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A Class of Robust Tests in Augmented Predictive
Regressions�

Paulo M.M. Rodriguesy Antonio Rubiaz

Abstract

This paper focuses on the analytical discussion of a robust t-test for predictabil-
ity and on the analysis of its �nite-sample properties. Our analysis shows that the
procedure proposed exhibits approximately correct size even in fairly small samples.
Furthermore, the test is well-behaved under short-run dependence, and can exhibit
improved power performance over alternative procedures. These appealing proper-
ties, together with the fact that the test can be applied in a simple and direct way
in the linear regression context, suggests that the modi�ed t-statistic introduced in
this paper is well suited for addressing predictability in empirical applications.
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1 Introduction

Predictive regressions are widely used in �nance to address the existence of time-varying
predictable patterns. In this analysis, the main variable of interest, say monthly excess
of market returns, is usually regressed on lagged values of a posited predictor, such as
the log dividend yield, and predictability formally judged through the signi�cance of
the resultant estimates; see Campbell (2008) for an overview. However, in practice two
statistical considerations make this analysis di¢ cult: i) predictors typically exhibit highly
persistent dynamics; and ii) predictors�innovations are typically largely correlated with
the innovations of the variable to be predicted, which raises a problem of simultaneity in
regression. In small samples, this feature may lead to sizeable biases in the least-squares
estimates of the predictive parameter (Stambaugh, 1986, Mankiw and Shapiro, 1986) and
substantial overrejections in the corresponding analysis of signi�cance (Elliott and Stock,
1994, Cavanagh, Elliot and Stock, 1995). A number of alternative approaches to ensure
valid inference have been suggested in the literature, among which the class of augmented
predictive regressions which is of major interest for the present paper. The di¤erent tests
in this category can be related to the estimates of a predictive regression that is augmented
with an empirical estimate of the innovations to the predictor, and di¤er mainly in their
basic assumptions about the stochastic properties of the predictor. For instance, the
procedures in Lewellen (2004), Amihud and Hurvich (2004), and Amihud, Hurvich, and
Wang (2010) assume stationarity, while the test proposed by Campbell and Yogo (2006)
is derived under near-integration. These assumptions have sharp implications on the tests
and their theoretical properties.
In this paper, we provide a detailed discussion, of the theoretical properties of the test

statistics related to augmented regressions, extending existing literature and clarifying
some important issues. Furthermore, we propose a modi�ed t-statistic for augmented
(and non-augmented) regressions which renders valid inference in the empirical context
that characterizes predictability analysis. The distinctive feature of our test is that it
ensures, by construction, inference with approximately correct nominal size at any arbi-
trary signi�cance level and independently of the stochastic properties of the predictive
variable, i.e., whether the predictor is stationary, near-integrated, or integrated. The test
displays robustness to the formal uncertainty of the stochastic properties of the predictor
which we refer to as quantile invariance in this paper. This is achieved by scaling the
standard t-statistic with a stochastic factor that endogenously smoothens the discontinu-
ities in the limit distributions as the order of integration is allowed to go from stationarity
to integrated, following a strategy suggested by Vogelsang (1998) in the di¤erent context
of unit root testing; see also Harvey, Leybourne and Taylor (2006). In our context, this
approach results in test statistics whose null critical values ensure correct size proper-
ties by construction, and which can be applied on predictors that show di¤erent degrees
of persistence. In contrast, available procedures in the augmented-regression literature
are intended for either strongly persistent or stationary processes and may not control
size adequately otherwise. Monte Carlo analysis reveals that our procedure ensures ap-
proximately correct size even in small samples under di¤erent types of data generating
processes, and exhibits good power performance, both in absolute terms and in relation
to other alternative tests. These appealing properties suggest that the modi�ed t-statistic
introduced in this paper is well suited for addressing predictability in empirical applica-
tions.
The importance of robustness in predictive analysis deserves to be carefully discussed.
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Assuming stationarity makes direct inference possible, which, nevertheless, may not be
exempt of important size distortions when the predictors are strongly persistent. On the
other hand, allowing for more general near-integrated patterns requires the use of other
procedures necessary to make inference feasible in practice, such as, for instance, the
Bonferroni-type con�dence intervals considered in Campbell and Yogo (2006). Thus, the
�nite-sample size properties of these tests are strongly conditioned by the true dynamics
of the predictor. In contrast, our test ensures approximately correct empirical size irre-
spectively of whether the predictor is stationary or not. To the best of our knowledge,
these properties are only shared by the nonparametric test recently proposed by Maynard
and Shimotsu (2009), although the methodological approach di¤ers considerably. Our
test has the comparative advantage of building directly on the simplest context of linear
regressions and of being as easy to implement as the conventional t-test, exhibiting better
power properties in the context that usually describes predictive regressions. On the other
hand, the test in Maynard and Shimotsu (2009) will hold in more general contexts than
those described here.
The rest of the paper is organized as follows. Section 2 introduces the predictive

