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Abstract

Bias correction in predictive regressions stabilizes the empirical size properties of OLS-
based predictability tests. This paper shows that bias correction also improves the �nite
sample power of tests, in particular so in the context of the extended instrumental variable
(IVX) predictability testing framework introduced by Kostakis et al. (2015, Review of
Financial Studies). We introduce new IVX-statistics subject to a bias correction analogous
to that proposed by Amihud and Hurvich (2014, Journal of Financial and Quantitative
Analysis). Three important contributions are provided: �rst, we characterize the e�ects
that bias-reduction adjustments have on the asymptotic distributions of the IVX test
statistics in a general context allowing for short-run dynamics and heterogeneity; second,
we discuss the validity of the procedure when predictors are stationary as well as near-
integrated; and third, we conduct an exhaustive Monte Carlo analysis to investigate the
small-sample properties of the test procedure and its sensitivity to distinctive features that
characterize predictive regressions in practice, such as strong persistence, endogeneity,
non-Gaussian innovations and heterogeneity. An application of the new procedure to the
Welch and Goyal (2008) database illustrates its usefulness in practice.
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1. Introduction

Predictive regressions are widely used in economics and �nance; see, e.g.,

Campbell (2008) and Phillips (2015) for surveys. Typically, the variable of

interest is regressed on lagged values of a predictor and the existence of

predictability assessed through the statistical signi�cance of the resultant

estimate of the corresponding slope parameter. However, two important

features of predictors need to be taken into consideration in this analysis:

i) many predictors are often characterized by highly persistent autoregressive

dynamics, and ii) many predictors also exhibit innovations which are strongly

correlated to the innovations of the dependent variable. These features raise

serious problems of endogeneity which can lead to sizeably biased estimates

in �nite samples (Stambaugh 1986 and Mankiw and Shapiro 1986) and to

substantial over-rejections of the null hypothesis of no predictability. The

usual asymptotic approximation employing the (standard) normal distribution

performs particularly bad when predictors are persistent, even though the

largest autoregressive roots of the typical predictor candidate are usually

smaller than one � reason for which near-integrated asymptotics has been

favoured as an alternative framework for inference (Elliott and Stock 1994

and Campbell and Yogo 2006). In the context of near-integrated regressors,

the limiting distribution of the slope parameter estimator is not centered at

zero, and this bias depends on the mean reversion parameter of the near-

integrated regressor. Although near-integrated asymptotics approximates the

�nite-sample behavior of the t-statistic for no predictability considerably better

when predictors are persistent, the exact degree of persistence of a given

predictor, and thus the correct critical values for a predictability test, are not

known in advance. Moreover, standard estimation or pretests also fail in this

context (Cavanagh et al. 1995).

These di�culties have led to the proposal of a number of alternative

approaches, which di�er mainly in the assumptions that characterize the

stochastic properties of predictors (i.e., whether these are stationary or near-

integrated); see for instance, Campbell and Yogo (2006); Jansson and Moreira

(2006); Maynard and Shimotsu (2009); Camponovo (2015); Breitung and

Demetrescu (2015) and references therein. The recently proposed extended

instrumental variable estimation approach [denoted IVX] motivated by
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Magdalinos and Phillips (2009) is becoming increasingly popular in predictive

regressions, especially because the relevant t-statistic exhibits the same limiting

distribution in both, stationary and near-integrated setups and is in this

sense invariant to persistence; see, e.g., Kostakis et al. (2015); Gonzalo and

Pitarakis (2012); Lee (2012) and Phillips and Lee (2013). The reasoning behind

the approach consists in the generation of an instrumental variable whose

persistence can be controlled, and this is achieved by suitably �ltering the

actual predictor.

To some extent, all methods lose some power by having to robustify against

unknown persistence; however, as illustrated by Kostakis et al. (2015) the IVX

methodology o�ers a good balance between size control and power loss. Since

the noise-to-signal ratio in predictive regressions is quite high, one should still

strive to improve this balance. For instance, Demetrescu (2014b) uses a simple

variable addition scheme to improve the convergence rates of IVX estimators

(and thus the local power of the corresponding t-tests) when the instrument

used is relatively close to stationarity. However, for instrument choices closer to

near-integration a di�erent approach is required to improve the �nite sample

power of IVX-based tests without giving up size control.

To this end, we take a closer look at the class of reduced-bias techniques

proposed by Amihud and Hurvich (2004) and extended by Amihud et al.

(2009, 2010); see, inter alia, Bali (2008), Chun (2009), Avramov et al. (2010)

and Johannes et al. (2014) for recent empirical applications building on

this approach. When compared to other available procedures, the distinctive

characteristic of these techniques is that they estimate the predictive slope

coe�cient and its standard error in a suitably augmented predictive regression,

so that the bias is reduced to a minimum. While this bias correction was

intended to stabilize the size properties of OLS-based predictability tests, we

argue that it may also contribute to improve power, in particular so for IVX-

based testing.

This paper discusses the large-sample behavior of IVX-statistics subject

to bias correction, i.e., the implementation of IVX in an augmented predictive

regression context analogous to that of Amihud and Hurvich (2004), considering

both stationary and near integrated predictors. Our main objectives are

threefold: i) to characterize the e�ects that our bias-reduction adjustments have

on the asymptotic distribution of the IVX-statistics in a general context; ii) to
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establish the validity of the procedure when predictors are stationary as well

as near-integrated; and iii) to provide an exhaustive Monte Carlo analysis to

investigate the small-sample properties of the test procedures under distinctive

conditions that characterize predictive regressions in practice, such as strong

persistence, endogeneity, non-Gaussian innovations and heterogeneity, and to

contrast them to the properties of available procedures, such as Amihud and

Hurvich (2004), Campbell and Yogo (2006) and the IVX approach proposed by

Kostakis et al. (2015). Finally, we revisit the data set used in Welch and Goyal

(2008) to illustrate the application of the procedure.

The remainder of the paper is organized as follows. Section 2 brie�y

describes the characteristic features of predictive regressions and the bias-

reduction technique proposed by Amihud and Hurvich (2004), and gives a brief

preview of the advantages of the residual-augmented IVX. Section 3 presents

the large-sample theory under empirically relevant assumptions, including for

instance heterogeneity and time-varying unconditional variances. Section 4

discusses the �nite sample performance of several procedures used to test for

predictability. Section 5 presents the analysis of the Welch and Goyal data, and

section 6 summarizes and concludes. A technical appendix collects the proofs

of the main theoretical statements put forward in the paper.

2. Predictive regression framework and tests

2.1. The simplest model

To illustrate the issues with predictive regressions in general and the advantages

of our approach in particular, we start by considering the single predictor

theoretical model set up analyzed in Stambaugh (1999) and adopted, among

many others, by Amihud and Hurvich (2004) and Campbell and Yogo (2006).

This setting characterizes the joint dynamics of a stochastic process, {yt}Tt=2,

and its posited predictor, {xt}T−1
t=1 , in a two-equation linear system as,

yt = βxt−1 + ut, t = 2, ..., T (1)

xt = ρxt−1 + vt (2)
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where the innovations ξt := (ut, vt)
′
in the two-equation system are typically

serially independent Gaussian distributed with mean zero and covariance

matrix Σ.

In this setting, predictability is formally analyzed by examining whether the

null hypothesis, H0 : β = 0, is statistically rejected through a t-statistic on the

OLS estimate β̂ computed from (1). The usual alternative hypothesis is that

β > 0, focusing on one-sided tests, but two-sided tests β 6= 0, are also frequently

used in the literature. We shall refer to the resultant least-squares statistic as

tβ̂ in the sequel. It is a well-documented fact that when the correlation, σuv
σuσv

,

between innovations is large and ρ ' 1, the distribution of tβ̂ largely departs

from the typical standard normal limit, posing therefore an interesting challenge

on inference; see, e.g., Elliott and Stock (1994) and Stambaugh (1999).

Speci�cally, under these simple assumptions, weak convergence of the

partial sum of ξt holds, i.e.,
1√
T

∑[sT ]
t=1 (ut, vt)

′ ⇒ (σuWu (s) , σvWv (s))′, where

(Wu(s),Wv(s))
′ is a vector of dependent standard Wiener processes (see, e.g.,

Davidson 1994, Chapter 29). Furthermore, considering that the autoregressive

coe�cient ρ is local to unity, ρ := 1− c
T , we have, jointly with the above weak

convergence, that 1√
T
x[sT ] ⇒ Bc (s), where Bc is an Ornstein-Uhlenbeck [OU]

process driven by Wv(s), i.e., Bc (s) := Wv(s)− c
∫ s

0 e
−c(s−r)Wv(r)dr. Given

these results it follows that the limiting distribution of the OLS based t-test,

tβ̂ , computed from (1) when the predictor is near-integrated is given by

tβ̂ ⇒

√
1− σ2

uv

σ2
uσ

2
v

Z +
σuv
σuσv

∫ 1

0 Bc(s)dWv(s)√∫ 1

0 B
2
c (s)ds

where Z is a standard normal variate independent of the Wiener processWv(r)

driving Bc(r).

Remark 1. The assumptions of normality and serial independence allow

for considerable simpli�cation of the exposition, but shall be relaxed in the

following section by allowing for more general forms of serial dependence or

heterogeneity. �

2.2. Residual Augmented Predictive Regressions

Considering (1) - (2) and stationarity of {xt}, i.e., the additional assumption

that ρ in (2) is �xed and satis�es |ρ| < 1, Stambaugh (1986, 1999) shows that
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the exact OLS bias of β̂ in 1 is γE (ρ̂− ρ) , with ρ̂ denoting the OLS estimate

of ρ and γ := σuv/σ
2
v is the slope coe�cient in a regression of ut on vt. Since

ρ̂ is known to be downward biased in small-samples, and (ut, vt)
′ are typically

highly negatively contemporaneously correlated, the autoregressive OLS bias

feeds into the small-sample distribution of β̂ causing over-rejections of the null

hypothesis of no predictability, H0 : β = 0.

To correct for this e�ect, Amihud and Hurvich (2004) propose a simple

statistical device that builds upon the OLS estimates obtained from a predictive

regression which is augmented with estimates of vt, the innovations to the

predictor in (2). The initial motivation for this type of augmentation is that

the null distribution of the t-statistic on β̂ in the infeasible regression

yt = βxt−1 + γvt + εt (3)

converges asymptotically to a standard normal distribution irrespectively of

the stochastic nature of xt and the degree of contemporaneous correlation of

(ut, vt)
′. Although it is tempting to use some proxy of vt to make this regression

feasible, it should be noted that the appealing asymptotic properties of the

infeasible test do not automatically extend to the feasible counterpart resulting

from the use of the OLS residuals from (2), say v̂t. The reason is that the bias of

ρ̂ still feeds into the estimation of β via v̂t = vt − (ρ̂− ρ)xt−1 and, as a result,

the distribution of the OLS t-statistic for β = 0 in this regression, is simply a

re-scaling of that of tβ̂ ; see Rodrigues and Rubia (2011); Cai and Wang (2014)

and Demetrescu (2014a), for further details.

The distinctive feature of the Amihud and Hurvich (2004) [AH] procedure

is that it uses a bias-adjusted estimate of vt to reduce the bias of β̂. Thus, the

resulting feasible regression becomes,

yt = βxt−1 + γv̂∗t + εt, (4)

where v̂∗t := xt − ρ̂∗xt−1, with ρ̂∗ denoting �nite-sample bias-corrected OLS

estimates of ρ in (2). The central idea is to obtain a ρ̂∗ as close to unbiasedness

as possible. The procedure however also requires a correction in the form

of speci�c standard errors which is not easily generalized to higher-order

dynamics; see Amihud et al. (2009, 2010).
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Remark 2. Augmenting linear regression models with covariates is often

motivated in terms of e�ciency gains (Faust and Wright 2011). Arguably,

the primary purpose of the residual-augmented regression in (4) is to stabilize

size, with power gains playing a secondary role. This is partly because the

true process of the errors is unobservable and must be replaced by some

empirical proxy (which prompts the correction for ensuring size control of the

AH procedure). We argue in the following that power gains can indeed be

expected in the IVX framework, while at the same time controlling for size. �

2.3. The IVX Test Procedures

2.3.1. The Original IVX Approach. Our interest lies in the evaluation of the

impact that the bias correction through augmentation may have on the IVX

approach. The IVX procedure, introduced to predictive regressions by Kostakis

et al. (2015), centers on the construction of instrumental variables from the

potential predictors. This ensures relevance of the instruments while at the

same time controlling for persistence. In particular, for the implementation of

the procedure, one uses

zt := (1− %L)−1
+ ∆xt =

t−2∑
j=0

%j∆xt−j

as instrument for xt, with L standing for the conventional lag operator; the

idea is to choose % := 1− a
Tη , with 0 < η ≤ 1, and a ≥ 0 and �xed, such that

zt is by construction only mildly integrated when the predictor xt is (nearly)

integrated.

The resulting IVX estimator of β (henceforth β̂ivx), computed from (1)

using zt as instrument has a slower convergence rate than the conventional

OLS estimator, but is mixed Gaussian in the limit irrespective of the degree of

endogeneity implied by γ. This estimator is given by,

β̂ivx :=

∑T
t=2 zt−1yt∑T

t=2 zt−1xt−1

(5)

and its standard error is se
(
β̂ivx

)
:=

σ̂u

√∑T
t=2 z

2
t−1∑T

t=2 zt−1xt−1
; note that Kostakis et al.

(2015) suggest the use of OLS residuals ût (whose consistency properties do not

depend on the persistence properties of the instrument zt) for the computation

of σ̂2
u.
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Breitung and Demetrescu (2015) analyse the power function of the IVX-

based t-test, computed as tivx := β̂ivx/se
(
β̂ivx

)
, under local alternatives of the

form β := b
T 1/2+η/2 , and show that the limiting distribution under such local

alternatives is

tivx ⇒ Z + b
σv
√

2

σu
√
a

[
B2
c (1)−

∫ 1

0

Bc (s) dBc (s)

]
(6)

where Z is a standard normal variate independent of the OU process Bc(r), a

is the noncentrality parameter used in % for the construction of the instrument,

and σv and σu are the standard deviations of vt and ut, respectively. Note

that the reduced convergence rate of β̂ivx has consequences on the type of

neighbourhoods where the IVX based test has nontrivial power. This, however,

is the trade o� for obtaining a pivotal limiting null distribution. While Kostakis

et al. (2015) show that the power loss is moderate, one would of course prefer

to reduce this loss as much as possible.

