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Abstract

Unit root tests typically su�er from low power in small samples, which results in not
rejecting the null hypothesis as often as they should. This paper tries to tackle this
issue by assessing whether it is possible to improve the power performance of covariate-
augmented unit root tests, namely the ADF family of tests, by exploiting mixed-frequency
data. We use the mixed data sampling (MIDAS) approach to deal with mixed-frequency
data. The results from a Monte Carlo exercise indicate that mixed-frequency tests have
better power performance than low-frequency tests. The gains from exploiting mixed-
frequency data are greater for near-integrated variables. An empirical illustration using
the US unemployment rate is presented.
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1. Introduction

The importance of unit root testing for modelling and forecasting has been
well established since the seminal paper by Granger and Newbold (1974),
who showed that applying least squares to non-stationary variables can
lead to spurious results. In these circumstances, standard errors are biased,
the traditional t-ratio signi�cance test does not have the standard limiting
distribution and, hence, the analysis of parameter estimates becomes unreliable
(Phillips (1986)).

Many studies have focused on unit root tests and their properties (see, for
example, Schwert 1989; Stock 1986; and Haldrup and Jansson 2006 for reviews
on the topic). The augmented Dickey-Fuller (ADF) test for zero frequency
unit roots is the most commonly used procedure, though not necessarily the
one with best power performance. This test looses in terms of power to other
tests, both asymptotically and in �nite samples, especially in the context of
near integrated processes.1 Lower power means that the null hypothesis, being
false, is not rejected as often as it should be, leading to the wrong conclusion
that the variable is non-stationary.

To overcome this shortcoming, alternative tests exploiting information from
covariates have been proposed. In particular, Hansen (1995) generalised the
ADF test to include covariates - the CADF test. The intuition is that including
a weakly exogenous and stationary variable in the auxiliary test regression
may lead to e�ciency gains. The performance of covariate-augmented unit
root tests depends crucially on the relationship between the variable of interest
(dependent variable) and the covariates. The higher the correlation between
the variables, the greater the potential power gains. In practice, exploiting
these correlations may entail some challenges, especially when the variables
involved are sampled at di�erent/mixed frequencies. The typical approach of
temporally aggregating high-frequency variables to the same (low) frequency as
the variable of interest (e.g., by skip-sampling or computing simple averages)
can result in information losses (see Silvestrini and Veredas 2008 for a survey
on temporal aggregation and its implications).

This article puts forward a new class of CADF tests that is able to deal
with mixed-frequency data.2 We assess the impact of this extension on size and
power performances. In particular, the MI(xed) DA(ta) S(ampling) framework
is used to deal with mixed-frequency data. Inspired in the distributed lag

1. The ADF test is a tougher competitor in terms of size. Nevertheless, Perron and
Ng (1996) showed that the M-tests originally suggested by Stock (1999) have lower size
distortions compared to other unit root tests that are available in the literature. However,
for the tests to have good size properties it is essential that an autoregressive spectral density
estimator is used as to consistently estimate the long run variance.

2. This article focuses on unit root tests with non-stationarity under the null hypothesis.
See Jansson (2004) for a unit root test with covariates where the null hypothesis is
stationarity.
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models, MIDAS weighting schemes are very �exible, can be quite parsimonious
and are able to account for di�erent frequencies (for a brief overview of the
main topics related with MIDAS regressions see, for example, Andreou et al.

2011). To the best of our knowledge, this is the �rst application of MIDAS to
covariate-augmented unit root testing.

This new mixed-frequency test framework is applied to the well-known
CADF test proposed by Hansen (1995) and also to the more recent test
proposed by Pesavento (2006), which is a modi�ed version of the CADF test,
similar to the GLS generalisation of the ADF test in Elliott et al. (1996).

Using a Monte Carlo experiment, we show that mixed-frequency covariate-
augmented unit root tests have better power performance than traditional
low-frequency tests, while the size performance is similar. Moreover, the
performance of mixed-frequency tests improves when variables are near-
integrated. These results are robust to the size of the sample, to the lag
speci�cation of the test regressions and to di�erent combinations of time
frequencies.

The remainder of this article is organised as follows. Section 2 summarises
the covariate-augmented unit root tests � CADF and CADF-GLS � as
they were initially presented, while Section 3 describes the mixed-frequency
approach to unit root testing. Section 4 reports a simulation-based study on
the power and size implications of this new approach. Section 5 compares the
performance of the alternative approaches for testing the presence of a unit
root in the US unemployment rate. Finally, Section 6 concludes.

2. Covariate-augmented unit root tests

This section presents two covariate-augmented unit root tests commonly found
in the literature: the CADF test proposed by Hansen (1995) and the CADF-
GLS test in Pesavento (2006). For the sake of simplicity, the notation was
developed for the case of a single covariate but can be readily extended for
multiple covariates.

The common analytical framework is as follows. As in Hansen (1995) and
Elliott and Jansson (2003), assume that the variable of interest, Yt, is the sum
of a deterministic component, dY,t, and a stochastic component, uY,t, such as

Yt = dY,t + uY,t, (1)

where the deterministic component equals dY,t = 0, dY,t = βY,0, or dY,t =
βY,0 + βY,1t, with t denoting a linear trend. Similarly, the stationary covariate
series, Xt, can be expressed as

Xt = dX,t + uX,t. (2)
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Hence, consider the VAR model formulation[
Yt
Xt

]
= dt + ut, (3)

where dt = z′tβ, β = [βY,0 βX,0 βY,1 βX,1]′,

z′t =

[
1 0 t 0
0 1 0 t

]
, and ut =

[
uY,t
uX,t

]
.

Five di�erent combinations of the deterministic variables can be considered:

Case 1: βY,0 = βY,1 = βX,0 = βX,1 = 0;

Case 2: βY,1 = βX,0 = βX,1 = 0;

Case 3: βY,1 = βX,1 = 0;

Case 4: βX,1 = 0;

Case 5: No restrictions.

In addition, the stochastic component ut is expressed as

A(L)

[
(1− αL)uY,t

uX,t

]
=

[
eY,t
eX,t

]
(4)

or, [
uY,t
uX,t

]
=

[
(1− αL) 0

0 1

]−1
A−1(L)

[
eY,t
eX,t

]
where A(L) is a matrix polynomial of order k in the lag operator L. In the

following analysis we assume that:

Assumption 1: The roots of A(L) lie outside the unit circle;

Assumption 2: u0, u−1, ..., u−k are Op(1);

Assumption 3: Et−1(et) = 0, Et−1(ete
′
t) = Σ, where Σ is positive de�nite, and

suptE‖et‖2+κ<∞, for some κ > 0,

where Et−1 denotes the conditional expectation with respect to
et−1, et−2, ..., and Σ can be expressed as

Σ =

[
σY Y σY X
σY X σXX

]
. (5)

Assumption 1 is a standard stationarity condition. Assumption 2 implies
that the initial values are asymptotically negligible and Assumption 3 implies
that et satis�es a functional central limit theorem (Phillips 1987). Additionally,
let vt = [(1 − αL)uy,t ux,t]

′. Note that vt = A(L)−1et, with autocovariance
function denoted by Γ(k) = E(vtv

′
t+k). Its spectral density at frequency zero

(scaled by 2π), denoted by Ω = A(1)−1ΣA′(1)−1, is assumed to be bounded
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away from zero and can be decomposed as

Ω =

[
ωY Y ωY X
ωY X ωXX

]
. (6)

It is further assumed that

Assumption 4: The autocovariance function of vt, Γ(k), is absolutely summable,

+∞∑
j=−∞

‖Γ(k)‖ <∞,

where ‖.‖ is the standard Euclidean norm.

2.1. The CADF test

The covariate augmented Dickey Fuller (CADF) test aims at combining the
generally good size properties of the ADF test with higher power due to the
inclusion of covariates. To see how let us start by mixing equations (3) and (4)
to obtain [

∆Yt
Xt

]
= z′tβ

∗ + δ

[
Yt−1

0

]
+

[
vY,t
vX,t

]
(7)

where δ = α− 1 and β∗ = [−δβY,0 + (1 + δ)βY,1 βX,0 − δβY,1 βX,1]′.
Under Assumptions 1 to 4 it is possible to write (Saikkonen 1991 and

Brillinger 2001)

vY,t =
∞∑
j=0

b∗jvX,t−j + ηt (8)

where ηt is a stationary process with zero mean and spectral density
at frequency zero (scaled by 2π) equal to ωηη = ωY Y − ωY Xω

−1
XXωY X .