regression framework considered in this paper and discusses general properties in the
augmented context. Section 3 introduces the robusti�ed t-test and discusses its large-
sample distribution under the null and alternative hypotheses. Section 4 presents Monte
Carlo results on the size and power performance of the new test as well as a comparison
with available procedures. Finite sample critical values are also presented in this section.
Section 5 contains the results of an empirical application. Section 6 summarizes and
concludes. Finally, an appendix collects the proofs of the results put forward throughout
the paper.
In the sequel, �)�and �p!�are used to denote weak convergence of the associated

probability measures and convergence in probability, respectively, as the sample size is
allowed to grow unbounded. The conventional notation o(1) (op(1)) is used to represent a
series of numbers (random numbers) converging to zero (in probability). Similarly, O(1)
(Op(1)) denotes a series of numbers (random numbers) that are bounded (in probability).

2 Inference in predictive regressions

2.1 Basic assumptions and notation

Predictive regressions are used to determine whether an observable time series, say fytg ;
can be linearly predicted using lagged values of a conditioning variable, fxtg : This, basi-
cally consists of testing the null hypothesis, H0 : � = 0; in the regression

yt = �+ �xt�1 + ut; t = 1; :::; T (1)

with ut denoting a disturbance term; see, for instance, Fama and French (1988) and
Campbell and Shiller (1988).
As previously discussed, certain empirical features that characterize predictive regres-

sions can complicate statistical inference considerably and, therefore, should be acknowl-
edged explicitly in the theoretical analysis. Firstly, most predictors typically considered in
the literature exhibit strongly-persistent dynamics to the extent that autoregressive unit
roots are often di¢ cult to reject. Since the seminal work of Stambaugh (1999), theoreti-
cal studies have mostly accommodated this empirical feature parsimoniously by assuming
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�rst-order autoregressive dynamics in fxtg ; viz:;

xt = �+ �xt�1 + vt; t = 1; :::; T (2)

considering di¤erent sets of restrictions that characterize � and the innovation vector
�t = (ut; vt)

0. Secondly, the sample covariance of b�t often reveals that the shocks to the
system are highly contemporaneously correlated.1 The following assumptions lay out all
of these features and shall be maintained throughout the following subsections. We shall
consider more general restrictions later in Section 3.

Assumption 1. The data generating process of fytg and its posited predictor fxtg is
formed by equations (1)-(2), with xs random or constant for all s� 0:
Assumption 2. The elements of the innovation vector �t = (ut; vt)

0 in the two-equation
system are serially and independently Gaussian distributed with E(�t) = 0; E(�t�

0
t) = �;

� =

�
�2u �uv
�uv �2v

�
and �uv = ��u�v for some correlation parameter � 2 (�1; 1) :
Assumption 3. (Stationarity) The autoregressive dynamics of the predictor is charac-
terized by a �xed coe¢ cient j�j < 1:
Assumption 3�. (Near-Integration) The autoregressive dynamics of the predictor is char-
acterized by the coe¢ cient � = 1 + c=T; for some constant value c� 0:

