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Abstract
We propose two measures of the impact of calibration on the estimation of macroeconomic
models. The first quantifies the amount of information introduced with respect to each estimated
parameter as a result of fixing the value of one or more calibrated parameters. The second is a
measure of the sensitivity of parameter estimates to perturbations in the calibration values. The
purpose of the measures is to show researchers how much and in what way calibration affects their
estimation results – by shifting the location and reducing the spread of the marginal posterior
distributions of the estimated parameters. This type of analysis is often appropriate since
macroeconomists do not always agree on whether and how to calibrate structural parameters in
macroeconomic models. The methodology is illustrated using the models estimated in Smets
and Wouters (2007) and Schmitt-Grohé and Uribe (2012).
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1. Introduction

It is a common practice in the empirical macroeconomic literature to mix

estimation of some model parameters with calibration of others. The rationale

behind this approach is either that some parameters are difficult to identify

from available data, or that their values have been well-established elsewhere in

the literature. While these may be reasonable arguments in some cases, the list

of calibrated parameters often includes some for which the empirical evidence

is far from settled, and whose values are simply taken from previous studies,

often based on very different models and data patterns. Convenience and ease

of estimation may be a more realistic explanation of the common practice

of fixing some parameters a priori than the possession of true knowledge of

their values. It is therefore important to understand the impact, if any, that

parameter calibration has on model estimation.

The practice of mixing calibration and estimation can have two potentially

important consequences. First, the values of the calibrated parameters may

affect the point estimates of the free parameters.1 Thus, mis-calibration could

result in biased estimates of some estimated parameters. Second, from the point

of view of estimation calibration of some parameters is equivalent to assuming

that their values are known. This may introduce information about parameters

that are estimated. Put differently, by eliminating all uncertainty with respect

to calibrated parameters, one may also remove some of the uncertainty about

freely estimated parameters.

Clearly, not all free parameters are affected equally by calibration. In

general, the size of the impact will depend on the interactions between free and

calibrated parameters in the context of a given model. Except in very simple

cases with a small number of parameters, it is generally difficult to identify,

by intuition or heuristic reasoning alone, which estimated parameters will be

1. Or, in Bayesian context, the location of the posterior distribution of the estimated
parameters.
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affected, in what way and by how much, as a result of calibrating one or more

model parameters.

One possible way of quantifying the amount of information introduced

by calibration is to re-estimate the model in the absence of calibration, and

compare the resulting uncertainty with that of the restricted model. Similarly,

the effect of changing the calibration values can be assessed be re-estimating

the model multiple times conditional on different values of the fixed parameters.

Whether or not these are reasonable ways to proceed depends on how feasible

it is to estimate the larger unrestricted model, or to estimate multiple times

the restricted model, and also how strongly one feels about the reasons for

calibration in the first place. Note that estimating the unrestricted model is

almost certain to result in point estimates of the previously fixed parameters

that are different from the calibration values. This might be undesirable if one

has strong views about what those values should be. Furthermore, the point

estimates of at least some freely estimated parameters are likely to be different

in the unrestricted model. This will complicate the comparison of the estimation

uncertainty in the restricted and unrestricted cases.2

The purpose of this paper is to present an alternative approach, which does

not require estimating models more than once, and only uses the estimation

results under the original calibration. The method is based on the asymptotic

posterior distribution of the parameters in the unrestricted case, which we use

to construct two different measures. The first is a measure of the amount of

information gained with respect to each free parameter as a result of knowing

the value of one or more calibrated parameters. It shows the reduction of

asymptotic uncertainty as a percent of the uncertainty in the unrestricted

2. It is straightforward to think of examples where, because of the choice of calibration values
of the fixed parameters, the estimation uncertainty is much larger than it would be if those
parameters were estimated instead. For instance, if two parameters are nearly unidentifiable
when a third one is in a particular region of the parameter space, but very well identified
elsewhere, estimation uncertainty will be much smaller if the unrestricted model is in a well-
identified part of the parameter space, compared to a restricted model with calibrated value
from the poorly identified region.
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case. The second is a measure of the sensitivity of parameter estimates to

perturbations in the values of different calibrated parameters. In particular,

it shows the sign and the magnitude of the response of different estimated

parameters to changes in the values of the calibrated ones.

The intuition behind our approach is simple: the effect of calibration will

depend on how different parameters interact in a given model. From the point of

view of estimation, these interactions are captured by the parameters’ impact

on the model log-likelihood function. Closely-related parameters are difficult

to distinguish on the basis of their effect on the log-likelihood. Fixing one or

more of them provides a lot of information about the other related parameters,

which are also very responsive to changes in the calibration values. The opposite

holds true for unrelated parameters whose effects on the likelihood function

are orthogonal to each other. For instance, consider a standard business cycle

model. In such models there are typically a few parameters that determine the

steady state of the economy. Calibrating some of them will naturally have a

stronger impact on the other steady state-related parameters, both in terms of

location and spread of their posterior distribution. On the other hand, more

weakly-related parameters, such as variance coefficients of shocks, are likely to

be unaffected.

The measures we propose formalize this intuition. Specifically, we use the

asymptotic Gaussianity of the posterior distribution of the model parameters,

and study the effect of calibration by comparing the mean and variance of the

distribution in the unrestricted case to the same moments in the restricted case,

i.e. conditional on some parameters being known and fixed. Simple closed-form

expressions show that the impact of calibration depends on the model-implied

interdependence between free and calibrated parameters, which is captured by

the correlation structure of the asymptotic posterior distribution.