3

Furthermore,

E(vX,tηt+k) = 0 (9)

for any |k| = 0, 1, 2, ..., meaning that the right-hand side variables in (8) are
orthogonal to the regression error. Given that b∗j is absolute summable, then
(8) can be approximated by

vY,t =
k∑
j=0

b∗jvX,t−j + ηt = b∗(L)vX,t + ηt = b∗(L)(Xt−β∗X,0−β∗X,1t) + ηt (10)

where k is large enough so that b∗j ≈ 0 for j > k, as in Remark 2.1 of Chang
and Park (2002), and b∗(L) is a lag polynomial of order k. Combining (7) and

3. For simplicity, it is assumed that the polynomial b∗(L) only includes lags. This is not
necessary; see Hansen (1995) for more details.
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(10) yields the regression equation

∆Yt = β∗Y,0 + β∗Y,1t+ δYt−1 + b∗(L)(Xt − β∗X,0 − β∗X,1t) + ηt. (11)

This equation resembles the test regression used in Dickey-Fuller (DF) tests,
augmented with the covariate Xt. In practice, ηt can be serially correlated.
Similarly to ADF tests, (11) can be augmented with lags of the dependent
variable, so that the error process is approximately white noise. Letting
ψ(L)ηt = ξt, where ξt is white noise, the augmented version of (11) can be
expressed as

ψ(L)∆Yt = µ0 + µ1t+ δ∗Yt−1 + b(L)(Xt − β∗X,0 − β∗X,1t) + ξt. (12)

where ψ(L) is a lag polynomial of order p with all roots lying outside the
unit circle, µ0 = ψ(1)β∗Y,0, µ1 = ψ(L)β∗Y,1, δ

∗ = ψ(1)δ and b(L) = ψ(L)b∗(L)
is a lag polynomial of order q. Accordingly, vY,t = b(L)vX,t + ξt. The long-run
covariance matrix between vY,t and ξt is

Φ =

[
ωY Y ωY ξ
ωY ξ ωξξ

]
(13)

where ωξξ = ωY Y −ωY Xω−1XXωY X . De�ne ρ2 as the long-run zero frequency
squared correlation between vY,t and ξt, which can be expressed as

ρ2 =
ω2
Y ξ

ωY Y ωξξ
, (14)

and let Q2 be the ratio of variances,

Q2 =
ωξξ
ωY Y

. (15)

In a well-speci�ed dynamic regression, ξt is uncorrelated with Xt−k for all
k, so ωY ξ = ωξξ and ρ

2 = Q2.
Equation (12) is the covariate-augmented ADF unit root test regression,

denoted by CADF(p, q). The null hypothesis for the presence of a zero frequency
unit root in Yt is δ∗ = 0, which is tested against the one-sided alternative
hypothesis, δ∗ < 0. Following Phillips (1987), the asymptotic theory in Hansen
(1995) is based on local-to-unity asymptotics, implying that δ∗ = c/T , where T
represents the sample size and c is a �xed non-centrality parameter. This means
that the null hypothesis holds when c= 0 and holds locally for c < 0 and T →∞.
However, as noted by Hansen (1995), in a �xed sample this representation is
merely a reparameterization.

The test regression is estimated by OLS. The test statistic is the t-statistic
associated with the estimated coe�cient of interest (δ̂∗) and is distributed as,

t(δ̂∗)⇒ (c/Q)

(∫ 1

0

(W c
1 )2
)1/2

+ ρ

∫ 1

0 W
c
1dW(∫ 1

0 (W c
1 )2
)1/2 + (1− ρ2)1/2N(0, 1) (16)



7 Covariate-augmented unit root tests with mixed-frequency data

where W c
1 is an Ornstein-Uhlenbeck process generated by a stochastic

di�erential equation, such as dW c
1 (r) = cW c

1 + dW (r), and W is a standard
Brownian motion and the N(0, 1) variable is independent of W .4 Under the
null hypothesis, the asymptotic distribution of the t-statistic is a convex linear
combination of the Dickey-Fuller (DF) distribution of the univariate unit root
tests and the standard Normal

t(δ̂∗)⇒ ρ

∫ 1

0 WdW(∫ 1

0 W
2
)1/2 + (1− ρ2)1/2N(0, 1) (17)

where the weights are determined by the nuisance parameter ρ2. The
parameter ρ2 (or Q2) can be interpreted as the relative contribution of ξt to
explain vY,t at the zero frequency. On the one hand, if b(L) equals zero, vY,t = ξt
and ρ2 = 1. In this case the CADF test is equivalent to the typical ADF test. On
the other hand, if the importance of ξt to explain the zero-frequency movements
in vY,t decreases, then ρ

2 → 0 and the relevant distribution becomes closer to
the Normal distribution.5

Perhaps more intuitively, one can de�ne a third measure, R2, such that,

R2 = 1−Q2 =
ωY Xω

−1
XXωY X
ωY Y

(18)

which accounts for the relative contribution of regressor Xt to explain vY,t
at the zero frequency. If Xt does not contribute at all to explain the variation
in vY,t, then R

2 = 0. Conversely, if Xt has an increasing contribution to explain
vY,t, then R

2 → 1.
Given that the distribution of the test statistic depends on ρ2, a consistent

estimate of this parameter is needed, in order to select the appropriate critical
value. According to Hansen (1995), an estimate (ρ̂2) can be obtained in a non-
parametric way from

ρ̂2 =
ω̂2
Y ξ

ω̂Y Y ω̂ξξ
(19)

where

Φ̂ =

[
ω̂Y Y ω̂Y ξ
ω̂Y ξ ω̂ξξ

]
=

M∑
k=−M

w(k/M)
1

T

T−m∑
t=1

π̂tπ̂
′
t+k (20)

and π̂t = (v̂Y,t, ξ̂t)
′ are least squares estimates of πt = (vY,t, ξt)

′ from

the appropriate regression model. For example, assuming no intercepts, ξ̂t =

4. The case above presented does not include deterministic variables. When extending to
the cases where these variables are included, the structure of (16) remains unchanged except
that W c

1 would be appropriately replaced; for more details see Hansen (1995).

5. The case of ρ2 = 0 is excluded, ruling out the situation where the variable of interest is
cointegrated with the cumulated stationary covariate (Lupi 2009).
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ψ̂(L)∆Yt − δ̂∗Yt−1 − b̂(L)Xt and v̂Y,t = b̂(L)Xt + ξ̂t. The function w(.) is a
kernel weight function, such as the Bartlett or Parzen kernels, and M is the
bandwidth selected to grow slowly with sample size (Andrews 1991; Jansson
2002). Table 1 in Hansen (1995) presents the relevant asymptotic critical values
for a range of ρ2 values and is made available in Table A.1 of the Appendix.

In theory, the power of unit root tests can be improved by the inclusion of
covariates because these contribute to reduce the standard error of the estimate
of the autoregressive parameter. Given that δ∗ is estimated more precisely, the
unit root test for the null hypothesis H0 : δ∗ = 0 will have more power. Greater
reductions in the standard error, i.e. higher power, are associated with lower
ρ2 (higher R2). As analytically shown by Caporale and Pittis (1999), if there is
contemporaneous correlation between vY,t and Xt and Granger causality from
vY,t to Xt, then, in some cases, adding covariates may also lead to an increase
in the absolute value of the parameter estimate itself, further enhancing the
power of the unit root test.

The discussion above is based on the assumption that the covariates are
stationary. The CADF test is no longer valid if Xt is integrated. In case of
doubt about the stationarity of the covariates, one should take �rst di�erences
of these series before proceeding into testing. As discussed in Hansen (1995),
this seems to be a sensible approach because over-di�erencing results in neither
signi�cant size distortions nor power loss.

In practice, the presence of correlation between the variable of interest and
the covariates, as well as its nature, matter for the performance of the test.
In its empirical application, Hansen (1995) concluded that there are important
power gains to be obtained from using the CADF test to assess the stationarity
of real GNP per capita, industrial production and the unemployment rate for
the US. Nevertheless, the CADF test is more prone to size distortions than the
ADF test. Caporale and Pittis (1999) performed a similar exercise, analysing a
wider set of US macroeconomic series. The authors concluded that the �nding
of a unit root does not always hold when the more powerful CADF test is
used instead of the standard ADF method, although there is evidence of high
persistence.

2.2. Tests with GLS demeaning

Recognising that the di�culties with the traditional univariate unit root
tests (namely, DF and ADF tests) are associated with ine�cient estimates
of the deterministic component, Elliott et al. (1996) suggested that modifying
the estimation of this component could improve their performance. For this
purpose, the authors suggested GLS-demeaning/detrending the variable of
interest prior to testing for the presence of unit roots (DF-GLS test in Section
2.2.1). Pesavento (2006) proposed a generalisation of the DF-GLS test to
include stationary covariates, the so-called CADF-GLS test (Section 2.2.2).
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2.2.1. The DF-GLS test. In brief, the DF-GLS test is similar to the ADF-
test. The aim of the DF-GLS test is to assess whether δ = 0 (null hypothesis)
against the point alternative that δ = c/T < 0. However, in the test regression,
instead of using the original Yt series, the GLS-demeaned/detrended version

(Y dt ) is used. The GLS-demeaned/detrended Y dt series is obtained as Yt − z′tβ̂
and β̂ are the coe�cient estimates from regressing Y (ᾱ) on z(ᾱ), which are
transformed versions of the dependent variable and deterministic variables,
respectively. More precisely, Y (ᾱ) = (Y1, Y2 − ᾱY1, ..., YT − ᾱYT−1), z(ᾱ) =
(z1, z2 − ᾱz1, ..., zT − ᾱzT−1) and ᾱ = 1 + c̄/T .

The literature shows that values of c̄ associated with an asymptotic power of
one half yield tests with power functions tangent to the power envelope at that
value, and close to the power envelope over a considerable range of alternative
values. The appropriate value of c̄ depends on the deterministic speci�cation.
Simulation results in Elliott et al. (1996) suggest that c̄ should equal −13.5 if
a trend is included (meaning that when c̄ = −13.5 the point optimal test is
tangent to the power envelope at 0.5 if a constant and trend are estimated), or
−7 for constant only (i.e., when c̄ equals −7 the point optimal test is tangent
to the power envelope at 0.5).

The DF-GLS test statistic is the t-statistic for testing whether δ = 0 in the
following regression, without deterministic regressors

∆Y dt = δY dt−1 + a1∆Y dt−1 + ...+ ap∆Y
d
t−p + et (21)

where ∆ denotes the �rst di�erence, p is the number of lags and et is an
error term. For constant only, the critical values are those of the conventional
DF-tests, when there is no intercept. In the linear trend case, the critical values
can be found in Table 1 in Elliott et al. (1996).

A related issue concerns the choice of the values assigned to the �rst
observation in the GLS demeaning/detrending procedure. Elliott et al. (1996)
considered the �rst observation of the quasi-di�erenced series as being equal
to the �rst observation in levels (�xed initial observation assumption). Elliott
(1999) extended this framework to the case where the initial observation is
drawn from its unconditional distribution under the alternative hypothesis.
The author concluded that there are di�erences between the two approaches,
but none is the best; the user's choice will depend on the his/her belief as
to the correct alternative to be tested. More recently, Westerlund (2015) also
assessed the importance of the hypothesis about the �rst observation in GLS
demeaning/detrending. He compared the �xed initial observation assumption
(i.e., the �rst quasi-di�erence equals the �rst level) with simply ignoring the �rst
quasi-di�erence (i.e., equals zero). His results suggest that choosing between
these two alternatives matters, and the �rst observation does not seem to be
negligible. Moreover, the �rst assumption seems to work better.

