
working papers

7 |  2012 

March 2012

The analyses, opinions and fi ndings of these papers 

represent the views of the authors, they are not necessarily 

those of the Banco de Portugal or the Eurosystem

QUANTILE REGRESSION FOR LONG MEMORY TESTING:
A CASE OF REALIZED VOLATILITY

Uwe Hassler

Paulo M. M. Rodrigues

Antonio Rubia

Please address correspondence to

Paulo M. M. Rodrigues

Banco de Portugal, Economics and Research Department 

Av. Almirante Reis 71, 1150-012 Lisboa, Portugal;

Tel.: 351 21 313 0831, email: Paulo M.M. Rodrigues@bportugal.pt



BANCO DE PORTUGAL

Av. Almirante Reis, 71

1150-012 Lisboa

www.bportugal.pt

Edition

Economics and Research Department

Pre-press and Distribution

Administrative Services Department

Documentation, Editing and Museum Division

Editing and Publishing Unit

Printing

Administrative Services Department

Logistics Division

Lisbon, March 2012

Number of copies

80

ISBN 978-989-678-121-7

ISSN 0870-0117 (print)

ISSN 2182-0422 (online)

Legal Deposit no. 3664/83



Quantile Regression for Long Memory Testing:
A case of Realized Volatility�

Uwe Hasslera, Paulo M.M. Rodriguesb and Antonio Rubiac

a Goethe University Frankfurt
b Banco de Portugal, Universidade Nova de Lisboa and CEFAGE

c University of Alicante

Abstract

In this paper we derive a quantile regression approach to formally test for long mem-
ory in time series. We propose both individual and joint quantile tests which are useful
to determine the order of integration along the di¤erent percentiles of the conditional
distribution and, therefore, allow to address more robustly the overall hypothesis of frac-
tional integration. The null distributions of these tests obey standard laws (e.g., standard
normal) and are free of nuisance parameters. The �nite sample validity of the approach
is established through Monte Carlo simulations, showing, for instance, large power gains
over several alternative procedures under non-Gaussian errors. An empirical application
of the testing procedure on di¤erent measures of daily realized volatility is presented. Our
analysis reveals several interesting features, but the main �nding is that the suitability of
a long-memory model with a constant order of integration around 0.4 cannot be rejected
along the di¤erent percentiles of the distribution, which provides strong support to the
existence of long memory in realized volatility from a completely new perspective.
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1 Introduction

There is a growing interest in �nance and economics in modelling and forecasting dependence

in the tails of the conditional distribution of a time series. An e¢ cient way to address this issue

is through the quantile regression (QR) approach introduced by Koenker and Bassett (1978),

now routinely implemented in market downside risk management and other applied areas. The

QR analysis distinctively deals with estimation and inference at di¤erent quantiles, allowing

to address a wide range of hypotheses and o¤er new insights on the time-series properties of

the data. For instance, using these techniques, Engle and Manganelli (2004) show that the

conditional Value-at-Risk of daily returns is a strongly persistent process. The reason is that

daily downside risk measures are mainly driven by volatility, which typically exhibits long-

range dependence possibly generated by a fractionally-integrated process. Similarly, Koenker

and Xiao (2004) report evidence of strongly persistent, yet heterogenous dynamics in U.S. short-

term interest rate along the deciles of the conditional distribution. The QR analysis reveals

that the largest autoregressive coe¢ cient varies signi�cantly from bottom to top quantiles,

showing asymmetric patterns ranging from stationarity to explosiveness which can be related

to di¤erent policy strategies of the Federal Reserve Board.

In this paper, we contribute to the extant literature by proposing a novel quantile regression

test to detect long memory (also known as fractional integration) in the time series context.

This general class of models allows for long-run dependence characterized by autocovariances

that decay hyperbolically, thereby o¤ering an intermediate case between the exponential decay

of short memory and the in�nite persistence of unit root processes. Consequently, long-memory

models often explain convincingly the time-series dynamics exhibited by many economic and

non-economic time series; see, Henry and Za¤aroni (2003) for a review. We propose a series

of Lagrange Multiplier (LM) semiparametric tests for fractional integration that extend the

regression procedure in Breitung and Hassler (2002) to the QR setting and which allows us

to address more general hypotheses than the unit root case analyzed in this literature. By

inverting these test statistics, furthermore, con�dence-interval estimates of the long-memory

parameter can readily be obtained.

More speci�cally, we discuss the asymptotic theory for both individual and joint quantile

regression long memory tests (QRLM henceforth) under a fairly general class of errors in the

data generating process. Individual quantile tests are intended to address the fractional in-

tegration hypothesis at a speci�c quantile 0 < � < 1, with the conditional median � = 1=2

being a leading example, while joint tests involve sets of quantiles in closed subintervals of

(0; 1). We show that the asymptotic null distributions of QRLM tests do not depend on the

degree of integration in the observable series nor on other nuisance parameters, and can be

characterized by usual probability laws, which is in sharp contrast to existing tests for the unit

root hypothesis. Individual quantile tests are asymptotically distributed as a standard normal

or a Chi-squared distribution, while joint tests across quantiles are distributed according to
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truncated versions of the well-known Kolmogorov and Cramer von Mises distributions. Monte

Carlo experimental analysis shows that QRLM tests can yield large power improvements over

suitable alternatives and tend to o¤er more robust inference against observations drawn from

heavy-tailed distributions.

The QRLM tests allow us to gain greater insight into the dynamics of the underlying time-

series process. Applying our novel procedure, we analyze the long-range properties of di¤erent

measures of daily realized volatility of IBM, one of the most liquid and frequently-traded se-

curities in the U.S. stock exchange. Realized volatility time-series characteristically display

empirical autocorrelation functions that slowly decay to zero and which cannot be explained

by unit root models. Consequently, a number of studies have successfully used fractionally-

integrated models to capture long-range dependence and forecast these series, outperforming

GARCH and stochastic volatility models; see, for instance, Andersen, Bollerslev, Diebold and

Labys (2003). Nevertheless, there is currently a debate discussing whether long memory is

really present in these series or the spurious consequence of model misspeci�cation. QRLM

tests allow us to determine the order of fractional integration along the di¤erent quantiles of

the conditional distribution, thereby addressing more robustly this hypothesis and bringing

completely new evidence to the �eld.

The main �ndings of this analysis can be summarized as follows. First, we observe meaning-

ful di¤erences between realized volatility measured in levels and their logarithmic transforms.

In levels, the QRLM tests strongly reject the hypothesis that �ltering the long-run component

with a fractionally integrated model renders innovations that follow a stationary ARMA-type

model. The existence of sheer di¤erences between low and high levels of volatility, related to

di¤erent regimes in these series, is the most likely reason underlying this rejection; see, among

others, Diebold and Inoue (2001), Maheu and McCurdy (2002) and Baillie and Kapetanios

(2007). Second, the logarithmic transform, widely used in realized volatility modelling (e.g.,

Andersen et al. 2003), considerably regularizes the data and reduces the heterogeneity caused

by di¤erent regimes. After applying this nonlinear transformation, the QRLM tests show that

a constant long-memory parameter model may explain well the long-run of observations be-

longing to quantiles in the left tail and center deciles of the conditional distribution. Con�dence

interval-based estimators, computed by inverting the QRLM tests, infer the most likely values

of the long-memory coe¢ cient of around 0:4; the standard value reported in related literature.

At top deciles, the individual analysis uncovers an upward trend in the long-memory parame-

ter. This may be consistent with log-realized volatility being driven by di¤erent components

related to �normal�and �high�periods of volatility, yet we also observe con�dence-interval es-

timates that considerably widen at these quantiles, leading to greater parameter uncertainty.

In this context, joint QRLM tests are particularly useful to formally determine whether a

long-memory model with constant order of integration generates the data. We observe that

there is su¢ cient regularity such that the joint tests across deciles cannot reject the suitability
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of a single, constant long-memory model. The con�dence-interval estimates of the common

underlying long-memory parameter yield values in the region [0:4; 0:5], which agrees with the

estimates provided by alternative semiparametric procedures and supports the �ndings in the

extant literature. Therefore, according to our analysis, long-range dependence is caused by a

long-memory model.

This paper can be related to di¤erent strands of previous research. First, it generalizes

the unit-root testing procedures put forward in the QR literature by proposing a test that can

identify fractional integration in the data. Previous papers have focused on testing for the unit-

root hypothesis, see, among others, Hasan and Koenker (1997), Koenker and Xiao (2004), Ling

and McAleer (2004), Thompson (2004), Chan, Peng and Qi (2006), Galvao (2009) and Xiao

(2009). Our analysis is more general and nests the unit root hypothesis as a particular case.

Second, our paper extends reciprocally the fractional integration testing, traditionally focused

on the conditional mean analysis, towards a more general setting involving other aspects of

the conditional distribution. The analysis on quantiles and sets of quantiles produces more

robust evidence to determine the adequacy of the long-memory �lter. QRLM tests are a direct

extension of the Least-Squares (LS) based tests proposed in the time-domain by Breitung and

Hassler (2002) and further generalized in Demetrescu, Kuzin and Hassler (2008) and Hassler,

Rodrigues and Rubia (2009); for further references see Tanaka (1999), Robinson (1991, 1994)

and Hassler and Breitung (2006).

In addition, our paper can be related to the literature concerned with stochastic-trend

detection when data are drawn from a heavy-tailed distribution. Indeed, an earlier motivation

for the QR methodology was that it o¤ers estimates that can exhibit better properties against

non-Gaussian features of the data, particularly, excess kurtosis. The well-known Least-Absolute

Deviations (LAD) procedure is simply a QR computed at the median of the distribution.

Characteristically, most unit-root tests are based on LS estimation, which ensures e¢ ciency

under Gaussian conditions, but can lead to �nite-sample bias under heavy-tailed distributions.

Consequently, the literature on unit-root testing has suggested alternative approaches based

on M estimators (Lucas 1995), LAD estimators (Knight 1989; Phillips 1991; Hercé 1996; Li

and Li 2009) and the QR generalization of the latter, surveyed previously. In sharp contrast,

fractional integration testing has barely received attention in this context. Li and Li (2008)

discuss the asymptotic properties of LAD estimators in a fully parametric modelling context for

a class of ARFIMA-GARCH models in a Laplace quasi-maximum likelihood estimation setting,

while Delgado and Velasco (2005) propose a nonparametric sign test for fractional integration

under zero-median errors. The QRLM test at the median � = 1=2 o¤ers robustness against

excess kurtosis and constitutes a valid alternative to these tests. Finally, our paper is related

to the empirical literature concerned with realized volatility modelling. We provide both a

novel procedure to detect long-memory and bring more robust evidence to the �eld; see, among

others, Andersen, Bollerslev, Diebold and Labys (2001, 2003), Barndor¤-Nielsen and Shephard
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(2004) and Corsi, Mittnik, Pigorsch and Pigorsch (2008).

The remainder of the paper is organized as follows. Section 2 reviews the LS testing frame-

work for fractional integration proposed by Breitung and Hassler (2002) and discusses the

asymptotic behavior of a median-based QRLM testing procedure. Section 3 generalizes this

setting to the context of QR, introducing individual and joint tests under di¤erent sets of as-

sumptions. Section 4 presents experimental evidence on the �nite sample size and power of the

test and compares it to several alternative procedures. In section 5, we apply the QRLM tests

to characterize the extent of long-run dependence in realized variation of stock prices. The

�nal section summarizes and concludes. A technical appendix collects the proofs of the main

theoretical statements of the paper.

In what follows, �!� and �p!� denote weak convergence and convergence in probability,
respectively, as the sample size is allowed to diverge, and I (�) is an indicator function that
takes values equal to one if the condition in parenthesis is ful�lled and zero otherwise. Finally,

vectors and matrices are represented in bold letters throughout the text.

2 Least-squares and LAD testing

Consider the following data generating process

(1� L)d+� yt = "t; t = 1; :::; T (1)

where L denotes the lag operator, (d; �)0 is a real-valued vector with unknown elements that

are not restricted to be integer and, for the moment, we assume "t � iidN (0; �2). Our main

aim is to test the null hypothesis that fytg is fractionally integrated of order d, denoted as I(d),
against the alternative I(d + �), i.e., testing H0 : � = 0 against H1 : � 6= 0 for a given value of
d: The standard unit-root model, d = 1; is a particular case in this generalized setting, since

the long-memory parameter, d; may take any other real value.1 It is common in the theoretical

literature to assume initial conditions characterized by "k = 0 for all k � 0; so that the process
is well-de�ned in mean-square sense. We maintain this condition for the moment, noting that it

is not really necessary to derive the null distribution of our test statistics, as is formally proven

in the technical appendix.

The theoretical setting described above has been considered, among others, in Robinson

(1991, 1994) and Tanaka (1999), who derive score statistics for long memory in the frequency

and time domains, respectively. Breitung and Hassler (2002) proposed a variant of the re-

gression procedure introduced by Agiakloglou and Newbold (1994), which has been further

1The theoretical properties of fytg in (1) are well-known. An I(d) process generates hyperbolically decaying
autocovariances that are not summable for d > 0: For values jdj < 1=2; fytg is invertible and stationary, while
for d � 1=2 it does not have �nite variance. When "t is generated from a stationary ARMA, the process is

generally referred to as an ARFIMA model.
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extended in Demetrescu et al. (2008) and Hassler et al. (2009). To illustrate the main features

of this test, consider the time series f"t;dg which corresponds to the values of fytg di¤erenced
under the null, i.e.,

"t;d = (1� L)d yt ; (2)

and then de�ne the regressor x�t�1;d as a weighted partial sum of lags of "t;d according to

x�t�1;d =

t�1X
j=1

j�1"t�j;d ; t = 2; :::; T (3)

following the Lagrange Multiplier principle under the Gaussian restriction.

Hence, based on (2) and (3), Breitung and Hassler (2002) show that the LM test for the

null hypothesis H0 : � = 0; say LMLS; is equivalent to the squared t-statistic on the estimate b�
to test H0 : � = 0 in the auxiliary LS regression,

"t;d = �x�t�1;d + ut; (4)

i.e.,

LMLS =

�PT
t=2 "t;dx

�
t�1;d

�2
b�2uPT

t=2

�
x�t�1;d

�2 (5)

where b�2u denotes the LS estimate of the residual variance of (4).
Under the conditions given above and as the sample size diverges, LMLS converges to a �2(1):

Hence, the test is asymptotically equivalent to the score tests in Robinson (1991) and Tanaka

(1999), both of which are derived under Gaussianity. Although this restriction is not strictly

necessary (i.e., LMLS ! �2(1) holds as T ! 1 independently of whether errors are normal

or not), it is only under such a restriction that the test achieves the e¢ ciency established in

Robinson (1994). Under large departures from the normal distribution, the test is no longer

e¢ cient and may su¤er from severe power losses in �nite samples.

Seeking to robustify inference against large or discordant observations, the � parameter in

the auxiliary regression (4) can alternatively be estimated in the LAD setting, de�ned as

b�LAD = argmin
�2R

TX
t=2

��"t;d � �x�t�1;d
�� : (6)

Evidently, the null hypothesis H0 : � = 0 still implies H0 : � = 0: Therefore, paralleling the LS

analysis, this can be tested through the test statistic

LMLAD =
h
2b�LAD bf (0)i2 TX

t=2

�
x�t�1;d

�2
(7)

where bf (0) is a consistent estimate of the (unknown) density of the distribution of the regression
residuals, but;d = "t;d� b�LADx�t�1;d; evaluated at the origin. The following theorem characterizes
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the asymptotic distribution of LMLAD under a set of restrictions similar to that maintained by

Breitung and Hassler (2002). These will be relaxed considerably in the more general context

of QR discussed in the following section.

Theorem 2.1 Considering fytg generated as in (1) with "t � iid (0; �2) having median zero,

and assuming that the innovations are distributed according to a continuous, strictly positive

density f in a neighborhood of zero, it follows, under the null hypothesis H0 : � = 0 as T!1
that,

p
T b�LAD ! N

�
0;

3

2�2f 2 (0)�2

�
; (8)

and consequently,

LMLAD ! �2(1)

assuming that bf (0) is a consistent estimator of f (0).
Proof. See the technical appendix.

Remark 2.1. The asymptotic variance of b�LAD is characterized by the density of the error
distribution in the LAD regression, which can be consistently estimated through a series of

alternative methods; see Koenker (2005) for a review. We shall discuss this issue more carefully

in the generalized QR context. Also, note that b�LAD is the maximum likelihood estimator of

� when the distribution of "t is the double exponential distribution with coe¢ cient � > 0;

i.e., f ("t) = exp (�j"tj=�) =(2�); with ��1 � 2f (0) : Therefore, LMLAD is an e¢ cient score test

based on the gradient of the likelihood function when innovations are drawn from this distribu-

tion. As in the case of the LMLS test, the asymptotic convergence stated in Theorem 2.1 does

not require a particular distribution to hold, but on the other hand it requires innovations hav-

ing both zero mean and zero median, a technical restriction often required in robust inference;

see, for instance, Delgado and Velasco (2005). We shall conveniently relax this unnecessarily

restrictive assumption for practical purposes in the QR setting.