2.3.2. The Bias-reduced IVX Approach. Turning our attention to the bias

correction approach proposed by Amihud and Hurvich (2004), note that, the

residuals v̂∗t used in the residual-augmented predictive regression in (4) rely on a

bias-corrected estimate of ρ in order to reduce the endogeneity of the predictor.

Interestingly, since IVX uses a less persistent instrument for estimation than the

original predictor, it turns out that in order to use the residual augmentation

approach in the IVX framework it is not necessary to construct a bias corrected

estimator, such as ρ̂∗ used by Amihud and Hurvich (2004).This is an important

advantage of the IVX procedure since it simpli�es the analysis considerably and

allows for easy generalisations to higher order dynamics in the predictor as we

will show below.

Remark 3. It may be surprising that, although simple augmentation using

OLS residuals does not work for the OLS estimation of the predictive regression,

it will work for IVX. Essentially, the estimation noise (v̂t − vt) does not a�ect
the IVX estimator given the lower convergence rate of the latter compared to

the OLS estimator. In fact, the improved local power is the same as if the

true vt were used in (4): the local power of the test based on the augmented

IVX regression is obtained by replacing σu with σε in (6); see the next section

for more details. Since σε < σu whenever γ 6= 0, we obtain by construction a
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larger drift term in the distribution under the local alternative β := b/T 1/2+η/2.

This may not increase the convergence rate, but considering the typically high

correlation of the innovations ut and vt (given by σuv
σuσv

), the ratio
(
σu
σε

)
can

be considerably larger than unity and power gains in �nite samples are to be

expected. This is con�rmed in the Monte Carlo analysis in Section 4. �

The implementation of our bias-reduced IVX approach in the simple

introductory setup given by (1) and (2), is as follows:

1. Regress xt on xt−1 to obtain the residuals v̂t := vt − (ρ̂− ρ)xt−1, where

ρ̂ := ρ+
∑T
t=2 xt−1vt∑T
t=2 x

2
t−1

is the usual OLS estimator.

2. Regress yt on v̂t to obtain ỹt := yt − γ̂v̂t = εt + βxt−1 + γvt − γ̂v̂t, where
γ̂ :=

∑T
t=2 v̂tyt∑T
t=2 v̂

2
t

is the usual OLS estimator.

3. Regress ỹt on xt−1 via IVX to obtain β̃ivx and the corresponding t-statistic,

t̃ivx; similarly to the original IVX, it helps if the residuals are computed

using the OLS estimator, β̂, of this regression given its consistency and

higher convergence rates.

Remark 4. Considering ỹt as the dependent variable provides a convenient

way to think about residual augmented predictive regressions. As discussed

in Campbell and Yogo (2006), the unobservable process [yt − E (ut|vt)] results
from subtracting o� the part of the innovation to the predictor variable that

is correlated with yt. This provides a less noisy dependent variable in the

regression analysis and, therefore, yields power advantages over conventional

predictive regressions that steam from a relative gain in statistical e�ciency.

In particular, since E
(
ε2
t

)
=
(
1− ρ2

)
σ2
u, the larger the degree of endogenous

correlation in the system, the larger the amount of variability in the regressand

not related to xt−1 that can be �ltered out � conversely, we can think of

the standard predictive regression analysis as a particularly ine�cient tool to

detect predictability when ρ is large. However, since [yt − E (ut|vt)] cannot be
directly observed, the feasible representation uses the OLS-based proxy ỹt in

the equation. �

Remark 5. In practice, one may need to account for non-zero means of yt;

this is accomplished by including an intercept in the regression in step 2 and

by demeaning the regressor xt in the IVX regression in step 3 (see Kostakis

et al. 2015, for the justi�cation of this demeaning procedure in step 3). In the
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near-integrated case, including an intercept in the autoregression in the �rst

step is typically not needed for the kind of data one has in mind with stock

return predictability, where deterministic trends are in general not an empirical

issue. �

Thus, following the three steps above we obtain the bias-corrected IVX

estimator, viz.,

β̃ivx :=

∑T
t=2 zt−1ỹt∑T

t=2 zt−1xt−1

= β̂ivx −
γ̂
∑T
t=2 zt−1v̂t∑T

t=2 zt−1xt−1

(7)

and its corresponding standard error,

se
(
β̃ivx

)
:= qT

σ̂ε

√∑T
t=2 z

2
t−1∣∣∣∑T

t=2 zt−1xt−1

∣∣∣ (8)

where ỹt := yt − γ̂v̂t , σ̂ε is the estimate of the standard deviation of εt

computed from the residuals ε̃t := ỹt − β̂xt−1 and β̂ :=
∑T
t=2 xt−1ỹt∑T
t=2 x

2
t−1

. Note that

the estimator of the standard error in (8) includes the �nite sample correction,

qT := 1 +

(
γ̂σ̂v

∑T
t=2 zt−1xt−1

)2

σ̂2
ε

∑T
t=2 z

2
t−1

∑T
t=2 x

2
t−1

. (9)

A detailed discussion of the importance of qT will be presented in the following

section, but it may be noted that (9) is in principle only required when the

predictors used are stationary; see section 3 for details.

Hence, considering (7) and (8) inference can be performed based on the

IVX t-statistic,

t̃ivx := β̃ivx/se
(
β̃ivx

)
(10)

which turns out to remain standard normal irrespectively of the stationarity or

near-integratedness of the regressor.

2.4. Short-run dynamics and heterogeneity

This section looks into the properties of the residual-augmented IVX approach

in the empirical relevant cases where predictors may display short-run dynamics

and heterogeneity. Hence, in this section we lay out a fairly general setting,
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which is the framework we will use to characterise the asymptotic properties

of the procedures introduced in this paper.

The starting question is how to deal with short-run dynamics in the

increments of xt, since this has implications as to which residuals to use for

augmentation in the IVX testing procedure. Here, it is the innovations of vt

(for which a �nite-order AR process is a natural choice) that should correlate

with ut rather than vt itself, like in the case without short-run dynamics. The

augmentation approach (described in Section 2.2) relies on decomposing the

shocks to the predictive regression as the sum of two orthogonal components;

should vt be one of them, this induces serial correlation in ut, which is not a

plausible feature of the null hypothesis of no predictability. Hence, the general

set up considered is formalized in the following assumptions.

Assumption 1. The data is generated according to (1) - (2) with initial

condition x1 bounded in probability.

Assumption 2. Let (
εt

νt

)
:=

(
σεtξεt

σνtξνt

)

where (ξεt, ξνt)
′ is a heterogeneous independent sequence with unity covariance

matrix and, for some δ > 0, with uniformly bounded moments E
(∣∣∣ξ4+δ

εt

∣∣∣) and

E
(∣∣∣ξ4+δ

νt

∣∣∣). Furthermore, let σεt := σε
(
t
T

)
and σνt := σν

(
t
T

)
, where σ· (·) are

piecewise Lipschitz continuous functions, bounded away from zero.

Assumption 3. The errors ut and vt are given as

vt = a1vt−1 + . . .+ ap−1vt−p+1 + νt

ut = εt + γνt, t ∈ Z,

where the innovations (εt, νt)
′ are contemporaneously orthogonal white noise

as indicated in Assumption 2.

Assumption 4. The autoregressive parameter ρ is either i) �xed when |ρ|< 1,

or ii) time-varying near unity, ρ := 1− ct
T with ct := c

(
t
T

)
and c (·) is a piecewise

Lipschitz function.
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Assumption 2 acknowledges that time series (and in particular �nancial

series) may exhibit permanent volatility changes, which is an important stylized

fact of many �nancial series; see, among others, Guidolin and Timmermann

(2006); Teräsvirta and Zhao (2011); Amado and Teräsvirta (2013) and Amado

and Teräsvirta (2014). Such forms of nonstationarity typically invalidate the

usual standard errors,1 and we resort to heteroscedasticity robust [HC] standard

errors (also known as Eicker-White standard errors) to account for this feature.

The use of White standard errors is also recommended by Kostakis et al. (2015)

to deal with conditional heteroskedasticity � albeit under strict stationarity of

the error series vt. The AR(p− 1) structure of vt in Assumption 3 is taken as

an approximation to more general data generating processes [DGP]s. In theory,

this would require letting p→∞ at suitable rates as T →∞; however, dealing

with the asymptotics related to the order of augmentation determination is

beyond the scope of this paper, but relevant results can be found, for instance,

in Chang and Park (2002). Finally, Assumption 4 characterises the persistence

properties of the predictor. The �exible near-integrated DGP resulting from

Assumption 4 ii) is motivated by the high, yet uncertain persistence of typical

predictor series. Moreover, since persistence is not always constant, in particular

when close to the unit root region, we allow for time variation in persistence in

the near integrated case.

Hence, the implementation of our residual-augmented IVX approach in

the general framework described by Assumptions 1 through 4 consists of the

following steps:

1. Compute the residuals ν̂t from an autoregressive model of order p for the

predictor xt, viz.,

ν̂t = xt −
p∑
j=1

ϕ̂jxt−j = νt −
p∑
j=1

(ϕ̂j − ϕj)xt−j , t = p+ 1, . . . , T,

with ϕ̂j , j = 1, ..., p, the OLS autoregressive coe�cient estimates. One may

use some information criteria in levels to determine the autoregressive order

p (we use Akaike's information criteria (AIC) in sections 4 and 5); note that

1. This is especially the case when dealing with (near-) integrated regressors; see, e.g.,

Cavaliere (2004) and Cavaliere et al. (2010).



13 Residual-augmented IVX predictive regression

conducting model selection in levels copes with both the stationary and the

integrated cases.

2. Regress yt on ν̂t to obtain ỹt as regression residuals. From this regression

step we also obtain γ̂, the OLS estimate of γ.

3. Finally, regress ỹt on xt−1 via IVX and use the provided standard errors

(see Equation (12) below) to compute the relevant IVX t-statistic.

From step 3) we thus obtain,

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1

, (11)

which, upon standardization, is used for inference.

Note that under Assumptions 1 to 4, the standard errors need to take into

account two speci�c features of the data. First, time varying variances are likely

to bias the usual standard errors asymptotically. Second, while the estimation

error (v̂t − vt) has no asymptotic e�ect on the limiting distribution of β̃ivx in the

near-integrated context, it does so when xt is covariance stationary. Yet treating

the two cases in a di�erent manner is inconvenient since exact knowledge about

which is actually the relevant case is typically not available. Consequently, we

derive heteroskedasticity-consistent standard errors for the stationary case and

show that these are also valid in the near integrated context. In this way, we

use the same statistic with the same limiting distribution to cover both cases

without having to decide which is which � just like in the original IVX test of

Kostakis et al. (2015).

In speci�c, we use

se
(
β̃ivx

)
:=

√√√√√∑T
t=p+1 z

2
t−1ε̃

2
t + γ̂2Q̂T(∑T

t=p+1 zt−1xt−1

)2 (12)

where the �nite-sample correction Q̂T used in (12) is given by

Q̂T =

 T∑
t=p+1

zt−1x
′
t−p

 T∑
t=p+1

xt−px
′
t−p

−1

×

 T∑
t=p+1

xt−px
′
t−pν̂

2
t

 T∑
t=p+1

xt−px
′
t−p

−1 T∑
t=p+1

zt−1xt−p


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and xt−p := (xt−1, ..., xt−p)
′. To compute the White-type standard errors in (12)

we make use of the OLS residuals computed from the residual-augmented predictive

regression, ε̃t := ỹt − β̃olsxt−1 where β̃ols :=
∑T
t=2 xt−1ỹt∑T
t=2 x

2
t−1

, rather than IVX residuals

due to the superconsistency properties of the former in the near-integrated context.

Remark 6. One may resort to alternative HC variance estimators, e.g., with

correction for degrees of freedom (HC1). The HC1 version is obtained here by

multiplying the estimated variance by T
T−p−3 . �

Remark 7. The standard errors in (12) are basically the White standard errors

that would have been appropriate under stationarity of xt, where the estimation

error of ν̂t does not vanish asymptotically. We show that Q̂T in (12) is dominated

under near-integration so that the standard error in (12) is asymptotically equivalent

to the one implied by the near-integrated framework, which turns out to be simply√ ∑T
t=p+1 z

2
t−1ε̃

2
t

(
∑T
t=p+1 zt−1xt−1)

2 as can be seen in Section 3. �

Remark 8. The near-unit root in xt allows us in principle to use the residuals

without the need to use the �nite sample correction, but in �nite samples the statistics

fare better if the correction is included (essentially because, in �nite samples, any

|ρ| < 1 is �caught between� stationarity and integration). �

2.5. Extensions to Multiple Predictors

The discussion so far has side-stepped a couple of aspects relevant for empirical work

which we address in this section. They are in fact straightforward extensions of the

baseline case and we shall omit some of the technical details.

It is often the case that several predictors are simultaneously considered. Thus,

the resulting multiple predictive regression is

yt = β′xt−1 + ut

where xt−1 follows a K-dimensional vector autoregressive data generating process of

order p, such as,

xt = Rxt−1 + vt

vt =

p−1∑
j=1

Ajvt−j + νt

which is either stable or (near) integrated as before depending on the properties of

the autoregressive coe�cient matrix R (vt is taken to be stable in either case). There

is endogeneity, possibly in all regressors, expressed as a nonzero coe�cient vector in
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the decomposition

ut := γ′νt + εt,

and the shocks νt and εt are heterogeneous, serially independent obeying a

multivariate version of Assumption 3.

The implementation of the IVX approach introduced in this paper in the multiple

predictive regression case is as follows.

1. Get the vector of residuals ν̂t from a vector autoregression of order p,

ν̂t := xt −
p∑
j=1

Φ̂jxt−j , t = p+ 1, . . . , T,

with Φ̂j , j = 1, ..., p, the matrix of OLS coe�cient estimates. Note that the use

of AIC (or some other information criteria) in levels, for determining the order

p, is again recommended.

2. Regress yt on ν̂t to obtain the adjusted ỹt as,

ỹt = yt − γ̂′ν̂t

with γ̂ the OLS estimate of the vector of parameters γ.