2.2.2. The CADF-GLS test. Merging Hansen's approach with the GLS
demeaning/detrending used in Elliott et al. (1996), the CADF-GLS test
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is constructed by demeaning/detrending each variable (dependent variable
and the covariate) according to the assumptions on the deterministic terms,
and then estimating a test regression similar to equation (12) but with the
demeaned/detrended variables.6

Hence, the CADF-GLS test statistic is the t-statistic for testing whether
δ = 0 against the point alternative that δ = c/T < 0 in the following regression,
without deterministic regressors

∆Y dt = δY dt−1 +

p∑
j=1

aj∆Y
d
t−j +

q∑
j=0

bjX
d∗
t−j + et (22)

where Y dt and Xd∗
t are the demeaned/detrended versions of the original

series, p and q are the respective number of lags (chosen by an information
criterion, such as the BIC) and et is an error term. The Y dt series is
obtained as described in the previous section. Following Pesavento (2006)
and Christopoulos and Léon-Ledesma (2008), given that Xt is assumed to
be stationary, Xd∗

t is obtained by OLS demeaning/detrending the original Xt
series, depending on the deterministic component included.

The asymptotic test distribution is

t(δ̂)GLS ⇒ c

(∫ 1

0

J2

)1/2

+

∫ 1

0 JdW(∫ 1

0 J
2
)1/2 (23)

where J is a Ornstein-Uhlenbeck process, such that

J(r) = W (r) + c

∫ 1

0

e(λ−s)cW (s)ds (24)

where W (r) =
√

R2

1−R2Wx(r) + Wy(r), λ = (1 − c)/(1 − c + c2/3), and

Wx and Wy are independent standard Brownian motions.7 In the case of no
deterministic variables or only a constant for the dependent variable, (23) is
equivalent to (16) and the critical values are those of the CADF test, when
there is no intercept. For the other cases, Pesavento (2006) reported asymptotic
critical values for a signi�cance level of 5 per cent and di�erent values of R2

(from 0 to 0.9) that can be found in Table A.2 of the Appendix. The author
also refers that she used c̄ equal to −7 for cases 1 to 3 and −13.5 for cases 4 and
5, in order to make a reasonable comparison with previous work. The estimate
of R2 is obtained non-parametrically, as in Hansen (1995).

6. Adding to lagged terms, leads can also be included. See Pesavento (2006) for more
details.

7. The case above presented does not include deterministic variables. See Pesavento (2006)
for extending to the cases where these variables are included.
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3. Mixed-frequency covariate-augmented unit root tests

The performance of covariate-augmented unit root tests depends crucially
on the relationship between the variable of interest and the covariate used.
Economic theory may help in the choice of covariates for unit root testing.
However, empirical evidence is not always clear-cut.

In some cases, this may result from ignoring the fact that time series are
often analysed at intervals that re�ect the timing of data collection. Economic
data are sampled at di�erent frequencies. Suppose that the variable of interest
and the covariate are described by a high-frequency data generating process
(DGP) at a given frequency (e.g., monthly). Moreover, assume that only the
covariate is available at that frequency, while the dependent variable is observed
at a lower frequency (e.g., annually or quarterly). To deal with this situation
the variables are typically temporally aggregated to the same (low) frequency
by skip-sampling or averaging.

Regarding the impact of testing for unit roots in the feasible low frequency
version of the dependent variable, Granger and Siklos (1995) and Marcellino
(1999), among other, showed that zero frequency unit roots are not a�ected
by temporal aggregation. However, temporal aggregation may cause deviations
from the test distributions. Assume that a high-frequency variable yt has the
following DGP

yt = αyt−1/m + ut, (25)

where ut ∼ iid(0, σ2) and E(utut−i) = 0. Under the null hypothesis of a
unit root,

∆1/myt = ut, (26)

where m is the sampling frequency and ∆1/m is the high-frequency
di�erence operator. For simplicity, assume that m = 2. The �rst di�erence
of the aggregate variable yat resumes to

∆yat =
[
ϕ1 ϕ2

] [ ∆yt
∆yt−1/2

]
=
[
ϕ1 ϕ2

]([ ut
ut−1/2

]
+

[
ut−1/2
ut−1

])
,

(27)
where ∆ is the low-frequency di�erence operator and ϕi for i = 1, ...,m

represents the aggregation scheme. Now, consider the �rst-order autocovariance
of the aggregated errors under the null hypothesis, denoted as uat . Given that
ut is serially uncorrelated, the autocovariance of the aggregate only contains
the product of the terms with the same time subscript. Hence,

cov(uat ) = ϕ1ϕ2E(u2t−1) = ϕ1ϕ2σ
2. (28)

As noted by Working (1960), if the aggregation scheme is skip-sampling
(ϕ1 = 1 and ϕ2 = 0 for end-of-period sampling or ϕ1 = 0 and ϕ2 = 1 for
beginning-of-period sampling) then uat is not serially correlated.

When the aggregation scheme is some kind of averaging (e.g., �at sampling,
with ϕ1 = ϕ2 = 1/2), Working (1960) showed that uat is serially correlated. In
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this case, the serial correlation a�ects the limiting distribution for testing unit
roots in the aggregate variable. This serial correlation cannot be controlled for
by adding lagged terms. Following the same reasoning as in Ghysels and Miller
(2013), a �rst-order moving average (MA) polynomial can be written as[

∆yt
∆yt−1/2

]
=

[
1 1
0 1

][
ut

ut−1/2

]
+

[
0 0
1 −1

][
1 1
0 1

][
ut−1
ut−3/2

]
= u∗t +

[
0 0
1 −1

]
u∗t−1

= u∗t +Au∗t−1. (29)

This MA polynomial is not invertible because the matrix A does not ful�l
the condition det(I +Az) 6= 0 when |z| ≤ 1. Therefore, this polynomial cannot
be well approximated by a high-order autoregressive polynomial.

Regarding the role of the temporally aggregated covariate for enhancing
the power of the unit root tests, note that the above-mentioned caveats of
temporal aggregation also apply. Focusing on the skip-sampling case (for both
the variable of interest and the covariate), the assumption in (8) ensures that
in the aggregate equation the regressors are also orthogonal to the regression
error.

However, temporal aggregation entails information losses and may reduce
the contribution of the covariate to explain the variability of the variable of
interest. Assuming that temporal aggregation of the variable of interest is
inevitable, this article contributes to the literature by proposing a unit root
test of the CADF family that is able to deal with mixed-frequency data. In
particular, we assess whether the mixed-frequency approach contributes to
the waning of potential distortions in the correlation between the dependent
variable and the covariate generated by temporal aggregation. To deal with
mixed-frequency data we use the MIDAS framework, which we brie�y describe
in the next section.

3.1. The MIDAS approach

Introduced by Ghysels et al. (2004) and used in, e.g., Ghysels et al. (2006)
and Ghysels et al. (2007), the MIDAS approach provides simple, reduced-
form models to approximate more elaborate, though unknown, high-frequency
models.

Consider a low-frequency variable Yt and a high-frequency variable xt, which
has a time frequency m times higher. MIDAS regressions assume that the
coe�cients associated with the high-frequency variable and its lags are captured
by an aggregation lag polynomial B(L1/m)

Yt = µ+B(L1/m)x
(m)
t + ut (30)

where µ is a constant, x
(m)
t is the skip-sampled version of the high-

frequency xt, B(L1/m) =
∑J
j=0B(j) Lj/m is a polynomial of length J in
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the L1/m lag operator, i.e., Lj/mx
(m)
t = x

(m)
t−j/m, B(j) is an aggregation

weighting scheme, and ut is a standard iid error term. The index j indicates
how many high-frequency periods starting from the end of the low-frequency

period are taken into account. Note that B(L1/m)x
(m)
t can be interpreted as

a temporally aggregated variable using a more �exible, data-driven weighting
scheme compared with commonly used temporal aggregation schemes, such
as skip-sampling or averaging. For more details on MIDAS regressions, see
Andreou et al. (2013), among others.

One crucial assumption about the covariate regards its stationarity. In this

case, if xt is a stationary variable, then x
(m)
t , its skip-sampled version (or,

Xt, the general low-frequency aggregate) also is, as discussed above. Notice
that we are assuming that xt does not display a seasonal behaviour, in order
to exclude the possibility that the unit root at the zero frequency can arise
because of temporal aggregation of a series which has a unit root at some
seasonal frequency (Granger and Siklos 1995).

Regarding the weighting function, there are several possible choices. Ghysels
et al. (2007) considered two alternatives, both assuming that the weights are
determined by a few hyperparameters: the exponential Almon lag and the beta
polynomial. Given that these options have nonlinear functional speci�cations,
in both cases MIDAS regressions are estimated using nonlinear least squares.

Alternatively, there is the aggregation scheme underlying the unrestricted
MIDAS regressions (U-MIDAS), used in Marcellino and Schumacher (2010),
Foroni and Marcellino (2012) and, Foroni et al. (2011)

Yt = µ+BU (L1/m)x
(m)
t + ut, (31)

where BU (L1/m) =
∑J
j=0BjL

j/m.
Equation (31) can involve a large number of parameters, namely when

the di�erence between the low and the high frequency is large. Hence, large
di�erences in sampling frequencies between the variables are readily penalised
in terms of parsimony in U-MIDAS regressions.