Remark 2.2. It is possible to use more general estimation procedures aiming to ensure full
robustness (in the sense of obtaining high breakdown resilience) when the sample is contam-

inated with a substantial fraction of in�uential observations. These procedures can be em-

bedded into a general class of estimators known as M estimators, of which the LAD, LS and

maximum-likelihood estimators are particular cases. More speci�cally, let � (�) be a real-valued
function, possibly satisfying certain regularity and smoothness conditions (e.g., being twice-

di¤erentiable with a piecewise continuous second derivative) intended to suitably downweight

large observations. Then, the M estimator of � in (4) can generally be de�ned as the solution

of min�2R
PT

t=2 �
��
"t;d � �x�t�1;d

�
=s
�
; where s denotes an estimate of the scale parameter �.

Denoting the resultant estimator as b�M , it can be shown (e.g., Amemiya 1985, Section 2.3.3)
7



that
p
T
�b�M � �

�
is normally distributed with zero mean and asymptotic variance given by

the limit in probability of

�2

"
1

T

TX
t=2

�
x�t�1;d

�2
 tA

#�1 "
1

T

TX
t=2

�
x�t�1;d

�2
 tB

#"
1

T

TX
t=2

�
x�t�1;d

�2
 tA

#�1
(9)

where  tA =E
�
�00
��
"t;d � �x�t�1;d

�
=s
�	

and  tB =E
n
�0
��
"t;d � �x�t�1;d=s

�2�o
, respectively.

The study of this type of estimators and their relative performance warrants careful analy-

sis and, although introduced in this paper, it is left for future research.

There are two characteristics of the LMLAD test that should be highlighted in relation to

other procedures in the robust unit root literature. In particular, i) LMLAD is asymptotically

distributed as its LS-based counterpart, and ii) it has a nuisance parameter free limiting dis-

tribution. These appealing properties allow inference to be carried out without the need for

data-speci�c critical values and, furthermore, extend directly to the more general QR setting,

as we shall show later. In sharp contrast, available tests for the unit-root hypothesis based on

robust estimators do not have a pivotal distribution. For instance, the test in Hercé (1996),

based on LAD estimation of the autoregressive root, has an asymptotic distribution that can

be represented as �DF +
p
1� �2Z, where DF denotes the Dickey-Fuller distribution, Z is an

independent standard normal variate, and the nuisance parameter � measures the correlation

between "t and sign ("t) ; with sign ("t) = 2I ("t > 0)�1: Similar mixture processes characterize
the limit distributions of M- and QR-based unit-root tests, see, for example, Lucas (1995), and

Koenker and Xiao (2004), respectively. These tests require to compute speci�c critical values

according to the sample estimates of the nuisance parameters involved.

3 Quantile regression

In this section, we discuss the asymptotic theory for an LM type test for fractional integration

within the QR theoretical framework. The purpose of this analysis is twofold. First, we pursue

to naturally extend the median-based analysis discussed in the previous section to a generic

quantile 0 < � < 1; not necessarily the median, and to sets of quantiles. In addition, we provide

a theoretical discussion that follows under more general assumptions than those discussed

previously. The quantile regression setting does not require strong distribution assumptions

and makes no prior assumption about the conditional median of innovations. Furthermore, we

can relax the restrictive i.i.d. context discussed previously.

More speci�cally, note that, given model (1) ; the � -th conditional quantile function of the

�ltered series "t;d can be characterized as

Q"t;d(� jFt�1) = F�1(�) + �x�t�1;d = z
0�
t�1;d� (�) (10)
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where Ft�1 denotes the �-�eld generated by f"s; s < tg; F (�) is the cumulative distrubution
function of innovations, z�t�1;d =

�
1; x�t�1;d

�0
; and � (�) = (� (�) ; �)0 with � (�) � F�1(�).

Under the null hypothesis of interest, the true value of � equals zero globally (i.e., across

the di¤erent quantiles), which provides us with a testable hypothesis to identify the order of

integration in the data in this generalized setting.

Parameter estimation in this equation involves the following minimization problem,

min
b(�)2R2

TX
t=2

�� ("t;d � z0�t�1;db (�)) � min
b(�)

LT (�) (11)

where �� (s) = s(� � I(s < 0)) is the so-called �check�function; see Koenker and Bassett (1978).
We shall denote as b� (�) = �b� (�) ; b�QR (�)�0 the estimator of � (�) obtained from minimizing

LT (�) in (11).

3.1 Quantile regression test for long memory

Given the quantile regression estimates, de�ne s (�) = [f (F�1(�))]�1 as the reciprocal of the

density function of residual evaluated at the quantile of interest, often referred to as sparsity

function, and consider the following test statistic,

LMQR� =

" b�QR (�)bs (�)p� (1� �)

#2 TX
t=2

�
x�t�1;d

�2
(12)

with bs (�) representing a consistent estimate of s (�) hereafter. The following result extends
Theorem 2.1 to any quantile � 2 (0; 1) under slightly more general conditions, since median-zero
errors are no longer required. We will discuss further extensions later on.

Theorem 3.1 Consider fytg as given in (1), with "t � iid (0; �2) and assume that the cumu-

lative distribution function of "t, say F (z), has a di¤erentiable continuous Lebesgue density,

0 < f (z) < 1, and bounded derivatives on fz : 0 < F (z) < 1g. Let b� (�) = �b� (�) ; b�QR (�)�0
be the solution of minb(�) LT (�) for a �xed � 2 (0; 1) ; and denote � (�) as the vector of true
parameter values. Then, under the null hypothesis H0 : � = 0 and as T !1,

p
T
�b� (�)� � (�)�! N

�
0;

� (1� �)

f 2 (F�1(�))
V�1

�
(13)

with V = diag (1; �2�2=6) : Consequently,

LMQR� ! �2(1)

if bs (�) is a consistent estimate of s (�) :
Proof. See the technical appendix.
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Remark 3.1. Note that b� (�) is the maximum likelihood estimate of the unknown parameters
vector when the distribution of "t is the generalized Laplace distribution. Hence, the LM

procedure achieves full e¢ ciency under this restriction, but the asymptotic result stated in the

theorem holds regardless of the particular distribution of the data as long as the mild standard

regularity conditions apply.

At this point, it is also worth comparing this test to the well-known Dickey-Fuller test,

since this has received considerable attention in the QR literature. Given (1) ; the unit-root

hypothesis can be tested as H0 : � = 0 in the auxiliary regression �yt = � + �yt�1 + ut,

where yt�1 =
Pt�1

j=1 "t�j under the null of integration. In our testing procedure, the unit-root

hypothesis implies H0 : � = 0 in the auxiliary regression "t;d = �+�x�t�1;d+ut; where under the

null hypothesis "t;d � �yt, and x�t�1;d �
Pt�1

j=1 j
�1"t�j. Therefore, the only di¤erence between

our regression model and the familiar Dickey-Fuller representation lies in the introduction

of the harmonic weights j�1. This di¤erence is, however, crucial to ensure power to detect

fractional alternatives and, furthermore, has major implications on the rate of convergence and

on the shape of the resulting limit distribution. From Koenker and Xiao (2004), the � -th QR

estimate of � in �yt = � + �yt�1 + ut is T -consistent under the conditions of Theorem 3.1,

and converges, once adequately normalized, to �"�DF +
p
1� �2"�Z, where �"� is a nuisance

parameter depending on � and other population characteristics of "t; see also Hercé (1996) and

Galvao (2009). In contrast, b�QR� is pT -consistent in our context and LMQR� ! �2(1) holds

since p
T b�QR (�)! N

�
0;

� (1� �)

f 2 (F�1 (�))

6

�2�2

�
; (14)

which follows directly from (13). In particular, given that T�1
PT

t=2 x
�2
t�1;d

p! �2�2=6; and

the sparsity function s (�) can be consistently estimated (see Remark 3.3 below for details),

we can construct a pivotal test converging asymptotically to the standard normal distribution

uniformly on � for one-sided testing, or a squared test statistic, such as LMQR� ; to test the null

hypothesis against a two-sided alternative.

Using this testing framework we can also derive procedures to test the hypothesis of frac-

tional integration on a range of quantiles in any closed subinterval of (0; 1). For instance, we

may wish to test H0 : � = 0 given a �xed value of d in a neighborhood of � = 1=2; since this

may provide a more robust interpretation of results. It should be noted that, given model (1),

the QR setting provides a useful check to formally determine the adequacy of a long-memory

model with constant parameter. Under the null hypothesis, the �ltered series "t;d behaves as

an i.i.d. process and this should be detected at any quantile of the conditional distribution.

This feature suggests a diagnosis test computed over a wide range of quantiles. We therefore

discuss two alternative tests for this class of hypotheses as a generalization of Theorem 3.1.

The asymptotic distributions hold directly from the property of tightness of the QR process

and the continuous mapping theorem.
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Theorem 3.2. Let � = [� ; � ] be a closed subset of (0; 1) of length � = � � � ; and con-

sider an equidistant partitioning � i = � + i�=T; i = 0; 1; :::; T . De�ne the random function

ST (�) = b�QR (�) =pb� (�) =T ;mapping � 2 (0; 1) into R, with b� (�) = bs2 (�)�PT
t=2 x

�2
t�1;d=T

��1
.

If sup�2� jbs (�)� s (�) j = op (1) ; then under the assumptions of Theorem 3.1 and the null hy-

pothesis it follows as T !1 that

KS = max
1�i�T

jST (� i) j ! sup
�2�

jB (�) j (15)

and

CM =
X
1�i�T

S2T (� i) (� i � � i�1)!
Z
�2�

B2 (�) d� ; (16)

where B (�) =W (�)� �W (1) is a standard Brownian Bridge.

Proof. See the technical appendix.

Remark 3.2. The limits in (15) and (16) are truncated versions of the well-known Kolmogorov-
Smirnov (KS) and Cramér von Mises (CM) distributions which would arise when evaluating

the supremum or the integral over the interval [0; 1]. This serves as motivation to call the

test statistics accordingly, noting that it is straightforward to obtain critical values for any

of these distributions by simulation. Related test statistics, with limiting distributions which

are familiar from the literature on parameter instability, can be designed similarly. For in-

stance, setting � = [� 0; 1� � 0] for some � 0 2 (0; 0:5), it then holds as in Theorem 3.2 that

max1�i�T S
2
T (� i) =� 0(1 � � 0) ! sup�2� S� (�), where S� (�) � B (�)

2 =� 0(1� � 0) is usually re-

ferred to as the square of a standardized tied-down Bessel process of order one. Asymptotic

critical values of this distribution can be found, for instance, in Andrews (1993, Table 1).

3.2 Short-run dependence

In applied settings, economic and �nancial variables often exhibit short-run dependence. It is

therefore interesting to consider a more general type of data generating process to accommodate

this possibility in the theoretical analysis. Hence, assume that the error term "t in the data

generating process is driven by stationary AR(p) dynamics, i.e. "t =
Pp

j=1 aj"t�j+ vt; where vt
is a white noise process. Then, the null hypothesis of fractional integration H0 : � = 0 implies

H0 : � = 0 in this equation, which may be tested through the signi�cance of � in the p-th order

augmented auxiliary regression

"t;d = �x�t�1;d +

pX
j=1

aj"t�j;d + ut; (17)

11



following Demetrescu et al. (2008) and Hassler et al. (2009). The conditional quantile function

of "t;d can consequently be written as

Q"t;d(� jFt�1) = F�1(�) + �x�t�1;d +

pX
j=1

aj"t�j;d = z
0�
pt�1;d�p (�) (18)

where �p (�) = (� (�) ; �; a1;:::; ap)
0, z�pt�1;d =

�
1; x�t�1;d; "t�1;d; :::; "t�p;d

�0
and F (�) denoting the

distribution function of vt: This approach exploits the same type of augmentation strategy that

characterizes the well-known Augmented Dickey-Fuller test attempting to �whiten�the residuals;

see, for instance, Koenker and Xiao (2004). As discussed previously, parameter estimates are

obtained by solving numerically minb(�)2Rp+2
PT

t=p+1 �� ("t;d � z0�pt�1;db (�)) � minb(�) LTp (�) :
The following theorem presents the basic asymptotic behavior of the estimated coe¢ cients and

allows us to extend Theorem 3.1 under the more general conditions treated here.

Theorem 3.3 Consider fytg generated from (1), with A (L) "t = vt; A (L) = 1 �
Pp

j=1 ajL
j

having all roots outside the unit root circle and vt � iid (0; �2) satisfying the distribution as-

sumptions of Theorem 3.1. Let b�p (�) = argminb(�) LTp (�) and �p (�) the vector of true
parameter values. Then, under the null hypothesis H0 : � = 0,

p
T
�b�p (�)� �p (�)�! N

�
0;

� (1� �)

f 2 (F�1(�))

�1
p

�
(19)

with 
p = limt!1E
�
z�t�1;dz

�0
t�1;d

�
:

Proof. See the technical appendix.

Theorem 3.4. De�ne 	�p = s2 (�)
�1
p and let b� (�) be a consistent estimate of the (2; 2) ele-

ment of 	�p. Paralleling Theorem 3.2, de�ne the random function STp (�) = b�QR (�) =pb� (�) =T ,
with b�QR (�) denoting the QR estimate of � in b�p (�), and the statistics KS = max1�i�T jSTp (� i) j
and CM =

P
1�i�T S

2
Tp (� i) (� i � � i�1) ; � i 2 �: Then, under the assumptions in Theorem 3.3,

and as in Theorem 3.2, KS ! sup�2� jB (�) j and CM!
R
�2� B

2 (�) d� :

Proof. See the technical appendix.

Remark 3.3. Under the assumptions of Theorem 3.3, the matrix 
p can be estimated con-

sistently as 
�Tp = (T � p)�1
PT

t=p+1 z
�
pt�1;dz

0�
pt�1;d: Also, following Siddiqui (1960) and Bassett

and Koenker (1982) the sparsity function s (�) = [f (F�1(�))]�1 can be estimated consistently

as the sample di¤erence quotient �z0�pt�1;d
�b�p (� + hT )� b�p (� � hT )

�
=2hT ; with �z�pt�1;d denot-

ing the sample mean of z�pt�1;d, and hT being a bandwidth parameter that tends to zero as the

sample length increases at a suitable rate. Alternatively, we can also use kernel-type estimators

proposed in the nonparametric density estimation literature; see Koenker (2005) for a review.
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It is straightforward to show, as a corollary of Theorem 3.3, that the LM-type QRLM test

statistic

LMQR�;p =
b�2QR (�)

� (1� �) b!22bs2 (�) (20)

converges weakly to a �2(1) distribution as T ! 1 under the set of assumptions considered

therein, where b�QR�;p and b!22 denote, respectively, the QR estimate of � from the minimiza-

tion of LTp (�) at the � -th quantile, and the second element in the diagonal of the inverse ofPT
t=p+1 z

�
pt�1;dz

0�
pt�1;d; see also Demetrescu et al. (2008) and Hassler et al. (2009). Similarly, the

t-ratio test,
p
LMQR�;p�sign(b�QR (�)); is distributed asymptotically as a standard normal and

can be used alternatively for one-sided testing. The random function STp (�) that characterizes

the KS and CM tests in Theorems 3.2 and 3.4 can straightforwardly be computed in the gen-

eralized context of Theorem 3.3 as STp (�) = b�QR (�) [b!22bs2 (�)]�1=2, thereby enabling QRLM
testing over arbitrary sets of quantiles in closed subintervals of (0; 1). Note that, whereas b!22
remains �xed across di¤erent quantiles given the available sample, b�QR (�) and, particularlybs (�) ; may largely vary.
Remark 3.4. In the unit root context, Koenker and Xiao (2004) show that the limit result of
the estimator of � in�yt = �+�yt�1+

Pp
k=1 ak�yt�k+ut under the null hypothesis is una¤ected

by short-run dynamics provided that the regression is suitably augmented. The QR estimates

of � and the augmentation-related parameters fakgpk=1 are T - and
p
T -consistent, respectively,

which results in asymptotic negligible e¤ects of augmentation on the null distribution of the

estimator of �. In our case, the estimates of �p (�) are all
p
T -consistent under the null

hypothesis, as shown in Theorem 3.3, and since generally E
�
x�t�1;d"t�k;d

�
6= 0 for k � 1; the 
p

matrix is not block-diagonal. Nevertheless, the null distribution of the LMQR�;p is the same as

that of LMQR� in the i.i.d. context, provided that the short-run dynamics is suitably accounted

for through augmentation.

