1

T

T∑
t=p+1

ψ (ξt) εt,d bσ

∣∣∣∣∣∣
+ sup
||β||≤K

∣∣∣∣∣∣ 1

T

T∑
t=p+1

ψ (ξt) β
′x∗t−1,d bσ

∣∣∣∣∣∣
+ sup
||β||≤K

∣∣∣∣∣∣ 1

σT

T∑
t=p+1

ψ (ξt)β
′ (x∗∗t−1,d − x∗t−1,d

)∣∣∣∣∣∣ (19)

where RT (β) := T−1
∑T
t=p+1 ψ (ξt)

(
u∗t,σ̂ (β)− u∗∗t,σ (β)

)
and bσ := σ̂−1 − σ−1.

Hence, we prove the required result by showing that all terms on the right-
hand side of (19) are op (1) . For the first term, note that ψ (r) is bounded
and |bσ| = op (1) under Assumptions 2 and 3, respectively, so there exists some
C > 0 such that sup |ψ (r) | ≤ C. SettingM := max [C,K], it follows that under
H0 : θ = 0 and Assumptions 1 to 3,

sup
||β||≤K

∣∣∣∣∣∣ 1

T

T∑
t=p+1

ψ (ξt) εt,d bσ

∣∣∣∣∣∣ ≤M |bσ|

T−1
T∑

t=p+1

|εt,d|

 = op (1) .

For the second term, it follows similarly that

sup
||β||≤K

∣∣∣∣∣∣ 1

T

T∑
t=p+1

ψ (ξt) β
′x∗t−1,d bσ

∣∣∣∣∣∣ ≤ M2 |bσ|

 1

T

T∑
t=p+1

∥∥x∗t−1,d

∥∥ = op (1)



33 Testing the fractionally integrated hypothesis using M estimation

because E
(
ε2
t,d

)
< ∞ and E||x∗t−1,d||2 < ∞ for all β ∈ Θ, so

T−1
∑T
t=p+1

∥∥∥x∗t−1,d

∥∥∥ = Op (1) from Chebyshev’s inequality. Finally,

sup
||β||≤K

∣∣∣∣∣∣ 1

σT

T∑
t=p+1

ψ (ξt)β
′ (x∗∗t−1,d − x∗t−1,d

)∣∣∣∣∣∣ ≤ M2

T

T∑
t=p+1

∥∥x∗∗t−1,d − x∗t−1,d

∥∥ ,
since under H0 : θ = 0 and Assumption 1 (see e.g. Demetrescu et al.,
2008) E

∥∥∥x∗∗t−1,d − x∗t−1,d

∥∥∥ =
∥∥∥∑∞j=t j−1εt−j,d

∥∥∥ = O
(
1/
√
t
)
, this implies that

T−1
∑T
t=p+1

∥∥∥x∗∗t−1,d − x∗t−1,d

∥∥∥ = Op
(
T−1/2

)
. Consequently, for any finite,

arbitrary K > 0, we have that sup||β||≤K |RT (β)| = op (1) , and thus
supβ∈Θ |RT (β)| = op (1) under Assumption 4. �

Lemma A3. Let Aβ :=E
(
ψ′ (ẽt,σ)x∗∗t−1,dx

′∗∗
t−1,d

)
and Bβ :=E

(
ψ2 (ẽt,σ)x∗∗t−1,dx

′∗∗
t−1,d

)
.

Then, under the null hypothesis H 0 : θ = 0 and Assumptions 1-4, the following
results hold:
i) ||Aβ|| is bounded, bounded away from zero, and det(Aβ) > 0;

ii) T−1
∑T
t=p+1 ψ

′ (ẽt,σ) x∗∗t−1,dx
′∗∗
t−1,d

p→ Aβ;

iii) T−1/2
∑T
t=p+1 ψ (ẽt,σ) x∗∗t−1,d ⇒N (0,Bβ) .

Proof of Lemma A3.
To prove i) we need an upper bound on the expectation, which follows from

the finite variance of x∗∗t−1,d and the fact that ψ′ can only be bounded under
the conditions in Assumption 1 ii) and iii). Now, let a ∈ R

p+2 6= 0 and note
that

a′E
(
ψ′ (ẽt,σ) x∗∗t−1,dx

′∗∗
t−1,d

)
a = E

((
a′x∗∗t−1,d

)2
E
(
ψ′ (ẽt,σ)

∣∣Ft−1

))
.

Since E (ψ′ (ẽt,σ)| Ft−1) > 0 a.s., the expectation on the right-hand side is
positive as long as a′x∗∗t−1,d is nondegenerate; this is obviously the case and
therefore Aβ is positive definite. Part ii) follows from the Ergodic Theorem
because

{
ψ′ (ẽt,σ) ,x′∗∗t−1,d

}
is strictly stationary and ergodic with finite

expectation. For iii), consider ςt:=ψ (ẽt,σ) x∗∗t−1,d and note that E (ςt|Ft−1) = 0

and E (|ςt|) < ∞ under H0 : θ = 0 and Assumptions 1 and 2, so that {ςt,Ft}
is a strictly stationary, ergodic L2-bounded MDS vector with E (ςtς

′
t) = Bβ,

where it can be shown that Bβ is bounded and bounded away from zero using
similar arguments as in i) above. The required result then follows from the
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Central Limit Theorem (CLT) for MDS (Davidson, 1994, Theorem 24.3) and
the Cramér-Wold device. �

Lemma A4. Under the null hypothesis H 0 : θ = 0 and Assumptions 1-4 it
follows that,
i) T−1/2

∑T
t=p+1 x∗∗t−1,d =Op

(√
lnT

)
and T−1/2

∑T
t=p+1 x∗t−1,d =Op

(√
lnT

)
;

ii) T−1/2
∑T
t=p+1 ψ

(
ẽt,σ̂
)
x∗t−1,d ⇒N (0,Bβ) ;

iii) supp+1≤t≤T ||x∗t−1,d|| = op
(
T 3/8 lnT

)
.

Proof of Lemma A4.
Part i) holds because x∗∗t−1,d is a linear process with Wold coefficient

matrices satisfying ‖Bj‖ ≤ Cj−1 and, hence, the autocovariances satisfy
‖Γh‖ ≤ Ch−1, which implies that V ar

(
T−1

∑T
t=p+1 x∗∗t−1,d

)
= O

(
logT
T

)
and,

hence, T−1/2
∑T
t=p+1 x∗∗t−1,d = Op

(√
logT

)
from Markov’s Theorem. The same

argument applies to x∗t−1,d. To show ii), note that

T−1/2
T∑

t=p+1

ψ
(
ẽt,σ̂
)
x∗t−1,d = T−1/2

T∑
t=p+1

ψ (ẽt,σ) x∗∗t−1,d

+

T−1/2
T∑

t=p+1

ψ (ẽt,σ)
(
x∗t−1,d − x∗∗t−1,d

)
+

T−1/2
T∑

t=p+1

(
ψ
(
ẽt,σ̂
)
− ψ (ẽt,σ)

)
x∗∗t−1,d


= T−1/2

T∑
t=p+1

ψ (ẽt,σ) x∗∗t−1,d + {R1T }+ {R2T } , say,

so the required result holds from Lemma A3 iii) if R1T = op (1) and R2T =

op (1). Since ψ (ẽt,σ) is a bounded MDS under Assumption 2, R1T = op (1)

because ψ2 (ẽt,σ)
∥∥∥x∗∗t−1,d − x∗t−1,d

∥∥∥2 p→ 0 as t → ∞. For the second term,
R2T , recall that bσ := σ̂−1 − σ−1 and use the mean-value expansion ψ

(
ẽt,σ̂
)
−
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ψ (ẽt,σ) = ψ′ (ξt) (et − αρ) bσ, with ξt between ẽt,σ̂ and ẽt,σ, to write

R2T =

 bσ√
T

T∑
t=p+1

ψ′ (ẽt,σ) (et − αρ) x∗t−1,d


+

 bσ√
T

T∑
t=p+1

(
ψ′ (ξt)− ψ′ (ẽt,σ)

)
(et − αρ) x∗t−1,d


= {R21T }+ {R22T } , say.

