
REAL-TIME 

NOWCASTING THE 

US OUTPUT GAP: 

SINGULAR SPECTRUM 

ANALYSIS AT WORK

Working Papers 2014 

Miguel de Carvalho | António Rua

16



REAL-TIME NOWCASTING 

THE US OUTPUT GAP: 

SINGULAR SPECTRUM 

ANALYSIS AT WORK 

Working Papers 2014

Miguel de Carvalho | António Rua

Lisbon, 2014  •  www.bportugal.pt

16

October 2014
The analyses, opinions and fi ndings of these papers represent the views of 
the authors, they are not necessarily those of the Banco de Portugal or the 
Eurosystem

Please address correspondence to
Banco de Portugal, Economics and Research Department 
Av. Almirante Reis 71, 1150-012 Lisboa, Portugal
T +351 213 130 000 | estudos@bportugal.pt



WORKING PAPERS  |  Lisbon 2014  •  Banco de Portugal  Av. Almirante Reis, 71 | 1150-012 Lisboa  •  www.bportugal.pt  •    

Edition Economics and Research Department  •  ISBN 978-989-678-304-4 (online)  •  ISSN 2182-0422 (online) 



Real-time nowcasting the US output gap:

Singular spectrum analysis at work

Miguel de Carvalho a and António Rua b, c,∗

a Department of Statistics, Pontificia Universidad Católica de Chile, Santiago, Chile
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Abstract

We explore a new approach for nowcasting the output gap based on singular spectrum analysis.

Resorting to real-time vintages, a recursive exercise is conducted so to assess the real-time reli-

ability of our approach for nowcasting the US output gap, in comparison with some well-known

benchmark models. For our applied setting of interest, the preferred version of our approach

consists of a two-channel singular spectrum analysis, where we use a Fisher g test to infer which

components, within the standard business cycle range, should be included in the grouping step.

We find that singular spectrum analysis provides a reliable assessment of the cyclical position of

the economy in real-time, with the two-channel approach outperforming substantially the univari-

ate counterpart.

Keywords : Band-pass filter; Multivariate singular spectrum analysis; Singular spectrum analysis;

US output gap, Real-time data.
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1 Introduction

The output gap plays a central role in policymaking. Most central banks aim to keep inflation under

control, and the output gap is a key source of inflation pressures in the economy. Given that the output

gap fluctuates when the economy is overheating or underperforming, the conduct of monetary policy

should take it into full consideration. It can also be used to determine and pursue policy measures

by governments—as the cyclical position of the economy may influence fiscal policy—, and thus the

assessment of the output gap is crucial for many formulations of countercyclical stabilization policy.

Measuring the output gap is however challenging—as it cannot be observed directly—and so cannot

be assessed precisely. The revisions to which real-time output gap estimates are subject, present yet

another challenge as they can compromise their operational usefulness for policymakers—who need

reliable ‘intel’ in real-time. There are by now several studies documenting the large uncertainty of

real-time output gap estimates, with this being a common issue for all estimation methods available

(see Orphanides & van Norden, 2002, Orphanides, 2003a, Watson, 2007, Marcellino & Musso, 2011,

Edge & Rudd, 2012, among others). The policy implications of the effects of output gap uncertainty

have been addressed by, for example, Orphanides (2001), Rudebusch (2001), Smets (2002), Orphanides

(2003b), and Orphanides and Williams (2007).

In this paper we focus on singular spectrum analysis (SSA), and evaluate its potential contribution

for nowcasting output gap in a real-time setup. Despite the potential usefulness of SSA for the analysis

of economic phenomena there are only a few applications in the economics and finance literature.

In this respect, see the recent work by Hassani, Heravi, and Zhigljavsky (2009), Patterson, Hassani,

Heravi, and Zhigljavsky (2011), Hassani, Soofi, and Zhigljavsky (2013a,b), and de Carvalho, Rodrigues,

and Rua (2012). In particular, the latter have shown that SSA can deliver output gap estimates that

resemble those obtained with band-pass filters while improving the reliability of the corresponding

nowcasts. We extend the work by de Carvalho, Rodrigues, and Rua (2012) in several dimensions.