3. Regress ỹt on xt−1 via IVX with zt−1 := (1− %L)−1
+ ∆xt−1 as instruments to

obtain β̃ivx and use the standard errors provided in Equation (13) below to

conduct inference.

The estimated covariance matrix of β̃ivx in this context is given by the familiar

�sandwich� formula,

̂
Cov

(
β̃ivx

)
= B−1

T MTBT (13)

where

BT =

T∑
t=2

zt−1x
′
t−1

and

MT =

T∑
t=2

zt−1z
′
t−1ε̃

2
t +

γ′ ⊗( 1

T

T∑
t=2

zt−1x
′
t−p,K

) T∑
t=p+1

xt−p,Kx′t−p,K

−1
×

×

 T∑
t=p+1

νtν
′
t ⊗ xt−p,Kx′t−p,K


γ ⊗

 T∑
t=p+1

xt−p,Kx′t−p,K

−1(
1

T

T∑
t=2

xt−p,Kz′t−1

)
with xt−p,K corresponding to the vector stacking all p lags of all K regressors, i.e.,

x′t−p,K := (xt−1,1, . . . , xt−1,K , xt−2,1, . . . , xt−2,K , . . . , xt−p,1, . . . , xt−p,K).

The limiting distribution of β̃ivx is normal in the stationary case and mixed

normal in the near-integrated context; the proofs are simple multivariate extensions
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of the results from the single-regression case so we do not spell them out. More

importantly, individual and joint signi�cance tests have their usual standard normal

and χ2 limiting distributions irrespective of the persistence and heterogeneity of the

DGP as long as the robust covariance matrix estimator in (13) is used.

3. Asymptotic results

In this section, we analyze the limiting distributional characteristics of the new

reduced-bias IVX tests considering the general framework described in Section 2.4,

which also provides us with the results for the simplest case in Section 2.1 as

a particular case. We consider two di�erent theoretical frameworks that critically

determine the stochastic properties of the predictive variable. On the one hand, we

consider stationary predictors, characterized by a �xed coe�cient |ρ| < 1 in (2), and

on the other, we allow for near-integration by considering ρ := 1 − c
T , with c ≥ 0

and �xed. The main objective of this setting is to acknowledge the uncertainty that

researches face regarding the stochastic properties of the predictor, i.e., whether it is

stationary or near-integrated when ρ̂ is close to, but strictly less than unity in �nite

samples. This setting includes of course the extreme case of a unit-root when the

local parameter c equals zero (c = 0).

In the following, we maintain the predictive regression framework in (1) but allow

for signi�cant departures from Gaussianity and the restrictive AR(1) structure for

the regressor. We also allow for heterogeneity in the form of time-varying variances,

di�erent shapes of the distributions, and even changes in the persistence of the

regressor. Financial variables often exhibit time-varying variances in addition to

GARCH e�ects; Kostakis et al. (2015) discuss the GARCH case considering strict

stationarity, whereas we relax the i.i.d. assumption in the direction of eliminating

weak stationarity via heterogeneity.

Note �rst that the time-varying properties of the DGP, as stated in Assumptions 1

through 4, imply di�erent behavior in the limit compared to the Gaussian i.i.d. case.

In this case, the partial sums of νt converge weakly to M (s) :=
∫ s
0 σν (r) dWv (r),

and the partial sums of εt to
∫ s
0 σε (r) dWε (r), with Wε and Wv independent

standard Wiener processes; the �classical� case is only recovered when σu and σv

are constant. Moreover, the suitably normalized regressor converges weakly to an

Ornstein-Uhlenbeck type process driven by the di�usion M (s), i.e.,

1√
T
x[sT ] ⇒ ω

∫ s

0
e−rc(r)dM (r) := ωX (s) (14)

where ω =
(

1−
∑p−1
j=1 aj

)−1
; see, e.g., Cavaliere (2004) for the case with constant c.

In the case where xt is stationary, i.e., |ρ| < 1 and �xed, the following results can

be stated.
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Theorem 1. Under Assumptions 1, 2, 3 and 4i), we have, as T →∞, that

√
T
(
β̃ivx − β

)
d→N

(
0, σ2

β

)
(15)

where

σ2
β :=

α0

∫ 1
0 σ

2
v (s)σ2

ε (s) ds+ γ2α′pΩ
−1αp

∫ 1
0 σ

4
v (s) ds[

α0

∫ 1
0 σ

2
v (s) ds

]2 (16)

with αp := (α0 . . . αp−1)′ and Ω :=
{
α|i−j|

}
1≤i,j≤p, where αh :=

∑
bjbj+h with

bj the moving average coe�cients of xt, (1− ρL)−1 (1− a1L− . . .− ap−1L
p−1
)

=∑
j≥0 bjL

j . Furthermore,
√
Tse

(
β̃ivx

)
p→
√
σ2
β

and, under the null hypothesis, H0 : β = 0,

t̃ivx
d→N (0, 1) . (17)

The limit behavior changes under near-integration as shown in the following

Theorem.

Theorem 2. Under Assumptions 1, 2, 3 and 4ii), we have, as T →∞, that

T
1
2 + η

2

(
β̃ivx − β

)
⇒MN

0,
a
∫ 1
0 σ

2
ν (s)σ2

ε (s) ds

2ω2
(
X2 (1)−

∫ 1
0 X (s) dX (s)

)2

 (18)

and

se
(
β̃ivx

)
⇒
√

a

2ω2

√∫ 1
0 σ

2
ν (s)σ2

ε (s) ds

X2 (1)−
∫ 1
0 X (s) dX (s)

(19)

where a and η are �xed, ω2 plays the role of the long-run variance (and is de�ned in

(14)), X (s) =
∫ s
0 e
−rc(r)σv (r) dWv (r) and, σ2

ν (s) and σ2
ε (s) are the variances of vt

and εt, respectively. Moreover, under the null hypothesis, H0 : β = 0,

t̃ivx ⇒N (0, 1) . (20)

The proof of Theorem 2 establishes that QT = op
(
T 1+η

)
so that it is dominated

in (12) by
∑T
t=p+1 z

2
t−1ε̃

2
t which is of exact order Op

(
T 1+η

)
(see the Appendix

for details), and the residuals estimation e�ect is negligible in the near-integrated

case. The near-integrated case is also more interesting for an evaluation of the local

power and for comparison with the original IVX.2 The power function of the residual

augmented IVX is provided next.

2. The local power in the stationary case is easily derived and we omit the details.
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Theorem 3. Under Assumptions 1, 2, 3 and 4ii), we have for local alternatives

β = b
T 1/2+η/2 , as T →∞ that

t̃ivx ⇒N

b√2ω2

a

X2 (1)−
∫ 1
0 X (s) dX (s)√∫ 1

0 σ
2
ν (s)σ2

ε (s) ds
, 1

 . (21)

Setting ω2 = 1, σv (s) = σv and σε (s) = σε leads to the results for the particular

case studied in Section 2.1.

4. Finite sample performance

4.1. Monte Carlo Setup

This section compares the two versions of the IVX procedure, the original IVX

test which we denote as tivx and the residual augmented version t̃ivx, with extant

procedures under several heterogeneous DGPs. As benchmarks we use the tests of

Campbell and Yogo (2006) and of Amihud and Hurvich (2004) and Amihud et al.

(2010).

Concretely, we generate yt and xt as in equations (1) and (2), i.e.,

yt = βxt−1 + ut, t = 2, ..., T (22)

xt = ρxt−1 + vt (23)

vt = a1vt−1 + et (24)

with a1 ∈ {−0.5, 0, 0.5} and et ∼ N id(0, 1). We focus on local alternatives of the

form β = b
T for two sample sizes, T = 200 and T = 500. To study the empirical

size of the tests we let b = 0, and for the local power evaluation we consider

b ∈ {5, 10, 15, 25}, and the persistence of the predictor is controlled by ρ := 1− c
T ,

with c ∈ {0, 10, 20, 40, 50}. The correlation causing endogeneity is set to −0.95, which

is not an uncommon value in practice; see, e.g., Lewellen (2004).

The e�cient tests of Campbell and Yogo (2006) (denoted as CY ) are analysed,

and the residual augmented predictive regression based test of Amihud et al. (2010)

(denoted as AHW ) is computed for a �xed p = 2 to keep complexity under control.

In comparison, tivx does not require specifying the lag length, while for t̃ivx we

chooses p via Akaike's information criteria (AIC). Both tivx and t̃ivx are computed

by demeaning the dependent variable and the regressor, but not the instrument (see

Section 2.5 for details); we also follow Kostakis et al. (2015) and choose a = 1 and

η = 0.95 for the construction of the instruments in both. We employ the proposed

standard errors from (12) in the computation of t̃ivx, while, for the classical tivx, we

use White standard errors as recommended by Kostakis et al. (2015). We shall also
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consider a version of the original IVX test without White standard errors, denoted by

t#ivx, to illustrate the impact of neglected time-varying volatility on the performance

of this approach.

The rejection frequencies are computed at the nominal 5% level based on 10000

Monte Carlo replications, and all results for the tivx and t̃ivx tests in Tables 1 - 4 are

computed based on standard normal critical values.

4.2. Empirical size and power performance

Tables 1 and 2 illustrate the empirical size and power properties of the AHW , CY ,

tivx and t̃ivx tests under negative and positive short-run dynamics, i.e., considering

(24) with a1 = −0.5 and a1 = 0.5.

From Table 1, which presents the results obtained when vt follows an AR(1) with

a1 = −0.5 (negative autocorrelation) we observe that when b = 0 and for the values

of c considered that AHW and tivx are slightly oversized, but that this oversizing

decreases as the sample size increases. At the same time, we also observe that t̃ivx

displays slightly conservative behaviour. In this experiment CY presents the largest

size distortions as a consequence of the negative short-run dynamics. This feature

of the CY test has already been noted in the literature; see, e.g., Jansson and

Moreira (2006). Note also that in the unit root case (c = 0) there are some signi�cant

size distortions also for the tivx and AHW tests. Regarding the empirical power we

observe that the t̃ivx test displays superior power when c > 0, relative to the other

procedures.

In the case of positive short-run dynamics, i.e., when a1 = 0.5 (see Table 2) we

observe in general size distortions for all tests, with tivx displaying the most severe

distortions when compared to the other procedures, and AHW and t̃ivx displaying

the smallest distortions.

4.3. Robustness against empirical features of the data

To evaluate the performance of the procedures under other empirically relevant

features, in Tables 3 and 4 we report results for the empirical size under DGPs

with time-varying volatility and time-varying persistence. In speci�c, we consider

�ve common variance patterns, namely:

1. constant, σ2
ε (s) = σ2

ν (s) = 1;

2. an early upward break, σ2
ε (s) = σ2

ν (s) = 1 + 8I (s > 0.3);

3. a late upward break, σ2
ε (s) = σ2

ν (s) = 1 + 8I (s > 0.7);

4. an early downward break, σ2
ε (s) = σ2

ν (s) = 9− 8I (s > 0.3); and

5. a late downward break, σ2
ε (s) = σ2

ν (s) = 9− 8I (s > 0.7)

where I (.) is an indicator function; and to allow for time-varying persistence, we also

consider 6 patterns for the localization parameter c:
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1. constant close to integration, c (s) = 5;

2. small break towards stationarity, c (s) = 5 + 5I (s > 0.5);

3. large break towards stationarity, c (s) = 5 + 20I (s > 0.5);

4. constant close to stationarity, c (s) = 25;

5. small break towards integration, c (s) = 25− 5I (s > 0.5);

6. large break towards integration, c (s) = 25− 20I (s > 0.5).

To gauge the necessity of a correction for time-varying variances, we now compute the

IVX test without White heteroskedasticity correction (but note that White standard

errors do robustify against time heteroskedasticity, as con�rmed by unreported

simulations) and denote it by t#ivx; however the t̃ivx is computed using the standard

errors from (12) as before.
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AHW CY tivx t̃ivx AHW CY tivx t̃ivx

b T = 200 T = 500

0 8.9 1.1 10.6 6.30 9.4 2.5 10.4 6.3
5 17.5 28.3 54.4 37.5 17.3 30.7 53.2 39.0

c = 0 10 67.8 94.7 93.5 86.1 65.9 97.4 93.0 87.9
15 98.2 99.4 98.9 97.3 97.8 99.8 98.7 98.1
25 100.0 99.95 100.0 99.9 100.0 100.0 100.0 99.9

T = 200 T = 500

0 6.6 0.0 5.4 5.0 6.8 0.4 4.6 4.6
5 8.1 0.2 13.8 14.5 7.2 2.8 12.4 14.4

c = 10 10 17.1 3.8 33.2 39.6 15.0 14.8 31.0 38.7
15 37.0 29.2 65.1 78.1 33.2 49.6 61.3 77.4
25 96.6 94.7 96.8 99.4 95.2 98.8 96.0 99.5

T = 200 T = 500

0 6.4 0.0 4.1 4.5 6.4 0.0 4.1 4.8
5 7.1 0.0 10.4 12.3 6.4 0.2 9.4 11.1

c = 20 10 13.3 0.0 21.9 26.5 11.3 1.6 20.6 25.4
15 24.5 0.3 40.5 50.3 19.4 7.9 37.2 47.2
25 68.8 22.6 84.2 93.9 60.4 54.3 80.1 93.2

T = 200 T = 500

0 6.0 0.0 4.3 4.9 5.8 0.0 4.0 4.9
5 6.4 0.0 9.1 10.5 6.0 0.0 8.5 10.3

c = 30 10 11.4 0.0 17.7 21.9 9.1 0.0 15.8 20.2
15 20.1 0.0 32.4 39.3 16.1 0.5 28.4 35.9
25 54.1 0.3 70.6 81.3 42.4 12.1 63.7 77.1

T = 200 T = 500

0 6.1 0.1 4.0 4.7 5.5 0.0 4.1 5.0
5 6.8 0.1 8.9 10.5 5.7 0.0 7.2 9.4

c = 40 10 10.5 0.1 16.8 20.0 9.1 0.0 14.3 18.3
15 18.5 0.1 28.1 34.1 13.5 0.0 24.3 30.2
25 45.1 0.1 60.8 71.4 34.9 0.8 52.5 65.2

T = 200 T = 500

0 5.9 0.1 3.6 4.4 5.5 0.0 3.7 5.0
5 6.5 0.1 7.8 9.7 6.2 0.0 7.1 9.5

c = 50 10 10.4 0.1 15.3 19.4 8.1 0.0 12.5 16.5
15 16.6 0.1 26.4 32.1 12.1 0.0 20.5 26.3
25 41.6 0.1 55.5 64.9 30.2 0.0 45.1 56.3

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length
p = 2; CY denotes the Campbell and Yogo test, tivxis IVX test computed following
Kostakis et al. (2015) and t̃ivxthe residual-augmented IVX test procedure, all with

maximal lag length p = [4(T/100)0.25]. The DGP is as in (1) and (2) with ρ = 1− c
T
and

β = b
T
. For further details see the text.