After some straightforward algebraic manipulations,

R21T =
bσ
T 1/2

 T∑
t=p+1

[
ψ′ (ẽt,σ) et −E

(
ψ′ (ẽt,σ) et|Ft−1

)]
x∗t−1,d

−αρ
T∑

t=p+1

[
ψ′ (ẽt,σ)−E

(
ψ′ (ẽt,σ) |Ft−1

)]
x∗t−1,d


+bσ

T−1/2
T∑

t=p+1

x∗∗t−1,d

[
E
(
ψ′ (ẽt,σ) et|Ft−1

)
− αpE

(
ψ′ (ẽt,σ) |Ft−1

)]
= op

(
T−1/4

)
+ op

(√
lnT

T 1/8

)
= op (1)

noting that the first term in brackets is Op
(√

T
)
from the CLT for MDS, the

conditional expectations in the second term in brackets are constant under
Assumption 2 and T−1/2

∑T
t=p+1 x∗t−1,d = Op

(√
logT

)
from i) above, and

bσ = op
(
T−1/4

)
from Assumption 3. Finally, for R22T we use the Lipschitz

property of ψ′ together with |ξt − ẽt,σ| ≤ |et − αρ||bσ| to bound

∣∣ψ′ (ξt)− ψ′ (ẽt,σ)
∣∣ ≤ C|et − αρ| |bσ|
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for some C > 0 such that

||R22T || ≤
C|bσ|2√

T

T∑
t=p+1

|et − αρ|2 ||x∗t−1,d||

≤ C|bσ|2√
T

T∑
t=p+1

e2
t ||x∗t−1,d||+

C|bσ|2α2
ρ√

T

T∑
t=p+1

||x∗∗t−1,d||

+
2C|bσ|2|αρ|√

T

T∑
t=p+1

|et| ||x∗t−1,d||

= op (1)

from Assumption 3, noting that E
(∣∣∣ 1√

T

∑T
t=p+1 e

2
t

∥∥∥x∗∗t−1,d

∥∥∥∣∣∣)≤√TE (e2
t

)
E
(∥∥∥x∗∗t−1,d

∥∥∥)
under conditional homoskedasticity from Assumption 1, so consistency of σ̂ at
any rate higher than T 1/4 collapses the first term. Clearly, the same condition
carries over to the other two components as well.
Moving on to iii), we use Minkowski’s norm inequality and the linear
representation of x∗t,d to conclude that

∥∥x∗t,d∥∥8/3
≤

t−1∑
j=0

‖Bj‖ ‖et‖8/3 = O (lnT )

since the Wold coefficient matrices satisfy ‖Bj‖ = O
(
j−1
)
. Hence,

E

(∥∥∥ 1
lnT x∗t,d

∥∥∥8/3
)

is uniformly bounded, and thus

sup
p+1≤t≤T

∥∥∥∥ 1

lnT
x∗t,d

∥∥∥∥ = Op

(
T 3/8

)
as required for the result.�

Lemma A5. Assume that ξt lies on the line segment between u∗t,σ̂ (β1) and
u∗t,σ̂ (β0) , with β1 ∈ ΦT , ΦT := {β ∈Θ : T ζ ||β − β0|| ≤ K}, for any finite,
arbitrary K > 0 and 3/8 < ζ < 1/2. Under H0 : θ = 0 and Assumptions 1 to 4,

sup
β1∈ΦT

∥∥∥∥∥∥T−1
T∑

t=p+1

ψ′ (ξt) x∗t−1,dx
′∗
t−1,d −Aβ

∥∥∥∥∥∥ = op (1) .
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Proof of Lemma A5. Recall that ẽt,σ := σ−1 (et − αρ) . Then,

1

T

T∑
t=p+1

ψ′ (ξt) x∗t−1,dx
′∗
t−1,d =

 1

T

T∑
t=p+1

ψ′ (ẽt,σ) x∗∗t−1,dx
′∗∗
t−1,d


+

 1

T

T∑
t=p+1

ψ′ (ẽt,σ)
(
x∗t−1,dx

′∗
t−1,d − x∗∗t−1,dx

′∗∗
t−1,d

)
+

 1

T

T∑
t=p+1

(
ψ′ (ξt)− ψ′ (ẽt,σ)

)
x∗t−1,dx

′∗
t−1,d


=

{
A∗∗βT

}
+ {R1T }+ {R2T (ξt)} , say.

Neither A∗∗βT nor R1T depend on β1, so

sup
β1∈ΦT

∥∥∥∥∥∥T−1
T∑

t=p+1

ψ′ (ξt) x∗t−1,dx
′∗
t−1,d −Aβ

∥∥∥∥∥∥≤ ∥∥A∗∗βT −Aβ

∥∥+ ‖R1T ‖+ sup
β1∈ΦT

‖R2T (ξt)‖

and the required result holds by showing the asymptotic negligibility of the
three terms on the right-hand side. Lemma A3ii) ensures that A∗∗βT

p→ Aβ, so∥∥∥A∗∗βT −Aβ

∥∥∥ = op (1) . For the second term, note that

‖R1T ‖ ≤ sup
1≤t≤T

∣∣ψ′ (ẽt,σ)
∣∣ 1

T

T∑
t=p+1

∥∥x∗t−1,dx
′∗
t−1,d − x∗∗t−1,dx

′∗∗
t−1,d

∥∥ = op

(
T−1/8

)
= op (1)

because sup≤t≤T |ψ′ (ẽt,σ)| = op
(
T 3/8

)
since ψ′, being Lipschitz, has at most

linear tails at infinity so ψ′ (ẽt,σ) is uniformly L8/3-bounded, and, as discussed
in the proof of Lemma A2, T−1

∑T
t=p+1

∥∥∥x∗t−1,dx
′∗
t−1,d − x∗∗t−1,dx

′∗∗
t−1,d

∥∥∥ =

Op
(
T−1/2

)
. For the last term, note that

‖R2T (ξt)‖ ≤
1

T

T∑
t=p+1

∣∣ψ′ (ξt)− ψ′ (ẽt,σ)
∣∣ ∥∥x∗t−1,d

∥∥2
.