From a Bayesian perspective, calibration of some model parameters could

be interpreted as having very strong prior beliefs about the values of those

parameters. In this sense, our paper is similar to Müller (2012), who proposed

measures of prior sensitivity and prior informativeness in Bayesian models.
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As Müller (2012) observes, “likelihood information about different parameters

can be far from independent, so that the marginal posterior distributions

crucially depend on the interaction of the likelihood with the whole prior.” The

same argument shows that calibrating some parameters can have a significant

impact on the posterior distributions of freely-estimated parameters. Unlike the

sensitivity and informativeness measures in this paper, the measures of Müller

(2012) cannot be applied to parameters that are held fixed during estimation

since computing them requires sampling from the posterior distribution of the

full parameter vector. As noted earlier, combining estimation, both frequentist

and Bayesian, with calibration of some parameters is a rather common practice

in the DSGE literature, which makes our contribution complementary to that

of Müller (2012).3

In terms of methodology, our paper is most closely related to Andrews

et al. (2017), who introduced a measure of sensitivity of parameter estimates

to the empirical moments they are based on. The purpose of their analysis is

to identify the most influential moments, which, if misspecified, could result in

a large bias in the estimation results. Even though our measure of sensitivity

is with respect to calibrated parameters and not moments, its derivation is

based on the same idea: we use the joint asymptotic distribution of free and

calibrated parameters, whereas Andrews et al. (2017) use the joint asymptotic

distribution of free parameters and empirical moments. In both cases sensitivity

is measured locally and can be used as an indicator of how robust the estimation

results are to small perturbations in either the calibration values or the moment

conditions. Our paper also shares Andrews et al. (2017) larger goal, namely, to

3. Our measures also have somewhat different interpretations from those of Müller (2012). In
particular, we measure the amount of information due to calibration by comparing posterior
uncertainty with and without calibration, while Müller (2012) compares the posterior to the
prior uncertainty. Also, our sensitivity measure shows not only the magnitude of the effect of
perturbations in the calibration values, but also the sign of the effect. Müller (2012) sensitivity
only indicates the magnitude.
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help increase the transparency of estimated structural models by providing easy-

to-use tools for assessing the importance of different estimation assumptions.

In the context of DSGE models, we believe it is important for researchers to

discuss not only the reasons for and methods of calibration, but also the likely

impact of calibration on the estimation results. The measures derived in this

paper serve precisely that purpose and can be easily incorporated into the

standard estimation output usually reported in empirical DSGE research.

The remainder of the paper is organized as follows. Section 2 defines and

motivates our measures of information gains and sensitivity. In Section 3 we

illustrate the use of the proposed measures using two different DSGE models.

The models are a new Keynesian model estimated in Smets and Wouters (2007),

and a real business cycle model with news shocks estimated in Schmitt-Grohé

and Uribe (2012). In each case we show how calibration used by the authors

affects their estimation results. Section 4 offers some concluding remarks.

2. Methodology

This section describes the methodology we use to measure the impact

calibration of some parameters has on the estimation of the remaining free

parameters of a model. We assume the following setup: a researcher has a

model that fully characterizes the density function pT (yT |θ) of a data vector

YT = (Y1, . . . , YT ), as a function of a parameter vector θ ∈ Θ ⊂ Rnθ . The true

value of θ is unknown, and is estimated using maximum likelihood or Bayesian

methods subject to the restriction that some elements of θ are known, and are

therefore held fixed in the estimation. Further, we assume that estimation of

the full set of parameters is either not feasible or too costly. Hence, the objective

is to characterize the consequences of calibration using only the estimates of

the constrained model.
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2.1. Asymptotic normality of the posterior distribution

A well-known property of Bayesian estimation procedures is that,

asymptotically, they inherit the properties of the classical maximum likelihood

estimator. This is because the variation in the prior distribution is dominated

by the variation in the likelihood function, resulting in a posterior distribution

whose shape moves arbitrarily close to the shape of the likelihood function.

Hence, asymptotically, the posterior distribution is Gaussian centered at the

maximum likelihood estimator with covariance matrix equal to the inverse of

the expected Fisher’s information matrix. This result is commonly known as the

Bernstein-Von Mises theorem, first established for independent data by Walker

(1969), and extended to stationary time series by Heyde and Johnstone (1979)

and Chen (1985), and to non-stationary time series by Phillips and Ploberger

(1996) and Kim (1998).

More formally, suppose that θ̂ is the maximum likelihood estimate of θ and

that Î is the expected Fisher’s information matrix evaluated at θ̂, i.e.

θ̂ = argmax
θ∈Θ

pT (yT |θ) (2.1)

Î = − lim
T→∞

1
T

E
[
∂2 log pT (yT |θ̂)

∂θ∂θ′

]
(2.2)

Let π(θ) be the prior density of θ. Then, the posterior density is defined as

πT (θ|YT ) = pT (YT |θ)π(θ)∫
Θ pT (YT |θ)π(θ)dθ (2.3)

Under suitable regularity conditions and for large T , the posterior distribution

of θ is approximately equal to the normal density with mean θ̂ and covariance

matrix Σ̂ given by the inverse of the Fisher’s information matrix

πT (θ|YT ) ≈ N
(
θ̂, Σ̂

)
, where Σ̂ = Î−1/T (2.4)

Note that a natural implication of the asymptotic normality of the posterior

distribution is that the posterior mean and mode are asymptotically the same,

and, as the sample size grows, both converge to the maximum likelihood
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estimator. Therefore, instead of MLE we could equivalently use the mean or

the mode of the posterior distribution. Which one should be used in practice

will depend on the point estimates one wishes to focus on.

