
A NEW REGRESSION-BASED 
TAIL INDEX ESTIMATOR:
AN APPLICATION  
TO EXCHANGE RATES

Working Papers 2015
João Nicolau | Paulo M. M. Rodrigues

14





A NEW REGRESSION-BASED 
TAIL INDEX ESTIMATOR:
AN APPLICATION  
TO EXCHANGE RATES 
Working Papers 2015

João Nicolau | Paulo M. M. Rodrigues 

Lisbon, 2015  •  www.bportugal.pt

14

November 2015
The analyses, opinions and findings of these papers represent the views of 
the authors, they are not necessarily those of the Banco de Portugal or the 
Eurosystem

Please address correspondence to
Banco de Portugal, Economics and Research Department 
Av. Almirante Reis 71, 1150-012 Lisboa, Portugal
T +351 213 130 000 | estudos@bportugal.pt



WORKING PAPERS  |  Lisbon 2015  •  Banco de Portugal  Av. Almirante Reis, 71 | 1150-012 Lisboa  •  www.bportugal.pt  •    

Edition Economics and Research Department  •  ISBN 978-989-678-387-7 (online)  •  ISSN 2182-0422 (online) 



A New Regression-Based Tail Index Estimator:

An Application to Exchange Rates

João Nicolau
ISEG-Universidade de Lisboa

CEMAPRE

Paulo M. M. Rodrigues
Banco de Portugal

NOVA School of Business and
Economics

November 2015

Abstract

In this paper, a new regression-based approach for the estimation of the tail index of heavy-
tailed distributions is introduced. Comparatively to many procedures currently available
in the literature, our method does not involve order statistics and can be applied in
more general contexts than just Pareto. The procedure is in line with approaches used in
experimental data analysis with �xed explanatory variables, and has several important
features which are worth highlighting. First, it provides a bias reduction when compared
to available regression-based methods and a fortiori over standard least-squares based
estimators of the tail index. Second, it is more resilient to the choice of the tail length
used in the estimation of the index than the widely used Hill estimator. Third, when the
e�ect of the slowly varying function at in�nity of the Pareto distribution (the so called
second order behaviour of the Taylor expansion) vanishes slowly our estimator continues
to perform satisfactorily, whereas the Hill estimator rapidly deteriorates. Fourth, our
estimator performs well under dependence of unknown form. For inference purposes,
we also provide a way to compute the asymptotic variance of the proposed estimator
under time dependence and conditional heteroscedasticity. An empirical application of
the procedure to exchange rates is also provided
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1. Introduction

Over the last four decades there has been considerable interest in the estimation

of the tail index of heavy-tailed distributions (which, henceforth, will be

denoted by α). The interest results from the many areas of application of heavy-

tailed distributions. For instance, these have been successfully used in computer

science and telecommunications (Adler, Feldman, and Taqqu 1998; Resnick

1997; Chen et al. 2002), in �nance and economics (Adler et al., 1998; Jansen

and de Vries 1991), and in insurance (see Adler et al. 1998). This widespread

interest has led over the years to the re�nement and development of a number

of tail index estimators, see, inter alia, the contributions of Hill (1975), Csörgo,

Deheuvels, and Mason (1985), Kratz and Resnick (1996), Beirlant, Vynckier,

and Teugels (1996), Feuerverger and Hall (1999), Crovella and Taqqu (1999)

and Gabaix and Ibragimov (2012). For reviews of these methods see, inter alia,

Haan et al. (2000), de Sousa and Michailidis (2004), Embrechts, Klüppelberg

and Mikosch (2012) and Beirlant et al. (2004).

Many of these procedures rely on plotting the statistic of interest against

a number of the sample upper order statistics and then infer an appropriate

value for α from the properties of the resulting graph (Kratz and Resnick,

1996 and Beirlant et al., 1996). However, although many of these estimation

methods exhibit interesting asymptotic properties (such as, e.g., consistency),

their �nite sample performance is questionable (see, for instance, the results in

Kearns and Pagan, 1997, and Huisman, Koedijk, Kool and Palm, 2001).

One of the most popular and frequently used approaches in the empirical

literature is the Hill estimator (Hill, 1975). The nice theoretical properties

of this estimator - consistency (Deheuvels, Haeusler, and Mason 1988; and

Mason 1982) and asymptotic normality (Hall 1982) - have led researchers (see,

e.g. Drees, de Haan, and Resnick 2000; and Resnick and St ric , 1997) to

develop improved variants and to show that these modi�cations work well in

the Pareto case. However, available tail index estimation procedures present

problems when applied to data drawn from distributions other than the Pareto.

Hence, the correct identi�cation of α remains a challenging and empirically

relevant quest. In this paper, we introduce a new regression-based procedure

which overcomes several empirical di�culties of currently available tail index

estimators.



3 A New Regression-Based Tail Index Estimator

The new method introduced in this paper to estimate α does not involve

order statistics, and can be applied in more general contexts than just Pareto.

There are three important features of our method which can be summarized

as follows: �rst, it provides a bias reduction when compared to the regression-

based method proposed by Gabaix and Ibragimov (2012), and a fortiori over

other regression based estimators; second, it is more resilient to the choice

of the subsample used to estimate α than the widely used Hill estimator; in

other words, the mean square error of our estimator is less sensitive to the

incorrect determination of the tail length than the Hill estimator and to some

extent than the estimator of Gabaix and Ibragimov (2012); and third, when

the e�ect of the slowly varying function at in�nity of the Pareto distribution

vanishes slowly (the so called second order behavior of the Taylor expansion)

our estimator continues to perform satisfactorily, whereas the Hill estimator

rapidly deteriorates.

The remainder of the paper is organized as follows. In section 2 we

brie�y present three widely applied tail index estimators, which will be used

later as benchmarks for comparison with the new procedure proposed in this

paper. Section 3 introduces the new tail index estimator and discusses its

asymptotic properties; Section 4 provides a detailed Monte Carlo analysis

of the �nite sample bias of the tail index estimators discussed in Sections 2

and 3, as well as an analysis of the impact of empirically relevant features

frequently found in economic and �nancial time series, such as time dependence

and conditional heteroscedasticity; Section 5 discusses possible directions for

further generalizations of the procedure developed in this paper; and Section 6

illustrates the potential usefulness of the approach in an empirical application

on daily exchange rate returns series from 21 countries considering the USD

as numeraire. Finally, Section 7 summarizes the main results. A technical

appendix collects the proofs of the results put forward throughout the paper.

2. Tail Index Estimators

Although there is a vast literature on tail index estimators (see, e.g., Beirlant

et al., 2004, chapter 4 for an overview), in this section we brie�y describe three

of the most popular procedures used in empirical work, and which will be used
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as benchmarks for comparison with the new approach that will be introduced

in section 3.

In what follows, a heavy-tailed distribution is de�ned as a distribution

function F such that 1 − F is regularly varying at in�nity with index −α,
i.e,

F (x) := 1− F (x) = x−αL(x), (1)

where 0< x <∞, α > 0 is a �xed unknown parameter and L is a slowly varying

function satisfying lim
t→∞

L(tx)
L(t) = 1 for all x > 0.

A large number of tail index estimation procedures available in the literature

are based on the largest order statistics X(1) ≥ X(2) ≥ ... ≥ X(n) obtained

from an independent and identically distributed (i.i.d.) sample {Xt}nt=1 of data

from a distribution function F . One such approach is the maximum likelihood

estimator of α proposed by Hill (1975), which is,

α̂H :=

 1

m

m∑
j=1

logX(j) − logX(m+1)

−1

(2)

where m := [κn], with κ ∈ (0, 1), is the number of highest order statistics used

in the estimation of α. Hall (1982) showed that for m/n→ 0 as m, n→∞ that
√
m
(
α̂H
α − 1

)
is asymptotically normal distributed; and Hill (2010) provides

results on the asymptotic properties of the Hill estimator for heavy-tailed

heterogenous dependent processes. Moreover, available evidence suggests that

the Hill estimator is most e�ective when the underlying distribution is either

Pareto or close to Pareto (Drees, Haan and Resnick, 2000). However, if the

distribution is as in (1) the Hill estimator is only approximately a maximum

likelihood estimator and its accuracy will become less clear.

Remark 2.1: The hill estimator measures the average increase of the Pareto

quantile plot above a certain threshold and can be interpreted as a slope

estimator of the linear part of the Pareto quantile plot.

Remark 2.2: The adequate choice ofm has been an important topic of research

and several approaches for its determination in the i.i.d. context have been put

forward; see, e.g., Danielsson, Haan, Peng and de Vries (2001) and Nguyen and

Samorodnitsky (2012). This is an important concern since the convergence in
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distribution of the Hill statistic given in (2) critically hinges on the rate at

which the nuisance parameter m grows with the total sample size.

Remark 2.3: A further shortcoming of this approach is the use of order

statistics as these require sorting the data which may become computationally

expensive (it requires at least O(n logn) steps), and destroys the tie ordering

of the data and their temporal structure (Stoev and Michailidis, 2008).

Hence, although the Hill estimator is an interesting and powerful approach,

it is not easily implemented empirically, because of nuisance parameters, whose

feasible optimal choice is unknown, but which need to be speci�ed for the

adequate performance of the procedure.

As a consequence, simpler OLS regression-based estimation methods

have attracted considerable attention among empirical researchers. One such

alternative is the OLS based log-log rank-size regression (see, e.g., Rosen and

Resnick, 1980, and Gabaix, 1999), i.e.,

log(t− γ) = %− α logX(t) + errort, (3)

with γ = 0. This approach is based on the assumption that a nonnegative

variable X has a power law distribution P [X ≥ x] = Cx−α, for constant C > 0

and α > 0, which can be approximated by the linear relationship log t
n ≈

log(C) − α log(X(t)), t = 1, ...,N ; see Gabaix and Ibragimov (2012). This

regression has been popular, for instance, in the urban literature for the analysis

of Zipf's law (Zipf, 1949). The statistical properties of the OLS estimators of

(3) have been analyzed in Gabaix and Ioannides (2004), Nishiyama, Osada and

Sato (2008) and Gabaix and Ibragimov (2012). For reference purposes, in what

follows, we de�ne the OLS estimator of α computed from (3) as α̂γ=0.

Finally, the third procedure we consider is a recent important contribution

by Gabaix and Ibragimov (2012) who propose an improved version of regression

(3), which consists in the estimation of (3) with the optimal shift of γ = 1/2.