Remark 3.5. In the fractional integration literature it is common to set the initial values

"s = 0 for all s � 0: All the asymptotic results discussed in this paper hold under such a

restriction and, more generally, if "s is any other �nite constant or behaves as a random variable

with zero mean and bounded variance; see the technical appendix for details. Additionally, a

non-zero drift coe¢ cient in the data generating process, (1� L)d+� (yt � �) = "t; can easily

be accounted for by previous demeaning. Robinson (1994) suggests a procedure that delivers

consistent estimates of � uniformly on d under the null hypothesis; see also Demetrescu et al.

(2008, Prop.4). Denoting �� = (1� L)�, it follows that �d+�yt = ��d+� + "t, so � can be

identi�ed under the null hypothesis from the linear regression of the �ltered processes �dyt on

the regressor xt =
Pt�1

j=0 �j;d; where �j;d denotes the corresponding weights in the (truncated)

expansion of (1� L)d given the posited value of d. The residuals from this regression correspond

to the �ltered process "t;d. We shall use this method in the empirical analysis in Section 5.
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Remark 3.6. As discussed in Hassler et al. (2009), the testing procedure can also be used to
construct con�dence intervals that include the true value of d with 100� (1� �)% asymptotic

nominal probability. In particular, d can be estimated through a con�dence interval obtained

from a grid-search on �; a closed subset of R, using the general results in Theorem 3.3. Denote
LM�

QR�;p(�) as the value of the test statistic in Theorem 3.3 when evaluated at any � 2 �; and

consider DT� =
n
� : Pr

h
�2(1) � LM�

QR�;p(�)
i
� 1� �

o
; i.e., the subset of � for which the null

hypothesis cannot be rejected at the (1� �) asymptotic nominal con�dence level. It follows

that if DT� is in the interior of �; then the probability of d being within DT� is at least (1� �).

The grid-search process is computationally feasible because the reasonable order of integration

in observable data usually assumes values in a small range. We will use this technique in the

empirical section.

4 Finite sample analysis

In this section, we evaluate the small sample properties of the QRLM test statistics. The �nite-

sample performance of LS-based tests given data generated as in (1) has received considerable

attention in the literature under normally distributed innovations. Among others, Breitung

and Hassler (2002) and Nielsen (2004) have shown the empirical performance of LS based LM

tests, both in absolute terms and in relation to alternative frequency domain-based procedures.

Moreover, the simulations in Delgado and Velasco (2005) show undersizing e¤ects in the LM

test proposed by Tanaka (1999) under errors with in�nite variance.

Following the same approach as Koenker and Xiao (2004) and Galvao (2009), we analyze

the empirical size and power of the QRLM test LMQR� for � = 1=2 under di¤erent scenarios

and in relation to other test statistics. In our �rst experiment, we consider data generated

according to (1 � L)d+�yt = "t; t = 1; :::; T; where f"tg are independent and identically
distributed innovations drawn from a Student-t distribution with v degrees of freedom. In our

simulations we use v 2 f2; 3; 1000g and sample lengths T 2 f100; 250; 1000g : The case v = 1000
corresponds to the Gaussian distribution, whereas all remaining cases are characterized by

heavy-tailed distributions. For v = 2; the tails of the Student-t distribution have such a

slow decay that "t has in�nite variance, a possibility not formally covered by the asymptotic

theory discussed previously. The Student-t distribution is continuous in the degrees of freedom

parameter verifying E(j"tjv+�) < 1 for an arbitrarily small � > 0; so we can think of v = 2 as

a �limiting�case corresponding to the formal bound of our theory. This is common practice in

experimental analyses in the robust literature. As in Breitung and Hassler (2002), we focus on

the unit-root case under the null hypothesis, d = 1; since this is the leading case studied in the

QR literature, and explore the average frequencies of rejections when testing H0 : � = 0 against

a two-sided alternative at the 5% nominal level for values of � in the range [�0:3; 0:3]. The null
distribution of the test does not depend on the particular value of d, and its power properties
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are mainly determined by the size and sign of �. For � = 0; the average frequency of rejection

given, say 5000 replications, represents the empirical size of the test, whereas the cases j�j > 0
allow us to characterize the empirical power given T and v.

Because inference in QR requires dealing with the unknown density of the innovations, we

use standard kernel techniques implementing a Gaussian kernel with a sample-length dependent

bandwidth. For comparative purposes, we also use resampling methods. The interest in the

latter is justi�ed because the bootstrap approach can circumvent the problem of having to

specify a bandwidth parameter for kernel estimation. In particular, we consider a �xed-matrix

design that attempts to take advantage of the i.i.d. property of the estimated residuals under the

null hypothesis; see Buchinsky (1995) and Hahn (1995). In particular, given the QR residualsbut� = "t;d � z0�t�1;db� (�) ; we proceed as follows: (i) we generate a bootstrap replication, say�bubt�	Tt=1 ; with errors sampled independently and with replacement and build "bt;d = z0�t�1;db� (�)+bubt� : Then, (ii) we estimate this model again via QR, obtaining the bootstrap estimate b�b (�) :
Finally, (iii) steps (i)-(ii) are repeated a large number of times, say N = 750; so that the

covariance matrix of b� (�) can be estimated as N�1P
i=1;N %i%

0
i; with %i = b�bi (�)� b� (�) : We

are aware that this is not the only possible bootstrap approach, and that more sophisticated

procedures may be used in more general contexts (e.g., Fitzenberger 1997). Furthermore,

certain aspects may provide further re�nements (e.g., �xing the length of the bootstrap sample

to a smaller value than T ), but since our main interest lies in the analysis of the empirical

performance of a simple resampling method, an comprehensive investigation of replication

methods is beyond the scope of this paper. We shall denote LMK
QR� and LM

B
QR� as the resultant

kernel- and bootstrap-based test statistics, respectively.

In addition, to evaluate the relative behavior of the test, we analyze the performance of two

alternative procedures that are also based on the LM principle. One is the standard LS based

test suggested by Breitung and Hassler (2002), LMLS; which is e¢ cient in the Gaussian context

and formally valid for v > 2. Additionally, since the main interest is in a context characterized

by extreme observations, the other is the sign-based LM test proposed by Delgado and Velasco

(2005), which provides a robust alternative for long-memory testing. This tests is based on

the same harmonic weighting structure that characterizes LMLS and LMQR� , but has the

outstanding property of being formally valid even if E("2t ) =1: It requires, however, both the

median and the mean of "t to be zero, which in practice may imply a loss of generality, but

which holds true in our experimental analysis. Given "t;d = (1�L)dyt; denote St;d = sign ("t;d) ;

then the test statistic proposed by Delgado and Velasco (2005) is,

tDV =

r
6

�2T

T�1X
j=1

1

j

 
TX

t=j+1

St;dSt�j;d

!
(21)

which, as T ! 1; converges to a standard normal distribution under the null hypothesis and

hence t2DV ! �2(1): Delgado and Velasco (2005) provide exact critical values for tDV that we

shall use in our analysis (the remaining tests are based on asymptotic critical values).
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[Insert Table 1 around here]

Table 1 presents the rejection frequencies of the three tests under the di¤erent con�gura-

tions considered. Several features are worth commenting in detail. As expected, the Gaussian

environment provides the necessary conditions for the optimality of the LS based procedure,

LMLS, which largely outperforms any of the alternative approaches in terms of �nite sample

size and power for any sample length analyzed. On the other hand, when innovations are

drawn from heavy-tailed distributions, the LMLS test tends to be undersized, particularly,

when the degree of leptokurtosis of the underlying distribution seriously departs from that of

the Gaussian. This result agrees with the evidence presented by Delgado and Velasco (2005)

for the LM test of Tanaka (1999), which is asymptotically equivalent to LMLS. Interestingly,

our simulations reveal that it is necessary to introduce a considerable degree of leptokurtosis

(as measured by v) to generate sizeable departures with respect to the Gaussian case: The dif-

ferences between v = 1000 and v = 3 are not particularly dramatic in terms of size distortions

nor power reductions in any of the sample lengths analyzed, so that the LMLS test seems to

exhibit a considerably degree of robustness against heavy-tailed distributions.

Nevertheless, in a non-Gaussian environment, LMLS is no longer e¢ cient. Even if we

do not observe power reductions, other alternative procedures that exploit di¤erent estima-

tion/inference approaches may produce better relative results. Indeed, our simulation study

reveals that QRLM tests can yield fairly large gains in relative power with respect to LMLS

when errors are drawn from heavy-tailed distributions, while still ensuring approximately cor-

rect size even in small samples. For v = 2, the QRLM test shows similar undersizing as the

LMLS, but displays considerable power improvements (roughly doubling the power of the LS

test and the power is even larger for several other con�gurations of the data generating process).

For instance, for T = 100; v = 2 and � = �0:1; the power of LMLS is approximately 17:1%,

whereas LMK
QR� and LM

B
QR� present rejection frequencies of 46:2% and 53:5%, respectively.

The relative gains in power are asymmetric and tend to be much larger in the stationary region

(� < 0) than in the explosive direction (� > 0) : This pattern tends to disappear as v ! 2,

for which power shows similar patterns around the origin. The performances of LMK
QR� and

LMB
QR� seem to present a similar size-power balance, the former presenting mild undersizing

e¤ects as v approaches two, and the latter showing small oversizing behavior. As noted by

Koenker (2005), the discrepancies obtained between reasonable alternatives to estimate the

covariance matrix tend to be small in QR.

The robust sign-based LM test shows a remarkable steady empirical size, exhibiting approx-

imately correct size in all cases, although it shows moderate undersizing when T is small. This

test tends to show comparable power to the QRLM tests when � > 0, although we observe that

the QRLM methodology always provides moderate gains over this test which, based on the

sample lengths analyzed, are more marked when v ! 2. Nevertheless, when comparing results
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in the direction of the stationary region, it is immediately clear that QR is better suited. Not

only does our test seem to be particularly powerful when � < 0 but the ability of the sign-based

test to reject the null in a two-sided testing context dramatically collapses in this region. As a

result, QR show a more appealing overall performance.

In addition, we also analyze the performance of these tests when the data exhibits au-

toregressive short-run dependence characterized by stationary AR(1) dynamics with coe¢ cient

a 2 f0:5; 0:75g, namely, (1 � aL)(1 � L)d+�yt = "t; and repeat the analysis under the same

considerations as those previously discussed. For simplicity of exposition, and since the main

qualitative results remain unaltered, we discuss the results for LMQR�;p with covariance matrix

computed with a the kernel-based procedure, and the least-squares based test LMLS when the

auxiliary regressions in the respective analysis are augmented with one lag of the dependent

variable.

[Insert Table 2 around here]

Table 2 shows the empirical rejection frequencies under short-run dynamics for the di¤erent

parameter con�gurations that characterize this experiment. For fairly small samples, such as

T = 100; the QRLM test shows signi�cant oversizing e¤ects in relation to the i.i.d. context,

particularly, under Gaussian conditions, which nevertheless are quickly corrected as the sample

length increases. As in the i.i.d. experiment, both QR- and LS-based tests tend to show

undersizing e¤ects when v = 2: In terms of power, it is evident that both tests su¤er important

power reductions in relation to the i.i.d. context, stemming from the augmentation required

to ensure correct size. For a = 0:5, we observe that the power of both tests is characterized

by a strong asymmetric pattern such that the alternatives � < 0 are easier detected than their

counterparts � > 0, a pattern which was already noted by Demetrescu et al. (2008). However,

this result seems to be data-dependent, and di¤erent conclusions arise when a = 0:75. The

QR-based test shows considerably improved power over its LS alternative as the degree of

leptokurtosis increases, particularly for negative values of �: For positive values, the gains are

smaller than in the i.i.d. case, and a considerable degree of leptokurtosis is necessary to beat

the LS based procedure.

Consequently, the overall experimental evidence suggests that the tests proposed in this

paper are well-suited for empirical studies, even in small samples, and may provide improved

performance over LS based alternatives when the data is driven by heavy-tailed distributions.

5 Long-run dependence in realized stock volatility

The growing availability of intraday data on the price of individual stocks and �nancial indices

allows us to study di¤erent aspects of the stochastic properties of returns. In this section, we

analyze the long-run behavior of daily realized volatility of IBM, one of the most liquid and

17



frequently-traded securities in the U.S. stock exchange. Realized volatility is a theoretically

consistent estimate of integrated volatility which is based on simple sums of intraday returns;

see, among others, Andersen et al. (2001, 2003). Our interest in this variable is motivated by the

�ndings in the extant literature suggesting that realized volatility characteristically exhibits long

memory dynamics. There is an ongoing debate about the sources of long-range dependence in

this literature, but at the theoretical level there is little consensus on the mechanism generating

this phenomenon. Most econometric attention has been focused on the role of aggregation

(e.g., Lieberman and Phillips, 2008), but long-range dependence may also arise spuriously

from neglected breaks or nonlinear patterns, see, for instance, Diebold and Inoue (2001) and

references therein. The reader is referred to Corsi et al. (2008) for a recent survey of this

literature.

5.1 Data and preliminary evidence of long memory

We observe continuously compounded IBM returns, sampled regularly over 5-minute intervals

from 9.30 a.m. to 4.00 p.m. over the period from 04/01/1993 to 31/05/2007, totalling 156

intraday observations over 3; 630 trading days.2 Building on the theory of semimartingales

and the quadratic variation process, consistent measures of the volatility process based on

simple sums of intraday returns have been suggested in the �nancial econometrics literature.

We compute di¤erent measures of realized variation, such as daily realized volatility, here

de�ned as the square root of the sum of squared 5-minute log-returns over the day: �RV (t) =hP156
n=1 r

2
(n);t

i1=2
. The resultant measure is widely considered as an accurate estimate of daily

integrated volatility of stocks. Additionally, we compute the unnormalized realized absolute

variation (or �rst-order power variation) of returns, de�ned as the sum of absolute-valued

returns over the day: �RPV (t) =
P156

m=1 jr(n);tj: Realized absolute variations is an accurate
estimate of the integral of the volatility process and, under certain conditions, is robust to jumps

in returns; see Barndor¤-Nielsen and Shephard (2004) for details. Finally, as customary in this

literature, we also consider logarithmic transformations of these variables, i.e., log-realized

volatility, denoted log �RV (t) ; and log-realized power variation, log �RPV (t) ; see Andersen et

al. (2003). Figure 1 shows the dynamics followed by these measures in the sample period, while

Table 3 presents descriptive statistics.

[Insert Figure 1 around here]

Some comments on the main distributional features of these series are in order. Daily

2Original data comprises the record of trades and quotations available in the NYSE Transaction and Quote

(TAQ) database and allows computation of returns in considerably smaller intervals. In practice, however, there

exists a trade-o¤ between the theoretical argument that support ultra-high frequency sampling and the noise

that arises from bid-ask bounce and other microstructure e¤ects embeded in such a frequency. The consensus

in the literature is to sample returns over 5-minute intervals to balance these e¤ects.
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realized volatility �RV (t) typically exhibits a considerable degree of leptokurtosis and right

skewness due to the massive in�uence of the jump component in the data generating process

of speculative returns. For IBM, the sample kurtosis over the period under analysis is 102:81,

from which the assumption of normality is largely rejected. Being less sensitive to outliers,

realized power variation �RPV (t) shows a more moderate degree of kurtosis (30:03), which is

still large enough to strongly reject the hypothesis of normality. As reported in previous papers

(e.g., Andersen et al. 2003), the unconditional distribution of the log transformations of �RV (t)

and �RPV (t) appears to be approximately normal, although we note that normality is formally

rejected by standard testing procedures in our analysis; see Table 3 for details.

[Insert Table 3 around here]

The most important stylized feature of realized volatility measures is an autocorrelation

pattern characterized by slowly decaying correlations towards zero, a distinctive feature of

long-memory processes. This phenomenon is clearly visible in Figure 2, which shows the sample

autocorrelation function of the series up to the 400th lag-order. Even though the �rst-order

correlation of �RV (t) is not particularly sizeable (0:276), the remaining correlations remain

highly signi�cant: Distant observations, which span almost two years of trading days, remain

positively correlated, thereby suggesting a strong degree of temporal dependence in the series;

see Table 3 for further details. A similar pattern appears in the remaining measures of daily

variation, although the �rst-order correlation tends to be larger for these series. This is not

surprising, since outliers tend to downward bias sample autocorrelation estimates.