Table 1. Size and power against local alternatives, negative short-run AR parameter
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AHW CY tivx t̃ivx AHW CY tivx t̃ivx

b T = 200 T = 500

0 6.5 4.6 11.1 6.6 6.3 4.1 10.6 6.3
5 94.7 100.0 98.4 96.1 95.7 100.0 98.5 97.6

c = 0 10 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.3 4.1 8.7 5.7 6.5 3.7 8.6 6.2
5 26.5 64.4 79.0 72.9 27.3 66.0 79.9 74.9

c = 10 10 99.5 100.0 100.0 99.7 99.6 100.0 100.0 99.9
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 5.7 3.1 7.2 5.6 5.9 3.1 7.5 5.9
5 16.4 28.6 48.7 43.9 16.4 31.6 49.2 44.5

c = 20 10 70.2 94.4 98.8 97.7 74.9 96.7 99.3 98.7
15 100.0 100.0 100.0 100.0 96.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.0 2.2 7.2 5.9 5.8 2.5 7.1 5.6
5 13.3 16.1 35.6 32.3 13.2 18.7 37.2 34.1

c = 30 10 47.6 63.2 86.8 85.4 50.5 72.9 89.8 89.2
15 94.1 98.2 100.0 99.9 97.0 99.6 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 5.5 1.6 6.7 5.5 5.2 1.8 6.5 5.5
5 10.2 10.4 28.4 26.5 11.0 12.2 29.7 27.4

c = 40 10 35.7 40.2 71.9 70.2 38.5 50.3 76.3 75.0
15 79.5 82.8 98.4 98.3 84.4 91.8 99.2 99.2
25 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.1 1.3 6.6 5.7 5.3 1.4 6.7 5.7
5 9.7 7.2 24.7 22.9 9.5 8.7 25.9 24.5

c = 50 10 28.1 26.8 61.0 59.0 30.4 33.8 64.9 63.3
15 64.3 62.3 93.0 92.7 71.2 75.7 95.9 95.7
25 99.9 99.1 100.0 100.0 100.0 100.0 100.0 100.0

Note: See Table 1.

Table 2. Size and power against local alternatives, positive short-run AR parameter
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Tables 3 and 4 con�rm the conclusions obtained under the homogenous DGPs: the

size control of t̃ivx is overall quite good, and the White-type standard errors account

well for time-varying variances (unreported simulations show that not employing the

White-type standard errors for the t̃ivx test under time-varying variances leads to size

distortions similar to those of the t#ivx test). IVX without robust standard errors can

be oversized, which was expected; the worst e�ect is observed for late upward breaks

in the variance. AHW exhibits a similar pattern, to an even larger extent. We note

that breaks in the persistence parameter c tend to rather have a dampening e�ect,

if any. CY is severely undersized, in line with the previous experiments for negative

short-run correlation. For positive short-run correlation, CY now controls size fairly

well except for late upward and early downward breaks in the variance; the other

three tests do not appear to be sensitive to the sign of the short-run serial correlation

of the predictor. The e�ects are practically the same for both sample sizes, indicating

that the size distortions are not �nite-sample in nature.
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AHW CY t#ivx t̃ivx AHW CY t#ivx t̃ivx

c Var T = 200 T = 500

const 7.6 0.1 9.4 5.7 7.4 1.2 9.7 6.2
early up 11.5 0.1 13.2 6.4 11.2 1.6 13.8 6.5

const small late up 24.1 0.6 19.1 6.6 25.2 3.9 19.6 6.3
early down 21.5 0.4 15.0 5.7 22.1 3.0 17.1 6.0
late down 10.7 0.4 11.9 6.1 11.1 2.3 12.4 5.9

T = 200 T = 500

const 7.0 0.0 8.4 5.5 7.3 0.7 9.5 5.8
early up 11.7 0.0 12.4 6.2 11.5 1.5 12.6 6.0

up small late up 23.2 0.1 16.9 5.5 24.1 2.3 17.3 5.3
early down 22.2 0.2 15.0 6.2 22.2 2.8 16.2 6.1
late down 10.9 0.1 11.0 6.3 11.3 1.8 12.0 6.6

T = 200 T = 500

const 6.6 0.0 7.8 5.7 6.8 0.3 8.5 5.7
early up 10.9 0.0 10.8 5.4 11.5 0.3 10.8 5.4

up large late up 21.5 0.0 13.2 4.8 21.5 0.3 14.2 4.9
early down 22.3 0.2 15.0 7.0 22.8 2.7 17.6 7.3
late down 11.6 0.0 10.2 5.8 11.3 1.1 11.3 6.4

T = 200 T = 500

const 6.2 0.0 5.1 4.9 5.6 0.0 6.4 5.2
early up 10.6 0.0 9.7 5.4 10.4 0.0 11.0 6.0

const large late up 24.4 0.1 15.8 6.6 24.5 0.1 16.3 6.2
early down 24.0 0.0 10.8 5.9 23.2 0.0 13.5 6.1
late down 11.1 0.0 7.80 5.6 11.0 0.0 8.4 5.5

T = 200 T = 500

const 6.1 0.0 6.0 5.4 6.1 0.0 7.1 5.8
early up 10.9 0.0 10.5 5.8 11.1 0.1 11.5 6.2

down small late up 23.6 0.1 16.0 6.3 23.9 0.2 17.7 6.5
early down 23.4 0.0 10.6 5.7 23.2 0.1 13.2 6.1
late down 10.6 0.0 7.3 5.1 10.8 0.0 9.1 5.7

T = 200 T = 500

const 7.0 0.0 7.6 5.3 7.4 0.2 8.4 5.4
early up 11.2 0.1 11.9 5.8 11.4 1.3 13.1 6.5

down large late up 25.0 0.4 19.5 6.9 25.4 4.3 20.8 7.1
early down 21.3 0.0 10.8 4.8 21.3 0.2 11.5 4.7
late down 10.2 0.0 8.7 4.9 10.3 0.3 9.2 4.6

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2;

CY denotes the Campbell and Yogo test, t#ivx is IVX test computed following Kostakis et

al. (2015) but without White correction, and t̃ivx is the residual-augmented IVX test
procedure, all with maximal lag length p = [4(T/100)0.25]. The DGP is as in (1) and (2)

with ρ = 1− ct
T

and β = b
T
and exhibits time-varying variance. For further details see the

text.

Table 3. Size under breaks in variance and persistence, negative short-run AR
parameter
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AHW CY t#ivx t̃ivx AHW CY t#ivx t̃ivx

c Var T = 200 T = 500

const 6.6 4.5 11.4 6.8 6.3 4.2 10.9 6.6
early up 10.0 6.8 14.0 6.7 10.0 6.6 14.0 6.6

const small late up 22.6 10.4 20.3 6.6 23.4 9.6 20.5 6.7
early down 19.9 9.0 17.3 5.7 19.9 8.4 17.8 6.0
late down 9.8 6.7 12.8 6.3 9.5 6.1 12.4 5.7

T = 200 T = 500

const 5.8 4.3 10.3 6.1 6.4 4.2 9.9 5.9
early up 10.2 6.4 13.9 7.0 10.1 6.1 13.3 6.4

up small late up 21.7 8.7 18.0 6.0 21.9 8.4 18.3 5.9
early down 19.9 9.3 18.5 7.3 19.7 9.4 17.8 6.6
late down 9.7 7.1 12.5 6.6 9.7 6.6 12.6 7.0

T = 200 T = 500

const 5.9 4.1 9.7 6.3 5.9 3.7 9.7 6.6
early up 9.9 5.7 12.1 6.1 10.4 5.2 11.6 5.7

up large late up 20.5 6.1 15.0 5.6 20.7 5.9 14.7 5.3
early down 20.9 9.7 19.0 8.0 20.6 10.4 19.0 7.6
late down 10.1 7.1 13.1 7.4 10.4 6.7 12.4 7.0

T = 200 T = 500

const 5.8 2.6 7.5 5.6 5.6 2.8 8.1 6.0
early up 10.9 5.3 11.4 6.2 10.5 5.4 11.7 6.6

const large late up 22.7 8.0 17.6 7.0 24.1 9.1 17.9 7.0
early down 23.1 4.5 15.5 7.2 22.3 5.6 15.8 6.4
late down 10.7 3.8 10.4 6.3 10.1 4.1 9.9 5.7

T = 200 T = 500

const 5.9 2.9 8.0 5.8 6.0 3.0 8.2 5.6
early up 10.5 5.5 12.2 6.6 10.7 5.6 12.6 6.6

down small late up 23.3 8.8 18.6 7.0 24.2 9.7 18.7 6.8
early down 22.2 4.7 15.2 7.0 21.8 5.6 15.8 6.3
late down 10.1 3.9 10.6 6.5 10.3 4.3 9.9 5.9

T = 200 T = 500

const 6.3 3.9 9.5 5.9 6.2 3.6 9.1 5.5
early up 10.3 7.1 14.1 7.0 11.0 6.7 13.7 6.6

down large late up 25.0 12.8 22.0 7.6 24.8 12.7 21.7 7.3
early down 20.6 4.4 12.5 5.1 19.8 4.5 13.5 5.3
late down 9.7 4.7 10.7 5.3 9.6 4.2 10.8 5.2

Note: See Table 3.

Table 4. Size under breaks in variance and persistence, positive short-run AR
parameter
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5. Excess return predictability

The objective of this empirical part is to re-examine the predictive power of several

variables used in Welch and Goyal (2008), updated with information up to December

2013.3 using the approaches discussed in the previous sections. We look at the claims

by Welch and Goyal (2008) that �evidence suggests that most models are unstable

or even spurious� and that �models are no longer signi�cant even in-sample.�

5.1. Background

According to the �ndings of Welch and Goyal (2008), most predictive models have

performed poorly in sample over the last 30 years. As they argue for many models

any earlier apparent statistical signi�cance was often based exclusively on years up

to and especially on the years of the Oil shock 1973-1975 (Welch and Goyal 2008,

p. 1456).

Ang and Bekaert (2007), considering a sample from 1935 to 2001, report results for

several subsamples and for the full sample. Since interest rate data is hard to interpret

before the 1951 Treasury Accord, Ang and Bekaert (2007) (as well as Lewellen 2004)

consider 1952 as their starting date. Furthermore, Ang and Bekaert (2007) also

indicate that the majority of studies establish strong evidence of predictability when

data before or up to the early 1990s is used. For instance, Lettau and Ludvigsson

(2001) and Goyal and Welch (2003) point out that the predictive power of the

dividend yield weakens with the addition of the 1990s decade.

Several researchers suggest that the disapearance of stock return predictability is

due to parameter instability or structural breaks and identify the disapearance around

1991 (see, e.g., Pesaran and Timmermann 2002; and Lettau and Nieuwerburgh 2008).

A related hypothesis is that predictability was arbitraged away once discovered, in

a scenario similar to the attenuation of the January e�ect. Welch and Goyal (2008)

argue that predictability has not been signi�cant in- or out-of-sample over the past

30 years. Still others take a more drastic view and argue that it was never actually

there (e.g., Bossaerts and Hillion 1999 and Goyal and Welch 2003).

Henkel et al. (2011) reveal that predictability is a phenomenon whose strength

is distinctively time-varying. The dividend yield and commonly used term structure

variables are e�ective predictors almost exclusively during recessions. According to

these authors, the robust prominence of busines cycles in these results suggests a

potentially substantial tie to the literature on the dynamics of expected returns.

Campbell and Cochrane (1999), Menzly et al. (2004) and Bekaert et al. (2009) show

that risk premiums are countercyclical and that the time series behaviour of risk

premium is higher during recessions.

3. We thank A. Goyal for making this data available on his Web site.
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Since a time-varying predictive relation is the byproduct of the interacting

dynamics of expected returns and of the predictors, the complex behaviour of

the predictors themselves must be considered when testing for predictability. The

underlying fundamentals are the potential micro-level objectives of �rms and central

banks whose activities jointly determine aggregate predictor variables. The business

cycle is an important driver of these micromotives and this lead Henkel et al. (2011)

to re-examine predictability using a regime-switching framework capable of matching

the time-varying dynamics of predictors to the dynamics of expected returns. It is

found that predictors are less persistent and more volatile during recessions. Several

features of their analysis stand out: the random walk model of stock prices prevailed

in the 1970s based on CRSP data from the 1960s era expansion; predictability

emerged in research of the late 1970s and mid-1980s, following several recessions;

and predictability was subsequently doubted following the long booms of the 1980s

and 1990s.

Hence, in line with Ang and Bekaert (2007) and given the availability of data,

we revisit the impact of the addition of the 1990s �rst, followed by the analysis of

the e�ects of adding the period from January 2000 to September 2007 and �nally

the remaining sample period (October 2007 to December 2013). Moreover, in order

to remove the possible impact of the Oil shock (1973-1975) we repeat the analysis

starting in 1976.

Given the available empirical evidence of change in strength of predictability of

some variables over time, in what follows we split the sample into eigth periods. These

changes appear to be accompanied by changes in the persistence of the considered

regressors.4 In particular, we consider the eight time periods: i) Jan 1952 - Dec 1989;

ii) Jan 1952 - Dec 1999; iii) Jan 1952 - Sep 2007; iv) Jan 1952 - Dec 2013; v) Jan

1976 - Dec 1989; vi) Jan 1976 - Dec 1999; vii) Jan 1976 - Sep 2007; and viii) Jan

1976 - Dec 2013.

5.2. Data

The dependent variable is the equity premium (or excess return), i.e., the total rate

of return on the stock market minus the prevailing short-term interest rate. Stock

returns are the continuously compounded returns on the S&P 500 index, including

dividends, and the risk-free rate is the Treasury-bill rate.