The motivation for the proposal of this improved regression results from the

fact that although the OLS estimator α̂γ=0 computed from (3) with γ = 0

is consistent, it su�ers from important small sample bias. Considering i.i.d.

random variables drawn from a Pareto distribution, Gabaix and Ibragimov
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(2012) show that using γ = 1/2 instead of γ = 0 in (3) signi�cantly reduces

this bias, while maintaining the good asymptotic properties of the estimator

(see also the Monte Carlo results provided in Section 4 below). For comparison

purposes we de�ne the OLS estimator of α computed from (3) with γ = 1/2 as

α̂γ=1/2.

Note that one common feature to the approaches in (2) and (3) is that all

of these methods rely on order statistics computed from i.i.d. random variables

drawn from Pareto type distributions.

3. The New Tail Index Estimator

3.1. The Estimator

To introduce the new tail index estimator we propose in this paper consider

�rst the simple case of a sequence of i.i.d. random variables {Xt; t = 1, 2, ..., n}
drawn from a Pareto-type tail, such as,

F̄ (x) := P (Xt > x) =
(x0

x

)α
, with x > x0 > 0. (4)

Applying logarithms to (4) and rearranging we obtain that

log F̄n (xi) = α logx0−α logxi +
[
log F̄n (xi)− log F̄ (xi)

]
, i = 1, 2, ... (5)

where F̄n (xi) := 1
n

∑n
t=1 I{Xt>xi} and I{.} is an indicator function.

Expression (5) can be seen as a regression equation where log(F̄n (xi)) is the

�dependent variable�, (α logx0) is the intercept, (− logxi) is the �explanatory

variable� and
[
log F̄n (xi)− log F̄ (xi)

]
=: εi is the error term. Standard

methods to estimate α in a regression frameworks such as (3) consist in treating

xi as an order statistics, say X(i), and as a result, F̄n
(
X(i)

)
= i/n. Obviously,

the order statistic X(i) is a random variable, and the statistical properties

of the estimation approach need to accommodate this feature. In contrast,

the approach we will propose next treats xi as a nonrandom variable, which

considerably simpli�es the analysis of the statistical properties of the resulting

estimator, as we will see below.

To implement our approach, we need to generate xi, which is used to

compute log F̄n (xi) , according to a deterministic scheme. A method that one
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can consider for generating the deterministic values of xi is, for example,

xi = x0 + i∆, i = 0, 1, ...,m, so that xi varies between x0 and x0 + m∆

(assuming that x0 is known). In this case, xi is de�ned as an additive sequence

with a �xed increment of ∆. A regression model such as suggested in (5) is valid

under mild conditions such as, n,m → ∞ and ∆ → 0 and leads to consistent

OLS estimators of α. Notice that m and ∆ are under our control and we may

generate as many xi values as we like. However, the choice of xi as just described

is not optimal.

Alternatively and as with Importance Sampling methods, a variance

reduction technique used in Monte Carlo integration, instead of spreading the

sample points of xi out evenly we may concentrate the distribution of xi in

parts of the state space of X which are of most �importance�.

Since xi is such that xi := F−1 (ui) , where F
−1 is the quantile function of

F and ui ∈ (0, 1) , assuming that F is a Pareto distribution as in (4) we have

that,

xi := F−1 (ui) = (1− ui)−
1
α x0.

Note that we avoid treating ui as an uniformly distributed random variable to

keep xi as a deterministic realization. Thus, we consider

ui :=
i

m
, i = 1, 2, ...,m− 1.

Given that − logxi = α−1 log (1− ui) − logx0, we rule out F
−1 (1) by imposing

the upper limit of the index i to be at most m− 1. Consequently, (5) can be

written as

yi = ϑ+ αzi + εi, i = 1, 2, ...,m− 1 (6)

where yi := log F̄n (xi) , xi := (1− ui)−
1
α x0, ϑ := (α− 1) logx0 and zi :=

α−1 log (1− ui) .
However, equation (6), is infeasible given the dependence of zi on α. Thus,

to make (6) feasible, we deal with α in zi as a nuisance parameter and treat

zi as a generated regressor (Pagan, 1984). In other words, the implementation

of our procedure consist of two-steps: In the �rst step, α is computed from

a consistent estimator (such as, e.g., the Hill estimator or as indicated below

in remark 3.1), and we denote the resulting estimate as α̃, which is used to

generate the regressor z̃i = α̃−1 log (1− ui). The second step then corresponds
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to the actual OLS estimation of α from a feasible version of (6), i.e., from,

yi = ϑ+ αz̃i + εi, i = 1, 2, ...,m− 1. (7)

We will denote the resulting estimator from (7) as α̂Pareto. Note that the

substitution of α by α̃ computed in the �rst step has little impact on the

estimation of α from (7), since its e�ect vanishes asymptotically as long as

α̃
p−→ α (see the proofs of Theorems 1 and 2 in the Appendix). When X is

governed by a strict Pareto distribution, x0 is the left endpoint of the support

of X and can be estimated as x̂0 = min (X1, ...,Xn) and optimal properties are

achieved, i.e., the bias rapidly converges to zero and the variance of α̂ is of

order 1/n (just as under maximum likelihood estimation).

One further interesting aspect of our methodology is that zi, and to

some extent even ẑi, can be treated as �xed explanatory variables. Another

point worth mentioning is that the whole probabilistic structure of the

model can be derived. In other words, considering the (m − 1) × 1 vector of

errors ε : = (ε1, ..., εm−1)′ , we can show that
√
nε

d−→ N (0,Σ) , where the

variance/covariance matrix Σ is known exactly (no estimation is required)

regardless of whether x0 is known or unknown (see Lemma 1 below). This

is an important result as it allows us i) to obtain the limV ar (α̂) , and ii) to

conduct generalized least squares estimation if required.

To extend the procedure to more general settings we consider next Pareto-

Lévy tail behavior of the form

F̄ (x) = ax−α
(
1 + bx−β + o

(
x−β

))
(8)

where a > 0, β > α and b ∈ R, which includes, among many others, the non-

trivial alpha-stable distribution and the Student-t distribution. The parameters

b and β govern the second order behavior of the Taylor expansion and aim to

re�ect the deviation from strict Pareto tail behavior.

Thus, following the same econometric approach as in (6) we may consider

the regression equation,

yi = ϑ+ αzi + ε̃i, i = 1, 2, ...,m− 1 (9)

where as before yi := log F̄n (xi) , xi := (1− ui)−
1
α x0, and zi :=

α−1 log (1− ui) . The most important di�erence between (7) and (9) is that
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the error term ε̃i in the latter case is,

ε̃i := εi + ηi, (10)

where εi := log F̄n (xi)− log F̄ (xi) and ηi := log
(

1 + b (1− ui)
β
α x−β0 + o

(
x−βi

))
.

We show that the additional term, ηi, in (10) is responsible for �nite sample bias

of our estimator, but vanishes asymptotically under appropriate conditions (see

the proof of Theorem 2). We will show in Section 4, that this �nite sample bias

is smaller than that of the Hill estimator and of the regression-based methods

considered in Section 2.

As previously indicated, a crucial step of our method is the estimation of

x0 (which is necessary to compute xi := (1− ui)−
1
α x0) which determines the

window of values used to generate yi := log F̄n (xi) , i = 1, 2, ...,m − 1. We

estimate x0 as x̂0 := F̂−1 (1− κ) , 0 < κ < 1, i.e. x̂0 is the empirical quantile of

order 1− κ. The smaller the value of κ the better the approximation of (8) to

the tail of the Pareto law will be and, consequently, the closer ε̃i in (10) will be

to εi. In other words, as κ→ 0 we have that x̂0 →∞ and ε̃i → εi. In section 5

we provide further insights on the choice of κ.

3.2. Asymptotic Properties

3.2.1. Limits under the i.i.d. case. To characterize the asymptotic properties

of our new estimator we need �rst to consider the results provided next in

Lemmas 1 and 2.

Lemma 1. Let {Xt; t = 1, 2, ..., n} be a sequence of Pareto distributed i.i.d.

random variables. Then, as n→∞ :

(i)

√
n


F̄n (x1)− F̄ (x1)

F̄n (x2)− F̄ (x2)
...

F̄n (xm−1)− F̄ (xm−1)

 d−→ N (0,A) (11)

where A := [aij ](m−1)×(m−1) , aij := F (xi ∧ xi) F̄ (xj) , and xi ∧ xj :=

min {xi, xj} .
(ii)

√
nε

d−→ N (0,Σ) (12)
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where ε : = (ε1, ..., εm−1)′ , εi := log F̄n (xi) − log F̄ (xi) and Σ :=

[σij ](m−1)×(m−1) . If x0 is known, the parameters σij are given by

σij :=
q

m− q
, q := i ∧ j, i, j = 1, 2, ...,m− 1. (13)

Otherwise, if x0 is estimated as x̂0 := F−1 (1− k) ,

σij :=
k (q −m) +m

k (m− q)
, q := i ∧ j, i, j = 1, 2, ...,m− 1. (14)

(iii) Considering x̂0 := F−1 (1− k) , for large n, it follows that,

limV ar

(
m−1∑
i=1

√
nεi

)
=
−k +m

(
2k − 2−

∑m−1
i=1

1
i

)
+m2 (2− k)

k
+ o(1) =O

(
m2

k

)
.

(15)

Lemma 2. Considering wi :=
(

1 zi

)′
, with zi := α−1 log (1− i/m) it

follows that:

(i)

1

m

m−1∑
i=1

wiw
′
i =

[
1 − 1

α

− 1
α

2
α2

]
+ o(1). (16)

(ii) Let {Xt; t = 1, 2, .., n} be a sequence of Pareto distributed i.i.d. random

variables, then

limV ar

(
m−1∑
i=1

wi
√
nεi

)
=

[
a b

b c

]
(17)

where

a : =
m−1∑
i=1

i+
m−2∑
j=1

j∑
i=1

i

m− i
= m2 + o

(
m2
)
,

b : =

m−1∑
i=1

zii+

m−2∑
j=1

zj+1

j∑
i=1

i

m− i
= −2m2

α
+ o

(
m2
)
,

c : =

m−2∑
j=1

zj+1

j∑
i=1

zi
i

m− i
+

m−1∑
j=1

zj
j

m− j

m−1∑
i=j

zi =
5m2

α2
+ o

(
m2
)
.
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(iii) Let {Xt; t = 1, 2, .., n} be a sequence of i.i.d. random variables with

distribution given by (8). Thus, for x large enough we have that,

limV ar

(
m−1∑
i=1

wi
√
nεi

)
=
m

k

[
d e

e f

]
(18)

where

d : = m− 1 +
m−2∑
j=1

j∑
i=1

1

m− i
= 2m+ o (m) ,

e : =
m−1∑
i=1

zi +
m−2∑
j=1

zj+1

j∑
i=1

1

m− i
= −2m

α
+ o (m) ,

f : =
z1

m− 1

m−1∑
i=1

zi +
m−2∑
j=1

zj+1

j∑
i=1

zi
m− i

+
m−1∑
j=1

zj
m− j

m−1∑
i=j

zi =
6m

α2
+ o (m) .