First, to mimic a real-life policymaking scenario, that is, to replicate the problem faced by pol-

icymakers at the time policy decisions have to be taken, we consider real-time data. This means

considering the vintages of data available at each moment in time. It is by now widely acknowledged

that data revisions can affect policy decisions, and although the issue of the importance of data revi-
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sions is not recent, there has been a growing interest among practitioners to take on board real-time

data into the analysis, since the influential work by Croushore and Stark (2001, 2003)—who compiled

and examined real-time data for major US macroeconomic variables. Hence, we focus on the evaluation

of output gap nowcasts computed through a recursive exercise using at each period the corresponding

available vintage. This allows us to obtain real-time estimates—which are the ones relevant in terms of

policymaking—whereas de Carvalho, Rodrigues, and Rua (2012) only considered quasi -real estimates,

by considering the latest available vintage.1

An important issue for which we suggest a novel approach regards the selection of principal compo-

nents to be used in the reconstruction of the variable of interest. For instance, de Carvalho, Rodrigues,

and Rua (2012) use an heuristic approach to select the components to be considered for the reconstruc-

tion of the GDP cyclical component. Based on the dominant frequency, they consider the components

that reflect periodicities of interest, namely within the business cycle frequency range. In this respect,

Hassani, Heravi, and Zhigljavsky (2009) suggest the computation of the periodogram for assessing the

dominant periodicity. We propose an alternative inferential procedure to address this issue, by using

a spectral-based Fisher g test. Although less popular than time domain analysis, Fourier analysis has

proven to be quite useful in a wealth of contexts (see, for example, A’Hearn & Woitek, 2001, Rua

& Nunes, 2005, Breitung & Candelon, 2006, Lemmens, Croux, & Dekimpe, 2008). Drawing on the

periodogram estimator, Fisher (1929) derived an exact test—the so-called Fisher g test—which allows

for the detection of hidden periodicities of unspecified frequency, by determining whether a peak in the

periodogram is significant or not. We use the Fisher g test to select the principal components to be

aggregated in the reconstruction of the output gap; specifically, we consider all principal components

that present a statistically significant peak in the periodogram, within the standard business cycle

frequency range. This provides a formal criterion for selecting the principal components relevant for

the problem at hand.

Another contribution of our paper rests on the use of information beyond that conveyed by GDP

to estimate the output gap. Although, as stressed by Stock and Watson (1999), the cyclical compo-

nent of real GDP is a useful proxy for the overall business cycle, it is sensible to argue that other

1More details on the distinction between concepts of real-time and quasi-real estimates of the output gap can be found

in Orphanides and van Norden (2002, p. 571).
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macroeconomic variables should also reflect business cycle developments (see also the pioneer work of

Burns and Mitchell, 1946). In this respect, the industrial production index is one of the macroeconomic

indicators more commonly used in the literature for assessing the cyclical position of the economy in

the absence of GDP data, and it is actually one of the top indicators used in practice for dating the

US business cycle by the National Bureau of Economic Research (NBER) Business Cycle Dating Com-

mittee (www.nber.org/cycles/recessions.html). As GDP and industrial production are strongly

correlated at business cycle frequencies, the use of industrial production data to complement GDP in

the estimation of the output gap seems a natural choice. Typically, the use of macroeconomic data

other than GDP does not lead to substantial differences in final output gap estimates, but can poten-

tially improve the real-time assessment (see, for example, Valle e Azevedo, Koopman, & Rua, 2006,

Valle e Azevedo, 2011). To take on board information beyond that conveyed by GDP, we extend the

output gap estimation from the univariate SSA, considered in de Carvalho, Rodrigues, and Rua (2012),

to the multivariate SSA case.

To assess the relative performance of the suggested approach to nowcast the US output gap, we

consider alternative econometric techniques, namely the popular Hodrick and Prescott (1997) filter and

the band-pass filter of Christiano and Fitzgerald (2003).2 In line with previous literature, we find that

all approaches deliver relatively similar final output gap estimates. In addition, such estimates are in

accordance with the US business cycle chronology. Based on a real-time US dataset and resorting to a

standard battery of reliability statistics, we evaluate the real-time performance of each approach. The

Hodrick–Prescott filter seems to perform the worst, whereas the SSA approach delivers more reliable

output gap nowcasts than the alternative filtering techniques. Going beyond the univariate SSA, we

conclude that the use of data other than GDP, in particular industrial production, can be very useful

for improving output gap nowcasting. Hence, considering a multivariate framework based on SSA can

be quite useful for producing reliable real-time estimates of the US output gap.

Our paper is organized as follows. In Section 2 we discuss our SSA-based approach for modeling

business cycles. In Section 3 we use our approach for real-time nowcasting the US output gap, and

compare it with some popular benchmark methods. We conclude in Section 4.