2.2. Uncertainty reduction due to calibration

We will use the asymptotic distribution to determine the impact of parameter

calibration on the posterior uncertainty of the free parameters. For this, we

assume that the calibrated values are not “wrong”, in the sense of being different

from the MLE (or posterior mean or mode) of the unrestricted model parameter

values. Admittedly, this is a strong assumption, but we make it here in order to

determine the pure effect calibration has on parameter uncertainty, i.e. in the

absence of mis-calibration of the fixed parameters. We will consider the case of

erroneous calibration later.

Our approach consists of comparing two covariance matrices – that of the

asymptotic posterior distribution when all elements of θ are unknown, and the

one of the asymptotic posterior distribution of a subset of θ, conditional of

the remaining parameters being known. For concreteness, let θ = [θ′1,θ′2]′ and

partition Σ and I as follows:

Σ =

 Σθ1 Σθ1θ2

Σθ2θ1 Σθ2

 , I =

 Iθ1 Iθ1θ2

Iθ2θ1 Iθ2

 (2.5)

From (2.4), the asymptotic marginal posterior distribution of θ1 is

πT (θ1|YT ) ≈ N
(
θ̂1, Σ̂θ1

)
(2.6)

Now, suppose that θ2 = θ̂2 is known. The derivatives of the log-likelihood

function with respect to θ2 are zero, hence the Fisher’s information matrix is

given by Îθ1 . Therefore, the asymptotic posterior distribution of θ1 conditional

on θ2 = θ̂2 is

πT
(
θ1|YT , θ̂2

)
≈ N

(
θ̂1, Σ̂θ1|θ2

)
, where Σ̂θ1|θ2 = Î−1

θ1
/T (2.7)
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An alternative expression for the covariance matrix in (2.7) is obtained by

noting that πT
(
θ1|YT , θ̂2

)
is simply the conditional distribution of θ1 given

θ2 = θ̂2. From (2.6) we know that the joint distribution of these two vectors

(given YT ) is asymptotically Gaussian. Therefore, when θ2 = θ̂2 is known, the

variance of the conditional distribution of θ1 is:

Σ̂θ1|θ2 = Σ̂θ1 − Σ̂θ1θ2Σ̂
−1
θ2

Σ̂θ2θ1 (2.8)

Unless Σ̂θ1θ2 = 0, i.e. θ1 and θ2 are asymptotically independent, the marginal

covariance matrix Σ̂θ1 is larger than the conditional covariance matrix Σ̂θ1|θ2 .

In other words, knowing θ2 reduces the uncertainty about the vector θ1 as a

whole. To quantify the effect of fixing θ2 on the uncertainty about individual

elements of θ1, we define a measure of the information gain (IG) with respect to

a parameter θi as the percent reduction in the asymptotic standard deviation

of that parameter, i.e.:

IGθi(θ2) =
(stdθi − stdθi|θ2

stdθi

)
× 100, (2.9)

where stdθi and stdθi|θ2 are the square roots of the diagonal elements of Σ̂θ1

and Σ̂θ1|θ2 , respectively. Since stdθi ≥ stdθi|θ2 > 0, the value of IGθi(θ2) lies in

the range between 0 and 100, with IGθi(θ2) ≈ 0 implying that knowledge of θ2

provides little or no information about θi, while IGθi(θ2) ≈ 100 indicates that

knowing θ2 removes most of the uncertainty about θi.4 We can see from (2.8)

that the size of the information gain depends on how correlated θi and θ2 are.

In particular, the information gain will be small if the elements of Σ̂θiθ2 are

close to zero, i.e. θi and the parameters in θ2 are asymptotically close to being

orthogonal. On the other hand, if one or more parameters in θ2 are strongly

correlated with θi, knowing θ2 will provide a lot of information with respect to

θi.

4. We can have information gain of 100% if a parameter θi is only identifiable when one or
more other parameters are fixed, i.e. stdθi|θ2 < stdθi =∞. In that case stdθi − stdθi|θ2

stdθi
= ∞
∞

which we take to equal 1.
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2.3. Sensitivity to errors in calibration

So far we have maintained the assumption that the calibrated parameter values

are correct, i.e. they coincide with the values one would obtain if all model

parameters were estimated freely. This, of course, is an unrealistic assumption

and it is generally difficult to predict exactly how errors in the fixed parameters’

values affect the ones that are estimated. Here we present a simple method

for gauging the sign and the relative magnitude of the bias in the estimated

parameter as a result of errors in the calibration values. As before, we use the

Gaussian approximation of the posterior distribution of θ. Suppose that the

value of θ2 is fixed at θ̂2 +4θ̂2. From (2.4), it follows that the conditional

mean of θ1 is:

E
[
θ1|θ2 = θ̂2 +4θ̂2

]
= θ̂1 + Σ̂θ1θ2Σ̂

−1
θ2
4θ̂2 (2.10)

Note that the first term on the right-hand side is the conditional mean of

θ1 given θ2 = θ̂2. Therefore, small deviations of θ2 in the neighborhood of θ̂2

will shift the conditional mean of θ1 by approximately Sθ1,θ24θ̂2, where the

sensitivity matrix Sθ1θ2 is defined as

Sθ1θ2 = Σ̂θ1θ2Σ̂
−1
θ2

= −Î−1
θ1
Îθ1θ2 , (2.11)

where the second equality follows trivially from the properties of the inverse

of partitioned matrices (see Exercise 5.16 in Magnus and Abadir (2005)).