Hence, the results in Lemmas 1 and 2 allow us to state the following two

theorems with the properties of the new estimator.

Theorem 1. Let {Xt; t = 1, 2, .., n} be a sequence of Pareto distributed i.i.d.

random variables and assume that α̃
p−→ α. It follows, as n→∞, that the OLS

estimator computed from (7) is consistent and normally distributed, i.e., (i)

α̂Pareto
p−→ α and (ii)

√
n (α̂Pareto − α)

d−→ N
(
0, 2α2

)
.

Theorem 2. Let {Xt; t = 1, 2, .., n} be a sequence of i.i.d. random variables

with survival function given by (8). Furthermore, assuming that n = cmγ, with

γ > 1 (k = m/n→ 0). It follows as n→∞ that the OLS estimator computed

from (9) is consistent and normally distributed, i.e., (i) α̂Pareto
p−→ α and (ii)

√
m (α̂Pareto − α)

d−→ N
(
0, 2α2

)
.

Remark 3.1: It follows from the proofs of Theorems 1 and 2 (see Appendix)

that it is not necessary to assume that α̃
p−→ α. In fact, any value α̃ > 0 leads to

a consistent α̂Pareto estimator. Of course, there may be a cost of e�ciency when

α̃ is an arbitrary value. For this reason our estimator may be obtained either
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as we have indicated in the previous section, or using the following procedure:

First, set α̃ = c > 0, where c is any positive value, say c = 4, for example. Use α̃

to generate the regressor z̃i = α̃−1 log (1− ui) and run regression (7) to obtain

α̃ = α̃Pareto and a new sequence of z̃i. Run again regression (7) to obtain

the �nal estimate of α̃Pareto. Some simulations carried out by the authors

have con�rmed that this procedure ensures rapid convergence, even when the

starting value for α̃ is nonsense (e.g. α̃ = 200). This remark is important for

two reasons: �rst it indicates that the proposed estimator is self-su�cient in

the sense that it can work alone, without the help of any other estimator; and

second, and most importantly, it simpli�es the proof of results, as we do not

need to specify additional conditions on α̃.

Remark 3.2: Theorem 1 establishes that the variance of α̂Pareto is of order

O
(
n−1

)
, where n represents the complete sample size. This is a natural result

given that all data are sampled from an exact Pareto distribution. In a more

general setting, when the tail behaviour is of the Pareto-Levy form, the variance

of the α̂Pareto estimator is of order O
(
m−1

)
, where m = [κn] and κ ∈ (0, 1) ,

according to Theorem 2.

Remark 3.3: Interestingly, the proposed estimator reaches the same

asymptotic variance as the α̂γ=1/2 estimator proposed by Gabaix and

Ibragimov (2012), with an important methodological di�erence: our estimator

was obtained assuming a Pareto-Levy tail, whereas in Gabaix and Ibragimov

(2012) only a strict power law decline was considered (i.e. imposing b= 0, a= 1

and o(xβ) = 0, in equation 8).

Remark 3.4: Another important feature of our estimator is that its asymptotic

variance does not depend on the parameters associated with the second order

behavior of the Taylor expansion, unlike several generalizations of the Hill

estimator; see, for instance, Beirlant et al. (2004).

A practical issue is how to de�ne m. Although m can be set as large or

as small as desired, our results show that there is no particular advantage in

setting m arbitrarily large when compared to the sample size n (notice that if

n is small and m is large the procedure will lead to many ties of yt - di�erent

values of xi leading to the same value of yt). Thus, we set m := [κn] where
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0 < κ < 1 and [.] corresponds to the largest integer of the argument; see section

5 for more details. To the best of our knowledge no theoretical results have

been proposed yet for the dependent case.

3.2.2. Dependent Data. The results in Theorems 1 and 2, derived in the i.i.d.

context, are of importance since the proposed estimator is new in the literature

and some of its basic properties needed to be established �rst and compared

with other well known estimators. However, i.i.d. sequences have little relevance

in most applications in economics and �nance. For this reason we now consider

the case where {Xt} may exhibit dependence of unknown form.

We performed an extensive Monte Carlo analysis (available upon request)

to address two speci�c questions : i) how does dependence a�ect the asymptotic

variance of α̂Pareto, and ii) how does dependence a�ect the precision of

α̂Pareto and the Hill estimator. Our main conclusions are the following: i)

The dependence in the data, via AR or GARCH dynamics, has important

impacts on the limiting distributions of α̂H and α̂Pareto. However, there are

signi�cant di�erences between AR and GARCH dependence. Autocorrelation

has a moderate e�ect on the asymptotic variance of α̂Pareto and decreases

as the sample size and κ increase. This impact vanishes completely when the

original process is replaced by the residuals from an AR model. The limiting

distribution of α̂H is more a�ected, especially when κ is small, but like the

α̂Pareto estimator, the autocorrelation e�ect tends to decline as the sample size

and κ increase. On the contrary, the GARCH e�ect has a strong impact on

the asymptotic variance of both estimators (for results on the Hill estimator

see e.g. Quintos, Fan and Phillips, 2001, and Hill, 2010), especially when κ is

in the range of �optimal values�. Some of our conclusions are in line with the

results of Kearns and Pagan (1997). ii) The dependence in the data via AR or

GARCH has an impact on the optimal choice of κ: the higher the dependence

the higher is the optimal value for κ. The change in the optimal choice of κ is

even more marked in the IGARCH case. Interestingly, dependence in the data

does not seem to a�ect the quality of the α̂Hill and α̂Pareto estimates as long as

κ is properly adjusted. Another point is that the proposed estimator performs

better than the Hill estimator for almost all values of κ.

To sum up, our �ndings point to a valid estimator α̂Pareto of the tail index,

but to an inconsistent estimator for the variance of α̂Pareto when the i.i.d.
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hypothesis is wrongly assumed in the presence of dependence (as we expected).

This is a problem that is also common to the other estimators described in

Section 2. Hence, in what follows we develop asymptotic results for the variance

of α̂Pareto under general conditions.

A careful analysis of the proofs of Theorems 1 and 2 shows that the

random quantity 1
m

∑m−1
i=1 wiεi, where εi := log F̄n (xi) − log F̄ (xi) , is the

crucial element to discuss the consistency and the limiting distribution of our

estimator. Hence, some of the conditions we impose below have ultimately to

do with convergence in probability and distribution of the empirical process

F̄n (x) for dependent data.

Let Fba denote the σ-�elds generated by the random variables Xa, ...,Xb,

and de�ne

a (n) := sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ Fk1 ,B ∈ F∞k+n, k ≥ 1

}
.

Thus, the process {Xt} is strongly mixing if a (n)→ 0.

Theorem 3. Let {Xt} be a strictly stationary process with distribution F

and survival function given by (8) and assume that {Xt} satis�es the strong

mixing condition a (n) → 0. Furthermore, assume that n = cmγ, with γ > 1

(k = m/n → 0). (i) It follows as n → ∞ that the OLS estimator computed

from (9) is consistent i.e. α̂Pareto
p−→ α. (ii) In addition, if a (n) = o

(
n−6−ε) ,

ε ∈ (0, 1) then the estimator is normally distributed, i.e.

√
m (α̂Pareto − α̂)

d−→ N (0,V22)

where V22 is the element (2, 2) of

V := ΞJΞ,

with Ξ :=

[
2 α

α α2

]
, J := limm→∞ Jm; Jm := 1

mΣm−1
s=1 Σm−1

i=1 limE (VsV
′
i ) ,

and Vi = wiεi.

Remark 3.5: We note that α-mixing is the weakest among the most frequently

used mixing conditions and that the α-mixing coe�cients in part (ii) of

Theorem 3 decrease at an arithmetic rate. Therefore, the conditions we require
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in Theorem 3, are broad enough to include most processes with interest in

economics and �nance. For example, under some weak assumptions ARMA,

GARCH, and Markov-Switching processes, among many others, can easily

satisfy the conditions of Theorem 3 (see, for instance, Fan and Yao, 2005;

Boussama, 1998; and Stelzer, 2009)1.

To estimate Jm in the presence of autocorrelation and heteroscedasticity

of unknown form we consider a HAC estimator as introduced by Andrews

and Monahan (1992). It is based on the following procedure. Consider that

θ̂ =
(
ϑ̂ α̂

)′
is a
√
m-consistent estimator of θ. First, one estimates a bth

order VAR model for Vt = wtε̂t (2 × 1 vector), Vt =
∑b
i=1 ÂiVt−i + V ∗t for

t = b + 1, ...,m, where V ∗t is the corresponding residual vector. Second, one

computes a standard kernel-based HAC estimator, say Ĵ∗m

(
Ŝm

)
, based on the

VAR residual vector V ∗t , i.e.,

Ĵ∗m

(
Ŝm

)
=

m

m− 2

m−2∑
i=−m+1

K
(

j

Ŝm

)
Γ̂∗j

where

Γ̂∗j =

{
1
m

∑m−1
t=j+1 V

∗
t V
∗′
t−j for j ≥ 0

1
m

∑m−1
t=−j+1 V

∗
t V
∗′
t−j for j < 0

,

K (·) is a real-valued kernel, de�ned as

K (x) =
25

12π2x2

(
sin (6πx/5)

6πx/5
− cos (6πx/5)

)
and Ŝm is a data-dependent bandwidth parameter, de�ned as Ŝm :=

1.3221 (ĉm)1/5 , where

ĉ =
4ρ̂2σ̂4

(1− ρ̂)8

/
σ̂4

(1− ρ̂)4 ,

and
(
ρ, σ2

)
denote the autoregressive and innovation variance parameters of the

second component of Vt, i.e. {ziε̂i} . Third, one recolors the estimator Ĵ∗m

(
Ŝm

)
to obtain the VAR prewhitened kernel estimator of Jm :

Ĵm

(
Ŝm

)
= D̂Ĵ∗m

(
Ŝm

)
D̂′, D̂ =

(
I2 −

b∑
i=1

Âi

)−1

.

1. In some of these cases, it is possible to prove that the processes are beta mixing with

geometric rate which, in turn, implies strong mixing with arithmetic rate.
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Theorem 4. Considering that
√
m
(
Âi −Ai

)
= O (1) , i = 1, ..., n,(

I2 −
∑b
i=1Ai

)
is nonsingular and the conditions of Theorem 3 hold, then

Ĵm

(
Ŝm

)
− Jm

p−→ 0.