2We underscore that although measuring output gap nowcast uncertainty can also be interesting (Garratt, Mitchell,

and Vahey, 2014), the focus here is on point estimation.
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2 Singular spectrum business cycle analysis

2.1 Modeling concept: One-channel setting

As argued by Morley and Piger (2012) there are two main views for modeling business cycles: An

alternating-phases approach (Mitchell, 1927), which considers a rotating sequence of expansions–

recessions, and an output gap approach (Beveridge & Nelson, 1981) where the business cycle, Ct,

is defined as a transitory deviation from a trend, Tt. Formally, for seasonally adjusted data, the latter

approach is based on decomposing GDP, Yt, as follows

Yt = Tt + Ct. (1)

The target of estimation in an output gap approach is thus naturally Ct. Following the seminal work

of Burns and Mitchell (1946), most literature has been concerned with recurring movements ranging

from 6 to 32 quarters, so that a more reasonable working assumption is provided by the model

Yt = Tt + Ct +Rt, (2)

where Rt is a noise term describing recurring movements of frequencies higher than the ones of interest

in a business cycle context. The singular spectrum analysis-based approaches to be discussed in the

next sections are based on the output gap approach discussed in Eqs. (1) and (2), and the interest

is on assessing the performance of the methods in real-time, so that our goal is on nowcasting Ct,

using information available until time t− 1, or in other words, conditionally on Ft−1 = σ(Y1, . . . , Yt−1),

where σ(·) denotes the natural filtration.3 For a primer on singular spectrum analysis see, for instance,

Golyandina, Nekrutkin, and Zhigljavsky (2001) and Hassani, Mahmoudvand, and Patterson (2014).

To make the exposition concrete, below we focus on discussing singular spectrum analysis in the

context of our applied econometric problem of interest, so that the expression ‘singular spectrum

business cycle analysis’ should be understood as a synonym of an adapted singular spectrum analysis

with business cycle applications in mind.

3To be precise, in our applied setting of interest, at each period t we consider a different vintage of data, Vt =

(Y1,t, . . . , Yt−1,t), where Yτ,t denotes the data at time τ as they looked at time t, for τ ∈ {1, . . . , t − 1}, and thus our

analysis at time t is actually conditional on Ft−1 = σ(Vt).
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2.2 One-channel singular spectrum business cycle analysis

The method entails two phases, namely decomposition and reconstruction, and each of these phases

includes two steps; the phase of decomposition includes the steps of embedding and singular value

decomposition, which we discuss below.

Embedding. This is the preliminary step of the method. The core concept assigned to this step is

given by the GDP trajectory matrix, i.e., a matrix whose columns consist of rolling windows of the

GDP time series y = (Y1, . . . , Yn). The GDP trajectory matrix is defined as

Y =

⎛⎜⎜⎜⎜⎜⎜⎝
Y1 · · · Yk

Y2 · · · Yk+1

...
...

...

Yl · · · Yk+l−1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
T1 + C1 +R1 · · · Tk + Ck +Rk

T2 + C2 +R2 · · · Tk+1 + Ck+1 +Rk+1

...
...

...

Tl + Cl +Rl · · · Tk+l−1 + Ck+l−1 +Rk+l−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (3)

where k is such that Y encompasses all the observations in the original time series, i.e., k = n− l+ 1.

We refer to each vector yi = (Yi, . . . , Yl+i−1)
T, as a GDP window, where the window length, l, is a

parameter to be set by the user. Note that Y has constant antidiagonals—and thus it is a Hankel

matrix—and note further that the GDP series y relies in the ‘ell’ formed by the first column and the

last row; the GDP trajectory matrix can also be thought of as a sequence of k GDP windows, i.e.,

Y = (y1,l · · · yk,l). A short, yet formal, description of embedding, is that the step resumes to the map

y �→ Embed(y) = Y ,

with Y defined in Eq. (3).

Singular Value Decomposition. In the second step we perform a singular value decomposition of

the GDP trajectory matrix. Hence, from an eigenanalysis of Y Y T we obtain the eigenvalues λ1 ≥
· · · ≥ λd, where d = rank(Y Y T), as well as the corresponding left and right singular vectors, which we

respectively denote by ui and vi. This leads us to the following decomposition of the GDP trajectory

matrix,

Y =
d∑

i=1

uiv
T

i

√
λi. (4)
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Below we discuss the second phase of the method—reconstruction, which entails the steps of grouping

cyclical components and diagonal averaging.

Grouping Cyclical Components. Not all summands in Eq. (4) contain relevant information on the

business cycle, and hence we confine ourselves to a subset S of {1, . . . , d}, so to compute what we define

as the cycle matrix,

C =

⎛⎜⎜⎜⎝
C1,1 · · · C1,k
...

...
...

Cl,1 · · · Cl,k+l−1

⎞⎟⎟⎟⎠ =
∑
i∈S

uiv
T

i

√
λi. (5)

In practice, we construct S through a Fisher g test on which we provide further details in Section 2.5.