For an arbitrary pair of parameters θi ∈ θ1 and θj ∈ θ2, the corresponding

element Sθi,θj of the sensitivity matrix shows the effect of perturbing the value

of calibrated parameter θj on the asymptotic posterior mean value of free

parameter θi.

The sensitivity measure in (2.11) is similar to the one proposed by Andrews

et al. (2017) to measure the sensitivity of parameter estimates to reduced-

form statistics. Instead of assessing the effect of calibration, Andrews et al.

(2017) are interested in the estimation bias one can expect as a result of

violations in certain identifying assumptions. These violations are interpreted as

perturbations in the moment conditions on which a given estimation procedure,
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such as the generalized method of moments, is based. Similar to the approach

here, Andrews et al. (2017) derive their local sensitivity measure using the

asymptotic Gaussian approximation of the joint distribution of structural

parameters and moment conditions.
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Figure 1: Two-parameter example. The figure shows how the conditional distribution
of θ1 depends on the value of θ2.

2.4. A simple example

An illustration of the sensitivity and information gain measures for a two-

parameter case is shown in Figure 1, where the joint distribution of θ = [θ1, θ2] is

Gaussian with both means equal to zero, variances equal to 1, and correlation

coefficient equal to .9. Sensitivity in this case is equal to .9, which implies

that a change of θ2 from 0 to 1, i.e. a perturbation of one standard deviation,

would shift the conditional mean of θ1 by .9 × 1 = .9. This represents an

increase by .9 standard deviations. The conditional distribution of θ1 is shown
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in the figure in green. In addition to the shift in the mean, we see also

that the dispersion of the conditional distribution is smaller than that of the

unconditional distribution. Using the measure of information gain introduced

earlier, we find that IGθ1(θ2) = 100× (1−(1−.92))
1 = 81%.

We can derive further intuition on why in this example the value of θ1

increases in response to a positive perturbation in the value of θ2 by examining

the local properties of the maximized likelihood function. Specifically, suppose

that, instead of the mean of joint posterior distribution, [0, 0] represents the

unconstraint maximum of the log-likelihood function of θ. The inverse of the

covariance matrix is the Fisher’s information matrix, which has ones in the

diagonal and −.9 in the off-diagonal positions. Since the information matrix is

also the covariance matrix of the score vector, this implies that the correlation

between the two elements of the score corr(∂`(θ)/∂θ1, ∂`(θ)/∂θ2) = −.9.

Therefore, the two parameters on average affect the log-likelihood function

in the opposite directions and of nearly the same magnitude. Since θ̂ = [0, 0] is

the mode of the log-likelihood, any perturbation in θ2 away from 0 will lower

the value of the log-likelihood distribution. To offset that change, θ1 has to

move in the same direction as θ2. It is easy to show that, for small deviation

4θ2 in θ2, the optimal change 4θ1 in θ1 is given by:

4θ1 = −
(
∂2`(θ̂)
∂θ2

1

)−1(
∂2`(θ̂)
∂θ1∂θ2

)
4θ2 (2.12)

This is the same expression as above except that in (2.10) the second derivatives

of the log-likelihood function are replaced with their expected values. Hence,

our sensitivity measure can be interpreted in terms of the required adjustment

in the value of a free parameter in order to compensate for the effect of a

perturbation in the value of a calibrated parameter.

This intuition can be extended to multi-parameter models: starting from the

mode of the log-likelihood function, perturbation of one or more parameters

away from their unrestricted optimal values can be partially offset by adjusting
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the remaining free parameters away from their unrestricted optimal values.5

Since there are potentially many parameters that should be adjusted, the

optimal size of the adjustment of each one depends on the full correlation

structure, not just the pairwise correlations between free and calibrated

parameters.

3. Applications

We illustrate our information gain and sensitivity measures in two applications:

the medium-scale New Keynesian model of Smets and Wouters (2007), and

the real business cycle model with news shocks of Schmitt-Grohé and Uribe

(2012). In each case we take as given the division of the model parameters into

freely-estimated and calibrated ones as well as the estimation results reported

in those articles.

3.1. Smets and Wouters (2007)

The Smets and Wouters (2007) (hereafter SW) model is a medium-scale closed-

economy New Keynesian model featuring price and wage rigidities, habit

formation, capital accumulation, investment adjustment cost, variable capital

utilization. The model is estimated with Bayesian methods using US data on

output growth, consumption growth, investment growth, real wage growth,

hours worked, inflation and the nominal interest rate. There are 41 parameters

in the model 36 of which are estimated and the other 5 are calibrated. The

calibrated parameters are: depreciation rate (δ), steady state wage mark-up

(λw), exogenous spending-output ratio (gy), and the curvature parameters

of goods and labor market aggregators (εp and εw). The reasons SW give

for calibrating these parameters are that δ and gy are difficult to estimate

with the observed series, while λw, εp and εw are not identified. As has been

5. The offset will be only partial unless the log-likelihood function is flat at the mode, i.e. the
model is locally unidentified.
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parameter value