4. Monte Carlo Analysis

In this section, we perform a Monte Carlo study to assess and compare the root

mean square error (RMSE) of the four estimators discussed in the previous

sections, as a function of κ. In particular, we compare the standard Hill

estimator, α̂H ; the OLS estimator, α̂γ=0, computed from the log-log rank-size

regression, log t= %−α logX(t) + errort; the OLS estimator, α̂γ=1/2, computed

from the log (Rank-1/2) regression, log (t− 1/2) = %− α logX(t) + errort; and

�nally the new estimator introduced in this paper, α̂Pareto, computed from (9).

We select several heavy tailed distributions which satisfy equation (8) as

DGPs, namely, the Student-t, the alpha-stable, and the Burr distribution.

These distributions are frequently used in the extreme-value literature (see

Beirlant et al., 2004). To generate data from a stable distribution with index

α we use the method of Samorodnitsky and Taqqu (1994), i.e.

Xt =
sin (αθt)

[cos (θt)]
1/α

(
cos [(1− α) θt]

zt

)(1−α)/α

(19)

where θt is uniform on (−π/2, π/2) and zt is an exponential variate with mean 1.

The Monte Carlo experiments performed in this section consist of the following

steps: 1) Generate a sample of size n, with n ∈ {500, 2000, 5000}, from a heavy

tailed distribution; 2) Fix a value for κ in the set

κ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.125, 0.15, ,

0.175, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4} . (20)

Notice that κ is de�ned as an additive sequence of �xed increments of 0.01

from 0.01 to 0.1 and of 0.025 from 0.1 henceforward; 3) Estimate α from a

subsample of size m = [κn] using the four estimators, α̂H , α̂γ=0, α̂γ=1/2 and

α̂Pareto; 4) Using the same distribution (and the same parameters) repeat steps

1) and 3) 1000 times and calculate the RMSE associated with the estimation

of α, RMSE (α̂i) =
√∑1000

t=1 (α̂i,t − α)2 /1000 where i refers to one of the four
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estimators under analysis; 5) Select another value for κ in the above set and

repeat all previous steps; 6) Select another DGP and/or another value of α and

repeat all previous steps.

First, we compare the performance of the α̂H , α̂γ=0 and α̂γ=1/2 estimators.

Figures 1 - 3 present the results obtained for these estimators.

[Please insert Figures 1 - 3 about here]

The main conclusions that we can draw from these Figures are the following:

(i) the minimum RMSE of the Hill estimator, α̂H , and of the log rank-

size regression, α̂γ=1/2, computed from (3) with γ = 1/2 are approximately

equal, although they are generally attained at di�erent values of κ; (ii) in

contrast to the regression-based estimators, the RMSE of the Hill estimator

rapidly deteriorated as κ moves away from its minimum; and as a consequence,

the estimators α̂γ=0 and α̂γ=1/2 are more resilient to variations in κ; (iii)

the estimator α̂γ=1/2 displays better performance than α̂γ=0 for almost all

values of κ. There is signi�cant bias reduction when the estimator α̂γ=1/2 is

used comparatively to α̂γ=0, as was also indicated by Gabaix and Ibragimov

(2012). Thus, these results show that the OLS estimator of α computed from

log (t− 1/2) = %− α logX(t) + errort (α̂γ=1/2) is in general the best amongst

the three estimators we have just analyzed.

Given the dominant performance of α̂γ=1/2, in what follows we compare this

estimator to the new estimator, α̂Pareto, introduced in this paper, through the

ratio RMSE
(
α̂γ=1/2

)
/RMSE (α̂Pareto) under various scenarios for κ, sample

sizes and DGPs. Figures 4 - 6 illustrate the results obtained.2

[Please insert Figures 4 - 6 about here]

These �gures show that the new estimator introduced performs generally

better than α̂γ=1/2. Note that in general, for the distributions considered
RMSE(α̂γ=1/2)
RMSE(α̂Pareto) > 1.

2. In Figures 9 to 11 a comparison of the RMSE of the Hill estimator (α̂H), and the

estimator introduced in this paper (α̂Pareto) are also provided.
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5. Future Developments

In this section, we brie�y discuss two potential directions of generalization of

the tail index estimator proposed in this paper, which will be addressed in

future research. One relates to the use of generalized least squares (GLS) in

the estimation of the tail index, and the other to the generation of xi from

distributions other than the Pareto.

5.1. GLS Estimation

The �rst is related to Lemma 1, which establishes that
√
nε̃ ∼ N (0,Σ) where

Σ : = [σij ](m−1)×(m−1) and σij are as given in Lemma 1 (ii). Knowing exactly

the elements of the matrix Σ has the advantage of allowing us to consider

generalized least squares (GLS) estimation which leads to more e�cient

estimators of α than OLS, but not necessarily to estimators with smaller mean

square errors. The GLS estimator is(
ϑ̂gls

α̂gls

)
=
(
W̃ ′Σ−1W̃

)−1

W̃Σ−1y

where W̃ is an (m− 1) × 2 matrix with rows
(

1 z̃i

)
, i = 1, 2, ...,m − 1.

Unreported preliminary results suggest that while the asymptotic variance of

the GLS estimator decreases (as expected) comparatively to that of the OLS

estimator, the mean square error may not necessarily decrease given the impact

of the asymptotic bias. This topic requires further in depth investigation.

5.2. The generating distribution of xi

The second development focuses on the generation of xi. In section 3 we

suggested generating xi according to the rule xi := (1− ui)−
1
α x0, where ui :=

i/m, i = 1, 2, ...,m− 1. The idea was that if X has a Pareto distribution then

the optimal choice to sample xi is precisely xi := F−1 (ui) where F is the Pareto

distribution function and F−1 the corresponding quantile function. However,

the generation of xi may be generalized to other distribution functions. To

illustrate the potential of this generalization, we generate xi considering a

Student t-distribution. For comparative purposes denote this estimator as

α̂Student. We performed a Monte Carlo analysis similar to the one presented in
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the previous section, considering a sample of n = 1000. The data was generated

according to a t-distribution with α = 1, 2, 3, 4 degrees of freedom and the

proposed estimator described in section 3, α̂Pareto, compared to α̂Student using

again the ratio RMSE(α̂Pareto)
RMSE(α̂Student)

. Figure 12 summarizes the results.

[Please insert Figure 12 about here]

We observe from this �gure that α̂Student does in general perform better

than α̂Pareto, particularly when κ > 0.1. These results can be partially

justi�ed by the fact that the DGP and the distribution function considered

to generate xi := F−1 (ui) for the computation of α̂Student coincide, which

rarely occurs in practice. Nevertheless, the main idea of this limited Monte

Carlo study is to illustrate the potential and simplicity of generalization of

the methodology presented in Section 3. Hence, this opens new avenues to

improve the performance of the tail index estimator when the e�ects of the

slowly varying part in the Pareto type model vanish slowly. This issue requires

further investigation, in particular it will be interesting to obtain results as in

Theorem 2 and Lemma 1 for the same cases but under di�erent distributions.

6. Empirical Application

To illustrate the empirical performance of the estimator introduced earlier, we

provide an empirical application to exchange rate returns. Exchange rates have

been widely analyzed in the literature. In the context of studies on heavy-

tails, several important contributions have been made; see, among others, Hols

and de Vries (1991), Koedijk, Stork and de Vries (1992), Loretan and Phillips

(1994), Cotter (2005), Ibragimov, Davidova and Khamidov (2010), Hartmann,

Straetmans and de Vries (2009), and Ibragimov, Ibragimov and Kattuman

(2013). The tail index is of importance as it can be used as a measure of an

economy's vulnerability to shocks, i.e., the likelihood of extreme movements

and changes occurring.

In this section, we analyze the tail properties of daily exchange rate

returns series of 21 countries considering the US dollar (USD) as base
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currency3. The currencies considered may be classi�ed into three groups: i)

Developed markets: Australian dollar (AUD), Canadian dollar (CAD), Swiss

franc (CHF), Danish krone (DKK), Euro (EUR), Hong Kong dollar (HKD),

Great Britain pound (GBP), Japanese yen (YEN), New Zealand (NZD),

Norwegian kroner (NOK), Singapore dollar (SGD) and Swedish krona (SEK);

ii) Emerging markets: Brasil real (BRL), Chilean peso (CLP), Colombian

peso (COP), Mexican peso (MXP), Polish zloty (PLN), South Korean won

(KRW), South Africa (ZAR); and iii) Frontier markets: Argentine peso

(ARS) and Ukrainian hryvna (UAH).4

In Figures 13 and 14 we present several exchange rates to USD and

corresponding returns series, respectively, which illustrate the di�erent behavior

of these series over the sample under analysis.

[Please insert Figures 13 and 14]

The period of analysis is from December 31, 1993 to February 13, 2015

and all data is obtained from Datastream. Table 1 presents some descriptive

statistics for the series under analysis.

[Please insert Table 1 about here]

The tail indices of the exchange rate growth series in developed, emerging

and frontier markets are estimated, using the four estimators discussed in the

text (α̂H , α̂Pareto, α̂γ=0 and α̂γ=1/2), based on a 5%, 10%, 15% and 20%

truncation level (κ) for the extreme observations. However, for presentation

purposes and given the results of the Monte Carlo simulations provided in

the previous section, we will only discuss results for α̂H with κ = 0.1, and for

α̂Pareto with κ= 0.2. The choice of these more generous truncation levels results

from the Monte Carlo observation that the minimum MSE for these estimators,

in the case of volatility in the data (as is the case for the daily exchange rate

3. Results with other base currencies (EUR, YEN, GBP and CHF) can be obtained from

the authors.

4. This classi�cation is based on Morgan Stanley's Markets classi�cation

http://www.msci.com/products/indexes/market_classi�cation.html.Note however that

care needs to be taken with these classi�cation given that over the sample period considered

some of the countries may not have always belonged to the group in which they are

presently included.
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returns series considered in this section), is obtained with a higher truncation

level. Tables 2 and 3 present the tail index estimates.

[Please insert Tables 2 and 3 about here]

From Tables 2 and 3 we observe that the right tail indices of the exchange

rate growth series for the 21 countries analyzed for the complete sample and for

the three subperiods 1994-1999, 2000-2007 and 2008-2015, show considerable

di�erence in the three groups of countries under analysis (developed markets

(DM), emerging markets (EM) and frontier markets (FM)).5

For the complete sample (1994 - 2015) we note that the HKD, COP, KRW,

ARS, BRL, MXP and UAH display tail index estimates such that α̂ < 2.