[Please Insert Figure 2 around here]

The characteristic correlation pattern displayed by these series cannot be captured by sta-

tionary ARMA-type models (for which correlations decay geometrically) nor by unit root mod-

els (for which low-order correlations should be close to one). Hence, the literature on real-

ized volatility modelling has argued that this pattern of temporal dependence is caused by a

fractionally integrated model with long-memory coe¢ cient 0 < d < 1. Table 3 also reports

several sample-based point estimates of the long-memory parameter and their 95% asymp-

totic con�dence intervals generated by di¤erent semiparametric procedures in the frequency

domain that are usually applied in the empirical analysis of realized volatility; see, for in-

stance, Andersen et al. (2001). These estimators exploit the information provided by the

periodogram ordinates in the vicinity of the origin and have the outstanding advantage of

not requiring a functional form speci�cation of the short-run component. In particular, bdGPH
denotes the Geweke and Porter-Hudack (GPH) estimator, de�ned as the slope coe¢ cient in

the least-squares regression log (I (�j)) = � � 2 log (�j) + �j, j = 1; :::;m; where �j = 2�j=T

are Fourier frequencies, I (�j) = 1
2�T

PT
t=1 j (�RV (t)� ��RV ) e�it�j j2 is the periodogram, and

m = m (T ) is a bandwidth that goes o¤ to in�nity with the sample length T . Similarly, local
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Whittle estimates of the long-memory coe¢ cient are used in practice, having the advantage

over the GPH procedure of not requiring normality of the data and being more e¢ cient for

the same choice of m. These are generally de�ned by optimizing the (Whittle) likelihood

W (g; d) = � 1
m

Pm
j=1

n
log
�
g��2dj

�
+

�2dj
g
I (�j)

o
; where g is a proportionality constant that de-

pends on the short-run dynamics of the process. Table 3 reports the estimates obtained from the

exact local Whittle estimator recently suggested by Shimotsu and Phillips (2005), denoted bdELW
in Table 3. In both analyses we set m = [T 0:6] ; and construct con�dence intervals using the

asymptotic distributions
p
m
�bdGPH � d

�
! N (0; �2=24) and

p
m
�bdELW � d

�
! N (0; 1=4) :

The estimates from these methods show that realized measures in levels tend to exhibit

smaller values of d than their logarithmic counterparts. This is consistent with the bias orig-

inated by outliers and, more generally, large levels of kurtosis, as reported by Haldrup and

Nielsen (2004). The con�dence intervals for d on the log-realized measures and realized power

variation include values larger than the 1=2 cut-o¤ limit for stationarity, showing strongly

persistent dynamics. Only for the realized volatility series, �RV (t) ; does the local Whittle

estimator show statistical evidence suggesting strongly persistent, yet stationary, dynamics.

5.2 Quantile regression analysis

The QRLM tests discussed in this paper can shed further light on the empirical properties of

realized volatility and are useful to address two di¤erent questions. The �rst relates to the fact

that the excess kurtosis of the unconditional distribution may bias the semiparametric long-

memory estimates, as previously discussed. Since median-based procedures o¤er robustness

against in�uential observations, QR testing at the 50th percentile is a natural alternative to

robustly address the existence of long-memory patterns. Furthermore, the QR approach allows

us to analyze the general suitability of a long-run �lter based on a constant value of d. If the

true process is truly generated by a long-memory model with constant long-range coe¢ cient,

we should be able to identify the characteristic value of the long-memory coe¢ cient along the

di¤erent quantiles of the conditional distribution. Consequently, our testing approach allows

us to o¤er a more robust discussion on the properties of realized volatility.

In particular, the empirical analysis is conducted in the following terms. First, at any

of the percentiles � 2 Q; Q = f0:1; 0:11; :::; 0:9g, we run the auxiliary quantile regression
"t;d = �x�t�1;d +

Pp
j=1 aj"t�j;d + ut; and compute the t-ratio, say tQR�;p; for the signi�cance of

the estimated value of �; to test the sequence of two-sided hypotheses H0 : d = d0; d0 2 D;
with D = f0; 0:01; :::; 1g.3 This analysis attempts to provide a detailed examination of the

existence of long-memory patterns across the quantiles of the conditional distribution. For ease

of exposition, we shall report the test statistics for the subset of hypotheses H0 : d = d0; with

3We compute t-statistics rather than squared t-statistics because the sign is informative about the overdi¤er-

encing or underdi¤erencing implied by the null. A positive (negative) value is indicative of potentially signi�cant

underdi¤erencing (overdi¤erencing).
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d0 2 f0; 0:1; :::; 1g ; at any of the deciles f0:1; :::; 0:9g of the conditional distribution, although
complete results are available upon request. Note that, owing to statistical di¢ culties of the

QR methodology to accurately deal with inference at extreme quantiles, it is customary to

avoid top and bottom percentiles. A similar decile-based analysis for the unit root hypothesis

is conducted in Koenker and Xiao (2004) and Galvao (2009) on interest and exchange rates

time-series, but we note that our study is more general: It not only allows us to test for the

unit root hypothesis, but also for fractional integration dynamics.

The auxiliary regression in our analysis is augmented with p lags of the dependent variable

which are determined according to Schwert�s (1989) rule, i.e., p =
h
4 (T=100)1=4

i
. As discussed

by Demetrescu et al. (2008, 2011), data-driven methods of lag-length selection fail to ensure

correct empirical size in long-memory testing, whereas deterministic rules, such as Schwert�s

rule, manage to keep empirical size close to the nominal level. The standard error of b�QR (�)
is estimated based on the sandwich-type estimator proposed by Powell (1991), seeking to ob-

tain robustness against potential heteroskedasticity in the data. We use a Gaussian kernel to

estimate the density of the data with deterministic bandwidth parameter, hT ; set according to

the rule 0:3�min fb�u; IQR (but) =1:34g� T�1=5, where IQR (�) denotes the interquartile range,
a robust measure of scatter. To account for a non-zero constant e¤ect, we demeaned the raw

data using the approach suggested by Robinson (1994) and Demetrescu et al. (2008, Prop.4),

as discussed in Remark 3.5. For completeness of analysis, we also compute the LS based LM

test of Breitung and Hassler (2002) with a robust covariance matrix as in Demetrescu et al.

(2008) to address long-memory under a conditional mean analysis.

Second, our testing procedure allows us to construct con�dence intervals for d by identifying

the non-rejection region at a desired nominal level �, as discussed in Remark 3.6. We compute

the non-rejection region of H0 : d = d0 at the 5% and 1% nominal size given the quantile � 2 Q,
denoted CI95% (dj�) and CI99% (dj�) ; which determine 95% and 99% con�dence intervals for d,
respectively. Finally, the joint tests proposed in Theorems 3.2 and 3.4 may be used to analyze

whether H0 : d = d0 holds over subsets of quantiles for any of the values of d0 2 D. We compute
the KS and the CM type tests in (15) and (16), respectively, to analyze whether H0 : d = d0,

d0 2 D, applies uniformly over all quantiles comprised in the intervals T1 = [0:4; 0:6] and

T2 = [0:1; 0:9] : While T1 analyzes the suitability of any speci�ed value of d at the center of the
distribution, T2 � Q focuses on the whole distribution after excluding top and bottom quantiles,
following the same approach as Koenker and Xiao (2004) and Galvao (2009). We obtain

asymptotic critical values for these tests by experimental simulation of the limit distributions

sup�2Ti jB (�) j and
R
�2Ti B

2 (�) d� ; i = f1; 2g :
Since the logarithmic transformation considerably alters the stochastic properties of realized

volatility (e.g., Andersen et al. 2003), we report and comment the di¤erent results from our

analysis throughout the following subsections. The �rst subsection is devoted to the analysis

of the log realized volatility series, log�RV (t) and log�RPW (t) ; the second subsection focuses
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on the series in levels, �RV (t) and �RPW (t) : Finally, the last subsection discusses the main

implications of these results.

5.2.1 Long memory in logarithms of realized volatility

The results for log-realized volatility, log �RV (t) ; and log-realized power variation, log �RPW (t) ;

are reported in Tables 4 and 5, respectively. We �rst discuss the main evidence from the indi-

vidual test statistics computed at the measures of central positioning, namely, the QRLM test

at the median and the LS based LM test for the conditional mean. Next, we discuss the results

obtained from the individual and joint QRLM tests at the remaining quantiles.

Under the QR analysis at � = 1=2, the null hypothesis that daily log realized volatility

is purely driven by stationary short-run dynamics (d0 = 0) is, as expected, strongly rejected,

since no stationary ARMA model can produce the shape of autocorrelations depicted in Figure

2, and so is the unit root hypothesis (d0 = 1) for similar reasons. The 95% con�dence interval

for d at the median, namely CI95% (d j� = 1=2) ; is given by [0:36; 0:56]; mostly suggesting the
existence of stationary long-range dependence. The LS based test for the conditional mean of

the process yields a slightly larger con�dence interval, namely, [0:42; 0:62]. These estimates are

remarkably similar to those obtained by the semiparametric estimates in the frequency domain,

reported in Table 3.

Turning our attention to the log �RPW (t) series, the main picture is very similar, but we

remark several minor di¤erences. First, the discrepancies between the conditional median and

conditional mean-based analysis are now smaller, which is not surprising in view that the excess

kurtosis of log �RPW (t) is smaller, as reported in Table 3. The 95% con�dence interval of the

QRLM test at � = 1=2 is now [0:38; 0:52]; while for its LS counterpart is [0:36; 0:51]: Second, the

testing procedures on log �RPW (t) seem to deliver more e¢ cient estimates, since the amplitude

of the con�dence intervals is smaller. The overall evidence for stationary long-range dependence

based on the mean analysis is also stronger, but the tests cannot reject nonstationary dynamics

arising from values d > 1=2 for neither log �RV (t) nor log �RPW (t) :

[Insert Tables 4 and 5 around here]

When analyzing the results from the individual QRLM tests across di¤erent quantiles, two

main features emerge. First, the QRLM always �nd strong statistical evidence of long-range

dependence. The con�dence intervals for d always include values strictly greater than zero and

smaller than one and reject the hypotheses of a short-memory or a unit-root model driving the

long-term of the series. Second, there is an upward trend in the con�dence intervals such that

both the central value and the amplitude of the con�dence interval tend to increase with � . This

phenomenon is clearly visible in Figure 3, which shows the �central�values d : arg infd jtQR�;pj
for which the individual QRLM test statistics are closer to zero (i :e., the values of d for

which we obtain maximum sample evidence for the null hypothesis given �), as well as the
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corresponding 95% and 99% con�dence intervals for d. The upward trend is hardly noticeable

for quantiles below the median and the con�dence intervals are very similar to those discussed

for the median. For instance, the CI95% (dj�) sets for log �RV (t) and log �RPW (t) at � = 1=10
are, respectively, [0:29; 0:43] and [0:33; 0:47], which are only slightly smaller than those at

� = 1=2 discussed before, and actually share most of the values. This pattern also holds for

quantiles at the central deciles above the median, but a stronger diverging e¤ect is evident for

percentiles belonging to the upper quartile. For instance, the CI95% (dj�) sets for log �RV (t)
and log �RPW (t) at � = 9=10 are respectively, [0:56; 0:83] and [0:56; 0:84]; so most of the values

comprised in these intervals are above the values in CI95% (d j� = 1=2); see Tables 4 and 5 for
details. The amplitude of the con�dence intervals shows a similar shifting pattern as a function

of � : It tends to remain steady for quantiles in the lower tail and center of the distribution,

but largely widens at top deciles. For instance, for the log-realized volatility (power variation)

time-series, the size of the CI95% (dj�) set at � = 9=10 is almost three times larger than (twice
as large as) its counterpart at � = 1=10:

[Insert Figure 3 around here]

Although most of the observations at the lower deciles and center of the distribution seem

to be driven by a model with common long-memory coe¢ cient, there is a considerable degree of

parameter uncertainty for observations corresponding to the largest levels of volatility. In this

context, the QRLM joint tests provide a valuable tool for disentangling formally whether there

is su¢ cient regularity in favour of a constant long-memory parameter model. As expected from

the individual analysis, the KS and CM tests cannot reject this hypothesis for quantiles in the

T1 central interval, �nding that values around d = 0:4 seem to �t rather well. More interestingly,
the joint tests over the quantiles in the extended range T2 = Q � [0:1; 0:9] cannot reject the null
hypothesis of a constant long-memory parameter model for certain values of d 2 D. Paralleling
the strategy used for individual quantile testing, we can construct con�dence intervals for these

values by identifying the non-rejection region of the KS and CM tests given the sets of quantiles

analyzed. The resulting con�dence intervals are denoted as CI100�(1��)% (djT ) in Tables 4 and
5, with T representing either T1 or T2. Thus, for the log �RV (t) time series, the CI95% (djT2)
sets given by the KS and CM tests are [0:44; 0:45] and [0:41; 0:42] ; respectively. Similarly, for

log �RPW (t) series, the resulting 95% con�dence intervals for d are [0:48; 0:51] and [0:43; 0:49],

respectively.

Consequently, the joint analysis across quantiles does not reject the suitability of a fraction-

ally integrated model with constant long-memory parameter driving the long-run of logarithmic

measures of daily integrated volatility. The range of admissible values is slightly greater than

0:4, the value around which previous literature tends to identify the long-memory coe¢ cient in

daily realized volatility time series. Andersen et al. (2003) have referred to this as the �typical

value� in their study. Furthermore, the overall evidence agrees with the results based on the
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semiparametric estimators in the frequency domain. This estimate suggests that the long-run

component of realized volatility is driven by a strongly persistent, yet stationary, process.

5.2.2 Long memory in levels of realized variation

Tables 6 and 7 report the main results of our analysis for the �RV (t) and �RPW (t) series,

respectively. As in the previous case, the overall qualitative evidence for both series is similar,

so we only discuss the case of realized volatility for the sake space. The results of this analysis

reveal two main features. Similarly as log-realized measures of daily variation, the QRLM

shows that long-run dependence seems to be present across the di¤erent quantiles of �RV (t).

In sharp contrast, however, the extent of persistence, as measured by d, cannot be accepted to

be the same. In particular, the con�dence intervals for d show a much stronger upward trend

in the values of the long-memory coe¢ cient for which the null hypothesis cannot be rejected.

Observations in low-volatile periods, related to lower deciles, seem to be driven by a persistent,

but stationary, process. On the other hand, observations in high-volatility regimes, related

to top deciles which include the spikes observable in Figure 1, are captured by fractionally

integrated models with values of d around unity or greater, which suggest the presence of

integrated, and even explosive dynamics. This pattern is similar to the results in Konker and

Xiao (2004), showing that large observations are related to explosive patterns, whereas low

observations tend to follow stationary dynamics. Not surprisingly, therefore, the KS and CM
joint tests formally reject the hypothesis that a constant value of the long-memory parameter

underlies simultaneously the long-range dependence of the series across quantiles in T2 and
even at the central quantiles in the T1 interval. Similar conclusions emerge from the analysis

on realized power variation.

[Insert Table 6 and 7 around here ]

5.3 Discussion

The direct conclusion from the quantile regression analysis of �RV (t) and �RPV (t) is that

the overall suitability of a fractionally integrated model with �xed long-memory parameter is

largely rejected. Stated more precisely, �ltering these measures of realized volatility with a

fractionally integrated model with constant long-memory parameter does not su¢ ce to render

innovations that follow a stationary ARMA-type model uniformly over the quantiles of the

distribution. This is not surprising, because neither a fractionally-integrated nor a stationary

short-run model can simultaneously deal with sudden bursts of volatility (which are driven by

the jump component of returns) and with periods of low or normal volatility, which characterize

most of the observations in the sample (see Figure 1).

Therefore, the heterogenous evidence of long-memory in levels, suggesting stationarity at

low deciles and integration or even explosive patterns at top deciles, is likely caused by the
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sheer di¤erences between low-volatility and high-volatility regimes in these series, i.e., due to

neglected nonlinear patterns. Values of d around unity at the top deciles are not necessar-

ily originated by a strongly persistent process, but rather re�ect the e¤ort of the parametric

structure of the long-run component to accommodate abrupt changes in volatility by adopting

unit root-like dynamics. Diebold and Inoue (2001) showed analytically that stochastic-regime

switching can easily be mistaken for long memory as long as only a small amount of regime

switching occurs in an observed sample path, as it essentially generates similar e¤ects as struc-

tural breaks. Maheu and McCurdy (2002) �nd strong evidence of regime-switching dynamics

in the daily realized variance �2RV (t) of foreign exchange rates; see also Baillie and Kapetianos

(2007). In other words, the rejection of fractional-integration models for �RV (t) and �RPV (t)

through our diagnosis-type tests is not necessarily the consequence of a long-run misspeci�ca-

tion implied by these models, but it must be interpreted as the overall failure of the class of

ARFIMA model analyzed to convincingly accommodate the underlying (nonlinear) patterns

given the sample.