δ depreciation rate 0.025
λw steady state wage markup 1.50
gy exogenous spending-output ratio 0.18
εp curvature of goods market aggregator 10.00
εw curvature of labor market aggregator 10.00

Table 1. Calibrated parameters, SW (2007) model

shown previously (see Iskrev (2010)), λw is in fact identified, while two pairs

of parameters – (ξp, εp) and (ξw, εw) are not separately identifiable. That is,

in the linearized model ξp cannot be distinguished from εp and ξw cannot

be distinguished from εw. This implies that the covariance matrix of the

asymptotic posterior distribution of the full set of parameters is singular and

our measures of information gains and sensitivity are not defined. Therefore,

here we will study the effect of fixing 3 of the 5 parameters, namely δ, λw, and

gy, on the distribution of the 36 parameters which SW estimate, conditional

on the curvature parameters of goods and labor market aggregators (εp and

εw) being both fixed at 10, as in the original article.6 We consider the same

values for the calibrated parameters as in SW, shown in Table 1, while for the

estimated parameters we take the posterior mean reported in the article – see

Table 2. We use these values to compute our measures of sensitivity to and

information gains from calibration.

The information gains due to calibration of δ, λw, and gy are reported

in panel (a) of Figure 2. The gains are zero or close to zero for 11 of the

free parameters, and exceed 10% for 8 parameters. The largest information

gains are with respect to the wage stickiness parameter ξw – almost 60%, and

with respect to the elasticity of labor supply σc – about 40%. There are also

significant gains of about 20% with respect to the discount factor β̄ and the

investment adjustment cost parameter ϕ.

6. Since lack of identification implies infinite variance of the asymptotic marginal posterior
distribution, in the case of ξp and ξw we have information gains of 100% due to fixing εp and
εw, respectively.
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parameter value

ρga productivity shock in government spending 0.52
l̄ steady state hours 0.54
π̄ steady state inflation 0.79
β̄ normalized discount factor (a) 0.17
µw MA wage markup 0.84
µp MA price markup 0.70
α capital share 0.19
ψ capacity utilization cost 0.55
ϕ investment adjustment cost 5.74
σc elasticity of intertemporal substitution 1.38
λ habit 0.71
Φ fixed cost in production 1.60
ιw wage indexation 0.59
ξw wage stickiness 0.70
ιp price indexation 0.24
ξp price stickiness 0.65
σl elasticity of labor supply 1.84
rπ monetary policy response to inflation 2.05
r4y monetary policy response to change in output gap 0.22
ry monetary policy response to output gap 0.09
ρ interest rate smoothing 0.81
ρa AR productivity shock 0.96
ρb AR risk premium shock 0.22
ρg AR government spending shock 0.98
ρI AR investment specific shock 0.71
ρr AR monetary policy shock 0.15
ρp AR price markup shock 0.89
ρw AR wage markup shock 0.97
γ trend growth rate 0.43
σa standard deviation productivity shock 0.46
σb standard deviation risk premium shock 0.24
σg standard deviation government spending shock 0.53
σI standard deviation investment specific shock 0.45
σr standard deviation monetary policy shock 0.25
σp standard deviation price markup shock 0.14
σw standard deviation wage markup shock 0.24

Note: The values are of the mean of the posterior distribution
of the Smets and Wouters (2007) model. (a) β̄ = 100(β−1 − 1)
where β is the usual discount factor.

Table 2. Estimated parameters, SW (2007) model

To better understand how individual calibrated parameters contribute to

the total information gains, in panels (b), (c), and (d) of the same figure we

report the size of the gains from fixing only one of the three parameters at a

time, either δ, λw, or gy, respectively, while keeping the other two parameters

free. This exercise shows that most of the larger gains – those with respect to

ξw, σc, ϕ, and β̄, are due to information obtained from knowing the value of λw
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Figure 2: Information gains from calibration. Panel (a) shows the gains from knowing
the values of all calibrated parameters. Panels (b), (c), and (d) show the gains from
knowing only one parameter at a time.
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alone. Knowing the value of δ provides significant amount of information with

respect to α, ψ, and ρa. The least informative of the three calibrated parameters

is gy, which nonetheless contributes a substantial amount of information with

respect to Φ, σg and ψ.

Turning to the sensitivity of the parameter estimates to changes in the

calibration values, Figure 3 plots the values of our sensitivity measure. To

make the values comparable, we scale sensitivity by the standard deviations

of the parameters so that the displayed values show the change, in terms of

standard deviations of the respective parameter, to a one standard deviation

increase in the value of each calibrated parameter. The results closely mirror

those in Figure 2. The largest impact is on the estimate of ξw, which drops by

0.9 standard deviations as a result of one standard deviation increase in λw. An

increase in λw also has a significant impact on the values of σc, ϕ, and β̄, raising

by more than .6 standard deviations the values of the first two parameters

and reducing by almost .6 standard deviations the value of β̄. As before, the

strongest impact from a change in δ is on α, ψ, and ρa, all of which decrease by

about 0.5 standard deviations as a result of a one standard deviation increase

in δ. In the case of gy, the impact is again most pronounced with respect to Φ,

ψ, and σg, whose values decline by between .3 and .4 standard deviations due

to a one standard deviation increase in gy.