Diagonal Averaging. In this step we average over all the elements of the antidiagonals of the cycle

matrix in Eq. (13) so to obtain a Hankel matrix. This can be performed through the map

C �→ D(C) =

⎛⎝ 1

|A1|
∑

(i,j)∈A1

Ci,j, . . . ,
1

|An|
∑

(i,j)∈An

Ci,j

⎞⎠ , (6)

where | · | denotes the cardinal operator, and where the sequence of sets

At = {(i, j) : i+ j = t+ 1, i ∈ {1, . . . , l}, j ∈ {1, . . . , k}}, t = 1, . . . , n, (7)

defines the elements of the n antidiagonals of the cycle matrix.

The business cycle indicator ĉ yielded by the steps above is given by the diagonal averaging of the

cycle matrix in (13), i.e.,

ĉ = (Ĉ1, . . . , Ĉn) ≡ D(C) =

⎛⎝ 1

|A1|
∑

(i,j)∈A1

Ci,j, . . . ,
1

|An|
∑

(i,j)∈An

Ci,j

⎞⎠ , (8)

2.3 Modeling concept: Two-channel setting

The method in Section 2.2 is essentially an updated version of the approach in de Carvalho, Rodrigues,

and Rua (2012), which we now generalize to the two-channel, or bivariate, setting. The main motivation

for this is as follows: From a practical viewpoint, we have reasons to believe that we should be able
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to borrow strength from further information available on real time. Particularly, we are interested

in constructing a business cycle indicator which combines information of the GDP and the industrial

production (IP) index—which is a proxy for measuring economic activity evolution, and it is well known

to be strongly correlated with the aggregate activity as measured by GDP (see, for instance, Fagiolo,

Napoletano, & Roventini, 2008, de Carvalho & Rua, 2014). With this in mind, we extend the working

assumption in (2) to a joint setting, so that the dynamics governing the GDP, Yt, and the IP, It, are

assumed to be of the form

Yt = T Y
t + CY

t +RY
t , It = T I

t + CI
t +RI

t . (9)

It is important to underscore that the target of estimation is CY
t , and thus the same as in Section 2.1.

2.4 Two-channel singular spectrum business cycle analysis

Two-channel singular spectrum business cycle analysis can be conducted by extending the approach

discussed in Section 2.2. As we shall see below, the main modification is that we need to construct

a block Hankel trajectory matrix—rather than an ordinary trajectory matrix; the extension to the

multivariate setting is analogous.

Embedding. In the embedding step we construct a GDP–IP trajectory matrix which consists of a

two-block matrix defined as

Z =

(
Y

I

)
, (10)

where Y is a GDP trajectory matrix, similar to the one defined in Eq. (3),

Y =

⎛⎜⎜⎜⎜⎜⎜⎝
Y1 · · · Yk

Y2 · · · Yk+1

...
...

...

Yl · · · Yk+l−1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
T Y
1 + CY

1 +RY
1 · · · T Y

k + CY
k +RY

k

T Y
2 + CY

2 +RY
2 · · · T Y

k+1 + CY
k+1 +RY

k+1

...
...

...

T Y
l + CY

l +RY
l · · · T Y

k+l−1 + CY
k+l−1 +RY

k+l−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (11)
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and with I being analogously defined, i.e.,

I =

⎛⎜⎜⎜⎜⎜⎜⎝
I1 · · · Ik

I2 · · · Ik+1

...
...

...

Il · · · Ik+l−1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
T I
1 + CI

1 +RI
1 · · · T I

k + CI
k +RI

k

T I
2 + CI

2 +RI
2 · · · T I

k+1 + CI
k+1 +RI

k+1

...
...

...

T I
l + CI

l +RI
l · · · T I

k+l−1 + CI
k+l−1 +RI

k+l−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Singular Value Decomposition. In the second step we perform a singular value decomposition

of the GDP–IP trajectory matrix. Hence, from an eigenanalysis of ZZT we gather the eigenvalues

λ1 ≥ · · · ≥ λd, where d = rank(ZZT), as well as the corresponding left and right singular vectors

which we respectively denote by ui and vi. Thus, we decompose the GDP–IP trajectory matrix into

Z =
d∑

i=1

uiv
T

i

√
λi. (12)

Grouping Cyclical Components. Not all summands in Eq. (12) contain relevant information on

the business cycle, and hence we confine ourselves to a subset S of {1, . . . , d}, so to produce what we

define as the two-block cycle matrix,

C =

⎛⎝ CY

CI

⎞⎠ =
∑
i∈S

uiv
T

i

√
λi, (13)

where

CY =

⎛⎜⎜⎜⎝
CY1,1 · · · CY1,k
...

...
...