The independent variables used are: i) the 12-month moving sums of dividends

(D12) paid on the S&P 500 index; ii) the dividend price-ratio (d/p) computed as

the di�erence between the log of dividends and the log of prices; iii) the dividend

yield (d/y) computed as the di�erence between the log of dividends and the log

of lagged prices; iv) the 12-month moving sums of earnings on the S&P 500 index

4. See the results in Appendix B for more details.
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(E12); v) the earnings price-ratio (e/p) computed as the di�erence between the log

of earnings and the log of prices; vi) the dividend payout-ratio (d/e) computed as the

di�erence between the log of dividends and the log of earnings; vii) the stock variance

(svar) computed as the sum of squared daily returns on the S&P 500; viii) the cross-

sectional beta premium (csp) which measures the relative valuations of high- and

low-beta stocks; ix) the book-to-market ratio (b/m) computed as the ratio of book

value to market value for the Dow Jones industrial average. To include corporate

issuing activity we also use x) the net equity expansion (ntis) computed as the ratio

of 12-month moving sums of net issues by NYSE listed stocks divided by the total

end-of-year market capitalization of NYSE stocks; and xi) the percent equity issuing

(eqis), which is the ratio of equity issuing activity as a fraction of total issuing activity.

A further set of predictors used is: the treasury bills (tbl) rates; the long term

government bond yield (lty); the term spread (tms) which is the di�erence between

the long term yield on government bonds and the treasury-bill; the default yield

spread (dfy) which is the di�erence between BAA and AAA-rated corporate bond

yields. The default return spread (dfr) is the di�erence between long-term corporate

bond and long-term government bond returns; in�ation (in�) which corresponds to

the consumer price index (all urban consumers); and long-term government bond

returns (ltr). For details on the construction of these variables and for a greater

description see Welch and Goyal (2008).

5.3. Findings

Tables 5 and 6 report the predictability test results computed from tivx, t̃ivx and the

OLS based tests procedures over four subperiods of analysis starting in January 1952.

From Table 5 it is interesting to observe that the OLS based test procedure �nds most

evidence of predictability in the subsample from January 1952 to December 1989, and

as we add information the number of signi�cant predictors decreases. Note that in

the subsample from January 1952 to December 1989, based on this procedure, nine

variables (d/p, d/y, d/e, tbl, tms, ntis, in�, ltr, svar) seemed to be signi�cant; whereas

in the following subperiods (January 1952 to December 1999; to September 2007, and

to December 2013) the number of signi�cant variables reduced to six (tbl, lty, tms,

ntis, in�, ltr), to two (in�, ltr) and increases again to six (tbl, lty, tms, in�, ltr, svar),

respectively. However, if we look at the results obtained with the two IVX approaches,

the number of signi�cant predictors is smaller. The original IVX approach for the four

periods under analysis (January 1952 to December 1989; January 1952 to December

1999; January 1952 to September 2007 and January 1952 to December 2013) �nds 5,

5, 2 and 4 signi�cant predictors, respectively; whereas the residual augmented IVX

approach proposed in this paper �nds 5, 6, 2 and 5, respectively.
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Jan 1952 - Dec 1989 Jan 1952 - Dec 1999 Jan 1952 - Sep 2007 Jan 1952 - Dec 2013

t̃ivx tivx OLS t̃ivx tivx OLS t̃ivx tivx OLS t̃ivx tivx OLS

D12 -0.648 -0.038 -0.939 -0.233 1.423 0.591 -0.175 1.098 0.090 -0.205 1.074 0.054

E12 -0.843 -0.289 -1.254 -0.116 1.287 0.408 -0.135 1.019 -0.017 -0.171 0.924 -0.138

d/p -0.674 0.253 2.103∗∗ -0.540 -1.153 0.143 -0.455 -0.386 1.093 -0.664 -0.414 1.067

d/y 0.877 0.477 2.286∗∗ 0.078 -1.069 0.207 0.677 -0.284 1.153 0.744 -0.243 1.223

e/p -1.049 -0.332 0.588 -1.243 -1.220 -0.188 -0.461 -0.296 0.921 -0.307 -0.507 0.548

d/e 1.557 1.343 2.109∗∗ 0.707 -0.069 0.680 0.450 -0.323 0.474 0.356 0.093 0.660

b/m -0.472 0.027 0.479 -0.892 -1.451 -0.802 -0.530 -0.894 -0.091 -0.551 -0.847 -0.015

tbl -2.368 -1.820 -2.819∗∗∗ -2.666∗∗∗ -1.651∗ -2.925∗∗∗ -2.275 -1.567 -2.683 -2.201∗∗ -1.726∗ -2.596∗∗∗

lty -1.454 -0.818 -1.633 -1.817∗ -0.587 -1.668∗ -1.492 -0.590 -1.638 -1.552 -0.766 -1.752∗

tms 2.660∗∗∗ 2.824∗∗∗ 2.867∗∗∗ 2.466∗∗ 2.768∗∗∗ 2.726∗∗∗ 2.173 2.406 2.291 2.019∗∗ 2.399∗∗ 2.180∗∗

dfy 1.292 1.653 1.339 0.742 1.411 1.072 0.760 1.351 1.012 0.082 0.868 0.461

dfr 0.940 0.934 0.492 1.174 1.451 0.881 0.093 0.535 -0.175 0.021 0.814 0.090

ntis -2.069∗∗ -2.477∗∗ -2.181∗∗ -1.723∗ -2.509∗∗ -2.128∗∗ -1.636 -2.353 -1.895 -0.349 -1.201 -0.541

in� -2.093∗∗ -1.721∗ -3.124∗∗∗ -2.673∗∗∗ -1.793∗ -3.566∗∗∗ -2.588∗∗∗ -1.873∗ -3.558∗∗∗ -2.091∗∗ -1.363 -2.772∗∗∗

ltr 2.620∗∗∗ 2.820∗∗∗ 2.785∗∗∗ 2.611∗∗∗ 2.770∗∗∗ 2.714∗∗∗ 2.462∗∗ 2.559∗∗ 2.485∗∗ 2.120∗∗ 2.450∗∗ 2.378∗∗

svar -1.950∗ -1.958∗ -2.012∗∗ -1.264 -1.403 -1.507 -1.206 -1.454 -1.618 -1.648∗ -2.964∗∗∗ -3.139∗∗∗

Table 5. Testing for Predictability (starting date January 1952)
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Jan 1975 - Dec 1989 Jan 1975 - Dec 1999 Jan 1975 - Sep 2007 Jan 1975 - Dec 2013

t̃ivx tivx OLS t̃ivx tivx OLS t̃ivx tivx OLS t̃ivx tivx OLS

D12 -0.191 0.311 0.156 -0.062 1.854∗ 1.358 0.229 1.437 0.578 0.038 1.271 0.340

E12 -0.315 0.055 -0.170 0.618 1.996∗∗ 1.450 0.431 1.489 0.605 0.154 1.128 0.183

d/p -0.302 0.668 0.939 -0.393 -1.475 -0.774 -0.260 -0.416 0.581 -0.467 -0.417 0.621

d/y 0.599 0.632 1.077 -0.288 -1.535 -0.792 0.456 -0.495 0.589 0.534 -0.407 0.739

e/p -0.455 0.087 0.332 -0.987 -1.301 -0.616 -0.021 -0.261 0.754 -0.101 -0.482 0.415

d/e 0.591 0.852 0.795 -0.696 -0.031 -0.275 -0.512 -0.349 -0.309 -0.069 0.194 0.204

b/m 0.103 0.040 0.300 -0.415 -1.609 -0.955 -0.189 -1.088 -0.145 -0.181 -1.022 -0.036

tbl -1.892∗ -1.451 -1.506 -2.273∗∗ -2.002∗∗ -1.973∗∗ -1.520 -1.628 -1.273 -1.242 -1.712∗ -1.230

lty -1.431 -0.863 -0.935 -2.084∗∗ -1.746∗ -1.778∗ -1.277 -1.375 -0.966 -1.126 -1.508 -0.992

tms 1.402 1.432 1.423 0.889 1.181 1.141 0.858 1.014 0.983 0.854 1.144 1.007

dfy 1.239 0.859 1.453 0.813 -0.574 0.388 0.501 -0.590 0.536 -0.123 -0.916 -0.035

dfr 0.866 0.066 0.259 1.639 0.083 0.645 -0.094 -0.873 -0.733 -0.210 -0.421 -0.345

ntis -2.579∗∗∗ -2.257∗∗ -2.196∗∗ -1.997∗∗ -1.368 -1.627 -1.729∗ -1.416 -1.543 0.021 -0.076 -0.057

in� -1.532 -1.415 -1.394 -1.879∗ -2.513∗∗ -2.201∗∗ -1.956∗ -2.443∗∗ -2.074∗∗ -1.035 -1.749∗ -1.234

ltr 1.415 1.285 1.428 1.536 1.027 1.389 1.382 0.922 1.279 1.217 0.949 1.300

svar -2.174∗∗ -1.628 -1.584 -1.105 -1.477 -1.237 -1.112 -1.560 -1.353 -1.636 -3.092∗∗∗ -2.951∗∗∗

Table 6. Testing for Predictability (starting date January 1976)
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Performing the same analysis, but starting now in January 1975 instead of

January 1952, the OLS based approach �nds 1, 3, 1 and 1 signi�cant predictors in

the four subsamples under analysis (January 1975 to December 1989; January 1975

to December 1999; January 1975 to September 2007 and January 1976 to December

2013), respectively. Thus, based on this statistic the period between January 1976

to December 1999 is the one which presents more evidence of predictability. Using

the IVX based approaches, the number of signi�cant predictors is 1, 5, 1 and 3, for

the original IVX and 3, 4, 2 and 0 for the residual augmented IVX approach, for the

four subperiods under analysis, respectively. Hence, both IVX based approaches also

identify the period between 1976 and 1999 as the period with strongest evidence of

predictability.

The results in Table 6 agree to a certain extend with the conclusions put forward

by Welch and Goyal (2008) that apparent statistical signi�cance was often based

exclusively on years up to and especially on the years of the Oil Shock of 1973-1975.

6. Conclusions

This paper introduced a new IVX test statistic computed from a residual augmented

predictive regression as considered in Amihud and Hurvich (2004) and reexamined

the empirical evidence on predictability of stock returns of Welch and Goyal (2008)

using these new robust methods.

To this end we resorted to IVX estimation and testing, and proposed a residual-

augmented variant that allows practitioners to distinguish more reliably between the

null of no predictability and the alternative. The method is asymptotically correct

under near-integration as well as under stationarity of the regressor, has improved

local power under high regressor persistence, and allows, e.g., for heterogeneity of

the data in the form of time-varying variances.

The results derived here on bias correction can be generalized for other types

of instrumental variable estimation than just IVX. The IV framework of Breitung

and Demetrescu (2015), who distinguish between type-I instruments that are less

persistent than the initial regressor (the IVX instrument is actually of type I; see

Breitung and Demetrescu 2015), and type-II instruments that are (stochastically)

trending, yet exogenous, allows for a quick discussion: a careful examination of the

arguments presented here shows that they are easily extended for type-I instruments,

but type-II instruments behave like the OLS estimator where residual-augmentation

is not improving on the test procedure even asymptotically.

The provided Monte Carlo evidence shows that the asymptotic improvements

are a good indicative of the �nite-sample performance. Also, the empirical analysis

showed that the bias-adjusted IVX procedure detected predictability more often than

the original IVX procedure.
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Appendix A: Technical Appendix

A.1. Preliminary Results

Throughout the proofs, we consider
∑t−1
j=0 %

kj = 1−%kt
1−%k = Tη

a

(
1−%kt

1+%+...+%k−1

)
≤

1
kaT

η for large enough T and �xed k, where % := 1− a
Tη with η ∈ (0, 1) and

a > 0 and �xed. Furthermore, let C denote a generic constant whose value may

change from occurrence to occurrence.

Lemma A.1. Under the assumptions of Theorem 1, as T →∞, it follows that

1. 1
T

∑T
t=p+1 xt−1xt−p

p→ α′p
∫ 1

0 σ
2
vds, where αp := (α0, . . . , αp−1) and xt−p :=

(xt−1, ..., xt−p)
′ and αh is as de�ned in Theorem 3.1;

2. 1
T

∑T
t=p+1 xt−px

′
t−p

p→ Ω
∫ 1

0 σ
2
vds, where Ω is a p× p matrix with generic

element aij = α|i−j|;

3. 1
T

∑T
t=p+1 xt−px

′
t−pν

2
t
p→ Ω

∫ 1

0 σ
4
v (s) ds;

4. 1
T

∑T
t=p+1 z

2
t−1ε

2
t
p→ α0

∫ 1

0 σ
2
v (s)σ2

ε (s) ds.

Proof of Lemma A.1

Phillips and Xu (2006) show in their Lemma 1 that 1
T

∑T
t=h+1 xtxt−h

p→
αh
∫ 1

0 σ
2
vds, h = 0, 1, . . . , p− 1; this su�ces to establish the results in the �rst

two items. The result in item 3 also follows directly from Lemma 1 of Phillips

and Xu (2006), and the proof can be adapted in a straightforward manner to

establish the result in item 4. �

Lemma A.2. Under the assumptions of Theorem 2, as T →∞, it follows that∑T
t=2 z̃t−1εt√∑T
t=2 z̃

2
t−1ε

2
t

d→N (0, 1)

where z̃t =
∑t−1
j=0 %

jνt−j.

Proof of Lemma A.2

Consider s2
T := 1

T 1+η

∑T
t=2

∑t−2
j=0 %

2jσ2
ν,t−1−jσ

2
ε,t and note that s2

T is bounded

and bounded away from zero, since

min1≤t≤T σ
2
ν,tmin1≤t≤T σ

2
ε,t

T 1+η

T∑
t=2

t−2∑
j=0

%2j ≤ s2
T ≤

max1≤t≤T σ
2
ν,tmax1≤t≤T σ

2
ε,t

T 1+η

T∑
t=2

t−2∑
j=0

%2j
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where
∑T
t=2

∑t−2
j=0 %

2j ∼ CT 1+η.