Note that unlike the computation of the information gains with respect to a

single parameter in panels (b), (c) and (d) of Figure 2, the sensitivity measures

in Figure 3 are computed assuming that all calibrated parameters remain fixed,

and only one of them is perturbed at a time. In particular, when one of the

calibrated parameters is perturbed only the free parameters are allowed to

respond, while the other two calibrated parameters are kept fixed. This was not

the case in Figure 2. The distinction may be important, particularly when there

is a strong interdependence among the calibrated parameters. For instance, if

λw and gw are free to adjust when δ is perturbed, there may be a much smaller

response of the other free parameters since some of the effect of changing δ could

be offset by the changes in λw and gw. On the other hand, if the calibrated
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parameters are close to independent, changing one of them would lead to a

small or no change in the other two, even if those were allowed to adjust. In

Figure A1 of the Appendix we show the sensitivities when only one of the three

calibrated parameters is fixed at a time. The results are very similar to those in

Figure 3, implying that there is only weak interdependence among λw, δ and

gw.

In the Appendix we also report pairwise conditional information gains and

pairwise conditional sensitivity values, where for each pair of parameters the

conditioning is on all remaining 37 parameters. The pairwise conditional gains

(see Figure A2) show how much information about a given parameter θi is

gained if another parameter θj is fixed, conditional on knowing all parameters

except these two. There are some marked differences, especially between the

conditional and unconditional gains from fixing λw (compare panel (c) in Figure

2 with panel (b) in Figure A2). Note that the gains with respect to ξw are

very large both conditionally and unconditionally. However, the conditional

information gains with respect to µw, σl, ρw, and σw are much larger than the

unconditional gains for those parameters. In contrast, the unconditional gains

with respect to β̄ and σc are significantly larger than the conditional ones.

These findings underscore the fact that in a multiparameter setting the

effect of calibration cannot be easily characterized using simple bivariate

relationships between individual calibrated and free parameters. Intuitively, one

might expect that the effect will be greater for parameters which in the model

are functionally closely related to the calibrated parameters. As the example

in Section 2.4 reveals, in a bivariate setting strong correlation between the

scores ∂`(θ)/∂θi and ∂`(θ)/∂θj , which reflects similar functional roles of θi
and θj , would cause fixing one of the two parameters to have a large impact

on the conditional distribution of the other. With more than two parameters,

the negative of corr(∂`(θ)/∂θi, ∂`(θ)/∂θj) represents the conditional correlation
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between θi and θj , given the remaining model parameters.7 Differences between

the conditional and the marginal correlation structures can lead to very different

conditional and unconditional information gains, as in the case of the gains

due to fixing λw. Consider Figure 4 where we show two sets of parameters

that are strongly related to λw. In particular, panel (a) displays a conditional

correlation network of all parameters connected with λw, while panel (b) shows

a marginal correlation network of the parameters connected with λw. In both

cases we show only links between parameters whose correlation is greater or

equal to .4 in absolute value.8 It can be seen that µw, σl, ρw, and σw are

strongly conditionally correlated with both ξw and λw, as well as among each

other. This explains the large pairwise conditional information gains in panel

(b) of Figure A2, where the gains from fixing λw are conditional on all other

parameters, and in particular ξw, also being fixed. At the same time, the

marginal correlations between λw and those four parameters are too week to

show in the graph in panel (b). This is mainly due to the fact that, because of

their functional similarity in the model, λw and ξw are very strongly correlated

both conditionally and unconditionally. As a result, fixing λw while keeping ξw
free provides very little information with respect to µw, σl, ρw, and σw. On the

other hand, the marginal correlations of λw with σc and β̄ are strong, in spite of

the very weak conditional correlations. This implies that these two parameters

benefit from fixing λw only indirectly – through other free parameters which

are more closely linked to λw and whose uncertainty is impacted directly as a

result of fixing that parameter. In the conditional case those parameters are

already known and thus fixing λw contributes little (in the case of σc) or no (in

the case of β̄) additional information.

7. This follows from the fact that the covariance matrix of the scores is the precision matrix of
the asymptotic posterior distribution, and thus it encodes the conditional correlations between
pairs of parameters given the remaining parameters (see Cramér (1946)).

8. We use truncation to make the graphs more readable. The full set of marginal and conditional
correlations can be found in Figure A8 in the Appendix.
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The differences between conditional and unconditional sensitivities can

be explained in a similar fashion. As can be seen by comparing Figures A3

and A1, the conditional sensitivities tend to be significantly larger than the

unconditional ones. This is because in the conditional case only one parameter

at a time is free to adjust so as to optimally offset the effect of changing the value

of a given calibrated parameter. In the case of the unconditional sensitivities,

all free parameters are allowed to move and thus the magnitudes of the optimal

adjustments tend to be smaller.
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Figure 3: Sensitivity to changes in the calibrated parameters. Each panel shows the
effect of a one-standard-deviation increase in the respective parameter on the value of
each free parameter, in units of standard deviations.
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parameter value

αk Capital share 0.225
αh Labor share 0.675
δ0 Steady-state depreciation rate 0.025
β Subjective discount factor 0.99
hss Steady-state hours 0.2
µ Steady-state wage markup 1.15
µa Steady-state gross growth rate of price of investment 0.9957
µy Steady-state gross per capita GDP growth rate 1.0045
σ Intertemporal elasticity of substitution 1
gy Steady-state share of government consumption in GDP 0.2

Table 3. Calibrated parameters, SGU (2012) model

3.2. Schmitt-Grohé and Uribe (2012)

The Schmitt-Grohé and Uribe (2012) (hereafter SGU) model is a medium-

scale closed-economy real business cycle model augmented with real rigidities

in consumption, investment, capital utilization, and wage setting. The

model has seven fundamental shocks: to neutral productivity (stationary

and non-stationary), to investment-specific productivity (stationary and non-

stationary), government spending, wage markups and preferences. Each of the

seven shocks is driven by three independent innovations, two anticipated and

one unanticipated. More precisely, the process governing shock xt is given by

ln(xt/x) = ρx ln(xt−1/x) + σ0
xε

0
x,t + σ4

xε
4
x,t−4 + σ8

xε
8
x,t−8, (3.1)

where εjx,t for j = 0, 4, 8 are independent standard normal random variables.