The Lipschitz condition on ψ′ indicates that |ψ′ (ξt)− ψ′ (ẽt,σ)| ≤ C |ξt − ẽt,σ|,
where, for each t, we may represent ξt as ξt = λt

σ̂

(
εt,d − β′1x∗t−1,d

)
+

(1−λt)
σ̂

(
εt,d − β′0x∗t−1,d

)
for some λt ∈ [0, 1] , and 1 ≤ t ≤ T . Since εt,d =
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β′0x
∗
t−1,d + (et − αρ), and recalling that bσ := σ̂−1 − σ−1, it follows that

|ξt − ẽt,σ| =

∣∣∣∣εt,dσ̂ − λt
σ̂
β′1x
∗
t−1,d −

(1− λt)
σ̂

β′0x
∗
t−1,d − ẽt,σ

∣∣∣∣
=

∣∣∣∣−λtσ̂ (β1 − β0) x∗t−1,d + (et − αρ) bσ
∣∣∣∣

≤ 1

σ̂
‖β1 − β0‖

∥∥x∗t−1,d

∥∥+ |bσ| (|et|+ |αρ|)

so setting M = max [C,K] leads to

sup
β1∈ΦT

‖R2T (ξt)‖ ≤
M2

σ̂

 1

T 1+ζ

T∑
t=p+1

∥∥x∗t−1,d

∥∥3

+ |bσ|
M

T

T∑
t=p+1

(|et|+ |αρ|)
∥∥x∗t−1,d

∥∥2
.

The first term on the right-hand side of this expression vanishes because σ̂ p→ σ

and

1

T 1+ζ

T∑
t=p+1

∥∥x∗t−1,d

∥∥3 ≤ 1

T ζ
sup

1≤t≤T

∥∥x∗t−1,d

∥∥T−1
T∑

t=p+1

∥∥x∗t−1,d

∥∥2

 = op (1)

given that sup1≤t≤T

∥∥∥x∗t−1,d

∥∥∥ = op
(
T ζ
)
which follows from Lemma A4iii) and

ζ > 3/8, and T−1
∑T
t=p+1

∥∥∥x∗t−1,d

∥∥∥2

= Op (1).
For the second term,

T−1
T∑

t=p+1

|et|
∥∥x∗t−1,d

∥∥2 ≤ sup
1≤t≤T

|et|1/3
1

T

T∑
t=p+1

|et|2/3
∥∥x∗t−1,d

∥∥2

where sup1≤t≤T |et|
1/3 = Op

(
3
√
T 3/8

)
given the uniform L8/3-boundedness,

while Hölder’s inequality gives that

E
(
|et|2/3

∥∥x∗t−1,d

∥∥2
)
≤ 4

√
E
(
|et|8/3

)
4/3

√
E

(∥∥∥x∗t−1,d

∥∥∥8/3
)
.

Thus, since αρ = O (1) under Assumption 4, it follows that

|bσ| sup
1≤t≤T

|et|1/3
 1

T

T∑
t=p+1

|et|2/3
∥∥x∗t−1,d

∥∥2

 = op (1)

and

|bσ|

 1

T

T∑
t=p+1

∥∥x∗t−1,d

∥∥2

 |αρ| = op (1)
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for any σ̂ fulfilling σ̂ − σ = op
(
T−1/4

)
, as required in Assumption 3, so

supβ1∈ΦT
‖R3T (ξt)‖ = op (1). �

Lemma A6. For any β1, β2 ∈ Θ, let

πT (β1β2) :=
1√
T

T∑
t=p+1

[
ψ
(
u∗t,σ̂ (β1)

)
− ψ

(
u∗t,σ̂ (β2)

)]
x∗t−1,d.

Then,

πT (β1, β2) =
√
T (β1−β2)

[
1

σ̂T

T∑
t=2

ψ′ (ξt) x∗t−1,dx
′∗
t−1,d

]
with ξt between u∗t,σ̂ (β) and u∗t,σ̂ (β0) for each t.

Proof of Lemma A6.
Since

πT (β1, β2) =
1√
T

T∑
t=p+1

[
ψ
(
u∗t,σ̂ (β1)

)
− ψ

(
u∗t,σ̂ (β2)

)]
x∗t−1,d

and mean-value expanding ψ
(
u∗t,σ̂ (β1)

)
about u∗t,σ̂ (β2) yields

√
T (β1−β0)

 1

σ̂T

T∑
t=p+1

ψ′ (ξt) x∗t−1,dx
′∗
t−1,d


with ξt between u∗t,σ̂ (β1) and u∗t,σ̂ (β2) . �
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Proof of Theorem 1.
Noting that conditions i) and ii) in Assumption 2 imply that the ρ-function

is Lipschitz, the proof follows directly from Lemmas A1, A2 and the Asymptotic
Equivalence Lemma (AEL). Using the Mean Value Theorem (MVT), we can
write Q∗T (β) = Q∗∗T (β) + RT (β) , with Q∗∗T (β) from Lemma A1 and RT (β)

from Lemma A2. Consequently, under H0 : θ = 0 and the set of assumptions
considered, Lemma A2 ensures that

sup
β∈Θ
||Q∗T (β)−Q∗∗T (β) || = op (1)

so that Q∗T (β) = Q∗∗T (β) + op (1) uniformly on Θ. The required result then
follows from Lemma A1 and the AEL. �

Proof of Theorem 2.
Let ∇Q∗T (β) be the gradient of Q∗T (β) with respect to β, i.e.,

∇Q∗T (β) := −T−1
T∑

t=p+1

ψ
(
u∗t,σ̂ (β)

) x∗t−1,d

σ̂
(20)

and note that, since the ρ-function is twice continuous differentiable, the mean-
value expansion of ψ

(
u∗t,σ̂ (β0)

)
about u∗t,σ̂

(
β̂M

)
yields,

∇Q∗T (β0) = ∇Q∗T
(
β̂M

)
−

T−1
T∑

t=p+1

ψ′ (ξt)
x∗t−1,dx

′∗
t−1,d

σ̂2

(β̂M − β0

)
,

with ξt lying between u∗t,σ̂ (β0) and u∗t,σ̂
(
β̂M

)
for each t. From the continuity

of the objective function and compactness of ΦT , then β̂M ∈ ΦT , and since
Lemma A5 makes clear that for any β ∈ ΦT

sup
β∈ΦT

∥∥∥∥∥∥T−1
T∑

t=p+1

ψ′ (ξt)x
∗
t−1,dx

′∗
t−1,d −Aβ

∥∥∥∥∥∥ = op (1)

where Aβ is invertible by Lemma A3 i), the following representation holds:

√
T
(
β̂M − β0

)
= −σA−1

β

 1√
T

T∑
t=p+1

ψ

(
et − αρ
σ̂

)
x∗t−1,d

+ op (1)

noting that ∇QT
(
β̂M

)
= 0 and σ̂

p→ σ. Then, from Lemma A4ii) it follows
that,
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1√
T