In sharp contrast, the overall evidence for the log transformations of realized volatility and

power variation log �RV (t) and log �RPW (t) cannot reject that a fractionally integrated model

with a constant long-memory coe¢ cient, in the region [0:4; 0:5] ; drives the long-term compo-

nent and renders short-run innovations stationary. The logarithmic function is a special case

of the nonlinear Box-Cox transformation routinely applied in time-series modelling to reduce

heterogeneity and smooth the sample path of the observed series. It attenuates the statistical

problems related to di¤erent regimes, as it brings observations together and reduces variability,

thereby accounting, at least partially, for di¤erent regimes. Furthermore, this transformation

can preserve the order of fractional integration present in the original series because d is theo-

retically invariant respect to nonlinear transformations under several conditions, as shown by

Gourieroux and Jasiak (2002). The overall evidence based on our analysis suggests, conse-

quently, that long-memory characterizes the long-term component of realized volatility both

in levels and in their logarithms, with our testing procedure being able to identify it after ac-

counting for nonlinear patterns through the simple log transform. In the empirical modelling

of these series, therefore, this transformation is important.

Finally, we note that this evidence, based on a semiparametric approach, does not necessarily

imply that the log transform completely eliminates all the nonlinear features of the data. In

fact, individual quantile based QRLM tests at top deciles of log �RV (t) and log �RPW (t) still

suggest that these series may be generated by a time-series process with characteristics di¤erent

from those that drive the remaining observations. The central point from our analysis, however,

is that there is su¢ cient regularity in the log series for the diagnosis-type analysis based on

the QRLM tests to accept that the sample is driven by a fractionally integrated model with

constant long-memory parameter. This evidence completely agrees with the results based on

alternative semiparametric estimation procedures applied in this paper, and provides further
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support to the previous literature that argue that long-range dependence is a stylized feature

of realized volatility.

6 Concluding remarks

In this paper, quantile regression based tests that allow testing for fractionally integrated pat-

terns against integer or fractional integration at di¤erent quantiles have been introduced and

discussed. An immediate application of this general setting is the LAD, or median estimator,

which can outperform standard LS based procedures in settings where innovations are drawn

from heavy-tailed distributions. More generally, the theory discussed in this paper allows for

more general forms of hypothesis testing, by enabling inference involving the degree of persis-

tence to be carried out at di¤erent individual quantiles, or over sets of quantiles. Our procedure,

therefore, can provide further insights on the time-series properties of a time-series process.

A distinctive property of the LM-type tests proposed in this paper is that, under the null

hypothesis, they will converge to a standard normal distribution or simple transformations of

this, such as a Chi-squared distribution for a squared version of the test. Augmented versions

of these tests are asymptotically robust against weakly-dependent errors under quite general

conditions, and exhibit good statistical performance in samples of moderate size. This makes

the class of QRLM test procedures introduced in this paper a valuable tool to address the order

of integration of a time-series, particularly, in a non Gaussian context. LS based techniques

have traditionally been preferred over alternative approaches because of their good statistical

properties, simplicity and computational tractability. However, there are practical contexts,

such as the realized volatility case studied in this paper, in which LS no longer provide neces-

sarily optimal estimates, and the properties of the resulting tests can largely be improved by

applying alternative procedures, such as quantile regressions. The test proposed in this paper

can readily be computed together with its LS counterpart and signi�cance evaluated on the

basis of the same critical values, thereby providing, say, standard and robust inference on the

extent of long-run dependence of the series.

Using individual and joint QRLM tests, we have analyzed the long-range dependence in

di¤erent measures of daily integrated volatility, including realized volatility, realized power

variation and their logarithmic transforms of these magnitudes. The QRLM tests proposed in

this paper, implemented over the whole set of percentiles along the deciles of the conditional

distribution, show that the suitability of long-memory models with constant parameter cannot

be rejected on log transforms of realized volatility measures. This evidence is more robust than

that based simply on the least-squares analysis and leads to conclude that long-memory is a

feature of realized volatility time series.
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Technical Appendix

Before proceeding, consider the following notation. For an (n � 1) vector, jjAjj denotes the
euclidean vector norm such that jjAjj2 = A0A: For an (n�m) matrix, jjAjj denotes the Euclidean
matrix norm, jjAjj2 = tr (A0A) : The constantK is used to refer to some generic, strictly positive

and �nite constant. The conventional notation o (1) ; (op (1)) is used to represent a series of

numbers (random numbers) converging to zero (in probability), while O (1) ; (Op (1)) denotes a

series of numbers (random numbers) bounded (in probability) as the sample length is allowed to

diverge. As in the main text, the notation! and
p! denotes weak convergence and convergence

in probability of a series of random variables, while a:s! denotes almost surely convergence.

Finally, throughout the proofs, we shall consider the �observable�process, x�t�1;d =
Pt�1

j=1 j
�1"t�j;

and its �theoretical�counterpart, x��t�1;d =
P1

j=1 j
�1"t�j, using the same characteristic notation

in superscripts for related variables.

The following lemma collects some preliminary results that are useful to derive the asymp-

totic properties given in the subsequent theorems.

Lemma A. Let fut;Ftg1�1 be a Martingale Di¤erence Sequence (MDS) with suptE (u2t ) <

K for all t: For t > 1; de�ne the measurable processes m�
t�1 =

Pt�1
j=1 !jut�j and m��

t�1 =P1
j=1 !jut�j, with !j = O (1=j) : Then:

i) m�
t�1 = Op (1) ; and m��

t�1 = Op (1) :

ii) m��
t�1 �m�

t�1 = Op
�
1=
p
t
�
:

iii) max1�t�T jm��
t j = op

�p
T
�
and max1�t�T jm�

t j = op

�p
T
�
:

Proof. Part i) follows immediately by noting from the MDS property that E(m��
t ) = 0 for

all t and since E
�
m��2
t�1
�
=
P1

j=1 !
2
jE
�
u2t�j

�
; which is bounded by K

P1
j=1 !

2
j for all t becauseP1

j=1 !
2
j = O (1) ; so that m��

t�1 (and, similarly, m
�
t�1) is bounded in probability. For part ii),

de�ne the �bias�term b�t�1 =
P1

j=t !jut�j for t > 1 and note that E
�
b�2t�1

�
=
P1

j=t !
2
jE
�
u2t�j

�
;

so E
�
b�2t�1

�
= O (1=t) and therefore, m��

t�1�m�
t�1 � b�t�1 = Op

�
1=
p
t
�
from Markov�s inequality.

For iii), take � > 0; and note that

Pr

�
max
1�t�T

jm��
t j > �

p
T

�
�

TX
t=1

Pr
�
jm��

t j > �
p
T
�
=

TX
t=1

E
�
jm��

t j � I
�
jm��

t j > �
p
T
��

� 1

�2T

TX
t=1

E
n
[m��

t ]
2 I
�
jm��

t j > �
p
T
�o

=
1

�2T

TX
t=1

E f'��tTg

from Markov�s inequality, with '��tT de�ned implicitely. Since E
�
[m��

t ]
2� < 1 for all t � 1,

Pr(j'��tT j > 0) tends to zero as T ! 1, from which '��tT
p! 0: Furthermore, j'��tT j � (m��

t )
2 ;
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so E ('��tT ) =�
2 = op (1) by virtue of the Dominated Convergence Theorem (Davidson 1994,

Lemma 4.12), and we conclude that maxt�1 jm��
t j = op

�p
T
�
from Markov�s inequality. Fi-

nally, noting that m�
t � m��

t � b�t ; then maxt�1 jm�
t j � maxt�1 jm��

t j + maxt�1 jbtj from the

triangle inequality and given that E
n
b2t I
�
jbtj > �

p
T
�o

� E (b2t ) = O (1=t) as discussed in ii);

then maxt�1 jbtj = Op

�p
log T=T

�
from Markov�s inequality and, therefore, max2�t�T jm�

t j =

op

�p
T
�
; as required: �

Proof of Theorem 2.1. Under the null hypothesis, the auxiliary regression "t;d = �x�t�1;d+ut

holds true with � = 0; so that ut = "t;d � "t. Let x��t�1;d =
P1

j=1 j
�1"t�j; and noting that

E
�
x��2t�1;d

�
= �2�2=6 � v; de�ne vT =

p
vT and the array s�tT = x�t�1;d=vT : Then Theorem 2.1

holds from Pollard (1991, Theorem 2) after noting that the set of su¢ cient conditions required

therein are satis�ed in our context: (C1) "t is independent of Ft�1, (C2) s�tT is Ft�1-measurable,
(C3) max2�t�T js�tT j = op (1) and (C4)

PT
t=2 s

2�
tT = 1. More speci�cally, (C1) and (C2) hold

trivially from independence and owing to the Ft�1-measurable nature of x�t�1;d. Condition
(C3) follows from Lemma Aiii), since "t � iid (0; �2) is a restricted case of the more general

conditions studied there. Finally, to check (C4) note that x��t�1;d is ergodic and stationary
because it is de�ned on a measurable transformation of a stationary and ergodic process, "t,

under the set of assumptions considered (White, 2001, Theorem 3.35). Given s��tT = x��t�1;d=vT ;

then E(s��2tT ) = 1 and hence the Ergodic Theorem [ET] (White, 2001, Theorem 3.34) ensures

that
PT

t=2 s
��2
tT

a:s! 1: Its �observable� counterpart,
PT

t=2 s
�2
tT ; converges to the same limit by

applying similar arguments; in particular, let ��2t�1 = E
�
x�2t�1;d=v

�
= O (1=t2) ; and de�ne

r�t�1 = x�2t�1;d=v � ��2t�1: Then, from the triangle inequality, we can show that,�����
TX
t=2

s2�tT � 1
����� �

�����T�1
TX
t=2

r�t�1

�����+
�����T�1

TX
t=2

�
��2;t�1 � 1

������ = op (1)

so
PT

t=2 s
2�
tT = 1 + op (1) as required. To see this, note that E

�
jr�t�1j

�
< 1 with E

�
r�t�1

�
= 0

for all t > 1; so fr�t g retains stationarity and ergodicity in mean and hence, T�1
PT

t=2 r
�
t�1

a:s! 0

from the ET. In addition, the non-stochastic sequence ��2;t�1 converges to 1 as T ! 1, so for
any arbitrarily small � > 0 there exists anM� > 0 not depending on T such that j��2;t�1�1j < �

for all t > M� for which we further observe�����T�1
TX
t=2

�
��2;t�1 � 1

������ � M�

T
+ T�1

M�X
t=2

j��2;t�1j+ T�1
TX

t=M�+1

j��2;t�1 � 1j

= O
�
T�1

�
+ o (1)

which completes the result. Therefore, from Pollard (1991, Theorem 2) and under the null

hypothesis it follows that

2f (0) vTb�LAD ! N (0; 1) :

from which the results stated in the main text follow directly. �
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Proof of Theorem 3.1. We follow the approach of Knight (1989); see also Koenker and Xiao
(2004) and Galvao (2009) for similar analyses in the unit-root testing context. For any scalar

a 6= 0; de�ne  � (a) = � � I (a < 0) and let ut� = "t;d � z0�t�1;d� (�) ; noting that, under the
null hypothesis, ut� = "t�F�1 (�) : After reparameterization, the objective function in the QR
estimation is equivalent to

min
�2R2

TX
t=2

�
�� (ut� �

1p
T
z0�t�1;d�)� �� (ut� )

�
: (A.1)

Following Knight (1989), we use �� (u� v) � �� (u) = �v � (u) +
R v
0
[I (u � s)� I (u < 0)] ds

to rewrite this problem as min�2R2 H�
T (�) ; with

H�
T (�) = �

1p
T

TX
t=2

�
z0�t�1;d�

�
 � (ut� ) +

TX
t=2

Z ltT

0

[I (ut� � s)� I (ut� < 0)] ds

and ltT � �0z�t�1;d=
p
T . Note that the function H�

T (�) is a convex random variable that is

minimized at
p
T
�b� (�)� � (�)�. Then, if there exists a convex function H (�) with a unique

minimum, and the �nite-dimensional distribution of HT (�) converges weakly to that of H (�) ;
then convexity ensures that

p
T
�b� (�)� � (�)� converges in distribution to the minimizer of

H (�) :
Let us now introduce some variables to keep simplicity in notation. Let��

T =
PT

t=2  � (ut� ) z
�
t�1;d;

de�ne ���
T =

PT
t=2  � (ut� ) z

��
t�1;d;

�
��t�1; �

��
t�1
�0
=  � (ut� )

�
x�t�1;d; x

��
t�1;d

�0
and denote z�Tt (�) =R ltT

0
[I (ut� � s)� I (ut� < 0)] ds: Also, use the short-hand notation Q"t(� jFt�1) � z0�t�1;d� (�) =

q�;t: Then, we can write

H�
T (�) =

�
� 1p

T
�0��

T

�
+

(
TX
t=2

E (zTt (�))

)
+

(
TX
t=2

(zTt (�)� E (zTt (�)))

)
= fH�

1T (�)g+ fH�
2T (�)g+ fH�

3T (�)g ; say,

and de�ne H��
T (�) =

P3
h=1H

��
hT (�) exactly in the same way as H

�
T (�), the only di¤erence being

that z�t�1;d is replaced by z
��
t�1;d: The proof then follows by �rst showing uniform convergence of

the �theoretical�process H��
1T (�) over the bounded sets of R2; and then showing that jH��

T (�)�
H�
T (�) j = op (1), so that H��

T (�) and H
�
T (�) share the same asymptotic representation.

First, for H��
1T (�) ; note that under the null hypothesis  � (ut� ) is an i.i.d. process with discrete

support f� ; � � 1g and probabilities f1� � ; �g. Also,  � (ut� ) is independent of
�
x�t�1;d; x

��
t�1;d

�0
;

and thus E(���
T ) = 0 and E(���

T �
��0
T ) = � (1� �)V, where V =diag(1; v) ; recalling v �

�2�2=6: Furthermore, since E( � (ut� ) jFt�1) = 0; then
�
���t�1;Ft

	
is a stationary, ergodic

and square-integrable vector MDS. From the Lindeberg-Lévy theorem T�1
PT

t=2  � (ut� ) !
N (0; � (1� �)). Also, since i) T�1

PT
t=2 �

2��
t

p! � (1� �) v from the Ergodic Theorem, and

ii) max2�t�T j���t j � max2�t�T jx��t�1;dj = op

�p
T
�
because maxt�2 j � (ut� ) j � 1 and Lemma
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Aiii), su¢ cient conditions to apply a Central Limit Theorem for MDS (Davidson, 1994, The-

orem 24.3) hold, which together with the Cramér-Wold device allow to conclude that for any

�xed �; T�1=2���
T ! N� and H��

1T (�) ! ��0N� ; with N� denoting a 2-dimensional normal

variate with zero mean and covariance matrix � (1� �)V:

Second, for H��
2T (�) ; following Koenker (2005, p.120) we note that

E (z��Tt (�)) =

Z 1

�1

�Z ltT

0

[I (ut� � s)� I (ut� < 0)] ds
�
f (i) di

=

Z ltT

0

�Z 1

�1
[I (ut� � s)� I (ut� < 0)] f (i) di

�
ds

=

Z ltT

0

[F (q�;t + s)� F (q�;t))] ds

because under the null hypothesis ut� = "t � q�;t: Using the change of variable s = r=
p
T ;

TX
t=2

E (z��Tt (�)) =
1p
T

TX
t=2

Z p
T ltT

0

�
F

�
q�;t +

rp
T

�
� F (q�;t)

�
dr

and since for all �xed constants a and r, limT!1

�
F(a+r=

p
T)�F (a)

r=
p
T

�
= f (a) under the assump-

tions in Theorem 3.1, we have

TX
t=2

E (z��Tt (�)) =
1

T

TX
t=2

Z p
T ltT

0

p
T

�
F

�
q�;t +

rp
T

�
� F (q�;t))

�
dr

=
1

T

TX
t=2

Z p
T ltT

0

f (q�;t) rdr + o (1)

=
1

2T

TX
t=2

f (q�;t)
�
�0z��t�1;dz

0��
t�1;d�

�
+ o (1)

so, under the null hypothesis,

H��
2T (�) =

f (F�1 (�))

2
�0

"
1

T

TX
t=2

z��t�1;dz
0��
t�1;d

#
� + o (1)

p! f (F�1 (�))

2
�0V�

because z��t�1;d is an ergodic and stationary vector with �nite variance, hence T
�1PT

t=2 z
��
t�1;dz

0��
t�1;d

a:s!
V =E

�
z��t�1;dz

0��
t�1;d

�
from the ET (see, for instance, Taniguchi and Kakizawa, 2000, Theorem

1.3.5).