Moreover, it is also interesting to observe from these results that the currencies

which present smaller tail indices are the ones linked to the USD.6

However, since currency crises have always been a characteristic of the

international monetary system, considering a more detailed analysis of the

tail index by subsamples may reveal further insights. Hence, given our sample

size and the dramatic episodes of the Latin American Tequila Crisis following

Mexico's peso devaluation in 1994-95, the Asian �nancial crisis in 1997-98,

the Russian �nancial crisis of 1998 and, more recently, the global �nancial

crisis in 2008-09 which forced sharp depreciations in many advanced as well as

developing economies, we will reestimate the tail indices over three subsamples:

1) 1994 - 1999; 2) 2000 - 2007; and 3) 2008 - 2015.

Subsample 1 - 1994 to 1999

The 90s were a particularly turbulent period. The subsample from 1994

to 1999 includes the Mexican crisis in 1995 (which spread to other economies

in the region, a�ecting particularly Argentina); and the Asian and Russian

�nancial crises in 1997-98, which impacted Brazil in 1998-99. The consequences

of these crises were so severe that they originated changes in the macroeconomic

policies of countries in these regions, especially in terms of their exchange rate

policies (Frankel, Fajnzylber, Schmukler and Serven, 2001, and Frenkel and

5. Note that results for the left tail can be obtained from the authors as the conclusions

are qualitatively similar to the ones based on the right tail.

6. Note that we classify an exchange rate to have α̂ < 2, when both α̂H < 2 and

α̂Pareto < 2.
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Rapetti, 2011). For instance, after the 1994-95 crisis, Mexico changed to a

�oating exchange rate regime (Frenkel and Rapetti, 2011), and a similar policy

was followed in 1999, by Brazil, Colombia and Chile.

Over this period our results show (Tables 2 - 3) that currencies with an

α̂ < 2, are HKD, SGD, BRL, ZAR, KRW, MXP, PLN, ARS, COP and UAH.

As expected, over this period the currencies with the smallest tail index (i.e.,

with the potentially highest risk pro�le) belonged to Asian countries, Latin

American countries and the Ukrain.

Subsample 2 - 2000 to 2007

This period includes the massive default of Argentina�s external debt,

the consequent abandoning of its currency board and the devaluation of its

currency in early 2002. However, from 2002 until the �nancial disruption in

2008, developed and developing countries went through a prosperous period

without crises.

This is re�ected in the results of Tables 2-3. For this period our results

indicate that currencies with an α̂ < 2, were only HKD, COP, ARS and UKH

(note that over this period 1 out of the 6 currencies in the EM group display

α̂ < 2). It becomes clear from these results that in general, comparatively to the

previous period, the tail index has increased suggesting a possible risk reduction

in most currencies.

Subsample 3 - 2008 - 2015

Finally, the last subsample includes the recent �nancial crisis. Interestingly,

�nancial contagion following the collapse of Lehman Brothers was short and

by 2009 many developing countries had recovered access to the international

�nancial system at low interest rates. This was likely the consequence of

the switch made by the countries belonging to the EM group to �exible

managed �oating regimes (see e.g. Reinhart and Rogo�, 2004 (updated country

chronologies), for worldwide details on exchange rate regimes) and due to the

accumulation of foreign exchange reserves over this period.

Our results in Tables 2 and 3 suggest that in this period the currencies with

an α̂ < 2 are HKD, COP, KRW, ARS and UAH (again a much smaller number

than in subsample 1). Comparatively to the results obtained for subsample 1

we observe that the number of currencies with α̂ < 2 is smaller in this period

(in speci�c, we observe a reduction from 10 to 5 currencies with α̂ < 2).
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A �nal comment relates to the similarities or otherwise of the left and

right tail indices. In foreign exchange markets, there seems to exist a consensus

that volatility is symmetric with respect to positive and negative shocks (e.g.

Bollerslev and Domowitz, 1993, and Anderson et al., 2001). This is probably

justi�ed by the �two-sided nature of the foreign exchange market� i.e., by the

observation that for bilateral exchange rates positive returns for one currency

are necessarily negative returns for the other. This is probably also the reason

why one could expect the right and left tail indices not to di�er.

However, as recently pointed out by Wang and Yang (2009), this may

not necessarily be always the case, given that despite the bilateral nature

of exchange rates, at least two reasons which may justify the presence of

asymmetry in bilateral exchange rates can be suggested. The �rst is the greater

economic importance of some currencies over others; and the second are central

bank interventions. Many studies report that central bank interventions lead

to higher volatility, particularly when there is a depreciation in the domestic

currency and not when there is an appreciation. Since central banks intervene

on one side of the market, but not on the other, interventions may lead to an

asymmetric relationship between exchange rate return and volatility.

We also observe that for several currencies the right tail appears to be

slightly more heavy-tailed than the left tail. This type of asymmetry is the

opposite of the asymmetric behavior typically found in �nancial markets

and may indicate regulatory interventions in these currency markets (as

suggested by e.g. Ibragimov et al. 2013), however, this feature requires further

investigation.

7. Conclusion

In this paper a new regression-based approach for the estimation of the tail

index of heavy-tailed distributions is introduced, its asymptotic properties are

derived and its good �nite sample performance illustrated.

We show that the proposed method to estimate α presents the following

features: First, it does not involve order statistics. Second, it provides a bias

reduction over the regression-based method proposed by Gabaix and Ibragimov

(2012), and a fortiori over other regression based estimators. Third, it is

relatively robust to the choice of the subsample used to estimate α. Fourth,
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when the e�ect of the slowly varying part in the Pareto type model vanishes

slowly (the so called second order behavior of the Taylor expansion) our

estimator continues to perform satisfactorily, whereas the Hill estimator rapidly

deteriorates.

Moreover, given the novelty and �exibility of the procedure, we also propose

two concrete avenues for future research involving this estimator, namely,

a feasible GLS estimator for α, and a di�erent scheme to generated the

regressor xi. We have analyzed the e�ects of dependence and conditional

heteroscedasticity on the properties of the proposed estimator, through Monte

Carlo simulations. However, given the relevance and importance of this topic

further investigation is required.

To illustrate the potential of the estimator we provide an empirical

application in which we analyze the tail index of 21 exchange rates returns

series.
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Appendix: Technical Appendix

Before presenting the proofs of the main results put forward in the paper it

will be convenient to establish some preliminary Lemmas �rst.

Lemma A.1. The following results hold,

(i)
m−1∑
i=1

log i = −(m− 1) + (m− 1) log(m− 1) +
1

2
log(m− 1) +O(1); (A.1)

(ii)
m−1∑
i=1

(log i)2 = (m− 1) log2(m− 1)− 2(m− 1) log(m− 1) + 2(m− 1)

+
log2(m− 1)

2
+O(1).(A.2)

Proof of Lemma A.1

(i) The result in (A.1) follows directly from Stirling's formula (see Feller, 1968,

p.52), i.e., since,
m−1∑
i=1

log i = log((m− 1)!)

and

(m− 1)! ∼ e−(m−1)(m− 1)(m−1)+1/2
√

2π

it follows that,

log((m− 1)!)− log(e−(m−1)(m− 1)(m−1)+1/2
√

2π)→ 0

and therefore,

m−1∑
i=1

log i = −(m− 1) + (m− 1) log(m− 1) + log
(√

2π
)

+
1

2
log(m− 1) + o(1)

= −(m− 1) + (m− 1) log(m− 1) +
1

2
log(m− 1) +O(1).

(ii) Regarding (A.2), applying the Euler-Maclaurin formula for asymptotic

expansions of sums to
m−1∑
i=1

log2 i, we immediately obtain that,

m−1∑
i=1

log2 i= (m− 1) log2 (m− 1)− 2(m− 1) log (m− 1) + 2(m− 1) +
log2(m− 1)

2
+O(1).

�
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Lemma A.2. Considering ui := i/m and m a positive integer, we establish

that,

(i)
m−1∑
i=1

log (1− ui) = −m+O (logm) ; (A.3)

(ii)
m−1∑
i=1

(log (1− ui))2 = 2m+O
(
log2m

)
; (A.4)

(iii)
m−1∑
i=1

ui
1− ui

= 1−m+m
m−1∑
k=1

1

k
. (A.5)

Proof of Lemma A.2

(i) To prove (A.3) note that,

m−1∑
i=1

log (1− ui) = − (m− 1) logm+
m−1∑
i=1

log i.

Thus, from (A.1) it follows that,

m−1∑
i=1

log (1− ui) = −(m− 1) logm− (m− 1) + (m− 1) log(m− 1) +
1

2
log(m− 1) +O(1)

= −(m− 1)− (m− 1)[logm− log(m− 1)] +
1

2
log(m− 1) +O(1)

= −m+

(
1 +

1

2
log(m− 1)

)
− (m− 1)[logm− log(m− 1)] +O(1)

= −m+O (log (m)) .

(ii) For the proof of (A.4) we establish that,

m−1∑
i=1

(log (1− ui))2 =
m−1∑
i=1

(log (m− i)− logm)2

=
m−1∑
i=1

log2 (m− i)− 2 logm
m−1∑
i=1

log (m− i) + (m− 1) log2m

=

m−1∑
i=1

log2 i− 2 logm

m−1∑
i=1

log i+ (m− 1) log2m.
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Thus, from (A.1) and (A.2) it follows that,

m−1∑
i=1

(log (1− ui))2 =
m−1∑
i=1

log2 i− 2 logm

[
−(m− 1) + (m− 1) log(m− 1) +

1

2
log(m− 1)

]
+ (m− 1) log2m+O(1)

= 2(m− 1) +
1

2

[
log2(m− 1)− 2 logm log(m− 1)

]
+2(m− 1) [logm− log (m− 1)]

+ (m− 1)
[
log2m+ log2 (m− 1)− 2 logm log(m− 1)

]
+O(1)

= 2m+O(log2m).

(iii) Finally, regarding (A.5) note that,

m−1∑
i=1

ui
1− ui

=
m−1∑
i=1

i

m− i

=
m−1∑
k=1

m−k∑
i=1

1

i

= 1−m+m
m−1∑
k=1

1

k
.

Considering that the harmonic sum

m−1∑
k=1

1

k
= log(m− 1) + C+ 1

2(m− 1)
− 1

12(m− 1)2
+

1

120(m− 1)4
+ ...

= log(m− 1) + C + o(1)

where C ≈0.5772156649 is the Euler�Mascheroni constant (see e.g., Hardy and

Wright, 1978), it follows that,

m−1∑
i=1

ui
1− ui

= (1−m) +m log(m− 1) +mC+o(1).

�
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Proof of Lemma 1

(i) According to Donsker's theorem it follows that,

√
n


F̄n (x1)− F̄ (x1)

F̄n (x2)− F̄ (x2)
...

F̄n (xm−1)− F̄ (xm−1)

=−
√
n


Fn (x1)− F (x1)

Fn (x2)− F (x2)
...