T∑
t=p+1

ψ

(
et − αρ
σ̂

)
x∗t−1,d ⇒N (0,Bβ)

and, consequently,

√
T
(
β̂M − β0

)
⇒N

(
0;σ2A−1

β BβA−1
β

)
,

as required.�

Proof of Theorem 3.
Note that, given the differentiability of the ρ-function with bounded

derivative, supα∈Θa E
(
|ρ
(
et−α
σ

)
|
)
< ∞, with Θa being a closed interval in

R. Define now ẽt,σ := et−α
σ , PT (α) := T−1

∑T
t=p+1 ρ

(
et−α
σ

)
, and P̂T (α) :=

T−1
∑T
t=p+1 ρ

(
ê(0)t−α
σ̂(0)

)
. Using the MVT, we may characterize

P̂T (α) = PT (α) +

 1

σ̂(0)T

T∑
t=p+1

ψ (ξt,1)
(
et − ê(0)t

)
+
bσ
T

T∑
t=p+1

ψ (ξt,2) (et − α)


for all α ∈Θa, with bσ := σ̂−1

(0) −σ
−1 and ξt,1 and ξt,2 lying in the line connecting

ê(0)t and e(0)t, and σ̂(0) and σ, respectively. Then, for any K > 0 and finite
C > 0, consistency of κ̂(0) and σ̂(0) together with Assumptions 1 and A2ii)

imply that,

sup
|α|≤K

∣∣∣P̂T (α)− PT (α)
∣∣∣ ≤ C

σ̂(0)
||κ̂(0) − κ||

T−1
T∑

t=p+1

||x∗t−1,d||


+C|bσ|

K + T−1
T∑

t=p+1

|et|


= op (1)

and, hence, supα∈Θa

∣∣∣P̂T (α)− PT (α)
∣∣∣ = op (1) for a bounded Θa. Paralleling

the proof of Lemma A1, it can be shown that PT (α) is stochastically
equicontinuous under Assumption 1 because the ρ-function is Lipschitz
under Assumption 2i) and ii) and, therefore, P̂T (α) converges uniformly in
probability to E (ρ (ẽt,σ)) in Θa by the AEL. Since conditions (A) to (C) in
Thm. 4.1.1 in Amemiya (1985) are verified, there exists a solution to α̂(0) :=
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arg minα∈Θa P̂T (α) for which α̂(0)
p→ arg minα∈Θα E

(
ρ
(
et−α
σ

))
. Moreover,

given that αp is assumed to minimize the conditional risk E
(
ρ
(
et−α
σ

)
|Ft−1

)
,

we have that

E

(
ρ

(
et − α
σ

)
|Ft−1

)
> E

(
ρ

(
et − αp
σ

)
|Ft−1

)
∀α 6= αp;

and the LIE concludes that αp minimizes the unconditional risk as well.
Furthermore, because α̂(0) is an M estimator of αρ, it can be shown under
the assumptions considered that

√
T
(
α̂(0) − αp

)
follows a limiting normal

distribution; the arguments are the same as in Theorem 2 above and, therefore,
we omit the details.

Finally, we show that the scale estimator fulfills the desired convergence
rate. Standard regression algebra shows that, under the null,

σ̂2 =
1

T

T∑
t=p+1

ê2
(0)t =

1

T

T∑
t=1

e2
t +Op

(
T−1

)
for
√
T -consistent κ̂, so the convergence rate of the left-hand side hinges on the

convergence rate of 1
T

∑T
t=1 e

2
t . Examine to this end

1

T

T∑
t=1

(
e2
t − σ2

)
= T−1/4

(
1

T 3/4

T∑
t=1

(
e2
t − σ2

))

where σ2 := E
(
e2
t

)
and note that E

(∣∣e2
t − σ2

∣∣1+ε/2
)
<∞ when E

(
|et|2+ε

)
<

∞. Given that
{
e2
t − σ2,Ft

}
is a MDS under Assumption 1, we can invoke the

strong law of large number to show that T−3/4
∑T
t=1

(
e2
t − σ2

) a.s.→ 0 (Davidson
2002, Theorem 20.11). The sufficient condition for the application of the strong
law is that

∑
t≥1

E(|e2t−σ2|p)
t3p/4

<∞, which is clearly fulfilled for any 4/3 < p ≤ 2,
since 1 + ε/2 > 4/3 by assumption. Since σ2 is bounded away from zero
and σ̂2 consistent, the convergence rate of σ̂2 carries over to σ̂ and, hence,
σ̂ = σ + op

(
T−1/4

)
, as required.�

Proof of Theorem 4.
Without loss of generality, we set k = 1, because any posterior iteration

would build on an estimator with the same asymptotic properties as that in the
previous iteration. Computing a one-step Newton-Raphson iteration produces
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β̂NR,(1) = β̂(0) − sT

(
β̂(0)

)
with

sT

(
β̂(0)

)
:=

 1

σ̂T

T∑
t=p+1

ψ′
(
u∗t,σ̂ (β)

)
x∗t−1,dx

′∗
t−1,d

−1

β=β̂(0)

×

 1

T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β)

)
x∗t−1,d


β=β̂(0)

and, therefore,

√
T
(
β̂M,(1) − β0

)
=
√
T
(
β̂(0) − β0

)
−
√
T sT

(
β̂(0)

)
.

Since
√
T
(
β̂(0) − β0

)
= Op (1), we may use Lemma A5 to write

√
T sT

(
β̂(0)

)
= σA−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂

(
β̂(0)

))
x∗t−1,d

+ op (1)

= σA−1
β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d + πT

(
β̂(0), β0

)+ op (1)

for

πT

(
β̂(0), β0

)
:=

1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂

(
β̂(0)

))
x∗t−1,d−

1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d

but since

πT

(
β̂(0), β0

)
=
√
T
(
β̂(0)−β0

)[ 1

σ̂T

T∑
t=2

ψ′ (ξt) x∗t−1,dx
′∗
t−1,d

]

we have from Lemma A6

√
T sT

(
β̂(0)

)
= σA−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d

+
√
T
(
β̂(0)−β0

)
+ op (1)

and hence

√
T
(
β̂M,(1) − β0

)
= σA−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d

+ op (1)
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from which we can conclude that,
√
T
(
β̂M,(1) − β0

)
⇒N

(
0, σ2A−1

β BβA−1
β

)
.

from Lemma A4ii).�

Proof of Theorem 5.
First, extend ψ(r)

r continuously on R by setting it to equal ψ′(0) at r = 0.
Note then that ψ(r)

r is Lipschitz since its derivative ψ′

r −
ψ
r2 is bounded on

R with ψ′ being itself Lipschitz, and thus having at most linear behavior at
r→±∞, and ψ being bounded, and also noting that ψ

′

r −
ψ
r2 → ψ′′(0) as r→ 0.

With ψ(r)
r Lipschitz, like ψ′, we may use the arguments from the proof of

Lemma A5 to conclude that

1

T

T∑
t=p+1

ψ
(
u∗t,σ̂

(
β̂(0)

))
u∗t,σ̂

(
β̂(0)

)
x∗t−1,dx

′∗
t−1,d

p→E

([
ψ (ẽt,σ)

ẽt,σ

]
x∗t−1,dx

′∗
t−1,d

)
:= Cβ > 0.

(21)
Let us now examine the first iteration, k = 1. Given the convergence in (21), it
is easily shown that
√
T
(
β̂IRLS,(1) − β0

)
=
√
T
(
β̂(0) − β0

)
−σC−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂

(
β̂(0)

))
x∗t−1,d

+ op (1)

=
√
T
(
β̂(0) − β0

)
−σC−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d + πT

+ op (1) .