Assumptions 1-3 characterize the theoretical setting analyzed in Stambaugh (1999),
which has been widely used in subsequent literature. Although Stambaugh�s setting relies
on highly restrictive assumptions, it captures the basic issues of predictive regressions
and facilitates its theoretical discussion. However, some of these restrictions are not
essential for the results and shall be generalized considerably in Section 3. The main
purpose of Assumptions 3 and 3�is to characterize the long-run properties of the predictor
in two di¤erent settings: stationarity and near-integration. Stationarity simpli�es the
theoretical discussion considerably, as it allows to invoke standard �rst-order asymptotic
distribution theory arguments. It de�nes the correct setting for mean-reverting predictors
but may result in large-sample representations that do not work well in small samples
when the largest autoregressive root of fxtg is in the neighborhood of unity. In contrast,
local-to-unity asymptotic theory provides a more accurate approach to the small-sample
distribution of the relevant test statistics in this context. This setting is characterized by
a nuisance term, the so-called local-to-unity parameter, c; which captures deviations from
the unit root in a decreasing neighborhood as T increases, thereby determining the extent
of serial dependence in variables that although highly persistent do not necessarily have
an exact unit root; see Phillips (1987) for technical details. The unit-root case is nested as
a particular case (c = 0), whereas stationarity arises when c is allowed to diverge to minus
in�nity. The price for this theoretical �exibility, however, is that the empirical analysis
becomes more di¢ cult because c cannot be consistently estimated.2

1The innovations in predictive variables de�ned as the ratio of accounting measures of cash �ow to
market valuations variables typically exhibit strong negative correlation with innovations in returns. This
empirical feature does not always hold. For instance, innovations in interest rates are nearly uncorrelated
with returns; see Campbell (2008).

2Although it would be tempting to estimate c as T (b�� 1) ; Philllips (1987) shows that the resulting
4



2.2 Augmented predictive regressions

Stambaugh (1999) shows that the exact OLS bias of � in (1) ; under Assumptions 1-3, is

E
�b� � �

�
= �uvE

�b�� �
�
; with �uv � �uv=�

2
v, and b� denoting the OLS estimate of � in

(2). Since b� is downward biased in small-samples and the innovations ut and vt are highly
correlated, the autoregressive parameter bias feeds into the small-sample distribution ofb�. To correct, or at least to mitigate, this e¤ect, Amihud and Hurvich (2004) propose a
simple statistical devise that builds upon the OLS estimates from an augmented version
of (1) ; see also Lewellen (2004) and Campbell and Yogo (2006).
To brie�y introduce the basic testing strategy that underlies augmented predictive

regressions, note that under Assumption 2 the orthogonal decomposition allows to write
ut = �uvvt + "t, with "t being a random error term orthogonal to vt and independent of
xt: Thus, using this property, equation (1) may be rewritten as

yt = �+ �xt�1 + �uvvt + "t (3)

so that yt = E (ytjxt�1) + E (utjvt) + "t, with � still capturing the extent of ex ante
predictability in the system. The importance of this regression results from the fact that
the resultant estimates have correct statistical properties, i:e:; under Assumptions 1-3,
Amihud and Hurvich (2004) show that the infeasible estimator of (�; �uv)

0 is exactly
unbiased. However, since the estimator of (3) is infeasible; Amihud and Hurvich (2004)
suggest the feasible counterpart,

yt = �+ �xt�1 + �uvbvt + "t (4)

with bvt = xt � b�� b�xt�1 denoting the OLS residuals from (2) :3

In this paper, we consider a simple and direct variation of equations (3) and its feasible
counterpart (4). This approach delivers estimates with the same statistical properties,
both in small and large samples, but allows us to considerably simplify the notation and
economize the mathematical derivation in the formal proofs. In particular, starting from
the infeasible representation (3) we can write,

[yt � E (utjvt)] = E (ytjxt�1) + "t; (5)

and then consider its feasible counterpart,

y�t = �+ �xt�1 + "t (6)

where,
y�t = yt � b�uvbvt (7)

with b�uv denoting the estimate of �uv in the OLS regression of but on bvt.
This alternative representation provides a convenient way to think about augmented

predictive regressions. As discussed in Campbell and Yogo (2006), the unobservable

value behaves as a random variable rather than a �xed term, i.e., the estimate is inconsistent. This is the
natural consequence of econometrically acknowledging the uncertainty about the stochastic nature of the
predictor: even if we had a sample arbitrarily large, we would not be sure about whether the predictor
is really stationary or integrated.