Fn (xm−1)− F (xm−1)

 d−→N (0, A)

where

A =


F (x1) F̄ (x1) F (x1) F̄ (x2) F (x1) F̄ (x3) · · · F (x1) F̄ (xm−1)

F (x1) F̄ (x2) F (x2) F̄ (x2) F (x2) F̄ (x3) · · · F (x2) F̄ (xm−1)

F̄ (x1)F (x3) F (x2) F̄ (x3) F (x3) F̄ (x3) · · · F (x3) F̄ (xm−1)
...

...
...

. . .
...

F (x1) F̄ (xm−1) F (x2) F̄ (xm−1) F (x3) F̄ (xm−1) · · · F (xm−1) F̄ (xm−1)


(see, for example, Kosorok, 2008, Chapter 2). Notice that A := [aij ](m−1)×(m−1)

and aij := limCov (
√
nFn (xi) ,

√
nFn (xj)) = F (xi ∧ xj) − F (xi)F (xj) =

F (xi) F̄ (xj), xi ≤ xj . Considering g (x) := (logx1, logx2, ..., logxm−1)′ using

the delta method for the multivariate case we establish that,

√
n
(
g
(
F̄n (x)

)
− g (F (x))

)
=
√
n


log F̄n (x1)− log F̄ (x1)

log F̄n (x2)− log F̄ (x2)
...

log F̄n (xm−1)− log F̄ (xm−1)

 d−→N (0,Σ)

where

Σ =
∂g
(
F̄n (x)

)
∂x′

A

(
∂g
(
F̄n (x)

)
∂x′

)′
=


F (x1)
F̄ (x1)

F (x1)
F̄ (x1)

· · · F (x1)
F̄ (x1)

F (x1)
F̄ (x1)

F (x2)
F̄ (x2)

· · · F (x2)
F̄ (x2)

...
...

. . .
...

F (x1)
F̄ (x1)

F (x2)
F̄ (x2)

· · · F (xm−1)

F̄ (xm−1)

 .

For x0 known we have that F (xi) = 1−
(
x0

xi

)α
= i

m and F̄ (xi) = 1− i
m , and

therefore,

F (xi)

F̄ (xi)
=

i

m− i
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and

Σ =



1
m−1

1
m−1

1
m−1 · · · 1

m−1
1

m−1
2

m−2
2

m−2 · · · 2
m−2

1
m−1

2
m−2

3
m−3 · · · 3

m−3
...

...
...

. . .
...

1
m−1

2
m−2

3
m−3 · · · m−1

m−(m−1)

 .

(ii) For x̂0 := F−1 (1− k) = k−1/αx0 we have, after some simpli�cations, that,

F (xi) = 1−
(
x0

xi

)α
= 1−

(
x0

(1− ui)−
1
α k−1/αx0

)α
= 1−

(
1− i

m

)
k

F̄ (xi) =

(
1− i

m

)
k,

so that
F (xi)

F̄ (xi)
=
k (i−m) +m

k (m− i)
,

and

Σ =


k(1−m)+m
k(m−1)

k(1−m)+m
k(m−1) · · · k(1−m)+m

k(m−1)
k(1−m)+m
k(m−1)

k(2−m)+m
k(m−2) · · · k(2−m)+m

k(m−2)
...

...
. . .

...
k(1−m)+m
k(m−1)

k(2−m)+m
k(m−2) · · · k((m−1)−m)+m

k(m−(m−1))

 .

(iii) Finally, to prove (15), note that,

V ar

(
m−1∑
i=1

√
nεi

)
=

m−1∑
i=1

V ar
(√
nεi
)

+ 2
m−1∑
i=1

i−1∑
j=1

Cov
(√
nεi,
√
nεj
)

=
m−1∑
i=1

σii + 2
m−1∑
i=1

i−1∑
j=1

σij . (A.6)

Hence, (A.6) corresponds to the sum of all elements of Σ. To simplify (A.6)

note that σ11 := k(1−m)+m
k(m−1) is repeated (2m− 3) times in Σ, σ22 := k(2−m)+m

k(m−2)

is repeated (2m− 5) times, and so on. Therefore,

V ar

(
m−1∑
i=1

√
nεi

)
=

m−1∑
i=1

k (i−m) +m

k (m− i)
(2m− (2i+ 1))

=
−k +m

(
2k − 2−

∑m−1
i=1

1
i

)
+m2 (2− k)

k
= O

(
m2

k

)
.

�
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Proof of Lemma 2

(i) Based on the results in (i) and (ii) of Lemma A.2 it follows that,

m−1∑
i=1

wiw
′
i =

[
m

∑m−1
i=1 zi∑m−1

i=1 zi
∑m−1
i=1 z2

i

]

=

[
m 1

α

∑m−1
i=1 log (1− ui)

1
α

∑m−1
i=1 log (1− ui) 1

α2

∑m−1
i=1 (log (1− ui))2

]

=

[
m − 1

α̂m

− 1
α̂m

2m
α̂2

]
+

[
0 O(logm)

O(logm) O(log2m)

]
.

(ii) Considering,

W′ :=

[
1 1 · · · 1

z1 z2 · · · zm−1

]
,

we have that,

V ar

(
m−1∑
i=1

wi
√
nεi

)
= W′ΣW

=

[
1 1 · · · 1

z1 z2 · · · zm−1

]
1

m−1
1

m−1 · · · 1
m−1

1
m−1

2
m−2 · · · 2

m−2
...

...
. . .

...
1

m−1
2

m−2 · · · m−1
m−(m−1)




1 z1

1 z2

...
...

1 zm−1


=

[
a b

b c

]
.

where a =
∑m−1
i=1 i+

∑m−2
j=1

∑j
i=1

i
m−i ; b =

∑m−1
i=1 zii+

∑m−2
j=1 zj+1

∑j
i=1

i
m−i ;

c=
∑m−2
j=1

∑j
i=1 zi

i
m−i +

∑m−1
j=1

j
m−j

∑m−1
i=j zi; and d=

∑m−2
j=1 zj+1

∑j
i=1 zi

i
m−i +∑m−1

j=1 zj
j

m−j
∑m−1
i=j zi.

We observe that a can be simpli�ed as a = m2 − 1−m
∑m−1
i=1 1/i = m2 +

o
(
m2
)
. However, b and c do not have a closed-form, but can be determined

numerically so that b = −2m2/α+ o
(
m2
)
and c = 5m2/α2 + o

(
m2
)
.

(iii) We have

V ar

(
m−1∑
i=1

wi
√
nεi

)
= W′ΣW

where Σ := [σij ](m−1)×(m−1) , σij := F (xq) /F̄ (xq), q = i∧ j, i, j = 1, 2, ...,m−
1, and F̄ (x) := ax−α

(
1 + bx−β + o

(
x−β

))
. By hypothesis bx−β + o

(
x−β

)
' 0,
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hence a = x0 and F̄ (xi) ' (x0/xi)
α , therefore

σii :=
F (xi)

F̄ (xi)
' k (i−m) +m

k (m− i)
=

1

k

(
k (i+m)

m− i
+

m

m− i

)
' 1

k

m

m− i
(for small values of k).

Thus, using σij := 1
k

m
m−q to construct Σ, one can verify that W′ΣW yields,

V ar

(
m−1∑
i=1

wi
√
nεi

)
' m

k

[
d e

e f

]

where

d : = m− 1 +
m−2∑
j=1

j∑
i=1

1

m− i
= 2m+ o (m) ,

e : =
m−1∑
i=1

zi +
m−2∑
j=1

zj+1

j∑
i=1

1

m− i
= −3m

α
+ o (m)

f : =
z1

m− 1

m−1∑
i=1

zi +
m−2∑
j=1

zj+1

j∑
i=1

zi
m− i

+
m−1∑
j=1

zj
m− j

m−1∑
i=j

zi =
6m

α2
+ o (m) .

Note that d = 2m− 2−
∑m−1
i=1 1/i = 2m+ o (m) . Also in this case there are

no closed-form expressions for e and f , but we determine numerically that

e = −3m/α+ o (m) and f = 6m/α2 + o (m). �

Proof of Theorem 1 (i) Let w̃i =
(

1 z̃i

)′
and θ =

(
ϑ α

)′
. Considering

α̃−1 p−→ α−1 we have that,

θ̂ =

(
1

m

m−1∑
i=1

w̃iw̃
′
i

)−1
1

m

m−1∑
i=1

w̃iyi

= θ +

(
1

m

m−1∑
i=1

w̃iw̃
′
i

)−1
1

m

m−1∑
i=1

w̃iεi

= θ +

(
1

m

m−1∑
i=1

wiw
′
i

)−1
1

m

m−1∑
i=1

wiεi + op (1) .



DEE Working Papers 36

To justify the third equality consider for example

1

m

m−1∑
i=1

z̃iεi =
1

m

m−1∑
i=1

1

α̃
log (1− ui) εi

=
1

m

m−1∑
i=1

(
1

α
+ op (1)

)
log (1− ui) εi

=
1

m

m−1∑
i=1

1

α
log (1− ui) εi +

op (1)

m

m−1∑
i=1

log (1− ui) εi

=
1

m

m−1∑
i=1

ziεi + op (1) .

Now let us focus on the term

1

m

m−1∑
i=1

wiεi =
1

m

m−1∑
i=1

(
εi

α−1 log (1− ui) εi

)
.

By the Glivenko and Canteli theorem (see Wellner, 1977) it follows that

supx
∣∣F̄n (x)− F̄ (x)

∣∣ p−→ 0 as n → ∞ and, due to the continuity of the

log function and the fact that limE
(
log (1− ui) log F̄n (xi)

)
< ∞, we have

that supxi |ε (xi)|
p−→ 0 and supxi |log (1− ui) ε (xi)|

p−→ 0, ε (xi) := εi =

log F̄n (xi) − log F̄ (xi) (actually, point wise convergence in probability is

enough, in view of the way xi is generated). It remains to be shown that

m−1
∑m−1
i=1 wiw

′
i converges to a positive de�nite matrix. This is immediate in

view of Lemma 2. Thus, θ̂
p−→ θ and in particular α̂

p−→ α.

(ii) Note that,

√
n
(
θ̂ − θ

)
=

(
1

m

m−1∑
i=1

w̃iw̃
′
i

)−1
1

m

m−1∑
i=1

w̃i
√
nεi

=

(
1

m

m−1∑
i=1

wiw
′
i

)−1 √
n

m

m−1∑
i=1

wiεi + op (1) .