But

πT =

 1

σ̂T

T∑
t=p+1

ψ′ (ξt)x
∗
t−1,dx

′∗
t−1,d

√T (β̂(0) − β0

)
such that for Dβ := I−C−1

β Aβ, we have
√
T
(
β̂IRLS,(1) − β0

)
= Dβ

√
T
(
β̂(0) − β0

)
−σC−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d

+ op (1) .
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For k = 2, we obtain analogously that

√
T
(
β̂IRLS,(2) − β0

)
= Dβ

√
T
(
β̂IRLS,(1) − β0

)
−σC−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d

+ op (1)

= D2
β

√
T
(
β̂(0) − β0

)
−σDβC−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d


−σC−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d

 ;

and iterating k times leads to

√
T
(
β̂IRLS,(k) − β0

)
= Dk

β

√
T
(
β̂(0) − β0

)
−

 k∑
j=0

Dj
β

σC−1
β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d

+ op (1) .

Since I−C−1
β Aβ has eigenvalues smaller than unity, we have that (Dβ)k → 0

and
∑k
j=0 (Dβ)j →

(
C−1
β Aβ

)−1

as k→∞, such that

√
T
(
β̂IRLS,(k) − β0

)
→k→∞ −σA−1

β

 1√
T

T∑
t=p+1

ψ
(
u∗t,σ̂ (β0)

)
x∗t−1,d

+ op (1)

which possesses the required weak limit as T →∞. �

Proof of Theorem 6.
Note that Theorem 2 and Lemma A5 ensure that AβT

p→Aβ , and that the
same arguments may be employed to show that BβT

p→Bβ since ψ2(r) is easily
shown to be Lipschitz. The result then follows from Theorems 2, 4 and 5. �
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Proof of Theorem 7.
We give the details for the test based on β̂M ; the arguments are essentially

the same for the iterated estimators. First, since θ = c/
√
T , the fractional

difference ∆θ := (1− L)θ may be linearized (cf. Tanaka, 1999),

∆θ − 1 ≈ θ
(
L+

L2

2
+
L3

3
+ . . .

)
+O(θ2)

leading to

εt,d = ∆−θεt,d+θ = εt,d+θ +
c√
T
x∗t−1,d+θ +Op

(
T−1

)
with x∗t−1,d+θ =

∑t−1
j=1 j

−1εt−j,d+θ =
∑t−1
j=1 j

−1εt−j . At the same time,

εt,d+θ = εt = et +

p∑
j=1

πjεt−j = et + β′0x
∗
t−1,d+θ,

hence

εt,d = et +

p∑
j=1

πjεt−j,d+θ +
c√
T
x∗t−1,d+θ

= 0x∗t−1,d +

p∑
j=1

πjεt,d +

et +
c√
T
x∗t−1,d+θ −

c√
T

p∑
j=1

πjx
∗
t−j,d+θ

 ;

the DGP under the local alternative is

εt,d = β′0x
∗
t−1,d + et,θ

where

et,θ = et +
c√
T
x∗t−1,d+θ −

c√
T

p∑
j=1

πjx
∗
t−j,d+θ +Op

(
1

T

)
(22)

and

x∗t−1,d = ∆−θx∗t−1,d+θ = x∗t−1,d+θ +
c√
T

t−2∑
j=0

j−1x∗t−1−j,d+θ

has analogous properties to x∗t−1,d+θ; in particular, E
(∥∥∥x∗t−1,d

∥∥∥2
)
<C ∀t (this

is because x∗t−1−j,d+θ is uniformly L2-bounded and T−1/2 lnT → 0).
Now, since θ = c/

√
T is a deviation in a 1/

√
T neighbourhood of the

null which is of the same order of magnitude as the estimation error, it is
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straightforward to show that σ̂2 p→ σ2, AβT
p→ Aβ and BβT

p→ Bβ like in the
proof of Theorem 6. To discuss the limiting behavior of the estimator ϕ̂M , we
adapt the proof of Theorem 2 accordingly. The key step is to establish the
limiting behavior of

1√
T

T∑
t=p+1

ψ

(
εt,d − β′0x∗t−1,d

σ̂

)
x∗t−1,d

σ̂
.

Unlike the case θ = 0, the limiting distribution of this normalized (pseudo-)
score is not centered at zero. We resort to the mean value theorem for ψ with
ξt between

εt,d−β′0x
∗
t−1,d

σ̂ and the expansion points et−αρ
σ̂ to obtain

1√
T

T∑
t=p+1

ψ

(
εt,d − β′0x∗t−1,d

σ̂

)
x∗t−1,d

σ̂

=
1√
T

T∑
t=p+1

ψ

(
et − αρ
σ̂

)
x∗t−1,d

σ̂
+

1√
T

T∑
t=p+1

ψ′ (ξt)

(
εt,d − β′0x∗t−1,d

σ̂
− et − αρ

σ̂

)
x∗t−1,d

σ̂

=
1√
T

T∑
t=p+1

ψ

(
et − αρ
σ̂

)
x∗t−1,d+θ

σ̂

+
1√
T

T∑
t=p+1

ψ

(
et − αρ
σ̂

)(
x∗t−1,d

σ̂
−
x∗t−1,d+θ

σ̂

)

+
1

σ̂2
√
T

T∑
t=p+1

ψ′ (ξt) (et,θ − et)x∗t−1,d (23)

with et,θ = et + c√
T
x∗t−1,d+θ −

c√
T

∑p
j=1 πjx

∗
t−j,d+θ. Using the same arguments

as under the null hypothesis and exploiting the fact that now θ = c/
√
T , it

follows that

1

σ̂

 1√
T

T∑
t=p+1

ψ

(
et − αρ
σ̂

)
x∗t−1,d+θ

⇒N (0;
1

σ2
Bβ

)
;

we also notice that

1√
T

T∑
t=p+1

ψ

(
et − αρ
σ̂

)(
x∗t−1,d

σ̂
−
x∗t−1,d+θ

σ̂

)
p→ 0
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(see the discussion in the proof of Lemma A4ii)). By replacing et,θ − et by
c√
T
x∗t−1,d+θ −

c√
T

∑p
j=1 πjx

∗
t−j,d+θ, we obtain for the third summand in (23)

that,

∆T =
1

σ̂2
√
T

T∑
t=p+1

ψ′ (ξt)

 c√
T
x∗t−1,d+θ −

c√
T

p∑
j=1

πjx
∗
t−j,d+θ

x∗t−1,d.