Since,

∑T
t=2 z̃t−1εt√∑T
t=2 z̃

2
t−1ε

2
t

=
1

T 1/2+η/2

T∑
t=2

z̃t−1εt
sT

√√√√∑T
t=2

∑t−2
j=0 %

2jσ2
ν,t−1−jσ

2
ε,t∑T

t=2 z̃
2
t−1ε

2
t

, (A.1)

we show next that 1
T 1/2+η/2

∑T
t=2

z̃t−1εt
sT

follows a limiting standard normal

distribution by resorting to a central limit theorem for martingale di�erence

[md] arrays (Davidson 1994, Theorem 24.3). However, to apply it, we need to

show that, i) maxt
1

T 1/2+η/2

∣∣∣ z̃t−1εt
sT

∣∣∣ p→ 0 and ii) 1
T 1+η

∑T
t=2

z̃2t−1ε
2
t

s2T

p→ 1.

Given that the result in ii) also implies√√√√∑T
t=2

∑t−2
j=0 %

2jσ2
ν,t−1−jσ

2
ε,t∑T

t=2 z̃
2
t−1ε

2
t

p→ 1, (A.2)

hence the result in (A.1) would follow.

To verify i), note that uniform boundedness of moments of order 2 + δ∗ for

some δ∗ > 0 of T−η/2z̃t−1εt su�ces to establish this condition. An application

of Hölder's inequality shows that uniformly bounded 4th order moments of

T−η/2z̃t−1 and uniform L4+δ∗-boundedness of εt su�ces, since δ∗ may be

chosen arbitrarily close to zero, so we check the uniform boundedness of

E

(
z̃4
t−1

T 2η

)
=

1

T 2η

t−2∑
j=0

t−2∑
k=0

t−2∑
l=0

t−2∑
m=0

%j%k%l%m (νt−jνt−kνt−lνt−m) . (A.3)

Due to the serial independence of νt, the expectation (νt−jνt−kνt−lνt−m) is

nonzero only if the indices are pairwise equal, thus we can simplify (A.3) as,

E

(
z̃4
t−1

T 2η

)
=

1

T 2η

t−2∑
j=0

t−2∑
k=0

%2j%2k
(
ν2
t−jν

2
t−k
)
.

Since νt is uniformly L4-bounded, the expectations on the r.h.s. are uniformly

bounded for any t, k and j, therefore,

0≤ E

(
z̃4
t−1

T 2η

)
≤C 1

T 2η

t−2∑
j=0

t−2∑
k=0

%2j%2k =C
1

T 2η

t−2∑
j=0

%2j

2

≤C 1

T 2η

T−2∑
j=0

%2j

2

≤C

which su�ces for the required uniform L4-boundedness.
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To check condition ii), it su�ces to show that

1

T 1+η

T∑
t=2

z̃2
t−1ε

2
t − s2

T
p→ 0 (A.4)

because s2
T is bounded and bounded away from zero (we learn from Lemma

A.4 below that s2
T → 1

2a

∫ 1

0 σ
2
ν (s)σ2

u (s) ds, but the exact limit does not matter

here). To prove (A.4), write

T∑
t=2

z̃2
t−1ε

2
t =
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t−2∑
j=0

t−2∑
k=0
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ε2
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ε,t

)
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t−2∑
j=0
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2
ε,t

=: AT +BT .

Note that
∑t−2
j=0

∑t−2
k=0 %

j%kνt−1−jνt−1−k
(
ε2
t − σ2

ε,t

)
builds an md array and

as such, is uncorrelated in t. Hence, showing 1
T 1+ηAT to vanish is not di�cult,

given that from the uncorrelatedness of the summands we can write that,

V ar

(
1

T 1+η
AT

)
=

1

T 2+2η

T∑
t=2

V ar
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j=0
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1

T 2+2η
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E


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%j%kνt−1−jνt−1−k

2
E
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ε2
t − σ2

ε,t

)2)
.

Now, εt is uniformly L4-bounded and

E


t−2∑
j=0

t−2∑
k=0

%j%kνt−1−jνt−1−k

2
 =
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j=0
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k=0
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t−2∑
m=0

%j%k%l%mE (νt−1−jνt−1−kνt−1−lνt−1−m)

where the expectation on the r.h.s. is, as before, uniformly bounded and nonzero

only if the indices are pairwise equal. Hence,

0 ≤


t−2∑
j=0

t−2∑
k=0

%j%kνt−1−jνt−1−k

2
 ≤ C t−2∑

j=0

t−2∑
k=0

%2j%2k ≤ CT 2η



39 Residual-augmented IVX predictive regression

leading to V ar
(

1
T 1+ηAT

)
→ 0 and thus AT = op

(
T 1+η

)
.

Regarding BT , note that,

BT = T 1+ηs2
T +

T∑
t=2

t−2∑
j=0

%2j
(
ν2
t−1−j − σ2

ν,t−1−j
)
σ2
ε,t

+
T∑
t=2

t−2∑
j=0

t−2∑
k=0

j 6=k

%j%kνt−1−jνt−1−kσ
2
ε,t

= T 1+ηs2
T +BT1 +BT2.

For BT1 we have from the serial independence and L4-boundedness of νt

that
t−2∑
j=0

%2j
(
ν2
t−1−j − σ2

ν,t−1−j
)
σ2
ε,t

2
 = σ4

ε,t
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%4j
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ν2
t−1−j − σ2
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)2)

≤ CT η

and thus E
(∣∣∣∑t−2

j=0 %
2j
(
ν2
t−1−j − σ2

ν,t−1−j
)
σ2
ε,t

∣∣∣) ≤ CT η/2. Hence,
E

(∣∣∣∣ 1

T 1+η
BT1

∣∣∣∣) ≤ C

T 1+η

T∑
t=2

T η/2 → 0

and Markov's inequality indicates that BT1 = op
(
T 1+η

)
.

For BT2 we proceed similarly,

E


 T∑
t=2

t−2∑
j=0

t−2∑
k=0

j 6=k
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2
ε,t
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=
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t=2
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s=2

t−2∑
j=0
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j 6=k
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m=0

l 6=m

%j%k%l%mσ2
ε,tσ

2
ε,sE (νt−1−jνt−1−kνs−1−lνs−1−m) ,

where the expectations on the r.h.s. are nonzero if t− j = s− l and t− k = s−m
or if t − j = s −m and t − k = s − l (with t − j = t − k and s − l = s −m
being excluded by the requirement that j 6= k and l 6= m). Note that, for any
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t, s, j, k, l,m with j 6= k and l 6= m,

σ2
ε,tσ

2
ε,s (νt−1−jνt−1−kνs−1−lνs−1−m) ≤

(
max
t
σ2
ε,t

)2 (
max
t
σ2
ν,t

)2

≤ C.

Let us now focus on the terms for which t− s = j − l = k−m. Thus, for t = s,

t = 2, . . . , T , we obtain

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m =
t−2∑
j=0

t−2∑
k=0

j 6=k

%2j%2k ≤

t−2∑
j=0

%2j

2

;

and for s = t− 1, t = 3, . . . , T , we have analogously that,

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤ %2

t−3∑
j=0

%2j

2

while, for s = t+ 1, t = 2, . . . , T − 1 (or equivalently t = s− 1, s = 3, . . . , T ), it

follows that,

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤ %2

(
s−3∑
l=0

%2l

)2

.

Repeating the discussion for s = t± r for r = 2, . . . , T − 2, we have

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0
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,

leading to

T∑
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t−2∑
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s−2∑
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T∑
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T∑
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.

The same holds when imposing t − s = j − m = k − l, such that, with∑t−r−2
j=0 %2j ≤

∑T−1
j=0 %

2j and
∑T
t=2+r C ≤ CT , thus, we ultimately have

 T∑
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and consequently BT2 = op
(
T 1+η

)
when η < 1, as required to complete the

proof. �

Lemma A.3. Under the assumptions of Theorem 2, it follows, as T → ∞,

that i)
∑T
t=2 zt−1εt√∑T
t=2 z

2
t−1ε

2
t

d→N (0, 1) ; and ii)
∑T
t=2 zt−1ut√∑T
t=2 z

2
t−1u

2
t

d→N (0, 1).

Lemma A.3 suggests the use of White standard errors in the heteroskedastic

near-integrated case, W.s.e :=

√∑T
t=2 z

2
t−1ε̂

2
t∑T

t=2 z
2
t−1

with ε̂t the OLS residuals

guaranteeing sup2≤t≤T |ε̂t − εt|
p→ 0 both in cases with and without intercept,

and also better �nite-sample behavior; see Kostakis et al. (2015). For the stable

case, White standard errors are �mandatory� under time heteroskedasticity

(Phillips and Xu 2006).

Proof of LemmaA.3

We �rst resort to the Phillips-Solo decomposition of vt and write vt =

ωνt + ∆ṽt where ṽt is a linear process in νt with exponentially decaying

coe�cients. Let also z̄t := (1− %L)−1
+ vt. Thus, denoting z̃t =

∑t−1
j=0 %

jνt−j like

in Lemma A.2, it follows that,

z̄t = ω
t−1∑
j=0
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ṽt + (%− 1)
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%j−1ṽt−j − %t−1ṽ1


= ωz̃t + dt,

and it can then easily be shown that V ar
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j=1 %
j−1ṽt−j

)
≤ CT η such that

dt is uniformly L2-bounded given that %− 1 = −aT−η. Similarly, T−η/2z̃t is

uniformly L2-bounded itself. We now show that

1
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z̄2
t−1ε

2
t =

ω2
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and

1
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z̄t−1εt =
ω
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z̃t−1εt + op (1) . (A.6)

Let us consider �rst (A.5). Note that,

1

T 1+η

T∑
t=2

z̄2
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2
t =
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T 1+η
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Since,

E
(∣∣d2
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2
t

∣∣) = E
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d2
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)
E
(
ε2
t

)
and
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2
t
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)
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)
due to the independence of εt and dt−1 and of εt and zt−1. With E

(
d2
t−1

)
, E
(
ε2
t

)
and T−ηE

(
z̃2
t−1

)
being uniformly bounded, (A.5) then follows. To establish

(A.6), write

1

T 1/2+η/2

T∑
t=2

z̄t−1εt =
ω

T 1/2+η/2

T∑
t=2

z̃t−1εt +
1

T 1/2+η/2

T∑
t=2

dt−1εt

and note that dt−1εt has the md property. Hence,
∑T
t=2 dt−1εt = Op

(
T 1/2

)
due to the uniform L2-boundedness and independence of εt and dt−1. Thus,

from (A.5) and (A.6) we obtain that∑T
t=2 z̄t−1εt√∑T
t=2 z̄

2
t−1ε

2
t

−
∑T
t=2 z̃t−1εt√∑T
t=2 z̃

2
t−1ε

2
t

p→ 0. (A.7)

In a second step we use the same reasoning to show that∑T
t=2 z̄t−1εt√∑T
t=2 z̄

2
t−1ε

2
t

−
∑T
t=2 zt−1εt√∑T
t=2 z

2
t−1ε

2
t

p→ 0. (A.8)

Write to this end zt := z̄t + rt where rt := − (1− %L)−1
+

ct
T xt−1 with

V ar

(
1√
T
xt

)
=

1

T

t∑
j=1

t∑
k=1

(
1− ct−j

T

)j (
1− ct−k

T

)k
(vt−jvt−k)≤ 1

T

t∑
j=1

t∑
k=1

|(vt−jvt−k)| .

Given the uniform L2-boundedness of the innovations νt and the exponential

decay of the Wold coe�cients of vt, E |(vt−jvt−k)| ≤ Ce|j−k| ∀t and 1√
T
xt is

easily shown to be uniformly L2-bounded.

The key in establishing (A.8) is to note that rt−1 is independent of εt

and uniformly L2-bounded, and that T−ηE
(
z2
t−1

)
is uniformly bounded too

whenever T−ηE
(
z̄2
t−1

)
and E

(
r2
t

)
are. The arguments employed to show (A.7)

thus apply for zt and z̄t as well, and (A.8) holds.

Summing up,
∑T
t=2 zt−1εt√∑T
t=2 z

2
t−1ε

2
t

and
∑T
t=2 z̃t−1εt√∑T
t=2 z̃

2
t−1ε

2
t

are asymptotically equivalent

and the result follows from Lemma A.2.
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The proof of the result in ii) follows along the same lines and we omit the

details.�

Lemma A.4. Under the assumptions of Theorem 2, it holds, as T →∞, that

1. 1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t
p→ ω2

2a

∫ 1

0 σ
2
ν (s)σ2

ε (s) ds;

2. 1
T 1+η

∑T
t=p+1 z

2
t−1u

2
t

p→ ω2

2a

∫ 1

0 σ
2
ν (s)σ2

u (s) ds where σ2
u (s) = σ2

ε (s) +

γ2σ2
ν (s);

3. 1
T 1+η

∑T
t=p+1 zt−1xt−1 ⇒ ω2

a

(
X2 (1)−

∫ 1

0 X (s) dX (s)
)

where X (r) is an Ornstein-Uhlenbeck process as de�ned in (14).

Proof of Lemma A.4

1. To obtain the limit of 1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t , we use from the proof of Lemma

A.3 (see (A.2)) the fact that

1

T 1+η

T∑
t=p+1

z2
t−1ε

2
t = ω2 1

T 1+η

T∑
t=2

t−2∑
j=0

%2jσ2
ν,t−1−jσ

2
ε,t + op (1) .

The Lipschitz property implies that
∣∣σ2
ν,t−1−j − σ2

ν,t

∣∣ ≤ C j
T such that

0 ≤ 1

T 1+η

∣∣∣∣∣∣
T∑
t=2

t−2∑
j=0

%2jσ2
ν,t−1−jσ

2
ε,t −

T∑
t=2

σ2
ν,tσ

2
ε,t

t−2∑
j=0

%2j

∣∣∣∣∣∣ ≤ C 1

T 2+η

T∑
t=2

t−2∑
j=0

j%2j .