CYl,1 · · · CYl,k+l−1

⎞⎟⎟⎟⎠ , CI =

⎛⎜⎜⎜⎝
CI1,1 · · · CI1,k
...

...
...

CIl,1 · · · CIl,k+l−1

⎞⎟⎟⎟⎠ . (14)

Similarly to Section. 2.2, we construct S through a Fisher g test on which we provide further details in

Section 2.5. As we discuss in Section 3 the advantages of our Fisher–g test approach are particularly

evident in the two-channel setting, given that we face a larger number of ‘candidate’ components which

could potentially be used to construct the cycle.

Diagonal Averaging. In this step we average over all the elements of the antidiagonals of the cycle

matrix CY , as defined in Eq. (14), so to obtain a Hankel matrix. This can be performed through the
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D mapping defined in (6), so that the business cycle indicator ĉY yielded by the steps above is given

by the diagonal averaging of the block of the cycle matrix corresponding to GDP, that is to say

ĉY = (ĈY
1 , . . . , Ĉ

Y
n ) ≡ D(CY ) =

⎛⎝ 1

|A1|
∑

(i,j)∈A1

CYi,j, . . . ,
1

|An|
∑

(i,j)∈An

CYi,j

⎞⎠ . (15)

Here CY is defined as in Eq. (13), and At is defined as in Eq. (7).

The extension from the two-channel to the D-channel setting is trivial, the main difference being

that we would need to build a D-block Hankel matrix approximation to the trajectory matrix, where

the latter would consist of an extension of the GDP–IP trajectory matrix in Eq. (10) to a D-block

setting; see Hassani, Soofi, and Zhigljavsky (2013b, p. 747).

2.5 Targeted grouping based on the Fisher g-statistic

The grouping stage in SSA should take into account the targeted output. In our framework, the aim

is to group the components that reflect business cycle developments. In this respect, de Carvalho,

Rodrigues, and Rua (2012) have grouped the components that seemed, by visual inspection, to contain

information about the standard business cycle frequency range. Here, we suggest a formal inferential

approach to address this issue. Underlying the informal approach of de Carvalho, Rodrigues, and Rua

(2012) is the idea that one should select the components whose dominant periodicity (or frequency) falls

within the range of frequencies of interest. This problem can be more formally addressed using spectral

analysis. In particular, one can determine the dominant frequency (or periodicity) by finding the peak

in the periodogram, while its statistical significance can be assessed through the so-called Fisher g-

statistic—to be introduced below. If the frequency at which the peak is observed in the periodogram

lies within the business cycle frequency range, and if it is statistically significant according to Fisher

g-statistic, then that component is selected for the reconstruction of the cyclical component.

As mentioned earlier, the Fisher g test draws on the periodogram; see Priestley (1981, Sec. 6.1.4).

The periodogram unveils the power of the signal at various frequencies, so that if the signal is being

driven by a certain frequency, the periodogram presents a peak precisely at that periodicity. Basically,

the Fisher g test checks for the proportion of power accounted for the frequency associated with the

peak in the periodogram, and tests whether such peak is random or not. More formally, if X1, . . . , Xn
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is an equally-spaced time series, the periodogram consists of the set of points

{(ωj, I(ωj)) : j = 1, . . . , J}, J = �(n− 1)/2	,

where �·	 denotes the floor function, ωj = 2πj/n are the so-called Fourier frequencies, for j = 1, . . . , J ,

and

I(ω) =
1

n

∣∣∣∣∣
n∑

t=1

Xte
−iωt

∣∣∣∣∣
2

=
1

n

⎡⎣{ n∑
t=1

Xt sin(ωt)

}2

+

{
n∑

t=1

Xt cos(ωt)

}2
⎤⎦ , ω ∈ (0, π).

If a time series has a significant periodic component with frequency ω�, then the periodogram will

exhibit a peak at frequency ω�. Fisher (1929), in a celebrated paper, derived an exact test for testing

the significance of the spectral peak based on the g-statistic,

g =
max{I(ω1), . . . , I(ωJ)}

J∑
j=1

I(ωj)

, (16)

In Fisher’s test, the null hypothesis is that the spectral peak is not statistically significant against the

alternative hypothesis that there is a periodic component; under the Gaussian assumption, large values

of g lead to the rejection of the null hypothesis. The p-value of the test under the null hypothesis is

given by

p ≡ P (g > g�) =
K∑

κ=1

(−1)κ−1 J !

κ! (J − κ)!
(1− κg�)J−1 , (17)

where K is the largest integer less than 1/g� and g� is the observed value of the g-statistic. In practice

we proceed as in the following pseudocode implementation. Let Ω ⊆ (0, π) denote a range of frequencies

of interest, and let Di = D(uiv
T
i

√
λi) denote the ith principal component.