This article focuses on a parameterised weighting scheme that can be
estimated by OLS, namely the traditional Almon lag polynomial. This
aggregation scheme assumes that J lag weights can be related to d linearly
estimable underlying parameters, with d < J , as follows:

BA(j) =
d∑
i=0

θij
i, j = 1, . . . , J (32)

where θi, i= 0, . . . , d, denotes the hyperparameters. In the following analysis
it is assumed that d = 2.8

8. This weighting scheme also works in the cases where m is not �xed (e.g., combining
monthly with weekly or daily data). In these cases, instead of having one set of weights, we
have a di�erent set of weights for each low-frequency period of the sample.
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Following the notation in Section 2, the next two sections describe how
MIDAS regressions were used to extend covariate-augmented unit root tests
to mixed frequency data: Section 3.2 for the mixed-frequency CADF test
(M-CADF); and Section 3.3 for the mixed-frequency CADF test with GLS
detrending (M-CADF-GLS).

3.2. The M-CADF test

The CADF test can be extended to account for mixed-frequency data as follows

ψ(L)∆Yt = dY,t + δYt−1 +B(L1/m)(x
(m)
t − βx,0 − βx,1t) + ξt (33)

where dY,t represents the deterministic component of the dependent variable
and ξt is white noise. The M-CADF(p, J) test assesses the null hypothesis
for the presence of a zero frequency unit root in Yt (δ = 0), against the
alternative hypothesis that Yt is stationary. Notice that the test regression
in (33) simply consists in plugging in high-frequency lags of the covariate in
the CADF test regression in (12), instead of the low-frequency lags already
included. Considering the Almon MIDAS regression, (33) is estimated by OLS.
As in the original CADF test, the test statistic is the t-statistic associated with
the estimated δ̂ coe�cient and the distribution of the test is as in (17).

3.3. The M-CADF-GLS test

Similarly to (22), the test regression of the M-CADF-GLS(p, J) test is

∆Y dt = δY dt−1 +

p∑
j=1

aj∆Y
d
t−j +B(L1/m)x

(m),d∗
t + et (34)

where Y dt and x
(m),d∗
t are the demeaned/detrended versions of the original

series, as in Section 2.2.2, p is the number of autoregressive lags, B(L1/m) is a
lag polynomial of order J and et is white noise. As in the previous section, the
GLS version of the M-CADF test also resumes to replacing the low-frequency
lags by the high-frequency lags of the covariate. The M-CADF-GLS(p, j) test
statistic is the t-statistic for testing whether δ = 0 against the point alternative
that δ = c/T < 0 and the distribution of the test is as in (23). For improving
the comparability with the existing literature, the �gures for c̄ used in this
article are −7 for cases 1 to 3 and −13.5 for cases 4 and 5. In addition, the
asymptotical critical values are the same as in Pesavento (2006).

4. Monte Carlo simulation

The �nite sample size and power performance of the proposed mixed-frequency
versions of the covariate-augmented unit root tests is investigated by means of
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a Monte Carlo simulation exercise. Inspired by Hansen (1995) and Galvão Jr.
(2009), this exercise considers the following DGP

yt = dy,t + αyt−1 + vy,t

xt = dx,t + vx,t (35)

where yt and xt are both in the same (high) time frequency, α= 1 + c/T and
dt represents the deterministic terms. Four alternatives for c were considered,
namely 0, −5, −10 and −15. Regarding the deterministic terms, the leading
cases 3 (constant for both variables) and 5 (constant and time trend for both
variables) were considered; see Elliott and Jansson (2003) and Juhl and Xiao
(2003). The error process vt = [vy,tvx,t]

′ is generated by a VARMA model
A(L)vt = B(L)ξt, where A(L) = I2 −AL, B(L) = I2 +BL,

A =

[
a1 a2
a2 a1

]
, B =

[
b1 b2
b2 b1

]
, (36)

and ξt = [ξy,tξx,t]
′ ∼ N(0,Σ), where I2 is a (2× 2) identity matrix and Σ is

such that the long-run variance matrix of vt satis�es

Ω = (I2 −AL)−1(I2 +BL)Σ(I2 +BL)′(I2 −AL)−1′ =

[
1 R
R 1

]
(37)

and, as before, R2 ∈ [0, 1[. Various values for R2 are examined, namely
R2 = {0.2, 0.5, 0.8}. Note that this DGP does not include seasonal features.

Regarding the treatment of the initial condition of the DGP, Hansen
(1995) and Galvão Jr. (2009) dropped the �rst 100 observations to eliminate
the start-up e�ects. However, Müller and Elliott (2003) noted that di�erent
initial conditions lead to dramatic changes in the power of unit root tests. In
particular, the GLS-family of unit root tests has the best performance when
the initial value is near zero. In this article, the initial condition was set at
zero.9

The low-frequency series Yt and Xt are obtained by aggregating the
generated high-frequency data yt and xt. The aggregating scheme considered is
skip-sampling (as for stock variables) and m = 3, mimicking the combination
of quarterly and monthly data. The sample size is set at T = 100, and 10, 000
replications are used. In the following sections we present a sensitivity analysis
to di�erent m and a larger T , namely T = 500.

Notice that the aggregation process a�ects the value of α tested in the
alternative hypothesis. As shown in Pierse and Snell (1995), let yt be a variable

9. A sensitivity analysis to this assumption was performed and the results indicate that
the main result � better power performance of mixed-frequency covariate-augmented unit
root tests � does not qualitatively change if a di�erent initial value was considered (e.g., by
dropping the initial 100 observations), though the relative performance of the GLS-family
of tests is signi�cantly a�ected by this choice.



DEE Working Papers 16

generated by the following �rst-order process

yt = αyt−1 + ut.

Then, the m-period aggregated variable denoted as Y at is given by

Y at = αaY at−1 + uat ,

where αa = αm, whether yt is a �ow or a stock. Hence, the alternative values
of α go from 0.95, 0.90 and 0.85, for the high-frequency process, to 0.86, 0.73
and 0.61, respectively, for the low-frequency process. As discussed in Section 3,
aggregation also a�ects the correlation between the variable of interest and the
covariate and, thus, a�ects R2, though it is much harder to predict the actual
impact.

The number of lags is assumed unknown, replicating what happens in
practice. The choice of the number of lags is very important for the performance
of the test. Choosing a lag order is crucial to �nd a good enough approximation
to the true DGP, which yields unit root tests with size close to the nominal
size while retaining acceptable power. The choice of the number of lags is
particularly important in the case of (negative) moving average errors.

A common result in the literature is that estimating the number of lags
solely by applying the AIC or BIC in a VAR model under the null leads to a
very conservative number of lags, which results in noticeable size distortions.
An alternative method is the sequential t-test for the signi�cance of the last lag
considered, as in Ng and Perron (1995). This procedure has the ability to yield
a higher number of lags than the BIC when there are negative moving-average
errors and, hence, reduce size distortions. But, the sequential procedure tends
to overparameterize in other cases, which also leads to less e�cient estimates
and subsequently to power losses. Hansen (1995) used ad-hoc rules to choose the
number of lags and Pesavento (2006) suggested applying the MAIC approach
proposed by Ng and Perron (2001) to an univariate regression (an ADF-type
regression) with GLS detrended series for choosing the relevant number of lags
for the Yt variable and, then, using the same number of lags for the covariate.10

Fossati (2012) analysed the size and power performance of covariate-
augmented unit root tests for di�erent selection procedures of truncation
lags. The author showed that the approach in Pesavento (2006) could lead to
including too many unnecessary lags and, thus, to size distortions. He suggested
applying the MAIC to the output of a CADF test regression and dropped the
restriction of using the same number of lags for the Yt variable and the covariate.
Moreover, he considered two alternatives within this unrestricted framework:
one with the maximum number of lags given by the rule int(12(T/100)0.25),
where T is the number of observations (Schwert 1989); and another where the

10. Ng and Perron (2001) also consider a modi�ed version of the BIC, denoted as MBIC,
but discounted this alternative due to the superior properties of the MAIC.
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maximum number of lags is selected using the procedure in Pesavento (2006).
The �rst has lower size distortions � leading to tests with an almost exact size
� but worse power performance than the second, which is not too far o� from
the results for the restricted version in Pesavento (2006).

In this article we follow the approach suggested by Fossati (2012). However,
instead of using the MAIC proposed by Ng and Perron (2001), we use the
multivariate version of MAIC in Perron and Qu (2007). The maximum number
of lags allowed for the dependent variable was chosen according to the rule in
Schwert (1989) and for the covariate we assumed a maximum number of lags
equal to 5. This restriction reduces considerably the computation time while
not a�ecting the results. In order to have a meaningful comparison, the same
number of lags is used for all tests.11

Table 1 shows the range of simulation designs, as well as the number of
lags chosen, under the null hypothesis, for each DGP. The values for the initial
R2 refer to the high-frequency processes. Di�erent values were used for the
persistence in the high-frequency autoregressive dynamics of the dependent
variable, namely a1 = {0.2, 0.5, 0.8}, and for the high-frequency moving average
dynamics, b1 = {−0.2,−0.5,−0.8}.12 The criterion used to select the number of
lags seems to work well, namely in the case of moving average dynamics (DGP
16 to 24), for which the number of lags for the dependent variable is higher
than in the case of autoregressive dynamics.

Heteroskedasticity and autocorrelation consistent (HAC) estimates of
the elements of the long-run variance-covariance matrix Ω are used. This
calculation commonly involves the use of pre-whitening �lters based on
simple autoregressive models. This procedure may induce bias in the
estimation of autoregressive coe�cients, which is transmitted to the recolouring
�lter. To mitigate the potential bias associated with these �lters, recursive
demeaning/detrending procedures were assessed, as in Taylor (2002), Sul et al.
(2005) and Rodrigues (2006).

In order to implement the unit root tests we use �nite-sample critical
values. For α = 1, the observed rejection rates of each test were based on
critical values from the limiting distribution obtained for the DGP with the
simplest dynamics, i.e., DGP 1, 2 and 3 in Table 1. For α < 1 the size-
adjusted power of the tests was based on critical values estimated from the

11. The number of lags was chosen with the low frequency dataset. For the mixed-frequency
tests the same time span of lagged information for the covariate is covered, which corresponds
to a di�erent number of lags in the high time frequency.