The anticipated innovations ε4
x,t−4 and ε8

x,t−8 are known to agents in periods

t− 4 and t− 8, respectively. Thus, they can be interpreted as news shocks.

The model has 45 parameters, 10 of which are calibrated. Those are: capital

and labor shares (αk and αh), steady-state depreciation rate (δ0), subjective

discount factor (β), steady-state hours (hss), steady-state wage markup (µ),

steady-state growth rate of price of investment (µa), steady-state gross per

capita GDP growth rate (µy), intertemporal elasticity of substitution (σ), and

steady-state share of government consumption in GDP (gy). The values of these

parameters are listed in Table 3. The remaining 35 parameters are estimated
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parameter value

θ Frisch elasticity of labor supply 5.39
γ wealth elasticity of labor supply 0.00
κ investment adjustment cost 25.07
δ2/δ1 capacity utilization cost 0.44
b habit in consumption 0.94
ρxg smoothness of trend in government spending 0.74
ρz AR stationary neutral productivity 0.96
ρµa AR nonstationary investment-specific productivity 0.48
ρg AR governement spending 0.96
ρµx AR nonstationary neutral productivity 0.77
ρµ AR wage markup 0.98
ρζ AR preference 0.10
ρzI AR stationary investment-specific productivity 0.21
σ0
µa std. dev. nonstationary investment-specific productivity 0 0.16
σ4
µa std. dev. nonstationary investment-specific productivity 4 0.20
σ8
µa std. dev. nonstationary investment-specific productivity 8 0.19
σ0
µx std. dev. nonstationary neutral productivity 0 0.45
σ4
µx std. dev. nonstationary neutral productivity 4 0.12
σ8
µx std. dev. nonstationary neutral productivity 8 0.12
σ0
zI

std. dev. stationary investment-specific productivity 0 34.81
σ4
zI

std. dev. stationary investment-specific productivity 4 11.99
σ8
zI

std. dev. stationary investment-specific productivity 8 14.91
σ0
z std. dev. stationary neutral productivity 0 0.62
σ4
z std. dev. stationary neutral productivity 4 0.11
σ8
z std. dev. stationary neutral productivity 8 0.11
σ0
µ std. dev. wage markup 0 1.51
σ4
µ std. dev. wage markup 4 3.93
σ8
µ std. dev. wage markup 8 3.20
σ0
g std. dev. government spending 0 0.53
σ4
g std. dev. governement spending 4 0.69
σ8
g std. dev. governement spending 8 0.43
σ0
ζ std. dev. preference 0 2.83
σ4
ζ std. dev. preference 4 2.76
σ8
ζ std. dev. preference 8 5.34
σmegy std. dev. measurement error in output 0.30

Note: Maximum likelihood estimates of Schmitt-Grohé and Uribe (2012)

Table 4. Estimated parameters, SGU (2012) model

using Bayesian methods and by maximum likelihood using US data on the

growth rates of output, consumption, investment, government expenditure, the

relative price of investment, total factor productivity, and hours worked. In

our analysis we use the maximum likelihood estimates reported in SGU and

reproduced in Table 4. Alternative results based on the median of the posterior

distribution are presented in the Appendix.
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Checking the rank condition for identification shows that the steady-state

hours parameter hss is not identified. Therefore, in our analysis we consider

only the remaining nine calibrated parameters. In addition, unlike SGU who

use de-meaned data, we assume that information from both the mean and the

covariance structure of the seven observed variables is used. This is important

since most of the calibrated parameters are related to the steady state of the

model and information from the mean is important for their identification.

Figure 5 presents the information gains from calibration. As in Section

3.1, we report the gains from fixing all nine parameters (panel (a)), and the

individual information gains from fixing only one parameter at a time (panels

(b) to (f)). We do not report individual information gains from the calibration

of αk, µa, µy and gy since they are always less than 1%. The total information

gains are less than 1% for 3 of the free parameters, and exceed 10% in the

case of 7 parameters. The largest gains are about 50% – with respect to the

consumption habit parameter b, and between 35% and 42% for the parameters

of the investment adjustment cost (κ), capacity utilization cost (δ2/δ1), and the

unanticipated innovations to the stationary investment-specific productivity

shock (σ0
zI
). There are also relatively large information gains of around 15%

with respect to the Frisch elasticity of labor supply parameter (θ), and the

volatility parameters of two of the innovations to the wage markup shock (σ0
µ

and σ8
µ). Panels (b) to (f) of the same figure help identify the main sources of

the overall information gains. The bulk of the information with respect to b

comes from knowing the value of σ, while δ0 is the most informative calibrated

parameter with respect to κ, δ2/δ1, σ0
zI

and θ. Fixing the value of µ contributes

the most for reducing the uncertainty about σ0
µ and σ8

µ, although δ0 is the

most informative parameter to calibrate with respect to σ4
µ. The calibration of

β improves the identification of κ, σ0
zI
, δ2/δ1, and b, while that of αh is only

marginally informative with respect to a few parameters, most notably b.