Denote now δc := c (0, 1,−π1, . . . ,−πp)′ and recall that x∗t−1,d+θ = x∗t−1,d −
c√
T

∑t−2
j=0 j

−1x∗t−1−j,d+θ so

1

σ̂2
√
T

T∑
t=p+1

ψ′ (ξt)

 c√
T
x∗t−1,d+θ −

c√
T

p∑
j=1

πjx
∗
t−j,d+θ

x∗t−1,d

=
1

σ̂2T

T∑
t=p+1

ψ′ (ξt)x
∗
t−1,d

x′∗t−1,dδc −
c2√
T

t−2∑
j=0

j−1x∗t−1−j,d+θ


=

1

σ̂2T

T∑
t=p+1

ψ′ (ξt)x
∗
t−1,dx

′∗
t−1,dδc + op (1)

since

E

∣∣∣∣∣∣ψ′ (ξt)x∗t−1,d

t−2∑
j=0

j−1x∗t−1−j,d+θ

∣∣∣∣∣∣
 ≤ C

t−2∑
j=0

j−1

√
E

(∥∥∥x∗t−1,d

∥∥∥2
)
E

(∣∣∣x∗t−1−j,d+θ

∣∣∣2)
= O (lnT )

and thus

c2

σ̂2T 3/2

T∑
t=p+1

ψ′ (ξt)x
∗
t−1,d

t−2∑
j=0

j−1x∗t−1−j,d+θ

 = Op

(
lnT√
T

)
.

Hence, using Lemma A5 again,

∆T
p→ 1

σ2
Aβδc

Consequently, under the conditions considered,

√
T
(
β̂M − β0

)
⇒N (δc; Ωβ)

from which the required result follows directly. �
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Table 1: Rejection frequencies of fractional integration tests (DGP with iid errors drawn from a student-t with v degrees of freedom)

θ t
LS

tHC
LS

tHM tBM DV t
QR

θ t
LS

tHC
LS

tHM tBM DV tQR

v = 1000, T = 250 v = 1000, T = 500

-0.3 100.00 100.00 99.98 99.98 71.78 98.72 -0.3 100.00 100.00 100.00 100.00 97.96 100.00
-0.2 97.58 97.64 96.84 96.80 41.14 84.62 -0.2 99.98 99.98 99.96 99.94 78.96 98.50
-0.1 53.88 54.06 50.62 50.48 11.80 37.76 -0.1 81.12 81.58 79.04 79.14 28.68 60.24
0.0 5.20 5.70 5.24 5.22 4.56 5.98 0 5.38 5.64 5.46 5.40 4.80 5.90
0.1 36.18 37.04 34.50 34.52 35.70 27.34 0.1 70.76 71.06 68.82 68.96 56.68 53.48
0.2 91.60 91.92 90.44 90.40 85.72 80.62 0.2 99.92 99.94 99.88 99.84 98.32 98.52
0.3 99.88 99.92 99.80 99.78 98.96 98.38 0.3 100.00 100.00 100.00 100.00 100.00 100.00

v = 3, T = 250 v = 3, T = 500

-0.3 99.96 99.60 100.00 100.00 68.20 100.00 -0.3 100.00 99.94 100.00 100.00 96.48 100.00
-0.2 97.54 96.72 99.66 99.54 43.72 98.86 -0.2 99.96 99.68 100.00 100.00 81.72 100.00
-0.1 54.00 61.22 73.62 72.96 15.36 64.10 -0.1 82.24 83.64 96.04 95.74 37.20 90.98
0.0 5.16 5.82 5.26 5.42 4.40 4.86 0 4.92 5.68 5.30 5.36 4.84 4.54
0.1 37.12 42.20 59.92 62.86 51.38 54.68 0.1 71.58 73.04 91.50 92.00 76.80 88.24
0.2 91.72 90.82 98.36 98.62 95.12 97.70 0.2 99.88 99.58 100.00 100.00 99.82 100.00
0.3 99.76 99.50 99.98 99.98 99.82 99.98 0.3 100.00 99.98 100.00 100.00 100.00 100.00

v = 2, T = 250 v = 2, T = 500

-0.3 99.8 98.84 99.98 99.98 50.66 99.98 -0.3 99.98 99.60 100.00 99.98 80.46 100.00
-0.2 97.06 95.62 99.94 99.96 33.70 99.82 -0.2 99.82 99.10 100.00 100.00 62.72 100.00
-0.1 53.22 69.42 91.16 91.22 15.18 85.34 -0.1 85.72 89.32 99.68 99.64 32.92 99.06
0.0 4.26 5.48 5.38 5.44 4.26 3.92 0 3.76 4.64 5.36 5.44 4.70 3.66
0.1 35.92 50.16 83.32 86.30 68.26 81.68 0.1 74.24 78.20 98.90 99.16 91.46 98.56
0.2 93.40 91.48 99.76 99.84 98.50 99.70 0.2 99.80 99.22 100.00 100.00 99.98 100.00
0.3 99.70 99.06 100.00 100.00 99.96 100.00 0.3 100.00 99.94 100.00 100.00 100.00 100.00
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Table 2: Rejection frequencies of fractional integration tests (DGP with AR(1) short-run dynamics with coefficient 0.5 and errors drawn
from a student-t with v degrees of freedom)

θ tLS tHCLS tHM tBM DV tQR θ tLS tHCLS tHM tBM DV tQR

v = 1000, T = 250 v = 1000, T = 500

-0.3 49.84 51.50 47.82 47.14 0.78 36.42 -0.3 82.10 82.44 79.20 79.44 2.46 61.46
-0.2 26.82 27.90 25.88 25.72 0.78 21.22 -0.2 48.00 48.50 44.92 44.86 1.40 32.76
-0.1 13.26 13.98 12.94 12.84 0.86 12.00 -0.1 17.92 18.04 16.82 16.78 1.14 14.48
0.0 7.12 7.68 6.94 6.88 1.52 7.44 0 5.82 6.28 6.00 5.84 1.42 6.58
0.1 4.84 5.50 5.16 5.18 2.06 6.66 0.1 5.64 5.82 5.66 5.62 2.80 6.86
0.2 5.02 5.52 5.34 5.22 2.50 7.14 0.2 11.08 11.22 10.30 10.08 4.38 10.32
0.3 5.06 5.42 5.00 5.04 2.46 7.14 0.3 15.04 15.22 12.40 12.44 4.56 13.28

v = 3, T = 250 v = 3, T = 500

-0.3 51.14 57.24 71.78 70.82 1.80 62.44 -0.3 82.78 84.08 96.04 95.46 2.62 90.54
-0.2 26.50 31.64 40.20 39.76 1.68 33.52 -0.2 48.00 52.56 70.04 68.28 2.74 59.24
-0.1 12.04 14.62 15.42 14.68 2.26 13.24 -0.1 17.38 20.14 24.62 24.02 2.86 20.42
0.0 5.86 6.86 6.12 5.44 3.48 5.66 0 5.96 6.42 5.88 5.54 4.36 5.18
0.1 3.96 4.68 4.78 5.64 5.52 5.64 0.1 5.90 6.88 9.72 10.90 8.26 9.68
0.2 4.22 5.28 7.82 9.10 9.30 9.64 0.2 11.16 12.88 23.04 25.76 14.52 24.08
0.3 4.42 5.36 9.00 10.44 11.42 12.18 0.3 14.56 16.60 30.42 33.76 18.84 34.08

v = 2, T = 250 v = 2, T = 500

-0.3 50.12 67.34 90.60 88.74 9.88 84.68 -0.3 85.14 88.06 99.76 99.56 12.16 99.28
-0.2 24.28 40.86 62.50 61.60 7.48 55.34 -0.2 45.66 62.04 91.82 90.98 9.60 86.58
-0.1 10.28 18.14 23.46 22.60 5.72 18.36 -0.1 15.26 25.82 44.26 44.20 6.58 37.02
0.0 5.36 6.02 4.94 4.78 5.78 4.36 0 4.42 5.30 4.70 4.50 7.12 3.72
0.1 4.10 4.58 9.90 11.80 13.06 7.58 0.1 4.54 7.52 24.66 27.68 17.86 21.22
0.2 4.30 6.08 19.86 24.90 22.72 19.64 0.2 9.58 16.44 51.48 57.04 36.94 50.50
0.3 4.26 5.94 24.06 30.40 28.82 26.9 0.3 14.24 20.66 63.28 69.02 50.20 65.06
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Table 3: Rejection frequencies of fractional integration tests (DGP with dependence in volatility and iid innovations drawn fom a
student-t distribution with v degrees of freedom)