12. Only negative �gures were considered for the moving average dynamics because they
represent the most di�cult case in terms of size distortions, as the reversion the to the mean
is higher. Regarding autoregressive dynamics, other DGP were tested, namely with a higher
persistence in the covariate. The results remain qualitatively unchanged. So, for the sake of
brevity, those results will not be reported, but are available form the author upon request.
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Simulation design Median of the lag order
T = 100 T = 500

Error structure Initial Constant Trend Constant Trend

a1 a2 b1 b2 R2 Yt Xt Yt Xt Yt Xt Yt Xt

1 0 0 0 0 0.20 0 0 1 0 0 0 1 0
2 0 0 0 0 0.50 0 0 1 0 0 0 1 0
3 0 0 0 0 0.80 0 0 1 0 0 0 1 0
4 0.2 0 0 0 0.20 0 0 0 0 1 0 0 0
5 0.2 0 0 0 0.50 0 0 0 0 1 0 0 0
6 0.2 0 0 0 0.80 0 0 0 0 1 1 0 1
7 0.5 0 0 0 0.20 1 0 0 0 2 0 2 0
8 0.5 0 0 0 0.50 1 0 0 0 2 1 2 1
9 0.5 0 0 0 0.80 1 1 0 1 2 1 2 1
10 0.8 0 0 0 0.20 2 0 2 0 2 2 2 2
11 0.8 0 0 0 0.50 2 1 2 1 2 2 2 2
12 0.8 0 0 0 0.80 2 1 2 1 2 2 2 2
13 0.2 0.2 0 0 0.20 0 0 0 0 1 1 0 1
14 0.2 0.2 0 0 0.50 0 1 0 0 1 1 1 1
15 0.2 0.2 0 0 0.80 0 1 0 1 1 1 1 1
16 0 0 -0.2 0 0.20 1 0 1 0 1 0 2 0
17 0 0 -0.2 0 0.50 1 0 1 0 1 1 2 1
18 0 0 -0.2 0 0.80 1 0 1 0 1 1 2 1
19 0 0 -0.5 0 0.20 2 0 3 0 3 1 4 1
20 0 0 -0.5 0 0.50 2 1 3 1 3 1 4 1
21 0 0 -0.5 0 0.80 2 1 3 1 3 1 4 1
22 0 0 -0.8 0 0.20 6 1 6 1 8 1 10 1
23 0 0 -0.8 0 0.50 6 1 6 1 8 2 10 2
24 0 0 -0.8 0 0.80 6 1 6 2 8 2 10 2

Table 1. Simulation design and median of the lag order selected by MAIC (Perron
and Qu 2007)

simulated data generated under the null hypothesis (α = 1).13 Following the
suggestion in Elliott and Jansson (2003), the critical values were interpolated
for the estimated �gures of R2.

4.1. Baseline results

Table 2 reports the probability of rejecting the null hypothesis under the unit
root case, i.e., the �nite sample size for unit root tests considering nominal size
5 per cent.14

13. As mentioned by Haug (2002), size-unadjusted power is rather misleading, so those
results are not reported.

14. The codes were written in Matlab. Some functions were taken from the Econometrics
Toolbox by James P. LeSage (http://www.spatial-econometrics.com). The procedure to
perform the CADF unit root tests was greatly inspired in the code made available by Bruce
E. Hansen (http://www.ssc.wisc.edu/ bhansen/progs/ et_95.html). The MIDAS toolbox
was inspired in a code kindly provided by Arthur Sinko.



1
9

C
ova

ria
te-a

u
g
m
en
ted

u
n
it
ro
o
t
tests

w
ith

m
ix
ed
-freq

u
en
cy

d
a
ta

Error structure Constant Trend

a1 a2 b1 b2
Initial
R2 CADF

CADF
GLS

M
CADF

M
CADF
GLS

CADF
CADF
GLS

M
CADF

M
CADF
GLS

1 0 0 0 0 0.20 5.2 5.1 5.1 5.2 5.4 5.3 5.3 5.3

2 0 0 0 0 0.50 5.1 5.0 5.2 5.2 4.9 5.1 5.1 5.0

3 0 0 0 0 0.80 4.7 4.9 4.8 4.8 4.6 4.7 4.4 4.9

4 0.2 0 0 0 0.20 4.7 4.5 4.8 4.6 4.2 4.1 4.5 4.3

5 0.2 0 0 0 0.50 4.2 4.0 4.7 4.6 3.5 3.7 4.3 4.0

6 0.2 0 0 0 0.80 3.3 3.4 3.9 4.2 2.7 2.6 3.0 3.6

7 0.5 0 0 0 0.20 4.0 2.5 4.8 3.7 2.4 1.6 3.4 2.7

8 0.5 0 0 0 0.50 2.8 2.4 5.6 4.7 1.5 1.0 4.5 4.2

9 0.5 0 0 0 0.80 1.5 1.5 4.9 4.6 0.5 0.5 4.3 4.3

10 0.8 0 0 0 0.20 4.2 3.0 4.7 3.4 2.6 1.3 3.6 2.1

11 0.8 0 0 0 0.50 4.1 3.5 6.1 5.1 2.5 2.1 6.1 4.8

12 0.8 0 0 0 0.80 3.0 3.2 7.8 6.7 1.4 2.0 7.9 7.6

13 0.2 0.2 0 0 0.20 4.0 3.8 4.3 4.1 3.6 3.3 4.2 4.0

14 0.2 0.2 0 0 0.50 3.2 3.0 3.6 4.0 2.6 2.1 3.8 3.6

15 0.2 0.2 0 0 0.80 2.0 2.1 2.8 3.7 1.1 1.0 2.7 2.7

16 0 0 -0.2 0 0.20 5.6 5.4 5.6 5.9 6.2 6.0 6.3 6.5

17 0 0 -0.2 0 0.50 5.6 5.2 6.5 6.1 6.0 5.9 6.7 7.0

18 0 0 -0.2 0 0.80 5.4 5.2 7.6 7.0 5.6 5.8 8.0 7.9

19 0 0 -0.5 0 0.20 5.5 5.6 6.2 6.2 6.9 6.8 7.2 7.2

20 0 0 -0.5 0 0.50 5.7 5.7 7.4 6.9 7.0 6.8 8.5 8.4

21 0 0 -0.5 0 0.80 5.9 5.6 8.4 7.9 6.9 6.7 9.9 10.1

22 0 0 -0.8 0 0.20 8.0 8.4 7.8 8.7 12.7 13.6 12.5 13.0

23 0 0 -0.8 0 0.50 9.1 9.3 8.6 9.3 14.5 15.2 13.5 14.1

24 0 0 -0.8 0 0.80 9.9 9.7 8.2 9.5 16.2 16.3 13.5 14.6

Table 2. Finite sample size for unit root tests considering nominal size of 5 per cent, T = 100
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Overall, size distortions are larger when there is a linear trend in the
regression. The same occurs when b1 is nonzero, i.e., in the presence of a
negative moving average root, which is a result that is commonly found in the
unit root literature; see, among others, Schwert (1989). Downward distortions
are mainly for stronger and more complex autoregressive dynamics, as also
reported in Hansen (1995) and Galvão (2013).

In most cases the size di�erences between the two sets of tests � mixed-
and low-frequency � are not substantial. Figure 1 shows the di�erence between
the �nite sample size of the unit root tests and the nominal size of 5 per cent for
each DGP.15 When downward distortions exist, they tend to be less marked for
mixed-frequency tests. In the case of strong negative moving average dynamics
the upward size distortions are also smaller for mixed-frequency tests than
for the low-frequency ones. However, when the moving average parameter is
smaller (in absolute terms) the opposite happens.

1 3 5 7 9 11 13 15 17 19 21 23
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(a) OLS demeaned tests
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CADF-GLS M-CADF-GLS

(b) GLS demeaned tests

Figure 1: Finite sample size distortions vis-à-vis a nominal size of 5 per cent,
T = 100, Constant only

Tables 3 and 4 report the empirical rejection frequency of the null hypothesis
under the alternative, i.e., the power of the unit root tests. Recall that the power
is size-adjusted.

15. The �gure shows the �gures for the case of only a constant term; results are similar if
also a time trend is included.
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Error structure Estimated R2 c̄ = −5 c̄ = −10 c̄ = −15

a1 a2 b1 b2
Initial

R2
CADF

CADF

GLS

M

CADF

M

CADF

GLS

CADF
CADF

GLS

M

CADF

M

CADF

GLS

CADF
CADF

GLS

M

CADF

M

CADF

GLS

CADF
CADF

GLS

M

CADF

M

CADF

GLS

1 0 0 0 0 0.20 0.10 0.10 0.23 0.23 35.6 64.4 44.9 70.3 60.2 75.0 67.2 79.9 67.2 77.0 73.4 81.1

2 0 0 0 0 0.50 0.20 0.20 0.50 0.49 42.7 69.7 71.5 85.0 66.3 79.7 85.8 90.7 73.5 81.9 90.2 91.4

3 0 0 0 0 0.80 0.30 0.31 0.78 0.76 50.5 75.4 95.3 96.7 73.2 84.4 98.8 98.2 80.7 86.4 99.4 97.8

4 0.2 0 0 0 0.20 0.13 0.13 0.24 0.23 39.6 70.4 47.5 73.9 65.0 79.9 70.3 82.7 70.8 81.6 75.2 83.8

5 0.2 0 0 0 0.50 0.27 0.27 0.51 0.50 51.1 78.3 74.7 88.0 73.3 86.3 87.6 92.7 79.3 87.6 91.1 93.2

6 0.2 0 0 0 0.80 0.41 0.42 0.79 0.78 64.6 84.9 96.1 97.5 82.3 91.7 99.1 98.6 87.8 92.7 99.5 98.5