The second equality needs a brief explanation. The issue is whether the

sampling variation of α̃ can (at least asymptotically) be ignored. In this case,

the limiting distribution of the OLS estimators is the same as that of the OLS

estimators when α is replaced by α̃. Wooldridge (2010, section 6.1.1 and 12.4.2)

provides a simple and su�cient condition: limE ((∂zi/∂α) εi) = 0. Following

previous arguments (see (i) of this proof) it is straightforward to verify this

condition.
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Since
√
n
∑m−1
i=1 εi

d−→ Normal (by Lemma 1),
√
n
m

∑m−1
i=1 wiεi will

converge in distribution to a proper non-degenerate distribution if

limV ar
(

1
m

∑m−1
i=1 wi

√
nεi

)
converges to a constant positive de�nite matrix

(notice that wi is a deterministic function). From (ii) of Lemma 2 we have that

V ar

(
1

m

m−1∑
i=1

wi
√
nεi

)
=

1

m2
V ar

(
m−1∑
i=1

wi
√
nεi

)
→

[
1 − 2

α

− 2
α

5
α2

]
.

Furthermore, from the same Lemma it follows that(
1

m

m−1∑
i=1

wiw
′
i

)−1

−→

[
1 − 1

α

− 1
α

2
α2

]−1

=

[
2 α

α α2

]
.

Therefore

limV ar
(√

n
(
θ̂ − θ

))
=

[
2 α

α α2

][
1 − 2

α

− 2
α

5
α2

][
2 α

α α2

]
=

[
1 α

α 2α2

]

and, in particular,

limV ar
(√
n (α̂− α)

)
= 2α2.

�

Proof of Theorem 2

(i) Let w̃i =
(

1 z̃i

)′
, θ =

(
ϑ α

)′
. Note that,

θ̂ =

(
1

m

m−1∑
i=1

w̃iw̃
′
i

)−1
1

m

m−1∑
i=1

w̃iyi

= θ +

(
1

m

m−1∑
i=1

w̃iw̃
′
i

)−1
1

m

m−1∑
i=1

w̃iεi

+

(
1

m

m−1∑
i=1

w̃iw̃
′
i

)−1
1

m

m−1∑
i=1

w̃i log
(

1 + b (1− ui)
β
α x−β0 + o

(
x−βi

))

= θ +

(
1

m

m−1∑
i=1

wiw
′
i

)−1
1

m

m−1∑
i=1

wiεi

+

(
1

m

m−1∑
i=1

wiw
′
i

)−1
1

m

m−1∑
i=1

wi log
(

1 + b (1− ui)
β
α x−β0 + o

(
x−βi

))
+ op (1) .

= : θ + I1 + I2 + op(1)
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We have seen that I1 converges in probability to zero (see proof of Proposition

1). Thus, we only focus on the analysis of I2. Note that,

1

m

m−1∑
i=1

wi log
(

1 + bx−βi

)
=

1

m

m−1∑
i=1

 log
(

1 + b (1− ui)
β
α x−β0 + o

(
x−βi

))
α−1 log (1− ui) log

(
1 + b (1− ui)

β
α x−β0 + o

(
x−βi

))  .

(A.7)

Considering x0 = F−1 (1− k) ' c0k
−1/α for small k (where the tails of F̄

are well approximated by those of the Pareto Law, F̄ (x) ' x−αc1). With

k = m/n→ 0, β > α, x−β0 =
(
c0k
−1/α

)−β
= c2k

β
α = c2

(
m
n

)β/α
we have∣∣∣∣∣ 1

m

m−1∑
i=1

log
(

1 + b (1− ui)
β
α x−β0 + o

(
x−βi

))∣∣∣∣∣ ≤

≤

∣∣∣∣∣ 1

m

m−1∑
i=1

log
(

1 + bx−β0 + o
(
x−βi

))∣∣∣∣∣
'

∣∣∣∣∣ 1

m

m−1∑
i=1

bx−β0 + o
(
x−<βi

)∣∣∣∣∣ (since x−β0 → 0)

≤

∣∣∣∣∣ 1

m

m−1∑
i=1

(b+ 1)x−β0

∣∣∣∣∣ (since o(x−βi )
< x−β0 )

=

∣∣∣∣m− 1

m
(b+ 1) c2

(m
n

)β/α∣∣∣∣
≤ (b+ 1) c2m

β
α (1−γ) (since n = mγ)

and this expression converges to zero as m/n→ 0 with γ > 1 (or as m,n→∞
and n = mγ). Using the same reasoning, the second element of the vector (A.7)

converges to zero as well.

(ii) We have that,

√
m
(
θ̂ − θ

)
=

(
1

m

m−1∑
i=1

w̃iw̃
′
i

)−1 √
m

m

m−1∑
i=1

w̃iεi

=

(
1

m

m−1∑
i=1

wiw
′
i

)−1
1√
nm

m−1∑
i=1

wi
√
nεi + op (1) .

Since
√
n
∑m−1
i=1 εi

d−→ Normal (by Lemma 1), 1√
nm

∑m−1
i=1 wiεi converges in

distribution to a proper non-degenerate distribution if limV ar
(

1√
nm

∑m−1
i=1 wi

√
nεi

)
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converges to a constant positive de�nite matrix (notice that wi is a deterministic

function). By Lemma 2 (ii) we have

V ar

(
1√
nm

m−1∑
i=1

wiεi

)
=

1

nm
V ar

(
m−1∑
i=1

wi
√
nεi

)

=
1

nm

m

k

[
2m+ o (m) −3m

α + o (m)
−3m2

α + o (m) 6m
α2 + o (m)

]
→

[
2 −3

α
−3
α

6
α2

]

with k = m/n. On the other hand, by the same lemma,(
1

m

m−1∑
i=1

wiw
′
i

)−1

−→

[
2 α

α α2

]
.

Therefore

limV ar
(√

m
(
θ̂ − θ

))
=

[
2 α

α α2

][
2 −3

α
−3
α

6
α2

][
2 α

α α2

]
=

[
2 α

α 2α2

]

and

limV ar
(√
m (α̂− α)

)
= 2α2.

�

Proof of Theorem 3

Consider θ :=
(
ϑ α

)′
. (i) We have established in the proof of Theorem

2 that θ̂ = θ + I1 + I2 + op(1). We proved that I2 → 0 (in deterministic

sense). Thus, we focus on I1 =
(

1
m

∑m−1
i=1 wiw

′
i

)−1
1
m

∑m−1
i=1 wiεi. Given that a

stationary process that satis�es the strong mixing condition α (n)→ 0, is also

a stationary ergodic process (Rosenblatt, 1978) we may apply the Glivenko

and Canteli theorem for stationary ergodic sequences, which guarantees that

supx
∣∣F̄n (x)− F̄ (x)

∣∣ p−→ 0 as n→∞. The rest of the proof is similar to that

of proof of Theorem 1, and thus I1
p−→ 0, which implies θ̂

p−→ θ. (ii) Under

the conditions of the theorem, Deo (1973) has proved that

√
n


F̄n (x1)− F̄ (x1)

F̄n (x2)− F̄ (x2)
...

F̄n (xm−1)− F̄ (xm−1)

 d−→ N (0,A)

where Aij = limE (g1 (xi) g1 (xj)) +
∑
n≥2 limE (g1 (xi) gn (xj)) +

∑
n≥2 limE (gn (xi) g1 (xj)),

gn (x) = I{Xn≤x} − F (x) and these two series converges absolutely for xi, xj ∈ R.
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Using the same arguments as in the proof of Lemma 1 one has
√
nε

d−→N (0,Σ) where

ε : = (ε1, ..., εm−1)′ , εi := log F̄n (xi)− log F̄ (xi) and Σ := [σij ](m−1)×(m−1) . The rest

of the proof is similar to that of Theorem 2, but now Jm = limV ar
(

1
m

∑m−1
i=1 wiεi

)
has an unknown expression given the dependence structure of the sequence {εi}. In
the case of i.i.d. sequence {εi} we have seen that J iidm = limV ar

(
1
m

∑m−1
i=1 wiεi

)
is a

matrix with elements O (1) . Changing from the i.i.d. hypothesis to the dependence

case does not alter the order of magnitude of Jn, since in both cases
√
nεi has a

limit distribution that is independent of m. Obviously, we expected Jn − J iidn to be

a positive-semide�nite matrix. As a result we have

√
m
(
θ̂ − θ

)
d−→ N

(
0,Avar

(
θ̂
))

Avar
(
θ̂
)

= lim
m→∞

√
m
(
θ̂ − θ

)
= lim
m→∞

(
1

m

m−1∑
i=1

wiw
′
i

)−1

Jm

(
1

m

m−1∑
i=1

wiw
′
i

)−1

=

[
2 α

α α2

]
lim
m→∞

Jm

[
2 α

α α2

]
.�

Proof of Theorem 4

Under the hypotheses de�ned, the conditions of the Theorem 1 of Andrews and

Monahan (1992) (AM) hold. In fact, Assumption A of AM is implied by the α-mixing

and the moment condition (we note that
∥∥VtV ′t−j∥∥ , with Vt = wiεi, has moments of

any order given that Vt is formed by a sequence of a deterministic sequence (1, zi)
′ and

a random variable with asymptotic normal distribution). The same reasoning applies

to limE
(∥∥∂Vt/∂θ′∥∥2

)
; (see Assumption B of AM). Also

√
m
(
θ̂ − θ

)
= O (1) , as

seen in theorem 3; see also Assumption B of AM. The parameter Ŝm and the kernel

as de�ned above satisfy respectively the Assumption C of AM and the condition

de�ned in Theorem 1 of AM. �
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Table 1: Descriptive Statistics of the Exchange Rate Returns
ARS AUD BRL CAD CHF CLP COP DKK EUR GBP HKD KRW MXP NOK NZD PLN SEK SGD UAH YEN ZAR

I µ 0.14 -0.01 0.07 -0.00 -0.03 0.02 0.07 -0.00 -0.00 -0.00 0.00 0.02 0.10 0.00 -0.02 0.03 0.00 -0.01 0.17 0.00 0.08

Std 0.15 0.15 0.18 0.10 0.13 0.11 0.12 0.12 0.11 0.10 0.01 0.17 0.17 0.14 0.15 0.15 0.14 0.07 0.21 0.13 0.18

Skw 18.1 0.75 0.47 -0.10 -0.79 0.58 0.38 -0.19 -0.18 0.04 -2.72 -0.76 2.82 -0.03 0.37 0.19 -0.18 -0.40 10.95 -0.46 0.32

Kur 700.2 16.3 23.3 10.1 23.3 10.7 13.0 5.56 5.61 7.45 68.0 108.6 97.0 8.32 9.14 8.76 6.64 14.2 416.9 8.13 10.2