CASE A CASE B
θ tLS tHCLS tHM tBM tQR tLS tHCLS tHM tBM tQR

v = 1000 v = 1000
-0.3 100.00 100.00 100.00 100.00 100.00 -0.3 100.00 100.00 100.00 100.00 100.00
-0.2 99.96 99.96 99.94 99.94 98.22 -0.2 99.92 99.90 99.92 99.92 98.20
-0.1 73.16 72.70 75.24 75.08 57.26 -0.1 73.10 71.68 74.96 74.62 57.90
0 5.38 5.18 6.06 6.02 5.90 0 5.18 4.80 6.26 6.16 6.00
0.1 65.76 65.82 50.34 50.36 38.78 0.1 65.46 65.06 50.58 50.52 39.00
0.2 98.96 98.98 97.02 96.86 90.02 0.2 98.92 98.96 96.92 96.76 89.90
0.3 99.98 99.98 99.88 99.86 99.38 0.3 100.00 100.00 99.86 99.86 99.34

v = 3 v = 3
-0.3 100.00 99.90 100.00 100.00 100.00 -0.3 100 99.90 100.00 100.00 100.00
-0.2 99.88 99.60 100.00 100.00 100.00 -0.2 99.88 99.50 100.00 100.00 100.00
-0.1 71.28 73.48 93.52 93.12 88.24 -0.1 71.02 72.24 93.66 92.78 88.20
0 5.10 5.62 5.48 5.26 5.44 0 5.54 5.50 6.00 5.66 5.60
0.1 67.98 69.70 80.36 83.06 76.38 0.1 68.2 69.02 80.48 83.02 76.24
0.2 99.08 98.78 99.88 99.92 99.76 0.2 99.1 98.70 99.90 99.92 99.80
0.3 99.98 99.98 100.00 100.00 100.00 0.3 99.98 99.96 100.00 100.00 100.00

v = 2 v = 2
-0.3 99.98 99.70 100.00 100.00 100.00 -0.3 99.98 99.68 100.00 100.00 100.00
-0.2 99.78 99.04 100.00 100.00 100.00 -0.2 99.76 98.88 100.00 100.00 100.00
-0.1 75.44 81.02 99.66 99.52 99.32 -0.1 75.30 80.48 99.64 99.54 99.32
0 4.06 4.32 5.28 5.26 3.42 0 4.44 4.40 5.62 5.38 3.92
0.1 68.30 73.64 97.04 98.08 96.74 0.1 68.46 73.38 96.90 97.98 96.74
0.2 98.98 97.92 100.00 100.00 100.00 0.2 98.96 97.80 100.00 100.00 100.00
0.3 99.96 99.82 100.00 100.00 100.00 0.3 99.96 99.82 100.00 100.00 100.00
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5cm Table 4: Descriptive statistics of log absolute returns and log price range volatility estimates. By columns, mean, standard deviation,
skewness, kurtosis, Ljung-Box test statistic for absence of autocorrelation up the the first 100 lags, Jarque-Bera test for normality, and
total number of observations. Critical values Ljung-Box test: 118.50 (90%), 124.34 (95%), 135.81 (99%). Critical values JB test: 4.60 (90%),
5.99 (95%), 9.21 (99%).

Panel A: Log absolute returns Panel B: Log range estimates
Mean Std.Dev. Skewness Kurtosis LB Test JB Test Num.Obs. Mean Std.Dev. Skewness Kurtosis LB Test JB Test Num.Obs.

SP500 -5.377 1.281 -1.094 5.271 4501.12 1771.54 4274 -4.477 0.609 0.263 3.094 63862.93 50.88 4277
NASDAQ C. -5.070 1.240 -0.935 4.666 8144.98 1117.83 4276 -4.296 0.625 0.280 2.881 97317.13 58.40 4277
CAC40 -5.082 1.217 -1.175 5.515 2928.39 2145.28 4345 -4.266 0.569 0.144 2.925 65821.77 16.07 4347
DAX30 -5.064 1.215 -1.066 5.219 4412.51 1703.85 4318 -4.192 0.600 0.140 2.955 79346.00 14.56 4319
FTSE100 -5.301 1.194 -0.990 4.649 3549.44 1186.23 4288 -4.383 0.568 0.312 3.043 68350.23 69.85 4296
IBEX35 -5.032 1.183 -1.132 5.468 3650.40 2014.92 4310 -4.181 0.559 -0.002 2.873 78782.32 2.91 4315
NIKKEI225 -5.016 1.211 -1.182 5.441 1178.62 2005.39 4169 -4.392 0.554 0.397 5.180 29623.50 936.22 4174
BOVESPA -4.782 1.158 -1.216 5.470 648.69 2107.87 4209 -3.885 0.473 0.302 3.662 18134.08 140.96 4215
HANG SENG -5.115 1.241 -1.168 6.114 4189.69 2647.42 4192 -4.408 0.530 0.397 3.343 53040.87 130.51 4196
MERVAL -4.728 1.243 -1.183 5.534 1050.80 2083.93 4162 -3.923 0.569 0.337 3.197 22960.19 85.85 4174
MXX -5.211 1.204 -1.061 4.975 2619.15 1494.20 4269 -4.349 0.560 0.279 3.128 32349.31 58.46 4275
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Table 5: 95% confidence interval estimates for the fractional parameter on log absolute returns according to different testing methodologies.
By columns, LS-based estimates with robust standard errors to hetoroskedasticity, tHCLS ; QR-based estimates at the median with robust
standard errors, tQR; Kolmogorov-Smirnov joint QR test-based estimates at quantiles in [0.1,0.9], KS; IRLS-based estimates with Huber,
tHIRLS , and Biweight, tBIRLS , weighting functions; one-step Newton-Raphson test-based estimates with Huber, tHNR, and Biweight, tBNR,
weigthing functions. The column labelled Intersection shows the values for which none of these tests can reject the null hypothesis of
fractional integration, i.e., the intersection of the confidence intervals. ELW reports 95% confidence intervals based on exact local Whittle
estimation. Finally, the last two columns show the average relative change in the amplitude of the estimated confidence intervals when LS is
replaced by IRLS and NR estimation, respectively, with average values computed over the estimates from Huber and Bisquare weighthing
functions.