7 0.5 0 0 0 0.20 0.18 0.19 0.25 0.25 38.9 81.2 41.6 78.6 74.5 89.9 74.0 88.8 79.4 90.8 79.7 89.8

8 0.5 0 0 0 0.50 0.41 0.42 0.52 0.52 65.2 90.0 76.6 91.0 86.7 95.5 89.6 95.6 89.8 95.9 92.0 95.9

9 0.5 0 0 0 0.80 0.64 0.64 0.80 0.79 86.0 95.7 97.0 98.6 95.7 98.4 99.1 99.4 97.5 98.6 99.5 99.3

10 0.8 0 0 0 0.20 0.22 0.26 0.28 0.28 17.3 58.8 19.8 57.4 40.6 86.1 37.9 82.8 63.9 93.0 55.7 91.1

11 0.8 0 0 0 0.50 0.45 0.54 0.54 0.54 56.6 83.6 60.0 82.4 80.9 96.1 72.6 92.9 88.2 97.5 76.1 95.4

12 0.8 0 0 0 0.80 0.73 0.80 0.80 0.80 91.4 97.4 91.3 96.4 98.3 99.7 96.3 98.8 99.0 99.8 96.7 98.6

13 0.2 0.2 0 0 0.20 0.12 0.13 0.25 0.24 40.0 73.7 45.4 75.6 66.3 81.6 68.8 83.0 71.4 82.8 73.6 84.4

14 0.2 0.2 0 0 0.50 0.31 0.31 0.52 0.52 56.7 82.9 75.2 88.7 77.6 89.4 86.7 93.4 81.6 90.5 90.2 94.0

15 0.2 0.2 0 0 0.80 0.53 0.53 0.81 0.80 76.7 91.7 96.4 97.9 90.1 96.0 98.9 99.2 93.7 96.5 99.5 99.1

16 0 0 -0.2 0 0.20 0.08 0.08 0.23 0.23 32.5 59.7 42.0 66.3 56.2 71.0 64.2 76.5 64.6 73.7 71.4 77.9

17 0 0 -0.2 0 0.50 0.16 0.15 0.49 0.48 36.3 63.7 66.8 81.6 60.9 75.0 83.1 87.7 69.5 77.5 88.1 88.1

18 0 0 -0.2 0 0.80 0.23 0.22 0.77 0.75 41.0 67.8 93.6 95.2 65.7 78.6 98.3 97.0 75.0 81.1 99.2 96.7

19 0 0 -0.5 0 0.20 0.07 0.07 0.22 0.22 30.8 50.7 38.3 57.1 54.2 62.7 61.3 66.9 63.4 65.9 69.5 69.4

20 0 0 -0.5 0 0.50 0.12 0.11 0.49 0.47 32.3 52.9 61.0 72.3 57.3 65.1 79.9 79.6 67.7 68.6 85.5 80.1

21 0 0 -0.5 0 0.80 0.17 0.15 0.78 0.75 34.3 54.7 88.9 89.4 60.8 67.3 97.0 92.5 72.3 71.0 98.5 91.8

22 0 0 -0.8 0 0.20 0.10 0.09 0.21 0.19 32.2 32.2 37.1 34.1 57.2 49.7 61.7 51.4 67.2 58.3 71.5 59.6

23 0 0 -0.8 0 0.50 0.19 0.17 0.47 0.44 35.2 33.5 51.5 43.0 61.6 51.8 75.5 59.0 72.8 60.8 82.5 65.9

24 0 0 -0.8 0 0.80 0.28 0.24 0.77 0.74 38.0 34.6 78.3 60.4 67.5 53.7 92.2 71.1 80.2 63.9 95.8 75.0

Table 3. Size-adjusted power of unit root tests, Constant only, T = 100
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1 0 0 0 0 0.20 0.09 0.10 0.20 0.23 29.2 45.4 36.9 52.7 59.1 69.4 64.9 74.3 68.1 74.9 72.9 79.0

2 0 0 0 0 0.50 0.19 0.20 0.42 0.49 35.2 51.4 63.3 74.2 65.2 74.3 82.9 88.3 73.4 79.7 87.6 90.9

3 0 0 0 0 0.80 0.28 0.31 0.62 0.76 42.2 58.7 92.0 94.1 71.2 79.6 97.7 98.1 79.3 84.9 98.9 98.8

4 0.2 0 0 0 0.20 0.12 0.13 0.20 0.23 32.6 51.6 39.8 57.3 65.6 75.3 69.6 78.7 72.8 79.0 76.1 82.1

5 0.2 0 0 0 0.50 0.25 0.27 0.43 0.50 43.9 61.7 67.9 78.6 73.5 81.8 85.4 90.8 79.6 85.7 89.2 92.8

6 0.2 0 0 0 0.80 0.38 0.42 0.63 0.78 56.8 72.6 93.5 95.6 81.7 88.4 98.1 98.8 86.6 91.8 99.0 99.3

7 0.5 0 0 0 0.20 0.16 0.19 0.21 0.25 34.6 62.4 34.6 57.3 75.0 87.5 73.1 85.7 83.7 89.4 82.9 88.5

8 0.5 0 0 0 0.50 0.37 0.42 0.42 0.52 59.9 78.5 71.4 81.9 87.3 94.0 89.5 93.9 90.7 95.4 92.4 95.2

9 0.5 0 0 0 0.80 0.59 0.64 0.62 0.79 82.2 91.0 96.0 97.1 95.1 98.2 98.7 99.2 97.1 99.0 99.3 99.5

10 0.8 0 0 0 0.20 0.19 0.27 0.23 0.28 15.8 34.2 16.3 30.7 35.6 70.2 30.5 57.1 57.8 88.3 43.9 77.4

11 0.8 0 0 0 0.50 0.44 0.55 0.39 0.53 54.9 68.4 57.3 67.9 78.6 92.0 67.6 81.2 85.9 96.1 64.6 84.4

12 0.8 0 0 0 0.80 0.72 0.81 0.50 0.79 89.8 93.3 92.2 93.0 98.1 99.3 96.3 97.2 98.8 99.6 94.9 96.1

13 0.2 0.2 0 0 0.20 0.11 0.13 0.21 0.24 32.2 54.7 36.5 56.2 67.5 77.4 69.7 78.2 73.9 80.6 75.3 81.3

14 0.2 0.2 0 0 0.50 0.28 0.31 0.45 0.51 48.3 68.5 67.6 79.2 77.6 85.8 85.2 90.7 81.8 88.3 88.2 92.7

15 0.2 0.2 0 0 0.80 0.49 0.53 0.68 0.79 70.2 83.7 93.9 96.0 89.3 94.9 97.8 98.8 92.2 96.7 98.8 99.3

16 0 0 -0.2 0 0.20 0.08 0.08 0.20 0.22 26.0 40.9 33.6 46.2 53.7 64.5 60.2 69.0 65.0 71.5 69.9 75.3

17 0 0 -0.2 0 0.50 0.15 0.15 0.41 0.48 29.5 44.1 57.2 67.1 58.2 68.2 79.6 84.2 69.2 75.3 85.8 87.8

18 0 0 -0.2 0 0.80 0.21 0.22 0.61 0.75 32.7 47.9 88.7 90.9 62.8 72.2 97.0 97.2 73.7 79.3 98.5 98.0

19 0 0 -0.5 0 0.20 0.07 0.07 0.19 0.22 23.1 34.0 29.8 39.4 49.7 57.6 55.9 62.3 62.3 66.1 66.6 69.5

20 0 0 -0.5 0 0.50 0.12 0.11 0.40 0.47 24.4 35.8 50.7 56.8 52.6 59.9 75.4 77.0 65.6 69.3 82.8 81.5

21 0 0 -0.5 0 0.80 0.16 0.16 0.63 0.75 25.1 37.1 82.4 83.9 55.0 62.6 94.5 93.7 68.8 72.1 97.3 95.2

22 0 0 -0.8 0 0.20 0.09 0.09 0.18 0.19 24.1 24.2 26.9 26.2 51.0 48.5 54.5 50.7 63.7 60.4 66.1 62.0

23 0 0 -0.8 0 0.50 0.18 0.17 0.39 0.44 26.1 25.9 35.6 34.1 54.8 51.2 63.9 58.7 68.2 64.0 74.4 68.5

24 0 0 -0.8 0 0.80 0.27 0.25 0.63 0.74 27.8 27.2 62.1 55.6 59.2 54.3 84.0 75.2 74.2 68.4 89.2 81.0

Table 4. Size-adjusted power of unit root tests, Time trend included, T = 100
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As expected, when a time trend is included in the test regression power
is in general lower than when only a constant is present. Moreover, the tests
with GLS detrending tend to have a better power performance than the tests
with OLS detrending. This is true whether only a constant is considered or a
time trend is also included. As reported in Hansen (1995), the power of the
tests increases as more correlated covariates are included in the unit root test
regressions.

In the vast majority of cases, the di�erences in size-adjusted power between
the mixed- and the low-frequency unit root tests are positive, meaning that the
power of mixed-frequency unit root tests is higher than that of low-frequency
tests. This is true for both tests with OLS or GLS demeaning. The power
di�erences between the low- and mixed-frequency with GLS demeaning are
presented in Figure 2.