3In particular, bvt is determined after estimating b� with a small-sample bias correction in the spirit
of Stambaugh (1999), and the standard errors of the resultant estimate of � computed according to a
low-bias �nite sample approximation.
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process yt�E (utjvt) results from subtracting o¤the part of the innovation to the predictor
that is correlated with yt. This yields a less noisy dependent variable and, therefore, leads
to power advantages over conventional predictive analysis that stem from a relative gain
in statistical e¢ ciency. Note that, since E ("2t ) = (1� �2)�2u; the larger the degree of
endogenous correlation in the system, the larger the amount of variability in the regressand
not related to the lagged value of xt (i.e., noise variability) that can be �ltered out �
conversely, we can think of the standard predictive regression analysis as a particularly
ine¢ cient tool to detect predictability when � is large in absolute value. Since [yt �
E (utjvt)] cannot be directly observed, the feasible representation uses the OLS-based
proxy y�t in (7).
The feasible estimator of � in (6) is

b�F = PT
t=2 ~y

�
t ~xt�1PT

t=2 ~x
2
t�1

(8)

with ~xt = xt � �x; �x = T�1
PT

t=1 xt, denoting the demeaned process, and ~y
�
t = y�t � �y�

de�ned analogously. Our main interest lies in the statistical properties of the OLS t-
statistic for the null hypothesis H0 : � = 0 obtained from this regression, namely,

tb�F =
PT

t=2 ~xt�1~y
�
tb�" �PT

t=2 ~x
2
t�1

�1=2 =
PT

t=2 ~xt�1

h
~yt � b�uvbvti

b�" �PT
t=2 ~x

2
t�1

�1=2 (9)

where b�2" denotes the OLS variance estimate of the regression residuals.
Remark 2.1. Augmentation of the standard regression analysis to improve the power
performance of the tests has been proposed in other areas of econometrics. For instance,
Hansen (1995) and Caporale and Pittis (1999) suggest using covariates to augment the
Dickey-Fuller regression for unit-root testing. The critical di¤erence in that context is that
the covariates are directly observable. As we shall remark in the theoretical discussion that
follows, replacing vt by bvt (or the process yt�E (utjvt) by y�t ) has important implications
on the statistical properties, even asymptotically. Rodrigues and Rubia (2011) point out
that under stationary conditions, the di¤erence in the mean square error of the infeasible
and feasible estimates, MSE

�b�I��MSE
�b�F� ; equals �2uvMSE

�b�� : Thus, the use of
bias-reduction techniques in the estimation of the �rst-order autocorrelation parameter
� and the residuals bvt in order to possibly improve the small-sample properties of b�F is
recommended.4

2.3 Asymptotic properties in augmented regression testing

In this subsection, we provide the following Theorem that presents the limit results
of the t-statistic computed from the infeasible and feasible augmented regressions. In

4If the small-sample bias in bvt is reduced through a suitable choice of the correcting factor !; this
feeds into the resultant estimate of the slope predictive coe¢ cient. For instance, under the normality
assumption, the autoregressive estimate is biased downward by roughly � (1 + 3�) =T; so Amihud and
Hurvich (2004) suggest ! =

�
1 + 3b�� =T; or the higher-order re�nement ! = �1 + 3b�� �T�1 + 3T�2� to

remove the bias in b�F :
6



this Theorem, W (r) denotes a standard Wiener process, r 2 [0; 1] ; J c(r) and J c(r) �
Jc(r)�

R 1
0
Jc(s)ds denote, respectively, an Ornstein-Uhlenbeck and a �demeaned�Ornstein-

Uhlenbeck di¤usion process on the space D [0; 1] of cadlag functions, with the former be-
ing characterized by the stochastic di¤erential equation dJc(r) = cJc(r)dr + dW (r); with
Jc(0) = 0; �nally Z is a random variable with standard normal distribution independent
of W (r).