Targeted grouping based on the Fisher g-statistic

Start with S(0) = ∅, and for i = 1, . . . , d, do:

Step 1. Obtain the periodogram of Di, and compute:

ω�
i = arg max

ω∈{ω1,...,ωJ}
Ii(ω). (18)

Step 2. if ω�
i ∈ Ω go to Step 3; otherwise increment i and go back to Step 1.

Step 3. use Eq. (16) to compute the g-statistic associated with Di; save the result in gi.

11



Step 4. use Eq. (17) to compute the p-value corresponding to the gi statistic from Step 3; save the

result in pi.

Step 5. if pi < 0.05, set S(i) = S(i−1) ∪ {i}; otherwise, set S(i) = S(i−1).

Step 6. if i = d, set Sg = S(i) and stop; otherwise, increment i and go back to Step 1.

Following the notation from the pseudocode implementation above, throughout we use the notations

gi denote the Fisher g-statistic computed from the periodogram of D(uiv
T
i

√
λi); similarly, pi is used to

denote the p-value corresponding to this statistics, while Sg denotes the grouping set selected through

our approach. To be able to visualize in a simple way which components have been selected through

our method, we propose plotting

{(i, δi(Sg)) : i = 1, . . . , d}, (19)

where δ·(·) denotes the Dirac measure, and Sg = {i ∈ {1, . . . , d} : ω�
i ∈ Ω, pi < 0.05}; throughout we

will call the graph in Eq. (19) as the comb-plot, and the point masses δi(Sg) as Fisher g indicators, for

i = 1, . . . , d.

3 Real-time nowcasting the US output gap

3.1 Real-time vintages

As the aim is to assess the real-time performance of several alternative methods to extract the cyclical

component of GDP, one requires a real-time dataset for the US. In particular, we use the US data set

comprising real-time vintages, based on the work of Croushore and Stark (2001), which is maintained

by the Federal Reserve Bank of Philadelphia.4 The sample period runs from the first quarter of 1947

up to the fourth quarter of 2013. We consider the real-time vintages since the first quarter of 2000,

as this is the earliest date for which GDP is available in all subsequent vintages for the whole sample

period. In the case of GDP, we use the first release for a given quarter and for industrial production

4 The data are publicly available at:

www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/.
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Figure 1: Above: Univariate SSAGDP analysis. Below: Bivariate SSAGDP,IP analysis. For each of the analysis: on

the left, we present the respective comb-plot, as defined in Eq. (19), with the point masses identifying the indices of the

components selected according to the approach discussed in Section 2.5; on the right, we plot the principal components

used to construct our business cycle indicators, colored according to the same palette as the one used in the comb-plot

on the left.

13



we consider the available vintage at the time GDP is released. The period under consideration for

real-time evaluation is close to the one in de Carvalho, Rodrigues, and Rua (2012), but extended up to

the end of 2013, corresponding to 20% of the sample size; this period encompasses the Great Recession

which is by all standards challenging in many dimensions.
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Figure 2: Latest available vintage for the GDP and IP, released on the first quarter of 2014.

3.2 Final output gap estimates

In this section, we compute the so-called final output gap estimates, which are based on the latest

available vintage (Orphanides & van Norden, 2002); in Fig. 2 we plot the latest available vintage,

which for our case corresponds to the one released on the first quarter of 2014. These estimates will

then be used as target variables for the assessment of the real-time nowcasting ability of the alternative

methods in the next section. Regarding the well-known and commonly applied filters in business cycle

literature, we consider the usual parameter values to extract the GDP cyclical component. In particular,

for the Hodrick–Prescott filter we set the smoothing parameter equal to 1600 which is the recommended
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value for quarterly data; see Prescott (1986) and also Baxter and King (1999) for a more thorough

discussion. In the case of the Christiano–Fitzgerald filter we define the range of periodicities of interest,

when extracting the GDP cyclical component, to be between 6 and 32 quarters which corresponds to

the standard frequency range considered in the business cycle literature; see, for example, Stock and

Watson (1999, 2005).

In the case of the SSA, since we are interested in dynamics of up to 8 years, we set a window

length of 32 quarters as in de Carvalho, Rodrigues, and Rua (2012). Regarding the selection of the

components in the grouping stage of SSA, we resort to the Fisher g-statistic discussed in Section 2.5.

Given all the potential components to be considered in the construction of the output gap, we select the

components for which the dominant periodicity lies within the standard business cycle frequency range

(that is, between 6 and 32 quarters), and which are statistically significant, at the usual 5% significance

level, according to the Fisher g test. Once the components are selected, they are aggregated to obtain

an output gap measure, by following the steps discussed in Section 2.