Lastly, H��
3T (�) is the sum of a demeaned process and for a �xed � converges to zero in the

mean square sense. To see this, note that the variance of z��Tt (�) is bounded (Koenker 2005.

p.122) by max2�t�T j�0z��t�1;dj
PT

t=2E (zTt (�)) =
p
T ; and since for any �nite � =(�1; �2)

0 ;

max
2�t�T

j�0z��t�1;dj � j�1j+ j�2j max
2�t�T

jx��t�1;dj = Op

�
O (1) + op

�p
T
��
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as a result V ar (z��Tt (�)) = op (1) because
PT

t=2E (z
��
Tt (�)) = Op (1) : Consequently, H��

T (�)

converges weakly to a random variable with known distribution, say H (�), uniformly on �:

We now show that jH��
T (�)�H�

T (�) j = op (1) : To this end, note from the triangle inequality

that

jH��
T (�)�H�

T (�) j �
X
h=1;2

jH��
hT (�)�H�

hT (�) j + jH��
3T (�) j + jH�

3T (�) j

so the required result holds by showing that the terms on the right-hand side are asymptotically

negligible. De�ne 't�1 = x��t�1;d � x�t�1;d, where '
2
t�1 = Op (1=t) from Lemma Aii), and note

that, for any �xed � with bounded norm,

jH��
1T (�)�H�

1T (�) j � k�k


�T�1=2 (���

T ���
T )
�

 = Op

�p
log T=T

�
because

E





 1p
T
(���

T ���
T )





2 � 1

T

TX
t=2

E
h
 2� (ut� )

�
x��t�1;d � x�t�1;d

�2i
� 1

T

TX
t=2

E
�
'2t�1

�
= O

�
log T

T

�
using independence between  � (ut� ) and 't�1 and noting that E

�
 2� (ut� )

�
� 1. Therefore, it

follows that jjT�1=2 (���
T ���

T ) jj = op (1), and so the Asymptotic Equivalence Lemma [AEL],

White (2001, Lemma 4.7), ensures H�
1T (�) ! ��0N� : Similarly, for any �xed �; we can show

that

jH��
2T (�)�H�

2T (�) j �
f (F�1 (�))

2
jj�jj k
��T � 
�Tk jj�jj = Op

�
T�1=2

�
with 
��T = T�1

PT
t=2 z

��
t�1;dz

0��
t�1;d and 


�
T = T�1

PT
t=2 z

�
t�1;dz

0�
t�1;d. More speci�cally, note that

x��2t�1;d � x�2t�1;d =
1X
j=t

1X
l=t

"t�j"t�l
jl

+ 2
t�1X
j=1

1X
l=t

"t�j"t�l
jl

= '2t�1 + 2x
�
t�1;d't�1

so if I(i;j) is a (2� 2) indicator matrix taking value one at position (i; j) and zero elsewhere, we
have from Minkowski�s inequality that,

E k
��T � 
�Tk � 1

T

TX
t=2

E


z��t�1;dz0��t�1;d � z�t�1;dz0�t�1;d



=
1

T

TX
t=2

E


't�1 �I(1;2) + I(2;1)�+ �'2t�1 + 2x�t�1;d't�1� I(2;2)



� 2

T

TX
t=2

�
E
�
j't�1j

�
+
1

2
E
�
'2t�1

�
+ E

�
jx�t�1;d't�1j

��
= O

�
log T

T

�
+O

�
1p
T

�
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because, from Liapunov�s inequality E
�
j't�1j

�
� E

�
j't�1j2

�
= O (1=t) ; and the Cauchy-

Schwarz inequality ensures E
�
jx�t�1;d't�1j

�
�
q
E
�
x�2t�1;d

�
E
�
'2t�1

�
= O

�
1=
p
t
�
. This result

and the AEL imply that 
�T
p! V and jH��

2T (�)�H�
2T (�)j = op (1) uniformly on �: Finally,

we have discussed that H��
3T (�) = op (1) ; and paralleling that reasoning, we can show that

H�
3T (�) = op (1) by noting maxt�2 jx�t�1;dj = op

�p
T
�
from Lemma Aiii).

Consequently, jH��
T (�) �H�

T (�) j = op (1) and we can claim from the AEL both H�
T (�) =

H (�) + op (1) and H��
T (�) = H (�) + op (1) ; where

H (�) = ��0N� +
f (F�1 (�))

2
�0V�

is a convex random function which is uniquely minimized at the solution of @H (�) =@�0 = 0;

namely, b� = 1

f (F�1 (�))
V�1N�

Therefore, under the null hypothesis H0 : � = 0 and the set of assumptions considered, we

conclude (Knight, 1989, 1991; Pollard, 1991) that

p
T
�b� (�)� � (�)�! N

�
0;

� (1� �)

f 2 (F�1 (�))
V�1

�
with � (�)= (� (�) ; 0)0, � (�) = F�1 (�) ; so b� (�) is consistent and asymptotically normal
distributed. Hence,

p
Tb�QR (�)! N

�
0;

6� (1� �)

[��f (F�1 (�))]2

�
from which the claimed results follow directly. �

Proof of Theorem 3.2. Portnoy (1984) and Gutenbrunner and Jureµcková (1992) showed

that the QR process is tight, so the limit distribution of the function �T (�) =
p
T b�QR (�) ;

seen as a random function of � 2 (0; 1) ; is a rescaled (or non-standard) Brownian bridge

under the null hypothesis und the conditions in Theorem 3.1, with (14) arising for any �xed � .

Since b� (�) p! 6 [��f (F�1(�))]
�2 uniformly on � ; following the arguments in Portnoy (1984),

the scaled process ST (�) = �T (�) =
pb� (�) ! B (�) in (0; 1). Then, the limits stated for the

Kolmogorov-Smirnov and the Cramér von Mises type-tests in (15) and (16) follow directly from

the continuous mapping theorem. �

The following lemmae comprise the main elements necessary to prove the remaining theo-

rems stated in the paper under short-run dependence.

Lemma B1. Consider the assumptions in Theorem 3.3 and note that f"tg admits the Wold
representation "t =

P1
j=0 bjvt�j with

P1
j=0 jjbjj < 1: Let

�
'j
	
j�0 be the j-th element in

the serial convolution of fj�1gj�1 and fbjgj�0. Then, x��t�1;d =
P1

j=0 'jvt�j�1 and x�t�1;d =Pt
j=0 'jvt�j�1; where '0 = 1 and 'j = O (1=j) for j � 1:

36



Proof. See Hassler et al. (2009, Lemma B.4).

This important result shows that the essential statistical properties of x�t�1;d and x
��
t�1;d are

preserved under the assumptions of Theorem 3.3, since
�
'j
	
j�0 belongs to the same space of

square-summable coe¢ cient series as fj�1gj�1 : Hence, the results discussed in Lemma A keep
holding and, similarly, the asymptotic limits of the normalized sums involved in the proof of

Theorem 3.1 converge at the same rates. The following lemma comprises the main additional

elements to show the results of Theorem 3.3.

Lemma B2. Let z��pt�1;d =
�
1; x��t�1;d; "t�1; :::; "t�p

�0
; with x��t�1;d =

P1
j=0 'jvt�j�1; "t =

P1
j=0 bjvt�j;

and de�ne 
��
p = T�1

PT
t=p+1 z

��
pt�1;dz

0��
pt�1;d and 


�
p = T�1

PT
t=p+1 z

�
pt�1;dz

0�
pt�1;d; where z

�
pt�1;d is

the �nite-sample analog of z��pt�1;d: Recall that  � (a) = ��I (a < 0) ; and let ut� = vt�F�1 (�) ;
with F (�) denoting the cumulative distribution function of v t: Then:
i) E

�
z��pt�1;dz

0��
pt�1;d

�
= 
p; bounded and bounded away from zero, and invertible.

ii) T�1=2
PT

t=p+1  � (ut� ) z
��
pt�1;d ! N (0; � (1� �)
p) :

iii) jj
��
p �
pjj = op (1) :

iv)



��p �
�

p



 = op (1) :

v)



T�1=2PT

t=p+1  � (ut� )
�
z��pt�1;d � z�pt�1;d

�


 = op (1) :

Proof. For i), note that 
p can be partitioned as 
[�11]2�2 [�012]2�p
[�12]p�2 [�22]p�p

!

with �11 = diag
�
1; �2

P1
j=0 '

2
j

�
; �22 = �2

P1
j=0 bjb

0
j; bj = (bj�1; :::; bj�p)

0 and bl = 0 for

all l < 0, and �12 = (0p;�p) ; with �p = E
�
x��t�1;d"t�1; ::; x

��
t�1;d"t�p

�
and 0p a conformable

column of zeros. This matrix is trivially bounded away from zero, and since �11 and �22

are bounded, so is �12 noting that jj�12jj � jj�11jj1=2jj�22jj1=2 from the Cauchy-Schwarz in-

equality. Finally, 
p is non-singular, as the elements of z��pt�1;d are not linearly dependent.

Statement ii) holds since, as under the assumptions of Theorem 3.1,
�
����p;Gt

	
; with ����p =

 � (ut� ) z
��
pt�1;d; is a stationary and ergodic vector MDS bounded under the L2 norms, with Gt�1

being the �-�eld generated by fvs; s < tg; and  � (ut� ) independent of z��pt�1;d: From the er-

godic theorem, T�1
PT

t=p+1�
��
�p�

0��
�p

a:s! � (1� �)
p; and since maxt�p+1
��x�t�1;d�� = op

�p
T
�
and

maxt�p+1 j"t�kj = op

�p
T
�
; k = 1; :::; p; we can show the required result from the CLT for MDS

(Davidson, 1994, Theorem 24.3) and the Cramér-Wold device. Result iii) follows directly from

the ergodic theorem. Part iv) holds true if (a) jj���11;T ���
11jj = op (1) ; (b) jj���

22���22jj = op (1)

and (c) jj���
12 � ��

12jj = op (1) ; where ���
ij and �

�
ij are the corresponding submatrices of 


��
p

and 
�p; respectively. Paralleling the proof of Theorem 3.1 above we can show that (a) holds

true with jj���
11 � ��11jj = O

�
1=
p
T
�
; and (b) holds trivially because ���

22 = ��22. To prove
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(c), note that "t�k
�
x��t�1;d � x�t�1;d

�
� "t�k't�1; and since E

�
"t�k't�1

�
= O

�
1=
p
t
�
from the

Cauchy-Schwarz inequality and Lemma Aii), it follows that

Ejj���12 ���
12jj �

1

T � p

TX
t=p+1

pX
k=1

Ej"t�k't�1j = O
�
1=
p
T
�

and therefore



��

p �
�
p



 = Op

�
1=
p
T
�
= op (1) : Together with iii); this implies 
�

p

p! 
p

from the AEL. Finally, part v) holds if


T�1=2 �����p ����p�

 = op (1) ; but, since

E


T�1=2 �����p ����p�

2 � T�1

TX
t=2

E
�
 2� (ut� )'

2
t�1
�
= O

�
log T

T

�

as in the proof of Theorem 3.1, we have


T�1=2 �����p ����p�

 = Op

�p
log T=T

�
= op (1) from

Markov�s inequality. Together with ii) above, this implies that T�1=2
PT

t=p+1  � (ut� ) z
�
pt�1;d !

N (0; � (1� �)
p) : �

Proof of Theorem 3.3. The proof is now obvious in view of Lemma Aiii) and Lemma B2
and follows parallel to that of Theorem 3.1. Hence, for the sake of space we do not present the

details, but these are available upon request. �

Proof of Theorem 3.4. Follows directly from tightness of the QR process and the continuous
mapping theorem as in Theorem 3.2. �
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Figures and Tables

Figure 1: Daily measures of realized variation of IBM from 04/01/1993 to 31/05/2007 es-

timated from 5-minute log-returns. These are realized volatility �RV (t) =
hP156

n=1 r
2
(n);t

i1=2
,

(unnormalized) realized power variation �RPV (t) =
P156

m=1 jr(n);tj; and logarithmic transforms
of these variables.
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Figure 2: Sample Autocorrelation Function (ACF) of the measures of daily realized variation
in Figure 1 together with upper 95% con�dence band (dashed red line).
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Figure 3: Estimates of the long-memory parameter of log �RV (t) and log �RPV (t) from the
QRLM testing procedure and respective 95% and 99% con�dence intervals. For any quantile
� 2 Q; �Central�denotes the value of d 2 D for which the test statistic jtQR�;pj is closer to zero,
i.e., the value which provides maximum sample evidence for the null hypothesis. The remaining
entries correspond to the upper and lower bands of the con�dence intervals CI95% (dj�) and
CI99% (dj�) constructed by inverting tQR�;p:
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Table 1: Empirical rejection frequencies at the 5% nominal size of long-memory tests under i.i.d. errors. Data are generated according to (1� L)1+� yt = "t;
with "t being an i.i.d. sample drawn from a Student-t with v degrees of freedom, t = 1; :::; T . Tests statistics are computed under H0 : � = 0. The entries
LMK

QR� and LM
B
QR� denote the rejection frequencies in percentages of the QRLM test LRQR� at � = 1=2 with covariance matrix computed with a kernel

density estimate and bootstrap scheme, respectively. The entries LMLS and LMDV denote the rejection frequencies of the LM tests in Breitung and Hassler

(2002) and the nonparametric in Delgado and Velasco (2005), respectively

v = 2 v = 3 v = 1000 (Gaussian)
� LMK

QR� LMB
QR� LMLS LMDV LMK

QR� LMB
QR� LMLS LMDV LMK

QR� LMB
QR� LMLS LMDV

T=100

-0.30 98.80 99.00 94.02 19.12 94.24 95.93 93.70 23.38 76.22 77.13 92.44 24.38

-0.20 89.80 91.70 66.04 11.76 74.88 77.90 64.36 12.40 49.04 49.55 62.70 11.84

-0.10 46.18 53.48 17.08 5.86 30.78 37.33 19.54 5.10 22.16 24.18 22.62 4.18

0.00 4.72 6.37 3.78 3.56 6.04 8.20 4.34 3.60 7.56 8.13 4.64 3.12

0.10 36.64 44.42 22.64 35.34 19.82 23.90 24.32 23.94 10.98 12.38 24.68 16.86

0.20 83.18 85.70 71.34 76.34 63.84 66.43 69.64 64.50 34.42 35.73 68.68 48.52

0.30 96.82 97.53 93.70 94.16 90.08 90.73 93.54 88.38 68.98 67.00 93.38 78.04

T=250

-0.30 99.98 100.00 99.94 62.00 100.00 99.93 99.98 77.2 98.64 100.00 100.00 82.62

-0.20 99.88 100.00 97.88 44.98 98.72 98.73 97.22 54.64 85.14 85.23 97.04 54.40

-0.10 87.12 89.93 46.16 23.28 64.32 67.70 47.46 23.64 37.54 38.68 48.04 19.40

0.00 3.78 6.23 3.62 5.06 5.36 6.38 4.14 5.4 6.42 7.05 4.88 5.18

0.10 81.50 84.13 55.02 65.40 55.68 59.70 54.12 47.1 27.24 27.38 53.40 31.24

0.20 99.72 100.00 97.46 98.32 97.86 98.25 97.10 94.06 79.10 81.60 96.76 82.30

0.30 99.98 100.00 99.86 99.96 99.94 99.93 99.96 99.8 98.46 100.00 99.94 98.60

T=1000

-0.30 99.98 100.00 100.00 96.50 100.00 100.00 100.00 99.96 100.00 100.00 100.00 100.00

-0.20 100.00 100.00 100.00 89.32 99.98 100.00 100.00 98.98 99.96 100.00 100.00 99.00

-0.10 99.98 100.00 98.46 64.42 99.68 99.70 98.12 73.14 88.32 89.70 98.28 62.14

0.00 3.76 6.27 3.94 5.36 4.14 5.58 4.48 5.40 5.34 5.93 4.66 4.66

0.10 100.00 100.00 98.08 99.46 99.44 99.43 97.94 94.74 86.58 86.23 97.82 81.06

0.20 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.96

0.30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 2: Empirical rejection frequencies at the 5% nominal size of long-memory tests under short-run dependence. Data are generated according to

(1� L)1+� yt = "t; with (1� aL) "t= vt; and vt being an i.i.d. sample drawn from a Student-t with v degrees of freedom, t = 1; :::; T . Tests statistics
are computed under H0 : � = 0. The entries LMQR�;p and LMLS denotes the rejection frequencies in percentages of the augmented QRLM test at � = 1=2
with covariance matrix computed with a kernel density, and the least-squares test from an augmented regression, respectively.