On the r.h.s. we have immediately, as T→∞, that

1

T 2+η

T∑
t=2

t−2∑
j=0

j%2j → 0

given that
∑t−2
j=0 j%

2j =
t%2(t−3)(%−1)−(%2(t−2)−1)

(%2−1)2
, where

∣∣∣ t%2(t−3)(%−1)

(%2−1)2

∣∣∣ ≤
CT 1+η%2(t−3) and

∣∣∣%2(t−2)−1
(%2−1)2

∣∣∣ ≤ CT 2η. We also observe that,

1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

t−2∑
j=0

%2j =
1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

T η

a

(
1− %2(t−1)

1 + %

)

=
1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

T η

a (1 + %)
−

− 1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

T η

a

(
%2(t−1)

1 + %

)
.
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The �rst summand on the r.h.s. is easily seen to converge to
1
2a

∫ 1

0 σ
2
ν (s)σ2

ε (s) ds, while, for the second, we have

1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

T η

a

(
%2(t−1)

1 + %

)
≤ C

aT

T∑
t=2

%2(t−1) = O
(
T η−1

)
= o (1)

as required to complete the proof.

2. The proof of 2 is analogous to the proof of 1 and is therefore omitted.

3. Let St :=
∑t
j=2 zt. We �rst follow Breitung and Demetrescu (2015, Proof

of Corollary 1.2) and show that

1

T 1/2+η
St =

1

a
√
T
xt + op (1)

where the op (1) term is uniform. The arguments are essentially the same as

there; the only di�erence is having to show that E (|xt − xt−j |) ≤ C
√
j for all

t and j, which is obvious in their i.i.d. setup, but marginally more di�cult

here. To this end, recall that ∆xt := vt − ct−1

T xt−1and use Liapunov's and

Minkowski's inequalities to conclude that,

E (|xt − xt−j |) ≤
√

E
(

(xt − xt−j)2
)

=

√√√√√E

(j−1∑
k=0

vt−j −
1

T

j−1∑
k=0

ct−k−1xt−k−1

)2


≤

√√√√√E

(j−1∑
k=0

vt−j

)2
+

1√
T

j−1∑
k=0

|ct−k−1|

√√√√E

((
xt−k−1√

T

)2
)

;

and therefore using the uniform boundedness of the variance of
xt−k−1√

T
, it

follows indeed that (|xt − xt−j |) ≤ C
√
j as required.

We then follow Breitung and Demetrescu (2015, Proof of Theorem 2) and

obtain via partial summation that,

1

T 1+η

T∑
t=p+1

zt−1xt−1 =
1

T 1+η

T∑
t=p+1

(St−1 − St−2)xt−1

=
1

T 1+η
(ST−1xT−1 − Sp−1xp)−

1

T 1+η

T∑
t=p+1

St−2∆xt−1.
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Now, since Sp−1xp = Op (1) it is negligible in the limit; furthermore note that,

1

T 1+η

T∑
t=p+1

St−2∆xt−1 =
1

T 1+η

T∑
t=p+1

St−2vt−1 −
1

T 2+η

T∑
t=p+1

ct−2St−2xt−2.

For the �rst summand on the r.h.s., we have using the Phillips-Solo device for

the AR process vt−1 that,

1

T 1+η

T∑
t=p+1

St−2vt−1 =
ω

T 1+η

T∑
t=p+1

St−2νt−1 +
1

T 1+η

T∑
t=p+1

St−2∆ṽt−1

=: AT +BT ,

where ṽt is a linear process with exponentially decaying coe�cients.

Since νt−1 is independent of St−2 and the conditions of Hansen (1992) are

ful�lled, we have that,

AT ⇒
ω2

a

∫ 1

0

X (s) dM (s) .

Using the partial summation formula on BT , it follows that,

BT =
1

T 1+η
(ṽT−1ST−2 − ṽp−1Sp−1)− 1

T 1+η

T∑
t=p+1

ṽt−2∆St−2.

Since sup1≤t≤T |St| = T η sup1≤t≤T |xt| + op
(
T 1/2+η

)
= Op

(
T 1/2+η

)
and

ṽp−1Sp−1 = Op (1), it follows that the �rst summand on the r.h.s. of the above

equation is negligible; for the second, we have

1

T 1+η

T∑
t=p+1

ṽt−2∆St−2 =
1

T 1+η

T∑
t=p+1

ṽt−2zt−2.

Clearly, ṽt−2 is uniformly L2-bounded, and it is easily shown that T−η/2zt is

uniformly L2-bounded as well. Then, the Cauchy-Schwarz inequality indicates

that E (|ṽt−2zt−2|) < CT η/2 such that

E

∣∣∣∣∣∣ 1

T 1+η

T∑
t=p+1

ṽt−2∆St−2

∣∣∣∣∣∣
 ≤ CT−η/2

and 1
T 1+η

∑T
t=p+1 ṽt−2∆St−2 vanishes in probability.



Working Papers 46

Hence

1

T 1+η

T∑
t=p+1

zt−1xt−1 =
1

a

x2
T−1

T
− 1

a

 aω

T 1+η

T∑
t=p+1

St−2νt−1 −
1

T 2

T∑
t=p+1

ct−2x
2
t−2

+ op (1) .

Using the weak convergence of St and xt we obtain

1

T 1+η

T∑
t=p+1

zt−1xt−1 ⇒ ω2

a
X2 (1)− ω2

a

(∫ 1

0

X (s) dM (s)−
∫ 1

0

c (s)X2 (s) ds

)

≡ ω2

a

(
X2 (1)−

∫ 1

0

X (s) dX (s)

)
.

Note that, interestingly, 1
T 1+η

∑T
t=p+1 St−2vt−1 converges to an Itô-type

integral without bias term, unlike 1
T 1

∑T
t=p+1 xt−2vt−1 under serial correlation.

This is because St and xt require di�erent normalizations, which is essentially

the expression of the same mechanism ensuring mixed Gaussianity of the

unadjusted IVX estimator. �

Proof of Theorem 1

Consider

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1

. (A.9)

Since ỹt := yt − γ̂ν̂t = βxt−1 + γνt − γ̂ν̂t + εt it follows that we can express

β̃ivx as,

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1

= β +

∑T
t=p+1 zt−1(γνt − γ̂ν̂t + εt)∑T

t=p+1 zt−1xt−1

. (A.10)

Write for the stable autoregression case

ν̂t := νt − (â− a)′ xt−p

with xt−p stacking the p lags of xt and a the corresponding coe�cients (of

(1− ρL) A (L)), i.e. the pure autoregressive representation of xt.
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Then, analyze

zt−1 =
t−3∑
j=0

%j∆xt−1−j

= xt−1 − %t−3x1 + (%− 1)
t−4∑
j=0

%jxt−2−j .

We have that

(%− 1)

t−4∑
j=0

%jxt−2−j = − a

T η

t−4∑
j=0

%jxt−2−j = − a

T η
dt−2

where dt−2 is here, with xt a stable autoregression, a mildly integrated process

which is known to be Op
(
T η/2

)
. Furthermore, %t−3→ 0 when t goes to in�nity

at suitable rates; in the derivations below, the e�ect will be quanti�ed precisely

whenever needed, but it is important to keep in mind that zt−1 ≈ xt−1 which

is a stable autoregression.

We thus have for the numerator of β̃ivx − β in (A.10) that,

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t) =
T∑

t=p+1

zt−1εt−γ
T∑

t=p+1

zt−1 (ν̂t − νt)− (γ̂ − γ)
T∑

t=p+1

zt−1ν̂t.

(A.11)

The �rst two summands in (A.11) deliver a normal distribution. This is because

1

T 1/2

T∑
t=p+1

zt−1εt =
1

T 1/2

T∑
t=p+1

xt−1εt −
a

T 1/2+η

T∑
t=p+1

dt−2εt +
x1

T 1/2

T∑
t=p+1

%t−3εt

=
1

T 1/2

T∑
t=p+1

xt−1εt + op (1)

with
∑T
t=p+1 dt−2εt = Op

(
T 1/2+η/2

)
given the results in the proofs

of Lemmas A.2 and A.3, and
∑T
t=p+1 %

t−3εt = Op
(
T η/2

)
given that

V ar
(∑T

t=p+1 %
t−3εt

)
= Op

(∑T
t=p+1 %

2t
)

= Op (T η). Furthermore,

1

T 1/2

T∑
t=p+1

zt−1 (ν̂t − νt) = −

 1

T

T∑
t=p+1

zt−1x
′
t−p

√T (â− a) ,

where the OLS autoregressive estimators,

√
T (â− a) =

 1

T

T∑
t=p+1

xt−px
′
t−p

−1

1√
T

T∑
t=p+1

xt−pνt,
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following standard arguments can be shown to have a limiting multivariate

normal distribution. We now show that 1
T

∑T
t=2 zt−1xt−p does not converge to a

vector of zeros, such that the limiting distribution of 1
T 1/2

∑T
t=p+1 zt−1 (ν̂t − νt)

is driven by 1√
T

∑T
t=p+1 xt−pνt. Given that

1

T

T∑
t=p+1

zt−1xt−p =
1

T

T∑
t=p+1

xt−1xt−p−
1

T

T∑
t=p+1

%t−3x1xt−p−
a

T 1+η

T∑
t=p+1

dt−2xt−p,

the �rst summand on the r.h.s. gives the desired limit (see Lemma A.1). The

second is easily seen to vanish since (x1xt) vanishes at exponential rate (in t).

For the third, we show that
∑T
t=p+1 dt−2xt−p = Op (T ) as follows. By resorting

to the Phillips-Solo device, it is tedious, yet straightforward to show that

1

T

T∑
t=p+1

dt−2xt−p =Op

 1

T

T∑
t=p+1

d̃t−2νt−p

 where d̃t−2 :=
t−3∑
j=0

%jνt−2−j .

Then,

1

T

T∑
t=p+1

d̃t−2νt−p =
1

T

T∑
t=p+1

d̃t−p−1νt−p +Op (1) ,

and the proofs of Lemmas A.2 and A.3 provide the arguments leading to
1
T

∑T
t=p+2 d̃t−p−1νt−p = Op

(
T 1/2+η/2

T

)
= Op (1) as required.

The third summand in (A.11) is

γ̂ − γ√
T

T∑
t=p+1

zt−1ν̂t = (γ̂ − γ)

 1√
T

T∑
t=p+1

zt−1νt +
1√
T

T∑
t=p+1

zt−1 (ν̂t − νt)


= op (1)

since γ̂ is easily shown to be consistent for γ, 1√
T

∑T
t=p+1 zt−1νt =Op (1) like in

the case of 1√
T

∑T
t=p+1 zt−1εt, and

1√
T

∑T
t=p+1 zt−1 (ν̂t − νt) =Op (1) as above.
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Hence,

1√
T

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t)

=
1√
T

T∑
t=p+1

zt−1εt + γ

 1

T

T∑
t=p+1

zt−1x
′
t−p

 1

T

T∑
t=p+1

xt−px
′
t−p

−1

×

× 1√
T

T∑
t=p+1

xt−pνt + op (1) .

Furthermore, it is shown along the lines of the discussion of T−1
∑T
p+1 zt−1xt−p

that

1√
T

T∑
t=p+1

zt−1εt =
1√
T

T∑
t=p+1

xt−1εt + op (1) .

for both 1√
T

∑T
t=p+1 zt−1εt and

1√
T

∑T
t=p+1 xt−pνt, Theorem 24.3 in Davidson

(1994) is easily checked to apply (see Lemma A.1 for the convergence of the

sample covariance matrices); since xt−pνt and zt−1εt are orthogonal thanks to

the uncorrelatedness of νt and εt, the term
1√
T

∑T
t=p+1 zt−1 (εt + γνt − γ̂ν̂t) is

asymptotically normal with mean zero and asymptotic variance

α0

∫ 1

0

σ2
v (s)σ2

ε (s) ds+ γ2 (α0 . . . αp−1) Ω−1 (α0 . . . αp−1)′
∫ 1

0

σ4
v (s) ds.

Checking that

1

T

T∑
t=p+1

z2
t−1ε̂

2
t +

1

T
γ̂2Q̂T

estimates the above asymptotic variance consistently is straightforward and we

omit the details. �

Proof of Theorem 2

Standard OLS algebra shows that the residuals ν̂t are numerically the same

as in the autoregressive representation of xt if resorting to the error-correction

representation, which is more convenient with near-integration. We may thus

write

ν̂t := νt − (ϕ̂− ϕ)xt−1 − (α̂− α)′∆xt−p+1
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with ∆xt−p+1 stacking the �rst p − 1 lags of ∆xt and ϕ := 1
ω (ρ− 1) (the

vector α depends on all autoregressive coe�cients of xt, but its exact value is

irrelevant here).

We have the same representation as in (A.11), i.e.,

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t) =
T∑

t=p+1

zt−1εt−

−γ
T∑

t=p+1

zt−1 (ν̂t − νt)− (γ̂ − γ)
T∑

t=p+1

zt−1ν̂t,

yet zt is now a mildly integrated variable. Still, Lemmas A.3 and A.4 show that

1

T 1/2+η/2

T∑
t=p+1

zt−1εt

is asymptotically normal with variance ω2
∫ 1

0 σ
2
v (s)σ2

ε (s) ds, whereas the

remaining term can be re-written as

1

T 1/2+η/2

T∑
t=p+1

zt−1 (ν̂t − νt) = − 1

T 1/2+η/2

T∑
t=p+1

zt−1xt−1 (ϕ̂− ϕ)−

− 1

T 1/2+η/2

T∑
t=p+1

zt−1∆x′t−p+1 (α̂− α) .

In the limit, this vanishes because (ϕ̂− ϕ) is Op
(
T−1

)
and (α̂− α) =

Op
(
T−1/2

)
as standard analysis of near-unit root autoregressions shows, while,

at the same time,
T∑

t=p+1

zt−1xt−1 = Op
(
T 1+η

)
(see Lemma A.4.3) and we only need to show that

T∑
t=p+1

zt−1∆x′t−p+1 = Op (T ) .