The resulting output gap estimates are presented in Fig. 3. All the measures seem to be in accor-

dance with the NBER business cycle chronology and deliver similar qualitative reading concerning the

cyclical position of the economy. Note however that, as expected, near the end of the sample there is

a higher dispersion of the estimates reflecting the end-of-sample uncertainty. Furthermore, note that

the output gap from the Hodrick–Prescott filter is slightly noisier than the remainder reflecting the

fact that it acts as a high-pass filter (King & Rebelo, 1993, Baxter & King, 1999). In contrast, the

Christiano–Fitzgerald band-pass filter yields a much smoother measure of output gap. In this respect,

both the univariate (SSAGDP) and bivariate (SSAGDP,IP) SSA-based output gap estimates are also

smooth over time, reflecting the criterion adopted in the grouping stage which allows us to discard the

trending components and components associated with higher frequencies.

Regarding the univariate SSAGDP, the Fisher g-statistic led to the selection of the 3rd up to the 10th

components, for the construction of the GDP cyclical component, i.e., Sg = {3, 4, 5, 6, 7, 8, 9, 10}. These
almost correspond to the components chosen by de Carvalho, Rodrigues, and Rua (2012), through an

heuristic approach which led them to obtain S = {3, 4, 5, 6, 7, 8, 9}. In practice, the two output gap

estimates are nearly indistinguishable graphically; this stems from the fact that the 10th component

accounts for a negligible part (≈ 1%) of the variance of the output gap.
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In the case of the two-channel SSAGDP,IP, from the potential 64 components, 18 have been selected

drawing on the Fisher g-based approach discussed in Section 2.5; in this case

Sg = {4, 5, 6, 7, 8, 9, 11, 12, 13, 20, 22, 23, 24, 29, 33, 34, 40, 41},

and we summarize this information in the comb-plot in Fig. 1, whose formal definition can be found

in Eq. (19).

As can be observed in Fig. 1, in contrast with the univariate SSAGDP case, the selected components

are not sequential in terms of the ordering based on the eingenvalues. In fact, the ordering based on the

eigenvalues does not necessarily lead to the most relevant components for the problem at hand. This

feature highlights the usefulness of the suggested Fisher g-based criterion to identify the components

of interest. Naturally, increasing the number of variables makes the practical contribution of using this

criterion even more striking.

All in all, the resulting output gap estimates are relatively similar across alternative methods.

Hence, in the next section, we evaluate the information content of the real-time nowcasts for assessing

the output gap.

3.3 Real-time nowcasting

In this section, we compute the real-time output gap nowcasts based on a recursive estimation exercise,

with an expanding sample window, using the real-time vintages of data. In the cases of SSAGDP

and SSAGDP,IP, this also entails the computation of the Fisher g test at each moment in time and

corresponding components selection. This truly mimics a real-time scenario in all dimensions. The

resulting real-time estimates along with the final output gap estimate for each approach are displayed

in Fig. 4.

To evaluate quantitatively the real-time ability of the different methods to nowcast output gap we

consider a wide range of performance statistics (see, for example, Orphanides & van Norden, 2002,

Marcellino & Musso, 2011). The results are presented in Table 1. In the first column, we report the

Mean Absolute Error (mae), which refers to the average of the absolute difference between the final

output gap estimates and the real-time nowcasts. We also present, in the second column, the Root

Mean Squared Error (rmse) which penalizes more larger differences. Both, the mae and rmse, are
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Figure 4: Comparison of real-time estimates (---) and of final estimates (---).
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Table 1: Real-time performance evaluation.

Filter mae rmse corr ns nsr sign-lev sign-ch

Hodrick–Prescott 1.08 1.24 0.56 0.90 0.87 64.3 80.4

Christiano–Fitzgerald 0.71 0.92 0.71 0.71 0.84 73.2 67.9

SSAGDP 0.93 1.25 0.92 0.63 0.63 83.9 76.8

SSAGDP, IP 0.67 0.92 0.97 0.45 0.48 92.9 80.4

The top real-time performances according to each measure are identified by the cells in gray.

reported in percentage terms. The third column presents the correlation (corr) between the final and

real-time estimates. The next two columns report measures of signal-to-noise of the nowcasts for each

method. In particular, ns denotes the ratio of the standard deviation of the revision to that of the

final estimate, whereas nsr refers to the ratio of the root mean square of the revision to the standard

deviation of the final estimate. In the last two columns we report the sign concordance between the

real-time nowcasts and the final estimates. The sign-lev denotes the percentage of times in which the

sign of the level of the real-time and final estimates coincide, whereas the sign-ch refers to the sign of

the changes in output gap estimates.