v = 2 v = 3 v = 1000 (Gaussian)
� LMQR�;p LMLS LMQR�;p LMLS LMQR�;p LMLS

a = 0:5 a = 0:75 a = 0:5 a = 0:75 a = 0:5 a = 0:75 a = 0:5 a = 0:75 a = 0:5 a = 0:75 a = 0:5 a = 0:75

T=100

-0.30 43.14 5.68 18.42 3.50 31.42 6.60 18.98 3.96 23.10 9.90 21.36 4.60

-0.20 22.06 4.44 9.90 2.62 17.90 6.02 10.50 3.38 17.16 9.48 11.66 3.94

-0.10 10.20 3.78 5.56 2.68 10.64 6.10 5.88 3.72 13.26 9.58 6.70 4.36

0.00 5.22 5.16 3.74 3.52 7.22 8.04 4.98 4.86 11.06 11.76 5.20 4.92

0.10 4.36 8.30 4.34 4.94 6.44 11.44 5.48 6.20 9.46 15.06 6.06 6.18

0.20 5.70 14.40 6.28 7.10 6.18 18.48 7.26 8.56 10.18 19.92 8.02 8.60

0.30 7.84 25.56 7.72 11.46 7.44 29.06 8.50 12.58 10.44 29.20 9.08 13.10

T=250

-0.30 84.94 12.76 47.38 4.52 63.76 8.74 48.70 5.58 36.18 7.78 47.90 5.80

-0.20 54.88 5.48 18.72 3.10 35.28 6.10 22.50 3.80 20.86 6.44 22.20 3.68

-0.10 17.78 3.12 7.00 2.88 14.14 4.78 8.06 3.68 11.86 6.16 8.70 3.14

0.00 3.88 4.08 3.52 3.54 6.06 5.46 4.78 4.92 7.24 7.30 4.72 4.20

0.10 8.14 6.32 7.18 5.48 6.04 8.62 8.08 6.40 6.06 9.88 8.82 6.16

0.20 20.48 12.86 15.52 7.22 9.22 15.24 16.54 9.08 6.50 15.42 16.44 9.32

0.30 28.16 23.20 22.52 11.12 12.32 25.80 22.38 12.92 6.82 24.18 23.42 13.38

T=1000

-0.30 100.00 56.34 98.98 13.86 99.76 26.34 98.82 17.28 89.10 13.78 98.62 16.42

-0.20 99.30 24.14 78.56 5.74 89.02 10.50 76.20 7.26 56.16 7.38 76.58 7.20

-0.10 67.06 7.42 19.98 3.40 35.76 5.18 23.54 4.50 19.38 5.52 22.86 4.00

0.00 3.06 3.20 3.96 3.92 4.58 5.14 5.28 5.16 5.42 5.94 4.82 4.84

0.10 48.24 8.62 21.22 6.52 19.62 7.56 21.86 7.94 9.54 7.44 22.20 8.10

0.20 86.88 16.84 56.44 11.32 53.20 12.62 54.82 12.84 23.12 12.24 54.32 12.28

0.30 94.86 24.98 74.60 15.18 72.10 20.90 73.02 16.94 34.10 21.04 72.24 17.72
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Table 3: Descriptive statistics and semiparametric estimators of the long-memory parameter for di¤erent measures of daily realized variation: realized volatility

�RV (t) =
hP156

n=1 r
2
(n);t

i1=2
; realized power variation �RPV (t) =

P156
n=1 jr(n);tj and logarithmic transformations of these series. The statistic JB is the

nonparametric Jarque-Bera test for unconditional normality of the series (p-values in brackets), distributed as �2(2). The statistic b�k denotes the k-th order
sample autocorrelation. The Geweke-Porter-Hudak (1983) estimator of d is denotes as bdGPH , whereas the exact local Whittle estimator of Shimotsu and Phillips
(2005) is denoted as bdELW : CI95%(d) denotes the 95% asymptotic con�dence interval for d for any of these estimates.

�RV (t) log �RV (t) �RPV (t) log �RPV (t)

Mean 0.012 -4.547 0.076 -2.690

Median 0.010 -4.580 0.066 -2.714

Std.Dev. 0.009 0.481 0.041 0.456

Skewness 7.775 0.752 3.255 0.3148

Kurtosis 102.81 5.271 30.028 3.448

JB 1.54e+006 (0.00) 1.12e+003 (0.00) 1.16e+005 (0.00) 90.32 (0.00)b�1 0.276 0.653 0.575 0.724b�400 0.112 0.258 0.202 0.277bdGPH 0.438 0.512 0.475 0.545

CIGPH95% (d) [0.33,0.55] [0.40,0.62] [0.36,0.58] [0.44,0.65]bdELW 0.397 0.488 0.464 0.508

CIELW95% (d) [0.31,0.48] [0.40,0.57] [0.38,0.54] [0.42,0.59]
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Table 4: Quantile regression test statistics for long memory in logs of daily realized volatility. The top of the table presents the individual t-statistics for
H0: d = d0, with d0= 0; 0:1; :::; 1 at the deciles � = 0:1; : : : ; 0:9 in rows. The CI(1��)�100%(dj�) columns show the (1� �)� 100% con�dence intervals

for d determined as the non-rejection region of the test at a �� 100% nominal level given the value of � . The entry LS shows the corresponding test and
con�dence interval based on the least-squares statistic for the conditional mean. The bottom part of the table reports joint test statistics of H0: d = d0 in the
set of quantiles T1 =[0.4,0.6] and T2 =[0.1,0.9]. The test statistics are the Kolmogorov-Smirnov (KS) and Cramer von Mises (CM) type tests described in

Corollary 3.1 computed over these intervals. The CI(1��)�100%(djT ) columns show con�dence interval for d determined as the non-rejection region of the joint
test at a �� 100% nominal level given the T quantile intervals (see Table 6 for critical values). All statistics have been computed from an auxiliary regression

augmented with p lags of the dependent variable according to Schwert�s rule with p = [4(T=100)1=4]:

Panel A: Individual Test: H0 : d = d0 at � CI95%(dj�) CI99%(dj�)
� 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9 3.09 4.00 4.39 4.39 3.65 2.65 1.28 -0.18 -1.64 -2.62 -3.50 [0.56,0.83] [0.51,0.89]

0.8 5.27 5.89 5.86 5.13 4.06 2.06 0.27 -1.35 -2.90 -4.51 -6.11 [0.51,0.74] [0.38.0.77]

0.7 6.31 6.67 5.70 4.17 2.30 0.11 -1.81 -3.49 -5.02 -6.82 -8.51 [0.42,0.62] [0.38,0.64]

0.6 7.86 7.66 6.21 3.62 0.70 -1.63 -3.52 -5.16 -6.89 -8.48 -9.86 [0.36,0.51] [0.34,0.54]

0.5 8.42 8.22 6.59 4.10 1.32 -1.24 -3.54 -5.79 -7.67 -9.41 -10.96 [0.38,0.53] [0.36,0.56]

0.4 9.20 8.69 6.79 3.79 0.12 -3.41 -6.23 -8.32 -9.90 -10.65 -11.84 [0.35,0.45] [0.34,0.46]

0.3 9.10 8.53 5.96 2.84 -0.83 -3.93 -6.65 -8.86 -10.25 -11.24 -11.72 [0.33,0.43] [0.31,0.45]

0.2 10.44 9.36 7.05 3.26 -0.73 -4.54 -7.34 -9.16 -10.64 -11.68 -11.91 [0.34,0.43] [0.32,0.44]

0.1 9.20 8.02 5.82 2.07 -1.44 -4.50 -7.18 -8.59 -9.12 -9.36 -10.23 [0.31,0.41] [0.29,0,43]

LS 7.68 8.22 7.40 5.50 3.09 0.59 -1.93 -4.42 -6.67 -8.66 -10.46 [0.45,0.60] [0.42,0.62]

Panel B: Quantile Regression based Joint Tests H0 : d = d0 over T CI95%(djT ) CI99%(djT )
KS [0.4,0.6] 4.82 4.48 3.54 2.15 0.69 1.67 3.05 4.08 4.85 5.41 6.04 [0.36,0.48] [0.35,0.49]

CM [0.4,0.6] 4.01 3.62 2.28 0.78 0.05 0.24 1.04 2.12 3.43 4.79 6.34 [0.38,0.48] [0.35,0.50]

KS [0.1,0.9] 4.82 4.48 3.54 2.22 1.63 1.99 3.18 4.23 4.85 5.46 6.12 [0.44,0.45] [0.40,0.47]

CM [0.1,0.9] 10.74 9.81 6.19 2.31 0.50 1.28 3.71 6.78 10.07 13.42 16.88 [0.41,0.42] [0.38,0.46]
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Table 5: Quantile regression test statistics for long memory in logs of daily power variation. The top of the table presents the individual t-statistics for
H0: d = d0, with d0= 0; 0:1; :::; 1 at the deciles � = 0:1; : : : ; 0:9 in rows. The CI(1��)�100%(dj�) columns show the (1� �)� 100% con�dence intervals

for d determined as the non-rejection region of the test at a �� 100% nominal level given the value of � . The entry LS shows the corresponding test and
con�dence interval based on the least-squares statistic for the conditional mean. The bottom part of the table reports joint test statistics of H0: d = d0 in the
set of quantiles T1 =[0.4,0.6] and T2 =[0.1,0.9]. The test statistics are the Kolmogorov-Smirnov (KS) and Cramer von Mises (CM) type tests described in

Corollary 3.1 computed over these intervals. The CI(1��)�100%(djT ) columns show con�dence interval for d determined as the non-rejection region of the joint
test at a �� 100% nominal level given the T quantile intervals (see Table 6 for critical values). All statistics have been computed from an auxiliary regression

augmented with p lags of the dependent variable according to Schwert�s rule with p = [4(T=100)1=4]:

Panel A: Individual Test: H0 : d = d0 at � CI95%(dj�) CI99%(dj�)
� 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9 3.18 4.65 5.14 4.84 3.88 2.87 1.47 -0.24 -1.63 -2.85 -4.10 [0.56,0.84] [0.52,0.88]

0.8 4.74 5.22 5.56 5.01 3.82 2.31 0.54 -0.82 -2.26 -3.50 -4.64 [0.52,0.78] [0.49,0.82]

0.7 5.64 6.12 5.54 4.34 2.65 0.73 -1.03 -2.79 -4.48 -6.11 -7.63 [0.44,0.65] [0.41,0.69]

0.6 6.79 6.60 5.51 3.92 1.80 -0.18 -1.93 -3.53 -5.01 -6.42 -7.65 [0.39,0.60] [0.37,0.63]

0.5 8.66 8.12 6.56 3.83 1.41 -1.33 -3.67 -5.48 -7.52 -8.37 -9.12 [0.38,0.52] [0.36,0.55]

0.4 7.99 7.87 6.77 4.30 1.26 -1.59 -4.08 -6.25 -8.08 -10.08 -11.06 [0.38,0.51] [0.36,0.53]

0.3 8.31 7.66 6.13 3.67 0.69 -2.23 -4.98 -6.80 -7.76 -9.00 -9.96 [0.36,0.48] [0.34,0.51]

0.2 7.50 7.36 6.28 3.70 0.47 -2.24 -4.68 -6.66 -7.88 -9.30 -10.50 [0.35,0.48] [0.34,0.51]

0.1 7.46 7.14 5.48 2.78 0.06 -2.57 -4.36 -5.91 -7.09 -8.05 -8.45 [0.33,0.47] [0.31,0.50]

LS 7.48 8.11 7.44 5.68 3.35 0.90 -1.60 -4.06 -6.30 -8.25 -10.00 [0.36,0.51] [0.34,0.54]

Panel B: Quantile Regression based Joint Tests H0 : d = d0 over T CI95%(djT ) CI99%(djT )
KS [0.4,0.6] 4.33 4.09 3.47 2.29 0.90 0.87 2.19 3.27 4.18 4.96 5.59 [0.37,0.52] [0.35,0.54]

CM [0.4,0.6] 3.27 3.11 2.12 0.88 0.11 0.08 0.62 1.48 2.54 3.61 4.60 [0.39,0.52] [0.37,0.54]

KS [0.1,0.9] 4.33 4.09 3.47 2.29 1.84 1.22 2.28 3.27 4.18 4.96 5.59 [0.48,0.51] [0.43,0.54]

CM [0.1,0.9] 8.13 8.10 5.83 2.70 0.66 0.50 1.89 4.12 6.76 9.54 12.41 [0.43,0.49] [0.40,0.52]
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Table 6: Quantile regression test statistics for long memory in daily realized volatility. The top of the table presents the individual t-statistics for H0: d = d0,
with d0= 0; 0:1; :::; 1 at the deciles � = 0:1; : : : ; 0:9 in rows. The CI(1��)�100%(dj�) columns show the (1� �)� 100% con�dence intervals for d
determined as the non-rejection region of the test at a �� 100% nominal level given the value of � . The entry LS shows the corresponding test and con�dence
interval based on the least-squares statistic for the conditional mean. The bottom part of the table reports joint test statistics of H0: d = d0 in the set of
quantiles T1 =[0.4,0.6] and T2 =[0.1,0.9]. The test statistics are the Kolmogorov-Smirnov (KS) and Cramer von Mises (CM) type tests described in Theorem

3.4 computed over these intervals. The C.V. 95% and C.V. 99% columns show the critical values of the corresponding distributions, approached trhough

experimental simulation. All statistics have been computed from an auxiliary regression augmented with p lags of the dependent variable according to Schwert�s
rule with p = [4(T=100)1=4]:

Panel A: Individual Test: H0 : d = d0 at � CI95%(dj�) CI99%(dj�)
� 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9 6.99 10.83 13.75 16.36 15.33 12.65 9.50 6.00 2.83 -0.23 -1.51 [0.84,1.04] [0.81,1.07]

0.8 10.32 12.97 14.18 13.82 11.84 8.08 3.35 -0.33 -3.32 -5.91 -8.49 [0.63,0.74] [0.62,0.77]

0.7 13.05 12.27 10.50 7.79 3.83 -1.17 -5.54 -9.66 -13.47 -16.67 -20.35 [0.44,0.51] [0.43,0.53]

0.6 16.70 13.72 8.33 2.14 -3.69 -9.47 -14.36 -17.79 -20.30 -23.18 -26.31 [0.32,0.37] [0.30,0.37]

0.5 15.36 10.52 4.28 -2.68 -9.56 -14.98 -17.74 -20.15 -22.80 -24.90 -26.34 [0.24,0.28] [0.23,0.29]

0.4 17.31 10.47 1.11 -8.78 -16.93 -22.29 -26.88 -27.57 -27.00 -27.32 -29.81 [0.19,0.23] [0.18,0.24]

0.3 17.98 8.60 -2.07 -12.56 -21.24 -28.60 -29.68 -27.72 -26.20 -23.86 -22.57 [0.17,0.22] [0.16,0.22]

0.2 19.25 8.54 -4.39 -17.18 -26.13 -28.20 -27.12 -22.47 -20.27 -18.91 -17.85 [0.15,0.19] [0.15,0.20]

0.1 15.37 5.15 -7.61 -18.90 -28.64 -32.12 -26.74 -18.74 -16.93 -15.66 -14.00 [0.13,0.15] [0.12,0.16]

LS 8.51 7.68 5.74 3.22 0.54 -2.10 -4.68 -7.13 -9.40 -11.52 -13.53 [0.35,0.48] [0.33,0.52]

Panel B: Quantile Regression based Joint Tests H0 : d = d0 over T C.V. 95% C.V. 99%
KS [0.4,0.6] 9.01 6.72 4.08 4.30 8.29 10.92 13.17 13.50 13.23 14.35 15.39 1.25 1.51

CM [0.4,0.6] 16.29 7.71 1.35 1.28 7.13 15.89 23.04 27.76 32.29 38.75 45.31 0.16 0.27

KS [0.1,0.9] 9.01 6.74 5.67 6.96 11.03 13.40 14.05 13.80 13.35 14.35 15.39 1.35 1.60

CM [0.1,0.9] 40.91 19.82 9.29 17.86 38.83 59.85 67.20 66.81 68.33 74.90 84.55 0.44 0.72
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Table 7: Quantile regression test statistics for long memory in daily power variation. The top of the table presents the individual t-statistics for H0: d = d0, with
d0= 0; 0:1; :::; 1 at the deciles � = 0:1; : : : ; 0:9 in rows. The CI(1��)�100%(dj�) columns show the (1� �)� 100% con�dence intervals for d determined as
the non-rejection region of the test at a �� 100% nominal level given the value of � . The entry LS shows the corresponding test and con�dence interval based
on the least-squares statistic for the conditional mean. The bottom part of the table reports joint test statistics of H0: d = d0 in the set of quantiles T1 =[0.4,0.6]
and T2 =[0.1,0.9]. The test statistics are the Kolmogorov-Smirnov (KS) and Cramer von Mises (CM) type tests described in Theorem 3.4 computed over these

intervals. The C.V. 95% and C.V. 99% columns show the critical values of the corresponding distributions, approached trhough experimental simulation. All

statistics have been computed from an auxiliary regression augmented with p lags of the dependent variable according to Schwert�s rule with p = [4(T=100)1=4]:

Panel A: Individual Test: H0 : d = d0 at � CI95%(dj�) CI99%(dj�)
� 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9 5.01 9.34 11.99 14.73 15.17 13.31 10.48 6.82 3.71 1.92 0.81 [0.87,1.36] [0.86,1.42]

0.8 6.63 9.41 11.70 12.73 12.63 10.85 7.97 5.54 2.33 -0.05 -1.79 [0.81,1.01] [0.79,1.09]

0.7 7.34 9.33 9.23 8.71 7.35 5.14 1.98 -1.90 -4.15 -6.45 -8.22 [0.59,0.70] [0.59,0.73]

0.6 9.77 9.43 7.76 5.49 2.49 -0.24 -2.78 -5.43 -7.95 -10.14 -12.06 [0.41,0.56] [0.39,0.59]

0.5 10.56 8.89 5.39 0.95 -3.09 -6.98 -9.21 -11.19 -12.61 -14.13 -14.69 [0.28,0.37] [0.28,0.39]

0.4 10.86 8.23 3.67 -1.85 -7.15 -11.57 -14.76 -16.80 -18.27 -17.21 -18.17 [0.23,0.30] [0.22,0.31]

0.3 11.68 7.42 1.31 -5.58 -11.94 -16.19 -18.40 -18.32 -18.24 -17.47 -18.47 [0.19,0.25] [0.18,0.25]

0.2 11.16 5.75 -1.77 -10.01 -17.16 -20.05 -18.37 -17.84 -16.03 -15.95 -15.18 [0.16,0.21] [0.16,0.22]

0.1 10.16 3.38 -5.14 -12.72 -19.24 -20.96 -18.11 -15.97 -15.40 -14.79 -12.59 [0.12,0.16] [0.11,0.17]

LS 7.60 7.57 6.40 4.44 2.14 -0.21 -2.54 -4.81 -6.90 -8.82 -10.61 [0.42,0.56] [0.38,0.61]

Panel B: Quantile Regression based Joint Tests H0 : d = d0 over T C.V. 95% C.V. 99%
KS [0.4,0.6] 5.87 4.70 3.80 2.69 3.50 5.67 7.23 8.23 8.95 8.87 8.90 1.25 1.51

CM [0.4,0.6] 6.09 4.18 1.70 0.34 0.85 2.87 5.23 7.47 9.35 10.71 12.46 0.16 0.27

KS [0.1,0.9] 5.87 4.70 5.06 5.63 7.05 8.11 8.57 8.77 8.96 8.87 9.02 1.35 1.60

CM [0.1,0.9] 15.67 11.14 7.74 9.40 16.03 21.90 23.83 24.94 26.13 27.59 30.24 0.44 0.72

47





Banco de Portugal | Working Papers i

WORKING PAPERS

2010

1/10 MEASURING COMOVEMENT IN THE TIME-FREQUENCY SPACE

 — António Rua

2/10 EXPORTS, IMPORTS AND WAGES: EVIDENCE FROM MATCHED FIRM-WORKER-PRODUCT PANELS

 — Pedro S. Martins, Luca David Opromolla

3/10 NONSTATIONARY EXTREMES AND THE US BUSINESS CYCLE

 — Miguel de Carvalho, K. Feridun Turkman, António Rua

4/10 EXPECTATIONS-DRIVEN CYCLES IN THE HOUSING MARKET

 — Luisa Lambertini, Caterina Mendicino, Maria Teresa Punzi

5/10 COUNTERFACTUAL ANALYSIS OF BANK MERGERS

 — Pedro P. Barros, Diana Bonfi m, Moshe Kim, Nuno C. Martins

6/10 THE EAGLE. A MODEL FOR POLICY ANALYSIS OF MACROECONOMIC INTERDEPENDENCE IN THE EURO AREA

 — S. Gomes, P. Jacquinot, M. Pisani

7/10 A WAVELET APPROACH FOR FACTOR-AUGMENTED FORECASTING

 — António Rua

8/10 EXTREMAL DEPENDENCE IN INTERNATIONAL OUTPUT GROWTH: TALES FROM THE TAILS

 — Miguel de Carvalho, António Rua

9/10 TRACKING THE US BUSINESS CYCLE WITH A SINGULAR SPECTRUM ANALYSIS

 — Miguel de Carvalho, Paulo C. Rodrigues, António Rua

10/10 A MULTIPLE CRITERIA FRAMEWORK TO EVALUATE BANK BRANCH POTENTIAL ATTRACTIVENESS

 — Fernando A. F. Ferreira, Ronald W. Spahr, Sérgio P. Santos, Paulo M. M. Rodrigues

11/10 THE EFFECTS OF ADDITIVE OUTLIERS AND MEASUREMENT ERRORS WHEN TESTING FOR STRUCTURAL BREAKS 

IN VARIANCE

 — Paulo M. M. Rodrigues, Antonio Rubia

12/10 CALENDAR EFFECTS IN DAILY ATM WITHDRAWALS

 — Paulo Soares Esteves, Paulo M. M. Rodrigues

13/10 MARGINAL DISTRIBUTIONS OF RANDOM VECTORS GENERATED BY AFFINE TRANSFORMATIONS OF 

INDEPENDENT TWO-PIECE NORMAL VARIABLES

 — Maximiano Pinheiro

14/10 MONETARY POLICY EFFECTS: EVIDENCE FROM THE PORTUGUESE FLOW OF FUNDS

 — Isabel Marques Gameiro, João Sousa

15/10 SHORT AND LONG INTEREST RATE TARGETS

 — Bernardino Adão, Isabel Correia, Pedro Teles

16/10 FISCAL STIMULUS IN A SMALL EURO AREA ECONOMY

 — Vanda Almeida, Gabriela Castro, Ricardo Mourinho Félix, José Francisco Maria

17/10 FISCAL INSTITUTIONS AND PUBLIC SPENDING VOLATILITY IN EUROPE

 — Bruno Albuquerque



Banco de Portugal | Working Papers ii

18/10 GLOBAL POLICY AT THE ZERO LOWER BOUND IN A LARGE-SCALE DSGE MODEL

 — S. Gomes, P. Jacquinot, R. Mestre, J. Sousa

19/10 LABOR IMMOBILITY AND THE TRANSMISSION MECHANISM OF MONETARY POLICY IN A MONETARY UNION

 — Bernardino Adão, Isabel Correia

20/10 TAXATION AND GLOBALIZATION

 — Isabel Correia

21/10 TIME-VARYING FISCAL POLICY IN THE U.S.

 — Manuel Coutinho Pereira, Artur Silva Lopes

22/10 DETERMINANTS OF SOVEREIGN BOND YIELD SPREADS IN THE EURO AREA IN THE CONTEXT OF THE ECONOMIC 

AND FINANCIAL CRISIS

 — Luciana Barbosa, Sónia Costa

23/10 FISCAL STIMULUS AND EXIT STRATEGIES IN A SMALL EURO AREA ECONOMY 

 — Vanda Almeida, Gabriela Castro, Ricardo Mourinho Félix, José Francisco Maria

24/10 FORECASTING INFLATION (AND THE BUSINESS CYCLE?) WITH MONETARY AGGREGATES

 — João Valle e Azevedo, Ana Pereira

25/10 THE SOURCES OF WAGE VARIATION: AN ANALYSIS USING MATCHED EMPLOYER-EMPLOYEE DATA

 — Sónia Torres,Pedro Portugal, John T.Addison, Paulo Guimarães

26/10 THE RESERVATION WAGE UNEMPLOYMENT DURATION NEXUS

 — John T. Addison, José A. F. Machado, Pedro Portugal

27/10 BORROWING PATTERNS, BANKRUPTCY AND VOLUNTARY LIQUIDATION

 — José Mata, António Antunes, Pedro Portugal

28/10 THE INSTABILITY OF JOINT VENTURES: LEARNING FROM OTHERS OR LEARNING TO WORK WITH OTHERS

 — José Mata, Pedro Portugal

29/10 THE HIDDEN SIDE OF TEMPORARY EMPLOYMENT: FIXED-TERM CONTRACTS AS A SCREENING DEVICE

 — Pedro Portugal, José Varejão

30/10 TESTING FOR PERSISTENCE CHANGE IN FRACTIONALLY INTEGRATED MODELS: AN APPLICATION TO WORLD 

INFLATION RATES

 — Luis F. Martins, Paulo M. M. Rodrigues

31/10 EMPLOYMENT AND WAGES OF IMMIGRANTS IN PORTUGAL

 — Sónia Cabral, Cláudia Duarte

32/10 EVALUATING THE STRENGTH OF IDENTIFICATION IN DSGE MODELS. AN A PRIORI APPROACH

 — Nikolay Iskrev

33/10 JOBLESSNESS

 — José A. F. Machado, Pedro Portugal, Pedro S. Raposo

2011

1/11 WHAT HAPPENS AFTER DEFAULT? STYLIZED FACTS ON ACCESS TO CREDIT

 — Diana Bonfi m, Daniel A. Dias, Christine Richmond

2/11 IS THE WORLD SPINNING FASTER? ASSESSING THE DYNAMICS OF EXPORT SPECIALIZATION

 — João Amador



Banco de Portugal | Working Papers iii

3/11 UNCONVENTIONAL FISCAL POLICY AT THE ZERO BOUND

 — Isabel Correia, Emmanuel Farhi, Juan Pablo Nicolini, Pedro Teles

4/11 MANAGERS’ MOBILITY, TRADE STATUS, AND WAGES

 — Giordano Mion, Luca David Opromolla

5/11 FISCAL CONSOLIDATION IN A SMALL EURO AREA ECONOMY

 — Vanda Almeida, Gabriela Castro, Ricardo Mourinho Félix, José Francisco Maria

6/11 CHOOSING BETWEEN TIME AND STATE DEPENDENCE: MICRO EVIDENCE ON FIRMS’ PRICE-REVIEWING 

STRATEGIES

 — Daniel A. Dias, Carlos Robalo Marques, Fernando Martins

7/11 WHY ARE SOME PRICES STICKIER THAN OTHERS? FIRM-DATA EVIDENCE ON PRICE ADJUSTMENT LAGS

 — Daniel A. Dias, Carlos Robalo Marques, Fernando Martins, J. M. C. Santos Silva

8/11 LEANING AGAINST BOOM-BUST CYCLES IN CREDIT AND HOUSING PRICES

 — Luisa Lambertini, Caterina Mendicino, Maria Teresa Punzi

9/11 PRICE AND WAGE SETTING IN PORTUGAL LEARNING BY ASKING

 — Fernando Martins

10/11 ENERGY CONTENT IN MANUFACTURING EXPORTS: A CROSS-COUNTRY ANALYSIS

 — João Amador

11/11 ASSESSING MONETARY POLICY IN THE EURO AREA: A FACTOR-AUGMENTED VAR APPROACH

 — Rita Soares

12/11 DETERMINANTS OF THE EONIA SPREAD AND THE FINANCIAL CRISIS

 — Carla Soares, Paulo M. M. Rodrigues

13/11 STRUCTURAL REFORMS AND MACROECONOMIC PERFORMANCE IN THE EURO AREA COUNTRIES: A MODEL-

BASED ASSESSMENT

 — S. Gomes, P. Jacquinot, M. Mohr, M. Pisani

14/11 RATIONAL VS. PROFESSIONAL FORECASTS

 — João Valle e Azevedo, João Tovar Jalles

15/11 ON THE AMPLIFICATION ROLE OF COLLATERAL CONSTRAINTS

 — Caterina Mendicino

16/11 MOMENT CONDITIONS MODEL AVERAGING WITH AN APPLICATION TO A FORWARD-LOOKING MONETARY 

POLICY REACTION FUNCTION

 — Luis F. Martins

17/11 BANKS’ CORPORATE CONTROL AND RELATIONSHIP LENDING: EVIDENCE FROM RETAIL LOANS

 — Paula Antão, Miguel A. Ferreira, Ana Lacerda

18/11 MONEY IS AN EXPERIENCE GOOD: COMPETITION AND TRUST IN THE PRIVATE PROVISION OF MONEY

 — Ramon Marimon, Juan Pablo Nicolini, Pedro Teles

19/11 ASSET RETURNS UNDER MODEL UNCERTAINTY: EVIDENCE FROM THE EURO AREA, THE U.K. AND THE U.S.

 — João Sousa, Ricardo M. Sousa

20/11 INTERNATIONAL ORGANISATIONS’ VS. PRIVATE ANALYSTS’ FORECASTS: AN EVALUATION

 — Ildeberta Abreu

21/11 HOUSING MARKET DYNAMICS: ANY NEWS?

 — Sandra Gomes, Caterina Mendicino



Banco de Portugal | Working Papers iv

22/11 MONEY GROWTH AND INFLATION IN THE EURO AREA: A TIME-FREQUENCY VIEW

 — António Rua

23/11 WHY EX(IM)PORTERS PAY MORE: EVIDENCE FROM MATCHED FIRM-WORKER PANELS

 — Pedro S. Martins, Luca David Opromolla

24/11 THE IMPACT OF PERSISTENT CYCLES ON ZERO FREQUENCY UNIT ROOT TESTS

 — Tomás del Barrio Castro, Paulo M.M. Rodrigues, A.M. Robert Taylor

25/11 THE TIP OF THE ICEBERG: A QUANTITATIVE FRAMEWORK FOR ESTIMATING TRADE COSTS

 — Alfonso Irarrazabal, Andreas Moxnes, Luca David Opromolla

26/11 A CLASS OF ROBUST TESTS IN AUGMENTED PREDICTIVE REGRESSIONS

 — Paulo M.M. Rodrigues, Antonio Rubia

27/11 THE PRICE ELASTICITY OF EXTERNAL DEMAND: HOW DOES PORTUGAL COMPARE WITH OTHER EURO AREA 

COUNTRIES?

 — Sónia Cabral, Cristina Manteu

28/11 MODELING AND FORECASTING INTERVAL TIME SERIES WITH THRESHOLD MODELS: AN APPLICATION TO 

S&P500 INDEX RETURNS

 — Paulo M. M. Rodrigues, Nazarii Salish

29/11 DIRECT VS BOTTOM-UP APPROACH WHEN FORECASTING GDP: RECONCILING LITERATURE RESULTS WITH 

INSTITUTIONAL PRACTICE

 — Paulo Soares Esteves

30/11 A MARKET-BASED APPROACH TO SECTOR RISK DETERMINANTS AND TRANSMISSION IN THE EURO AREA

 — Martín Saldías

31/11 EVALUATING RETAIL BANKING QUALITY SERVICE AND CONVENIENCE WITH MCDA TECHNIQUES: A CASE 

STUDY AT THE BANK BRANCH LEVEL

 — Fernando A. F. Ferreira, Sérgio P. Santos, Paulo M. M. Rodrigues, Ronald W. Spahr

2012

1/12 PUBLIC-PRIVATE WAGE GAPS IN THE PERIOD PRIOR TO THE ADOPTION OF THE EURO: AN APPLICATION 

BASED ON LONGITUDINAL DATA

 — Maria Manuel Campos, Mário Centeno

2/12 ASSET PRICING WITH A BANK RISK FACTOR

 — João Pedro Pereira, António Rua

3/12 A WAVELET-BASED ASSESSMENT OF MARKET RISK: THE EMERGING MARKETS CASE

 — António Rua, Luis C. Nunes

4/12 COHESION WITHIN THE EURO AREA AND THE U. S.: A WAVELET-BASED VIEW

 — António Rua, Artur Silva Lopes

5/12 EXCESS WORKER TURNOVER AND FIXED-TERM CONTRACTS: CAUSAL EVIDENCE IN A TWO-TIER SYSTEM

 — Mário Centeno, Álvaro A. Novo

6/12 THE DYNAMICS OF CAPITAL STRUCTURE DECISIONS

 — Paula Antão, Diana Bonfi m

7/12 QUANTILE REGRESSION FOR LONG MEMORY TESTING: A CASE OF REALIZED VOLATILITY

 — Uwe Hassler, Paulo M. M. Rodrigues, Antonio Rubia