The results on sensitivity to calibration are presented in Figure 6. As before,

we scale the sensitivity measure so that the values represent the change, in terms

of standard deviations of each free parameter, as a result of a one standard
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deviation increase in the value of a given calibrated parameter. Again, we do

not show sensitivity results with respect to µa, µy and gy as they are always

smaller than 0.1 in absolute value. Similar to the information gain results, the

largest sensitivities are with respect to δ0. In particular, θ, κ, δ2/δ1, and σ0
zI

all decrease by more than 0.5 standard deviations as a result of one standard

deviation increase in δ0. In the case of δ2/δ1 the sensitivity is more than 0.8

in absolute value. In addition, two parameters – b and σ0
µ also show sensitivity

greater than 0.5 in absolute value – with respect to σ and µ, respectively.

4. Conclusion

Estimation of structural macroeconomic models often assumes the complete

knowledge of some of their parameters. Whether or not this is a reasonable

assumption to make is perhaps an open question. However, it is important

to bear in mind that, even when it is well justified, calibration can have

a substantial impact on the estimation results stemming from parameter

interdependence, which is common feature of macroeconomic models. It is

therefore appropriate that researchers who estimate such models mixing

calibration with estimation discuss not only the reasons for and methods of

calibration, but also the impact it may have on their results.

In this paper we propose two new measures that can be used to shed light

on the consequences of calibration. The first one shows how much information

is introduced with respect to each freely estimated parameter as a result

of calibration of one or more model parameters. The second measures the

sensitivity of different parameter estimates to perturbations in the values of

the calibrated parameters. By design, our measures capture the main ways in

which calibration could influence estimation – by changing the location and

reducing the spread of the marginal posterior distributions of the estimated

parameters. Providing readers with information about these effects is important

in recognition of the fact that there may be disagreements among researchers
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both in terms of whether certain parameters can reasonably be assumed to be

known, and regarding what their values should be.

The main advantage of our measures is that they are easy to interpret

and simple to compute without requiring additional estimation effort. This

makes them straightforward to incorporate into the standard estimation output

reported in empirical DSGE studies. At the same time, they also have the

limitation of being local and hence valid only in the neighborhood of the original

calibration values and parameter estimates. Needless to say, our measures are

not appropriate to use as a substitute for a full-scale re-estimation of a model

under alternative calibration assumptions.
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Appendix: Appendix

A.1. Smets and Wouters (2007)
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Figure A1: Sensitivity to changes in the calibrated parameters. Each panel shows the
effect of a one-standard-deviation increase in the respective parameter on the value of
each free parameter, in units of standard deviations. Only one parameter is held fixed
at a time.
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Figure A2: Pairwise conditional information gains. The values show the reduction of
uncertainty about a parameter from knowing either the value of δ, λ, or gy, and
conditinal on knowing all other parameters.



33 Calibration and the estimation of macroeconomic models

−0.5 0.0 0.5
std

σw

σp

σr

σI

σg

σb

σa

γ

ρw

ρp

ρr

ρI

ρg

ρb

ρa

ρ

ry

r∆y

rπ

σl

ξp

ιp

ξw

ιw

Φ

λ

σc

ϕ

ψ

α

µp

µw

β

π̄

l̄

ρga

0.18

-0.26

0.24

-0.22

-0.49

0.29

-0.14

-0.13

-0.12

0.17

-0.68

-0.82

sensitivity to δ

−4 −2 0 2 4
std

-2.94

-0.24

0.11

-0.38

0.56

-3.58

0.35

-0.33

-0.41

0.69

-0.18

0.62

-1.76

0.37

0.45

3.56

0.84

0.32

-0.96

-0.25

-0.7

1.05

0.91

-0.39

1.3

1.36

2.47

-0.12

sensitivity to λw

−0.5 0.0 0.5
std

-0.17

-0.13

-0.11

-0.12

-0.18

0.22

0.24

-0.14

-0.12

0.11

-0.35

-0.12

0.13

sensitivity to gy
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Figure A4: Parameter correlations in the SW model. The lower triangle of the matrix
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upper triangle shows the marginal correlation coefficients. The values are obtained from
the joint asymptotic posterior distribution of the parameters evaluated at the posterior
mean in SW. Correlation coefficients smaller than .1 in absolute value are not displayed.
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A.2. Schmitt-Grohé and Uribe (2012)
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Figure A5: Sensitivity to changes in the calibrated parameters. Each panel shows the
effect of a one-standard-deviation increase in the respective parameter on the value of
each free parameter, in units of standard deviations. Only one parameter is held fixed
at a time.
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Figure A8: Parameter correlations in the SGU model. The lower triangle of the
matrix shows the conditional correlation coefficients between each pair of parameters.
The upper triangle shows the marginal correlation coefficients. The values are obtained
from the joint asymptotic posterior distribution of the parameters evaluated at the
MLE in SW. Correlation coefficients smaller than .1 in absolute value are not displayed.
Off-diagonal values of -1 or 1 are due to rounding errors.
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