4 8 12 16 20 24
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4 8 12 16 20 24

(b) c̄ = −10

4 8 12 16 20 24

(c) c̄ = −15

Figure 2: Di�erences in size-adjusted power between mixed- and low-frequency tests
with GLS demeaning for c = −5, −10 and −15, Constant only, T = 100

While mixed-frequency regressions tend to capture the original correlation
between the dependent variable and the covariate, this correlation is hampered,
in most cases, by time aggregation. Hence, the actual (and estimated) R2 for
the low-frequency tests may di�er signi�cantly from the initial R2 of the time
disaggregated DGP, as shown in the top panel of Table 5.16

16. Table 5 shows the results for the DGP with the simplest dynamics, i.e., DGP 1, 2 and 3
in Table 1. Moreover, it covers the case of including a constant only. Results are qualitative
similar if a time trend is also included and are available from the author upon request.
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Initial R2

OLS detrending GLS detrending

0.2 0.5 0.8 0.2 0.5 0.8

Estimated R2

Low-frequency tests

T = 100 0.11 0.23 0.34 0.12 0.25 0.38

T = 500 0.09 0.20 0.32 0.10 0.23 0.37

Mixed-frequency tests

T = 100 0.23 0.50 0.78 0.23 0.49 0.77

T = 500 0.20 0.48 0.77 0.20 0.48 0.77

Estimated δ

Low-frequency tests

T = 100 -0.046 -0.041 -0.036 -0.019 -0.016 -0.014

T = 500 -0.010 -0.009 -0.008 -0.003 -0.003 -0.002

Mixed-frequency tests

T = 100 -0.041 -0.027 -0.013 -0.016 -0.008 0.000

T = 500 -0.009 -0.006 -0.003 -0.003 -0.001 0.000

Finite-sample critical values

Low-frequency tests

T = 100 -2.61 -2.57 -2.52 -1.81 -1.80 -1.77

T = 500 -2.67 -2.64 -2.60 -1.80 -1.77 -1.73

memo: Asymptotical critical values

-2.81 -2.75 -2.70 -1.91 -1.85 -1.78

Mixed-frequency tests

T = 100 -2.62 -2.58 -2.48 -1.84 -1.75 -1.55

T = 500 -2.69 -2.61 -2.49 -1.80 -1.74 -1.70

memo: Asymptotical critical values

-2.75 -2.60 -2.32 -1.87 -1.72 -1.52

Table 5. Estimated R2 and δ parameters and critical values, Constant only

Notes: All estimates were obtained from the DGP with the simplest dynamics, i.e., DGP
1, 2 and 3 in Table 1. The estimated R2 and δ correspond to the average values over the
replications. The asymptotical critical values are interpolated for the estimated R2.

This information loss penalises the power performance of the low-frequency
tests. Time aggregation has a milder impact on the correlation between the
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aggregated data when strong autoregressive dynamics is in place. In this
scenario, the performance of the mixed-frequency tests is similar or, in some
cases, slightly worse than the performance of the low-frequency tests.

Adding to greater e�ciency, the power performance of tests that exploit
mixed-frequency data also bene�ts from less parameter bias (middle panel in
Table 5). As expected, the average estimate of the parameter of interest, δ, is
closer to zero for tests with GLS demeaning and with higher R2. In addition,
the mixed-frequency estimates are also closer to zero than their low-frequency
counterparts.

The bottom panel of Table 5 shows the �nite-sample and asymptotic critical
values for each test. The asymptotic values were obtained from a simulation
exercise with 1,500 observations and 60,000 replications. Separate exercises
were performed for the low- and mixed-frequency approaches, delivering similar
results. The results are also similar to the values collected from the original
papers. The asymptotic critical values presented in the table are interpolated
for the values of R2. Finite-sample critical values converge to their asymptotic
values, though at a lower pace in the case of GLS demeaning. For comparable
values of R2 the mixed-frequency critical values are closer to their asymptotic
value than the low frequency ones. This result is underpinned by the greater
e�ciency and less biased estimates of mixed-frequency tests.

On average, the power gains from taking on board mixed-frequency data are
quite substantial, reaching 9.6, 6.4 and 5.2 per cent for c = −5, −10 and −15,
respectively. Recall that the results above mentioned correspond to α = 0.95,
0.90 and 0.85 on the disaggregated process, meaning that time aggregation with
m = 3 leads to α = 0.86, 0.73 and 0.61, respectively. The power gains increase
as the alternative hypothesis are more demanding, i.e., are closer to the unit
root. This results from losses in power performance, which are smaller for the
mixed-frequency tests than for the low-frequency ones.

4.2. The case of a larger sample size

Now consider a sample with 500 observations. Recall that the values of c̄,
corresponding to ᾱ = 0.99, 0.98 and 0.97, are for the disaggregated processes.
Time aggregation with m = 3 leads to ᾱ = 0.97, 0.94 and 0.91, respectively.
Not only do we consider a larger sample but the alternative hypothesis is more
demanding, being closer to the unit root case.

In general, there are less size distortions using this larger sample.17 Again,
as in the case of the sample with 100 observations, when downward distortions
exist, they tend to be less marked for mixed-frequency tests (Figure 3). Though
upward biased, the performance of the mixed-frequency tests is more favourable

17. The results presented in this section refer to the case of only a constant included in the
test regressions. The results are qualitatively similar when also a time trend is considered
and are available from the author upon request.
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Figure 3: Finite sample size distortions vis-à-vis a nominal size of 5 per cent, T = 500

with strong moving average dynamics. This is not the case when the moving
average coe�cient is smaller (in absolute terms).

Regardless of the DGP, power is always higher in the sample with 500
observations. Moreover, size-adjusted power of mixed-frequency tests is at least
as high as the one of low-frequency tests. This is true for both tests with OLS or
GLS demeaning. The power di�erences between the low- and mixed-frequency
tests, for the GLS case, are presented in Figure 4. In particular, size-adjusted
power of mixed-frequency tests is substantially higher for processes with moving
average dynamics.

Mixed-frequency tests also deal better with near-integration. On average,
the power gains from exploiting mixed-frequency data increase as c increases,
from 1.7 to 2.1 and 5.4 per cent for c=−15, −10 and −5, respectively. Hence, as
the series becomes near-integrated, the advantage of exploiting mixed-frequency
information increases progressively.
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Figure 4: Di�erences in size-adjusted power between mixed- and low-frequency tests
with GLS demeaning for c = −5, −10 and −15, Constant only, T = 500

4.3. Di�erent lags

In this section we present a sensitivity analysis to the choice of the truncation
lag. Figure 5 shows the di�erences between the size-adjusted power of mixed-
and low-frequency tests with an ad-hoc number of lags included in the test
regression (3, 4, 6 and 8 lags, respectively).18 The same number of lags is
used in each replication and for each variable (the dependent variable and the
covariate). These results illustrate the case of c̄ = −5, only a constant added to
the test regression and of GLS demeaning.19 A positive bar means that the size-
adjusted power of mixed-frequency tests is higher than the one of low-frequency
tests.

In spite of high costs in terms of size (as expected), this exercise shows
that regardless of the particular choice of lags, the mixed-frequency tests
tend to outperform the low-frequency ones. This is due to the fact that
exploiting mixed-frequency data enables us to capture the (stronger) underlying
correlation between the dependent variable and the covariate.

18. The number of lags refers to the low frequency. For the mixed-frequency tests the same
time span of lagged information of the covariate is covered, which corresponds to a di�erent
number of lags in the high time frequency.

19. Results for other c̄, including a time trend and OLS demeaning are not qualitatively
di�erent and are available from the author upon request.
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Figure 5: Di�erences in size-adjusted power between mixed- and low-frequency tests
with GLS demeaning for c = −5 by number of lags included in the test regression,
Constant only

In addition, note that the gains tend to increase with the number of lags
included. The performance of the low-frequency tests is more severely a�ected
by the inclusion of unnecessary lags. In contrast, the mixed-frequency tests are
better able to deal with this kind of misspeci�cation issues, because the weights
of the high-frequency lags are data-driven. Hence, in case of great uncertainty
about the choice of the truncation lag (as is typically the case in empirical
applications), using the mixed-frequency framework may contribute to reduce
the impact of potential misspeci�cation in the power of the unit root tests.

4.4. Di�erent time frequencies

To assess the impact of di�erent combinations of time frequencies, alternative
�gures for m are considered. In addition to m = 3, now I will also consider
m = 12, 24, 36, 60 and 120.

Hence, to have a meaningful comparison across di�erent m, we simulate
samples with T = 100 and 500 observations such that the aggregate �gure
for the �rst-order autoregressive parameter equals 0.95 and 0.99, respectively,
regardless of m. Recall that for doing this we need to adjust the values of c
accordingly.
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Figure 6: Size-adjusted power of mixed- and low-frequency tests for di�erent m,
with GLS demeaning, aggregate α = 0.99, Constant only, T = 500

Figure 6 shows the results in terms of power performance of low- and
mixed-frequency unit root tests, with GLS demeaning, using a sample of 500
observations.20

Once again, the mixed-frequency test shows better power performance for
all m considered in a situation of near-integration. The mixed-frequency test
is at least as good as the low-frequency test and, in many cases, substantially
better, especially when R2 is higher. The gains from using the mixed-frequency
test are fairly stable across di�erent �gures for m, for each R2. However, as
noted before, the gains tend to increase signi�cantly with R2.

5. An application to the US unemployment rate

There is a rich discussion in the literature about the order of integration of
the unemployment rate. Initial contributions by Phelps (1967) and Friedman

20. Results for OLS demeaning or with the smaller sample (T = 100) are qualitatively
similar and were omitted for the sake of brevity. All results are available from the author
upon request.
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(1968) described movements in the unemployment rate as �uctuations around
a natural rate, which would be generally de�ned as the equilibrium rate. Given
that temporary shocks would have only temporary e�ects, these traditional
theories imply that the unemployment rate is level or, perhaps, trend stationary,
evolving around the natural level.21

In contrast, Blanchard and Summers (1986, 1988) resort to the concept of
hysteresis, meaning that unemployment rates depend sensitively on the shocks
an economy experienced in the past, and eventually the unemployment rate
should exhibit a unit root. Unifying both strands, the structuralist theories
of unemployment assumes that most shocks cause temporary movements of
the unemployment rate around the natural rate, but some shocks can cause
permanent changes in the natural rate. Hence, the unemployment rate would
be stationary around a natural rate, which itself could be subject to structural
breaks (for a brief discussion, see Phelps 1995).