This is known to be the case when zt−1 is a near-integrated or stationary

variable; we discuss here the case where zt is an IVX instrument. Examining
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∑T
t=p+2 zt−1∆xt−1 as a representative for the whole vector,

1

T

T∑
t=p+1

zt−1∆xt−1 =
1

T

T∑
t=p+1

zt−1vt−1 +
1

T 2

T∑
t=p+1

ctzt−1xt−2,

it is easily shown that both zt√
T

and xt√
T

are uniformly L2-bounded, hence

E
(

1
T 2

∑T
t=p+1 ctzt−1xt−2

)
= O (1). Moreover, 1

T

∑T
t=p+1 zt−1vt−1 is itself

Op (1), which can be shown along the lines of the discussion for 1
T

∑
qt−2xt−p

in the proof of Theorem 1. �

Proof of Theorem 3

Since the residual e�ect of εt and νt is easily checked to be negligible, the

correction QT is negligible under the local alternative as well and we have for

the residual-augmented IVX t-statistic that,

t̃ivxβ1
=

∑T
t=p+1 zt−1 (εt + β1xt−1)√∑T

t=p+1 z
2
t−1ε

2
t

+ op (1)

=

∑T
t=p+1 zt−1εt√∑T
t=p+1 z

2
t−1ε

2
t

+ b
1

T 1+η

∑T
t=p+1 zt−1xt−1√

1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t

+ op (1) .

The �rst summand on the r.h.s. converges to a standard normal distribution, Z;
note that Z would indeed be independent of the limit process of the regressor

xt since zt−1εt and νt are orthogonal. Thus, the result follows with Lemma

A.4, items 1 and 3. �
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Appendix B: Tests for Persistence Change

In this section, for completeness, we provide a brief overview of the persistence

change tests of Harvey et al. (2006), which where used to evaluate whether the

series under analysis had undergone some persistence change over time.

B.1. The generic persistence change model

We follow Harvey et al. (2006) and Busetti and Taylor (2004) and consider the

following data generation process (DGP),

xt = d′tβ + rt

rt = ρtrt−1 + vt

where r0 = 0, dt is a set of deterministic variables, such as a constant or,

if necessary, a constant and time trend, vt is taken to satisfy Assumption 3

(together with 2), and ρt obeys Assumption 4 in the most general case. For

compatibility with the existing literature on testing for changes in persistence

we shall assume the variance functions in Assumption 2 to be constant

throughout.

Four relevant hypothesis can be considered:

1. H1 : xt is I(1) (i.e. nonstationary) throughout the sample period. Harvey

et al. (2006) set ρt = 1− c
T , c ≥ 0, so as to allow for unit root and near

unit root behaviour.

2. H01 : xt is I(0) changing to I(1) (in other words, stationary changing

to nonstationary) at time [τ∗T ]; that is ρt = ρ, ρ < 1 for t ≤ [τ∗T ] and

ρt = 1− c
T for t > [τ∗T ]. The change point proportion, τ∗, is assumed to

be an unknown point in Λ = [τl, τu], an interval in (0,1) which is symmetric

around 0.5;

3. H10 : xt is I(1) changing to I(0) (i.e. nonstationary changing to stationary)

at time [τ∗T ];

4. H0 : xt is I(0) (stationary) throughout the sample period.

B.2. The ratio-based persistence change tests

In the context of no breaks, Kim (2000), Kim et al. (2002) and Busetti and

Taylor (2004) introduced tests for the constant I(0) DGP (H0) against the
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I(0)− I(1) change (H01) which are based on the ratio statistic,

K[τT ] =

(T − [τT ])−2
T∑

t=[τT ]+1

(
t∑

i=[τT ]+1

ṽiτ

)2

[τT ]−2
[τT ]∑
t=1

(
t∑
i=1

v̂iτ

)2

where v̂iτ is the residual from the OLS regression of xt on dt for t = 1, ..., [τT ]

and ṽiτ is the OLS residual from the regression of xt on dt for t= [τT ] + 1, ..., T .

Since the true change point, τ∗, is assumed unknown Kim (2000), Kim

et al. (2002) and Busetti and Taylor (2004) consider three statistics based on

the sequence of statistics {K[τT ], τ ∈ Λ}, where Λ = [τl, τu] is a compact subset

of [0,1], i.e.,

MS = T−1
∗

[τu]∑
s=[τl]

K[sT ]; (B.1)

ME = ln

T−1
∗

[τu]∑
s=[τl]

exp

[
1

2
K[sT ]

] ; (B.2)

MX = max
s∈{[τl],...,[τu]}

K[sT ] (B.3)

where T∗ = [τu]− [τl] + 1, and τl and τu correspond to the (arbitrary) lower and

upper values assumed for τ∗. Limit results and critical values for the statistics

in (B.1) - (B.3) can be found in Harvey et al. (2006).

Remark B.1. The procedure in (B.1) corresponds to the mean score approach

of Hansen (1991), (B.2) is the mean exponential approach of Andrews and

Ploberger (1994) and �nally (B.3) is the maximum Chow approach of Davies

(1977); see also Andrews (1993). �

In order to test H0 against the I(1) - I(0) (H10) hypothesis, Busetti and

Taylor (2004) suggest the sequence of reciprocals of Kt, t = [τlT ], ..., [τuT ].

They de�ne MSR, MER and MXR as the respective analogues of MS,

ME and MX, with K[τT ] replaced by K−1
[τT ] throughout. Furthermore, to

test against an unknown direction of change (that is either a change from

I(0) to I(1) or vice versa), they also propose MSM = max
[
MS,MSR

]
,

MEM = max
[
ME,MER

]
, andMXM = max

[
MX,MXR

]
. Thus, tests which
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reject for large values of MS, ME, and MX can be used to detect H01, tests

which reject for large values of MSR, MER and MXR can be used to detect

H10, and MSM , MEM , and MXM can be used to detect either H01 or H10.

Harvey et al. (2006) also introduce a set of modi�ed test statistics such

that the cdfs of the statistics under the null (H0) and alternative (H1)

coincide asymptotically at an asymptotic critical value associated with a given

signi�cance level.

The �rst modi�ed tests proposed where MSm = exp(−b1J1T )MS, MEm =

exp(−b2J1T )ME andMXm = exp(−b3J1T )MX, where bk, k = 1, 2, 3 are �xed

constants and the modi�cation also makes use of the unit root test proposed

by Park (1990), de�ned as J1,T which consists of T−1 times the Wald statistic

for testing the joint hypothesis γk+1 = ... = γ9 = 0 in the regression,

xt = z′tβ +
9∑

i=k+1

γit
i + error, t = 1, ..., T.

Note that under H0, J1,T is Op(T
−1) so that exp(−bkJ1T )→ 1, k = 1, 2, 3, and

therefore MSm, MEm and MXm are simply equivalent to the MS, ME and

MX statistics.

The choice of bk, k = 1, 2, 3 ensures that, for a signi�cance level, 100a%,

the corresponding asymptotic upper-tail critical value of MSm, MEm and

MXm under eitherH0 orH1 is identical to the corresponding upper-tail critical

values of MS, ME and MX under H0. These statistics have the same limiting

distribution under H0.

A further variante of modi�ed procedures proposed by Harvey et al. (2006)

is obtained by replacing J1,T with Jmin = min
τ∈Λ

J1,[τT ], where J1,[τT ] is T
−1 times

the Wald statistic for testing the joint hypothesis γk+1 = ... = γ9 = 0 in the

regression,

xt = z′tβ +
9∑

i=k+1

γit
i + error, t = 1, ..., [τT ].

Note that also in his case, under H0, Jmin is Op(T
−1) so that exp(−b∗kJmin)→

1, k = 1, 2, 3. Therefore, MSm min = exp(−b∗1Jmin)MS, MEm min =

exp(−b∗2Jmin)ME and MXm min = exp(−b∗3Jmin)MX.

The reciprocal versions of these test, MSRm, MERm, MXR
m and

MSRm min, MERm min, MXR
m min, are constructed in a similar way, i.e.,
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MSRm = exp(−b1J1T )MSR, MERm = exp(−b2J1T )MER and MXR
m =

exp(−b3J1T )MXR; as well as MSRm min = exp(−b∗1JRmin)MSR, MERm min =

exp(−b∗2JRmin)MER and MXR
m min = exp(−b∗3JRmin)MXR, where JRmin =

min
τ∈Λ

J[τT ],T and J[τT ],T is T−1 times the Wald statistic for testing the joint

hypothesis γk+1 = ... = γ9 = 0 in the regression,

xt = z′tβ +
9∑

i=k+1

γit
i + error, t = [τT ] + 1, ..., T.

Finally, the modi�ed tests against an unknown direction of change are simply

given as, MSMm = exp(−b1J1T )MSM , MEMm = exp(−b2J1T )MEM , and

MXM
m = exp(−b3J1T )MXM ; as well asMSMm min = exp(−b∗1 min[Jmin, J

R
min])MSM ,

MEMm min = exp(−b∗2 min[Jmin, J
R
min])MEM and

MXM
m min = exp(−b∗3 min[Jmin, J

R
min])MXM .

B.3. Test outcomes

Table B.1 gives the test outcomes for the null of constant persistence of

the predictors considered in Section 5. We decided upon visual inspection

whether a constant or a constant with linear trend is to be modeled as

deterministic component dt. Except for E12, there is serious evidence of time-

varying persistence of the examined series.
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D12τ E12τ dpτ dyτ epτ deµ b/mτ tblµ ltyµ tmsτ dfyτ dfrτ ntisµ in�µ ltrµ svarµ

MS 9.119* 2.491 3.813* 3.768* 6.713* 5.863* 7.436* 6.098* 4.313 3.179* 7.003* 3.606* 10.967* 5.137* 2.720 41.441*
ME 36.044* 1.595 16.517* 16.212* 98.137* 8.523* 24.970* 17.216* 6.814* 5.126* 25.232* 9.818* 64.374* 12.256* 3.035 158.885*
MX 80.592* 7.037 44.904* 44.289* 208.545* 22.654* 62.046* 41.968* 19.183* 17.032* 59.253* 28.275* 139.791* 32.410* 14.903 329.544*

MSR 2.635 0.563 2.764 2.874* 2.033 0.791 39.887* 2.095 4.984* 0.781 1.699 1.513 0.515 21.232* 5.099* 0.282

MER 2.180* 0.299 9.612* 11.079* 1.476 0.431 200.415* 2.171 9.380* 0.455 1.731 0.885 0.303 38.791* 8.701* 0.156

MXR 7.520 1.440 29.262* 32.893* 6.062 1.613 413.101* 11.815 27.018* 2.885 7.135 4.809 2.168 86.771* 25.546* 1.037

MSM 9.119* 2.491 3.813* 3.768* 6.713* 5.863 39.887* 6.098* 4.984 3.179 7.003* 3.606* 10.967* 21.232* 5.099 41.441*

MEM 36.044* 1.595 16.517* 16.212* 98.137* 8.523* 200.415* 17.216* 9.380* 5.126* 25.232* 9.818* 64.374* 38.791* 8.701* 158.885*

MXM 80.592* 7.037 44.904* 44.289* 208.545* 22.654 413.101* 41.968* 27.018* 17.032* 59.253* 28.275* 139.791* 86.771* 25.546* 329.544*
MSm 4.063* 2.275 0.399 0.378 3.097* 5.376* 0.308 2.793 0.267 3.003* 4.290* 3.322* 8.239* 4.535 2.705 40.467*
MEm 6.614* 1.318 0.145 0.130 19.376* 7.393* 0.031 4.791 0.072 4.549* 9.026* 8.265* 40.297* 9.992* 3.007 152.813*
MXm 22.079* 6.084 1.210 1.112 60.420* 20.224* 0.377 15.125 0.506 15.549* 27.026* 24.790* 96.194* 27.536* 14.792 319.456*

MSRm 1.203 0.515 0.310 0.309 0.960 0.726 1.816 0.968 0.318 0.739 1.056 1.397 0.388 18.767* 5.071* 0.276

MERm 0.435 0.249 0.107 0.113 0.316 0.374 0.348 0.603 0.098 0.406 0.651 0.751 0.189 31.612* 8.620* 0.150

MXRm 2.217 1.256 0.968 1.018 1.884 1.441 3.355 4.269 0.719 2.648 3.402 4.247 1.493 73.753* 25.357* 1.005

MSMm 3.730* 2.253 0.315 0.296 2.854 5.308 1.177 2.491 0.205 2.985 4.073* 3.293 7.901* 18.403* 5.066 40.326*

MEMm 5.627* 1.294 0.093 0.082 16.599* 7.267 0.133 4.105 0.057 4.498* 8.183* 8.130* 38.079* 30.854* 8.611* 152.096*

MXMm 19.458* 5.998 0.851 0.776 53.540* 19.850 1.527 12.787 0.391 15.411* 25.033* 24.474* 90.458* 71.772* 25.326* 317.826*
MSm,min 2.641 1.917 2.150 2.051 4.787* 4.341 4.879* 4.631* 0.429 2.957* 5.316* 3.150* 9.967* 4.695* 2.713 41.021*
MEm,min 3.967* 1.000 5.953* 5.491* 53.749* 5.465* 11.790* 11.462* 0.225 4.507* 15.445* 7.716* 55.894* 10.729* 3.023 156.510*
MXm,min 14.103* 4.869 20.055* 18.832* 129.624* 15.597 34.300* 29.823* 1.092 15.385* 40.212* 23.375* 124.152* 28.983* 14.851 325.401*

MSRm,min 1.423 0.531 1.623 1.737 1.531 0.754 29.706* 1.183 0.985 0.748 1.419 1.396 0.430 21.142* 5.082* 0.279

MERm,min 0.737 0.270 3.763* 4.565* 0.896 0.401 119.304* 0.935 0.862 0.421 1.260 0.768 0.232 38.550* 8.657* 0.153

MXRm,min 3.219 1.330 14.050* 16.439* 4.101 1.519 275.314* 5.821 3.632 2.717 5.565 4.305 1.732 86.316* 25.436* 1.020

MSMm,min 3.895* 2.299 1.827 1.880 4.537* 5.475 26.554* 4.109 0.514 2.993 5.459* 3.227 9.562* 21.106* 5.079 40.840*

MEMm,min 8.220* 1.387 4.601* 4.843* 49.690* 7.736* 98.843* 9.855* 0.378 4.616* 16.369* 8.096* 53.036* 38.467* 8.652* 155.636*

MXMm,min 24.490* 6.290 16.033* 16.729* 120.513* 20.824 233.713* 25.845 1.660 15.654* 41.810* 24.204* 118.130* 86.140* 25.420* 323.680*

Table B.1. Persistence Change Test Results

Notes: * denotes signi�cance at the 5% signi�cance level. Critical values used taken from Harvey et al., 2006, p.451) for T =∞. The superscripts
τ and µ used on the variables analysed, indicates that the test results are obtained considering either detrended or demeaned data, respectively.
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