In terms of the size of the revisions, the Hodrick–Prescott filter seems to perform worse than its

competitors, whereas the Christiano–Fitzgerald filter, and the SSAGDP, IP approach are the top ranked.

Among these two, the SSAGDP, IP method delivers better results than the Christiano–Fitzgerald filter,

according to the mae criterion. In terms of the correlation between the real-time and final estimates,

the Hodrick–Prescott filter ranks last. In contrast, both the univariate SSAGDP and SSAGDP, IP record

the highest correlation coefficients, with the latter presenting a correlation close to one. Concerning the

signal-to-noise measures, qualitatively similar findings emerge. The Hodrick–Prescott filter records the

highest noise-to-signal whereas there is a striking decrease when one considers the SSAGDP, IP. Although

the univariate SSAGDP approach already improves on the Hodrick–Prescott and Christiano–Fitzgerald

filters, extending the SSAGDP to the multivariate case results in an even larger decrease of the noise-

to-signal. Regarding the sign concordance, in terms of the level, the SSAGDP approach outperforms

the other filters, with the SSAGDP, IP standing at the top of the ranking. For the sign concordance in

terms of the change, the Christiano–Fitzgerald filter ranks last, whereas the Hodrick–Prescott filter,
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and SSAGDP, IP present the best performance. Summing up, for all the performance indicators, the

SSAGDP, IP always ranks first. The SSAGDP approach outperforms, in overall terms, standard filtering

techniques, but further gains can still be achieved with the SSAGDP, IP approach from Section 2.4.

Hence, by considering information beyond the one conveyed by GDP, namely the industrial production

index, it is possible to improve the real-time performance of the output gap nowcasts in all dimensions.

Although it is straightforward to extend the approach in Section 2.4 to a multichannel setting, from

an empirical viewpoint it is not clear cut that by enlarging the number of variables considered it will

improve the real-time performance. We tried to supplement industrial production with other real-time

data, namely non-farm payroll employment and/or real personal income less transfers, which are also

among the series closely monitored by the NBER Business Cycle Dating Committee. However, the

results, not reported here, do not reveal any improvement in terms of the performance of the real-time

nowcasts.

4 Conclusions

This paper explores the performance of SSA-based methods for nowcasting in real-time the US output

gap. The assessment in real-time of output gap is of utmost relevance for policymaking, and here

we assess the added value of SSA-based nowcasts in a real-life policymaking scenario, by replicating

the problem faced by policymakers at the time policy decisions have to be taken. We used real-time

vintages, and conducted a recursive study so to evaluate the real-time reliability of our SSA-based

approach. For our econometric setting of interest, the preferred specification of our approach consists

of a two-channel singular spectrum analysis, where a Fisher g test is used to screen which components—

within the standard business cycle range—should be included in the grouping step. Our findings suggest

that singular spectrum analysis provides a reliable evaluation of the cyclical position of the US economy

in real-time, with the two-channel approach outperforming considerably the univariate counterpart.

Although SSA has been widely applied on many fields of research, there are only a few applications

in the economics and finance literature (see, for instance, Hassani, Heravi, & Zhigljavsky, 2009, Pat-

terson, Hassani, Heravi, & Zhigljavsky, 2011, de Carvalho, Rodrigues, & Rua, 2012, Hassani, Soofi, &

Zhigljavsky, 2013a,b). We hope that this paper takes another small step in promoting the application
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of SSA methods in economics, by stressing the resilience of SSA-based approaches to model macroe-

conomic data. Applied econometric analysis requires the combination of different methodology, and

we hope further applied econometricians may consider taking advantage of SSA-based approaches in a

near future.
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Appendix

NBER’s Business Cycle Reference Dates

This appendix includes the NBER’s business cycle reference dates used in Section 3. This chronology is included here for

completeness; the complete chronology can be found at the NBER web site at: www.nber.org/cycles/cyclesmain.html

Table 2: US Business Cycle Reference Dates from Peak to Through, along with duration of corresponding contractions.

Business Cycle Reference Dates

Peak Through Duration

November 1948 (iv) October 1949 (iv) 11

July 1953 (ii) May 1954 (ii) 10

August 1957 (iii) April 1958 (ii) 8

April 1960 (ii) February 1961 (i) 10

December 1969 (iv) November 1970 (iv) 11

November 1973 (iv) March 1975 (i) 16

January 1980 (i) July 1980 (iii) 6

July 1981 (iii) November 1982 (iv) 16

July 1990 (iii) March 1991 (i) 8

March 2001 (i) November 2001 (iv) 8

December 2007 (iv) June 2009 (ii) 18

Here i–iv are used to denote the quarters corresponding to the reference dates; the duration is in months.
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