Theorem 2.1. Let tb�I and tb�F denote the least-squares t-statistics for H 0 : � = 0 com-
puted from the infeasible and feasible augmented predictive regressions (3) and (6); re-
spectively. Under Assumptions 1-2, and either 3 or 3�, as T !1;

tb�I ) Z (10)

Similarly, under Assumptions 1-2 and 3 (stationarity),

tb�F ) 1p
1� �2

Z (11)

whereas under Assumption 3�(near-integration),

tb�F ) Z + �p
(1� �2)

R 1
0
J c(r)dW (r)nR 1

0

�
J c(r)

�2
dr
o1=2 � A (c; �) (12)

as T is allowed to diverge.

Corollary I. Under integration, i.e. c=0, the previous theorem holds with W (r); a de-
meaned Wiener process, replacing J c(r) in (12).

Corollary II. Let tb� be the t-statistic on b� computed from the standard (non-augmented)
predictive regression (1). Then, under the same conditions as in Theorem 2.1, tb�F =
tb�=p1� �2+op (1) ; i.e., tb�F is asymptotically equivalent to tb� when the former is trivially
multiplied by

p
1� �2.

Proof. See Appendix for details.

Remark 2.2. It is worth commenting on the similarities and di¤erences of the null
distribution of tb�F with those of other statistics related to augmented predictive regres-
sions. Amihud and Hurvich (2004) propose a heuristic �nite-sample approximation of
the standard error of a bias-corrected version of b�F and, hence, the resulting t-statistic
has a limit distribution which is di¤erent from that of tb�F . Campbell and Yogo (2006)
consider the so-called infeasible Q-statistic, de�ned as the t-test resulting from regress-
ing yt � �uv (xt � �xt�1) on a constant and xt�1: This test has optimality properties
when � is known and, in fact, is asymptotically equivalent to tb�I under this condition.
When � and the remaining nuisance parameters are replaced by their (consistent) sample
counterparts, the resultant t-statistic, say QF ; veri�es QF = tb�F + op

�
T�1=2

�
; and so

is asymptotically equivalent to tb�F . Finally, Lewellen (2004) attempts to approach the
term b� � �uv

�b�� �
�
� b�I by arbitrarily setting � � 1, i.e., considering the worst-case

scenario under stationarity restrictions. We can show that the di¤erence tL � tb�F , where
7



tL denotes the resulting t-test in Lewellen (2004), behaves randomly, so both tests are not
equivalent.

Theorem 2.1 shows that using bvt to make the regression approach feasible has impli-
cations when carrying out inference on �; even asymptotically. Whereas tb�I converges to
a standard normal distribution, the large-sample distribution of its feasible counterpart
tb�F is strongly a¤ected by the properties of xt. In fact, and as remarked in Corollary
II, the resulting t-statistic is distributed as the t-statistic from the non-augmented pre-
dictive regression re-scaled by

p
1� b�2: Hence, the main practical e¤ect is essentially to

shift both the null and the alternative distribution of the LS t-ratio. Campbell and Yogo
(2006) show through Monte Carlo simulation that their Bonferroni-type procedure in an
augmented regression exhibits improved power over the analogous Bonferroni t-test of
Cavanagh et al. (1995) in the standard predictive regression. Our analysis makes clear
that such power gains would not arise mechanically as a consequence of simply using
augmented regressions, since the distribution of QF is equivalent to tb�=p1� �2: Power
gains for this test stem mostly from using a more powerful and e¢ cient unit-root test
statistic (the DF-GLS test rather than the ADF test) to generate con�dence intervals.
Similarly, it may be possible to resort to di¤erent bias-reduction techniques as suggested
by Amihud and Hurvich (2004) to enhance the relative e¢ ciency of augmented predictive
regressions.
As expected, the contemporaneous correlation � and the local-to-unity parameter c

jointly determine the location and shape of the distributions of tb�F and tb� under the set of
assumptions considered. For instance, if � is largely negative and c is in the neighborhood
of zero, t�̂F can be largely skewed to the right, which would lead to severe overrejections
when the critical values from the standard normal distribution are used. Obviously,
correct inference requires precise knowledge of these nuisance parameters. As discussed
previously, however, this issue poses non-trivial di¢ culties, since c cannot be estimated
consistently. In the following section, we present a robust test that is able to deal with
this problem, both in the augmented and non-augmented context. The main statistics
from augmented regressions have, in principle, similar statistical properties as those from
non-augmented regressions. However, in small samples, the possibility to improve power
when combining this approach with further small-sample re�nements cannot be ruled out.
Hence, we discuss our test in the augmented-regression setting, noting that the large-
sample discussion for a similar test in standard non-augmented predictive regressions
follows along the same lines, after trivial rescalling.