II µ 0.00 0.01 0.15 0.02 0.02 0.05 0.20 0.02 0.03 -0.02 0.00 0.08 0.26 0.02 0.02 0.15 0.01 0.01 0.43 -0.02 0.14

Std 0.01 0.11 0.15 0.06 0.13 0.07 0.09 0.11 0.101 0.09 0.00 0.24 0.26 0.11 0.11 0.10 0.11 0.08 0.32 0.15 0.12

Skw 0.18 -0.32 2.30 -0.15 -0.45 -0.06 0.69 -0.36 -0.33 -0.06 -1.56 -0.68 2.65 -0.24 -0.40 0.67 -0.15 -0.96 0.00 -0.72 0.24

Kur 25.4 9.82 60.3 6.13 5.80 13.8 18.1 4.88 4.91 5.30 39.0 81.1 64.0 10.4 9.22 10.7 5.14 17.5 8.78 8.93 19.3

III µ 0.20 -0.05 -0.00 -0.07 -0.06 -0.01 0.01 -0.07 -0.07 -0.04 0.00 -0.03 0.03 -0.07 -0.07 -0.09 -0.05 -0.03 -0.01 0.02 0.02

Std 0.24 0.13 0.19 0.09 0.12 0.11 0.10 0.11 0.11 0.10 0.01 0.08 0.09 0.12 0.14 0.12 0.12 0.05 0.07 0.11 0.19

Skw 11.8 0.55 -0.19 0.08 -0.13 0.19 0.22 -0.12 -0.12 -0.02 -5.14 0.31 0.33 0.07 0.64 0.36 -0.04 -0.14 1.59 -0.35 0.10

Kur 294.9 6.12 20.3 4.21 3.83 5.37 11.8 4.09 4.09 3.77 117.3 5.24 5.65 3.78 5.97 5.33 3.70 6.31 39.9 4.58 8.03

IV µ 0.20 0.02 0.09 0.05 -0.04 0.04 0.03 0.05 0.05 0.05 -0.00 0.03 0.06 0.07 0.01 0.08 0.05 -0.01 0.32 0.01 0.11

Std 0.06 0.19 0.19 0.13 0.15 0.14 0.15 0.13 0.13 0.12 0.01 0.17 0.15 0.17 0.18 0.21 0.17 0.07 0.29 0.13 0.21

Skw 21.4 0.91 0.44 -0.17 -1.30 0.76 0.37 -0.18 -0.17 0.07 -0.38 -0.72 0.67 -0.04 0.32 0.06 -0.25 0.20 9.98 -0.18 0.51

Kur 700.6 15.8 12.8 8.67 37.4 9.64 9.81 6.56 6.51 8.20 15.5 45.1 13.9 7.63 8.70 6.42 6.27 7.40 281.5 7.71 8.93

Note: I = 1994 - 2015 (T=5510); II = 1994 - 1999 (T=1565); III = 2000 - 20007 (T=2086) and IV = 2008 - 2015 ( T = 1859) and where µ is the

annualized mean return; std is the annualized standard deviation; and skw and kur refer to the skweness and kurtosis of the series.
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Table 2: Right Tail Index of the Exchange Rate Returns Series

1994 - 2015 1994 - 1999 2000 - 2007 2008 - 2015

α̂H α̂Pareto α̂H α̂Pareto α̂H α̂Pareto α̂H α̂Pareto
ARS FM 1.070 1.098 1.689 1.564 1.054 1.070 1.781 1.806

(0.041) (0.045) (0.070) (0.100) (0.064) (0.072) (0.095) (0.098)

[0.032] [1.115] [0.094] [0.036]

AUD DM 2.249 2.220 2.358 2.370 2.521 2.467 2.124 2.029

(0.055) (0.063) (0.109) (0.123) (0.092) (0.109) (0.094) (0.104)

[1.502] [0.122] [0.315] [0.060]

BRL EM 1.872 1.863 1.191 1.061 2.150 2.140 2.044 2.008

(0.050) (0.059) (0.074) (0.086) (0.086) (0.101) (0.091) (0.104)

[0.060] [0.072] [0.295] [0.561]

CAD DM 2.216 2.309 2.633 2.419 2.680 2.734 2.396 2.304

(0.054) (0.065) (0.111) (0.124) (0.096) (0.114) (0.096) (0.111)

[0.253] [0.246] [1.440] [0.593]

CHF DM 2.788 2.783 2.747 2.694 3.124 2.863 2.561 2.461

(0.058) (0.071) (0.113) (0.131) (0.096) (0.117) (0.098) (0.115)

[0.169] [0.225] [0.215] [0.168]

CLP EM 2.075 2.153 2.164 2.206 2.462 2.570 2.094 2.014

(0.053) (0.063) (0.098) (0.119) (0.093) (0.110) (0.092) (0.104)

[0.160] [0.401] [3.030] [0.146]

COP EM 2.012 1.884 1.936 1.971 1.943 1.950 1.988 1.880

(0.050) (0.058) (0.099) (0.112) (0.081) (0.097) (0.089) (0.101)

[0.112] [0.148] [0.198] [0.078]

DKK DM 2.704 2.926 2.863 2.948 2.725 2.879 2.687 2.653

(0.057) (0.073) (0.114) (0.137) (0.093) (0.117) (0.094) (0.120)

[1.253] [2.531] [3.204] [1.269]

EUR DM 2.646 2.899 2.884 2.850 2.696 2.846 2.588 2.654

(0.056) (0.073) (0.111) (0.135) (0.093) (0.117) (0.093) (0.119)

[1.237] [1.651] [1.750] [1.425]

GBP DM 2.791 2.574 2.748 2.542 3.161 2.949 2.608 2.357

(0.056) (0.068) (0.106) (0.127) (0.095) (0.119) (0.098) (0.113)

[0.265] [0.179] [0.406] [0.160]

HKD DM 1.534 1.564 1.600 1.716 1.504 1.352 1.657 1.658

(0.045) (0.053) (0.098) (0.104) (0.066) (0.081) (0.080) (0.094)

[0.050] [0.143] [0.091] [1.036]

KRW EM 1.567 1.512 1.051 1.008 2.285 1.938 1.803 1.813

(0.046) (0.052) (0.075) (0.080) (0.081) (0.096) (0.086) (0.099)

[0.067] [0.036] [0.084] [0.240]

MXP EM 1.813 1.731 1.269 1.276 2.435 2.538 2.183 2.103

(0.052) (0.056) (0.086) (0.090) (0.095) (0.110) (0.092) (0.106)

[0.125] [0.029] [0.441] [0.106]

NOK DM 2.470 2.450 2.686 2.644 3.017 2.774 2.177 2.296

(0.057) (0.067) (0.106) (0.130) (0.096) (0.115) (0.096) (0.111)

[0.136] [0.200] [0.193] [0.106]

NZD DM 2.257 2.213 2.379 2.214 2.280 2.336 2.253 2.180

(0.054) (0.063) (0.102) (0.119) (0.088) (0.106) (0.094) (0.108)

[0.100] [0.156] [0.319] [0.085]
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Table 2 (Cont.): Right Tail Index of the Exchange Rate Returns Series

PLN DM 2.028 2.113 2.074 2.025 2.549 2.395 2.463 2.253

(0.052) (0.063) (0.111) (0.125) (0.087) (0.107) (0.092) (0.110)

[1.231] [0.321] [0.371] [1.101]

SEK DM 2.614 2.456 2.656 2.604 2.980 3.068 2.626 2.284

(0.057) (0.067) (0.111) (0.129) (0.097) (0.121) (0.095) (0.110)

[0.160] [0.254] [1.425] [0.108]

SGD DM 2.023 2.028 1.743 1.623 2.628 2.569 2.165 2.096

(0.052) (0.061) (0.087) (0.102) (0.093) (0.111) (0.092) (0.106)

[0.065] [0.124] [0.243] [0.088]

UAH FM 0.932 1.085 1.641 1.583 1.294 1.245 0.932 1.036

(0.042) (0.051) (0.227) (0.237) (0.066) (0.077) (0.062) (0.075)

[0.422] [0.512] [1.662] [0.206]

YEN DM 2.673 2.561 2.623 2.387 3.390 2.876 2.432 2.343

(0.058) (0.068) (0.106) (0.124) (0.098) (0.117) (0.098) (0.112)

[0.083] [0.081] [0.269] [0.638]

ZAR EM 2.103 2.267 1.596 1.539 2.195 2.370 2.346 2.452

(0.051) (0.064) (0.087) (0.099) (0.086) (0.107) (0.099) (0.115)

[2.753] [0.057] [8.597] [0.095]

Note: DM, EM and FM correspond to developed, emerging and frontier markets,

respectively. Numbers in parenthesis are the iid standard errors, and in square

brackets the robust standard errors.
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Figure 1: DGP: Student-t Distribution

Figure 2: DGP: alpha-Stable Distribution
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Figure 1: DGP: Student-t Distribution

Figure 2: DGP: alpha-Stable Distribution
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Figure 3: DGP: Burr Distribution

Figure 4: Ratio RMSE
�b�=1=2� =RMSE (b�Pareto) : DGT: Student-t Distribution
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Figure 5: Ratio RMSE
�b�=1=2� =RMSE (b�Pareto) : DGT: alpha-Stable Distribution

Figure 6: Ratio RMSE
�b�=1=2� =RMSE (b�Pareto) : DGT: Burr Distribution
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Figure 7: Ratios between the true and the asymptotic variance under the i.i.d. hypothesis.
Two estimators are compared: �̂Hill (solid line) and �̂Pareto (dashed line). DGP: Burr

distribution with � = 3.

Figure 8: Ratios between the true and the asymptotic variance under i.i.d. hypothesis.
Two estimators are compared: �̂Hill (solid line) and �̂Pareto (dashed line). DGP: Student-t

distribution with � = 3.
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Figure 9: RMSE of �̂Hill and �̂Pareto: DGP: Burr distribution with � = 3.

Figure 10: RMSE of �̂Hill and �̂Pareto: DGP: Student-t distribution with � = 3.
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Figure 9: RMSE of �̂Hill and �̂Pareto: DGP: Burr distribution with � = 3.

Figure 10: RMSE of �̂Hill and �̂Pareto: DGP: Student-t distribution with � = 3.
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Figure 11: Behaviour of �̂Hill and �̂Pareto in the presence of an IGARCH process with

Gaussian innovations. The marginal distribution has a tail index of � = 2. First Row: Ratio

between the true and the theoretical variance of �̂Hill and �̂Pareto: Second Row: RMSE of

�̂Hill and �̂Pareto:

Figure 12: Ratio RMSE (b�Pareto) =RMSE (b�Student) : DGT: Student-t Distribution
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Figure 13: Levels of currency to USD
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