The purpose of this exercise is to illustrate the used of mixed-frequency
unit root tests, providing additional evidence on the persistence of US
unemployment rate. We apply the above described covariate-augmented unit
root tests � both low- and mixed-frequency tests � to assess whether US
unemployment rate has a unit root.22 We exploit insights provided by the
correlation between the variable of interest and the continued jobless claims.

The overall unemployment rate (in logs) is a monthly series taken from the
US Bureau of Labor Statistics and is seasonally adjusted. The covariate is the
continued jobless claims, also expressed in logs, which is a weekly series. The
continued jobless claims are released by the US Department of Labor and are
also seasonally adjusted. The stationarity of the covariate was con�rmed by
univariate unit root tests, namely ADF and ADF-GLS tests.23 The data cover
the period from January 1980 to June 2014. For the low-frequency version of
the covariate we use the beginning of the period value. Figure 7 shows the series
used, in quarterly frequency (the common frequency) and in logs.

In order to choose the truncation lag of the variables, we used the
multivariate version of MAIC in Perron and Qu (2007), applied to the output
of an unrestricted version of the CADF test regression (for more details, see

21. There is no consensus in the literature about including or not a trend when modelling
unemployment, existing an ongoing discussion based on sample-driven and theoretical
arguments.

22. The di�erence between the unemployment rate and the natural rate of unemployment
is also often analysed. In this exercise we focused on the level of the unemployment rate.
Estimating a natural rate of unemployment is beyond the scope of this article. Simply using
an estimate of the natural rate of unemployment collected elsewhere (e.g., the Congressional
Budget O�ce estimates a quarterly natural rate of unemployment, which is made available
by the St. Louis Federal Reserve Bank) would lead to bias on hypothesis testing, as shown
by Murphy and Topel (1985).

23. The tests were performed for weekly, monthly and quarterly frequencies and, as
expected, the result was always the same.
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Figure 7: Data on US unemployment

section 4). Tables 6 and 7 present the results for the unit root tests to the US
unemployment rate. These tables provide the estimates of δ, the t-statistics
and the estimated R2 for the covariate-augmented regressions.

Sample: 1980Q1 to 2014Q2

Constant only

ADF ADF-GLS CADF CADF-GLS M-CADF M-CADF-GLS

δ −0.009 −0.009 −0.024 −0.024 −0.022 −0.022
t-statistic −1.882 −1.879 −3.439 ∗ ∗ −3.428∗ −3.309 ∗ ∗ −3.293∗
R2 0.42 0.43 0.96 0.95

Time trend included

ADF ADF-GLS CADF CADF-GLS M-CADF M-CADF-GLS

δ −0.009 −0.009 −0.041 −0.027 −0.041 −0.025
t-statistic −1.876 −1.896 −4.626 ∗ ∗ −3.657∗ −4.861 ∗ ∗ −3.574∗
R2 0.39 0.43 0.96 0.96

Table 6. Unit root tests for US monthly unemployment rate, using jobless claims
as covariate

Note: For the low-frequency covariate-augmented unit root tests the frequency of the
covariate equals the frequency of the dependent variable. For the mixed-frequency tests,
the covariate has a weekly frequency. * signi�cant at a 5 per cent asymptotic level. **
signi�cant at a 1 per cent asymptotic level. For the covariate-augmented GLS family of
tests, Pesavento (2006) only presents 5 per cent asymptotic signi�cance levels.
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Sample: 1980Q1 to 2006Q4

Constant only

ADF ADF-GLS CADF CADF-GLS M-CADF M-CADF-GLS

δ −0.007 −0.007 −0.015 −0.012 −0.014 −0.010
t-statistic −1.217 −1.089 −1.989 −1.628 −1.888 −1.406
R2 0.44 0.44 0.95 0.92

Time trend included

ADF ADF-GLS CADF CADF-GLS M-CADF M-CADF-GLS

δ −0.018 −0.009 −0.088 −0.035 −0.078 −0.032
t-statistic −1.913 −1.209 −5.147 ∗ ∗ −3.148∗ −4.787 ∗ ∗ −3.043∗
R2 0.29 0.36 0.87 0.88

Table 7. Unit root tests for US monthly unemployment rate, using jobless claims
as covariate

Note: For the low-frequency covariate-augmented unit root tests the frequency of the
covariate equals the frequency of the dependent variable. For the mixed-frequency tests,
the covariate has a weekly frequency. * signi�cant at a 5 per cent asymptotic level. **
signi�cant at a 1 per cent asymptotic level. For the covariate-augmented GLS family of
tests, Pesavento (2006) only presents 5 per cent asymptotic signi�cance levels.

We consider two di�erent samples, one from 1980 Q1 to 2014 Q2 in Table
6 and another excluding the great recession period, from 1980 Q1 to 2006 Q4,
in Table 7. By looking at Figure 7 one can intuitively see that it seems to
be relevant to include a time trend in the test regression for the level of the
unemployment rate, namely in the shorter sample. Therefore, for each sample,
the top panel in Tables 6 and 7 shows results for only including a constant and
the bottom panel shows the results for also including a time trend.

In the shorter sample, all tests for the level of the unemployment rate
with only a constant included in the test regression agree in not rejecting the
null hypothesis, suggesting that the series is I(1). The conclusions from the
univariate tests remain unchanged when a time trend is included. However,
all covariate-augmented tests agree in rejecting the null hypothesis, suggesting
that the unemployment rate is trend stationary in that sample.

When using the longer sample, univariate unit root tests continue to suggest
that the level of US unemployment is not stationary. In contrast, all covariate-
augmented tests reject the null hypothesis, whether or not a time trend
is included. Hence, the level of unemployment rate seems to be stationary,
though highly persistent, as shown by the small values of δ̂. Notice that in all
cases, the estimates of R2 are higher when the mixed-frequency approach is
used, suggesting that in this case combining information with di�erent time
frequencies allows us to take better advantage of the covariate-augmented
framework of unit root tests.
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6. Conclusion

Unit root tests typically have low power, especially in near-integrated cases,
which results in the over-acceptance of the unit root null. This paper tries to
tackle this issue by merging two strands of the literature. In particular, we
try to improve the power performance of CADF unit root tests by exploiting
mixed-frequency data. The results of a simulation exercise show that there is
room for improvement.

Since Hansen (1995), covariate-augmented unit root tests have been
proposed has a more powerful version of traditional univariate unit root tests,
such as the ADF tests. The main idea is that using a stationary covariate, which
is well correlated with the variable of interest, in the test regression contributes
to increase the precision of the estimates of the test statistic and, hence, to
increase the power of the test.

In this article we assume as main premise that temporal aggregation of the
variable of interest is unavoidable. It is well known that time aggregation and
the sampling frequency do not a�ect the long-run properties of time series,
namely the presence of unit roots, but may have severe consequences for the
correlation between the dependent variable and the covariate.

To exploit the advantages of combining data with di�erent time frequencies
� a dependent variable in a lower frequency than the covariate � we use
the MIDAS technique. This technique uses data-driven aggregation weights.
Monte Carlo experiments show that: (i) mixed-frequency covariate-augmented
unit root tests have a better power performance than traditional low-frequency
tests; and that (ii) mixed-frequency tests are particularly advantageous when
we are in the presence of near-integrated variables. The results are robust to
the size of the sample, to the lag speci�cation of the test regression and to
di�erent combinations of time frequencies.

Applying the unit root tests � both low- and mixed-frequency � to the
US unemployment rate, we found evidence that the unemployment rate is
stationary, though highly persistent.
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Appendix

Standard Demeaned Detrended

ρ2 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 -2.57 -1.94 -1.62 -3.43 -2.86 -2.57 -3.96 -3.41 -3.13

0.9 -2.57 -1.94 -1.61 -3.39 -2.81 -2.50 -3.88 -3.33 -3.04

0.8 -2.57 -1.94 -1.6 -3.36 -2.75 -2.46 -3.83 -3.27 -2.97

0.7 -2.55 -1.93 -1.59 -3.30 -2.72 -2.41 -3.76 -3.18 -2.87

0.6 -2.55 -1.90 -1.56 -3.24 -2.64 -2.32 -3.68 -3.10 -2.78

0.5 -2.55 -1.89 -1.54 -3.19 -2.58 -2.25 -3.60 -2.99 -2.67

0.4 -2.55 -1.89 -1.53 -3.14 -2.51 -2.17 -3.49 -2.87 -2.53

0.3 -2.52 -1.85 -1.51 -3.06 -2.40 -2.06 -3.37 -2.73 -2.38

0.2 -2.49 -1.82 -1.46 -2.91 -2.28 -1.92 -3.19 -2.55 -2.20

0.1 -2.46 -1.78 -1.42 -2.78 -2.12 -1.75 -2.97 -2.31 -1.95

Table A.1. Asymptotic critical values for CADF t-statistics

Note: Following Hansen (1995). The critical values were calculated from 60.000 draws
generated from samples of size 1.000 with iid Gaussian inovations.

R2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cases 1, 2 -1.948 -1.939 -1.929 -1.918 -1.905 -1.881 -1.864 -1.839 -1.818 -1.773

Case 3 -1.948 -1.909 -1.866 -1.812 -1.760 -1.707 -1.647 -1.579 -1.497 -1.405

Case 4 -2.836 -2.786 -2.738 -2.688 -2.628 -2.568 -2.498 -2.418 -2.343 -2.315

Case 5 -2.835 -2.780 -2.730 -2.664 -2.586 -2.497 -2.401 -2.286 -2.152 -2.017

Table A.2. Asymptotic critical values for the CADF-GLS test

Note: Following Pesavento (2006). The critical values were computed using 60 000
replications of samples with 1000 observations, drawn using iid Gaussian innovations. The
critical values reported are for tests of size 5%, with c̄ equal to −7 for cases 1, 2 and 3 and
to −13.5 for cases 4 and 5.
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