tHC
LS tQR KS tHIRLS tBIRLS tHNR tBNR Intersection ELW ARC IRLS ARC NR

SP500 [0.37,0.53] [0.35,0.52] [0.34,0.54] [0.38,0.49] [0.37,0.49] [0.37,0.50] [0.36,0.50] [0.38,0.49] [0.39.0.45] -28.13% -15.63%
NASDAQ C. [0.37,0.54] [0.37,0.48] [0.35,0.48] [0.37,0.45] [0.38,0.47] [0.36,0.46] [0.36,0.46] [0.38,0.45] [0.39,0.46] -50.00% -38.24%
CAC40 [0.30,0.48] [0.25,0.42] [0.31,0.44] [0.31,0.41] [0.31,0.41] [0.30.0.43] [0.30,0.42] [0.31,0.41] [0.33,0.39] -44.44% -33.33%
DAX30 [0.36,0.52] [0.33,0.46] [0.32,0.48] [0.36,0.46] [0.35,0.45] [0.35,0.47] [0.34,0.46] [0.36,0.45] [0.37,0.44] -37.50% -25.00%
FTSE100 [0.32,0.48] [0.35,0.47] [0.33,0.49] [0.36,0.46] [0.36,0.47] [0.34,0.48] [0.35,0.48] [0.36,0.46] [0.33,0.39] -34.38% -15.63%
IBEX35 [0.37,0.53] [0.34,0.48] [0.35,0.51] [0.37,0.47] [0.37,0.47] [0.36,0.48] [0.36,0.48] [0.37,0.47] [0.37,0.44] -37.50% -25.00%
NIKKEI225 [0.27,0.44] [0.23,0.39] [0.26,0.43] [0.28,0.40] [0.28,0.40] [0.27,0.41] [0.27,0.41] [0.28,0.39] [0.30,0.37] -29.41% -17.65%
BOVESPA [0.20,0.39] [0.23,0.39] [0.24,0.40] [0.26,0.36] [0.26,0.36] [0.24,0.37] [0.25,0.37] [0.26,0.40] [0.24,0.30] -47.37% -34.21%
HANG SENG [0.36,0.50] [0.37,0.51] [0.35,0.48] [0.37,0.46] [0.37,0.46] [0.36,0.47] [0.36,0.47] [0.37,0.46] [0.36,0.43] -35.71% -21.43%
MERVAL [0.19,0.35] [0.18,0.36] [0.23,0.36] [0.23,0.33] [0.23,0.34] [0.21,0.35] [0.22,0.35] [0.23,0.33] [0.23,0.29] -25.00% -3.57%
MXX [0.32,0.50] [0.27,0.41] [0.28,0.43] [0.32,0.41] [0.32,0.41] [0.31,0.43] [0.31,0.42] [0.32,0.41] [0.32,0.38] -44.44% -36.11%
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Table 6: 95% confidence interval estimates for the fractional parameter on log range volatility estimates according to different testing
methodologies. By columns, LS-based estimates with robust standard errors to hetoroskedasticity, tHCLS ; QR-based estimates at the median
with robust standard errors, tQR; Kolmogorov-Smirnov joint QR test-based estimates at quantiles in [0.1,0.9], KS; IRLS-based estimates
with Huber, tHIRLS , and Biweight, tBIRLS , weighting functions; one-step Newton-Raphson test-based estimates with Huber, tHNR, and
Biweight, tBNR, weigthing functions. The column labelled Intersection shows the values for which none of these tests can reject the null
hypothesis of fractional integration, i.e., the intersection of the confidence intervals. DV and ELW reports 95% confidence intervals based
on the sign test and exact local Whittle estimation, respectively. Finally, the last two columns show the average relative change in the
amplitude of the estimated confidence intervals when LS is replaced by IRLS and NR estimation, respectively, with average values computed
over the estimates from Huber and Bisquare weighthing functions.

tHC
LS tQR KS tHIRLS tBIRLS tHNR tBNR Intersection DV ELW ARC IRLS ARC NR

SP500 [0.50,0.69] [0.36,0.62] [0.41,0.68] [0.49,0.66] [0.48,0.66] [0.47,0.68] [0.47.0.67] [0.49,0.62] [-0.10,0.65] [0.55,0.62] -7.89% 7.89%
NASDAQ C. [0.54,0.68] [0.49,0.68] [0.45,0.67] [0.49,0.62] [0.49,0.63] [0.48,0.64] [0.48,0.64] [0.54,0.62] [-0.05,0.78] [0.60,0.67] -3.57% 14.29%
CAC40 [0.46,0.64] [0.44,0.64] [0.47,0.68] [0.48,0.61] [0.48,0.62] [0.46,0.63] [0.47,0.63] [0.48,0.61] [-0.28,0.85] [0.56,0.63] -25.00% -8.33%
DAX30 [0.54,0.73] [0.51,0.78] [0.55,0.77] [0.54,0.70] [0.54,0.70] [0.52,0.72] [0.52,0.72] [0.55,0.70] [0.26,0.66] [0.60,0.67] -15.79% 5.26%
FTSE100 [0.48,0.70] [0.43,0.76] [0.47,0.73] [0.50,0.67] [0.50,0.67] [0.48,0.69] [0.48,0.69] [0.50,0.67] [0.02,0.74] [0.58,0.64] -22.73% -4.55%
IBEX35 [0.49,0.64] [0.40,0.67] [0.46,0.68] [0.52,0.63] [0.52,0.64] [0.50,0.65] [0.50,0.65] [0.52,0.63] [-0.14,0.86] [0.53,0.60] -16.67% 0.00%
NIKKEI225 [0.43,0.64] [0.43,0.62] [0.39,0.65] [0.47,0.60] [0.45,0.62] [0.44,0.63] [0.45,0.62] [0.47,0.60] [-0.13,0.69] [0.51,0.58] -28.57% -14.29%
BOVESPA [0.35,0.64] [0.32,0.60] [0.30,0.64] [0.38,0.58] [0.38,0.58] [0.36,0.61] [0.36,0.60] [0.38,0.58] [-0.24,0.81] [0.48,0.54] -31.03% -15.52%
HANG SENG [0.54,0.67] [0.52,0.67] [0.49,0.62] [0.51,0.62] [0.51,0.62] [0.50,0.64] [0.50,0.64] [0.57,0.62] [0.57,1.05] [0.56,0.62] -15.38% 7.69%
MERVAL [0.39,0.56] [0.45,0.65] [0.40,0.59] [0.42,0.55] [0.42,0.56] [0.40,0.57] [0.40,0.57] [0.45,0.55] [-0.29,0.60] [0.43,0.49] -20.59% 0.00%
MXX [0.48,0.65] [0.39,0.61] [0.41,0.65] [0.45,0.60] [0.45,0.60] [0.43,0.62] [0.43,0.61] [0.48,0.60] [-0.30,0.87] [0.48,0.54] -11.76% 8.82%
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Figures

Figure 1: Time-series dynamics, sample histogram (confronted with the
theoretical normal distribution), and sample autocorrelation function (with
asymptotic 95% confidence bands) of the log absolute-valued returns of the
SP500 index.
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Figure 2: Time-series dynamics, sample histogram (confronted with the
theoretical normal distribution), and sample autocorrelation function (with
asymptotic 95% confidence bands) of the log high-low range estimator of the
SP500 index.
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