3 A robusti�ed test in augmented predictive regres-
sions

3.1 Testing procedure and asymptotic null distribution

As shown in Theorem 2.1, the asymptotic properties of the feasible t-test are largely
determined by the stochastic properties of the predictor, as characterized by the parameter
c. Given that this term cannot be consistently estimated, it is natural to consider a test
statistic that seeks to robustify the procedure against the unknown values of this nuisance
parameter. In this section, we propose a modi�ed t-statistic whose critical values under
H0 are stable with respect to the values of c in (�1; 0]; given � 2 (�1; 1), and the
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arbitrary choice of a desired signi�cance level, (1� �)%: To this end, the statistic tb�F
must be re-scaled by a stochastic factor that ensures that the null cumulative distribution
functions under either Assumption 3 or 3�coincide asymptotically at a chosen point, that
point being the asymptotic critical value associated with the nominal signi�cance level �.
As discussed by Vogelsang (1998), this is possible when the re-scaling factor exhibits

certain statistical properties, namely, convergence to one under stationarity (c ! �1)
and, simultaneously, be asymptotically invariant with respect to c in the most extreme
case in which the predictor is allowed to exhibit a unit root (c = 0). Several statistics in
the unit-root literature ful�ll the required properties. The interest in these statistics, is
naturally justi�ed because they convey statistical information about the order of integra-
tion of xt and, as such, have been used in predictive analysis. For instance, unit-root test
statistics play a major role in the construction of Bonferroni-type con�dence intervals; see
for instance, Campbell and Yogo (2006). It should be noted, however, that we just use
unit-root statistics to modify the basic t-ratio for predictability and not as a pre-testing
device to infer the extent of persistence of the predictor.
Thus, following Vogelsang (1998) and Harvey et al. (2006), we consider a simple

transformation of the unit-root test statistic of Park and Choi (1988) and Park (1990)5

which may be computed from the following auxiliary regression,

xt = 0 +
mX
i=1

it
i + �t;m; t = 1; :::; T (13)

where xt is the predictor variable, m � 1 is the order that characterizes the deterministic
polynomial kernel used in a semi-parametric �tting of xt, while �t;m denotes the regression
residuals.6 Considering (13), the following likelihood-ratio type test for the null hypothesis
H�0 : 1 = ::: = m = 0, i:e:;

Jx;T (m) =
RSSr �RSSu

RSSu
(14)

where RSSu and RSSr denote the unrestricted and restricted sums of squares of OLS
residuals from (13) ; respectively, has power to detect unit roots in xt against a general
stationary alternative. Under Assumptions 2 and 3, Jx;T (m)

p! 0 (cf. Park and Choi,
1988), whereas, under Assumptions 2 and 3�, Jx;T (m) = Op (1) ; with a well-de�ned
distribution that depends only on c; see Theorem 3.1 below for details. It is precisely the
heterogenous behavior of the predictor under stationary and (near) integrated dynamics
that we shall exploit to design a robust test in the predictive regression context. The
following proposition introduces the precise way to do so.

Proposition 3.1. Let t�̂F be the feasible t-statistic de�ned in (9) : Given an arbitrary
probability level �%, 0<� < 1; the test statistic

t�b�F ;� = tb�F exp
�
�b���Jx;T (m)

�
(15)

with Jx;T (m) de�ned in (14) ; and b��� denoting a speci�c constant value, has power to
detect departures from H 0 : � = 0 and, for a predetermined value of b���; will exhibit

5Note that other unit root tests that share these properties are available in the literature (e.g., the
test statistic of Breitung, 2002) and may be used as well; see Bunzel and Vogelsang (2005).

6According to experimental results, Vogelsang (1998) suggests setting m = 9; we follow this in the
experimental and empirical sections.
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asymptotic nominal size �% independently of whether fxtg is stationary or (near) inte-
grated, given the value of �.

Remark 3.1. The modi�ed t-statistic arises from re-scaling tb�F with the stochastic
factor exp

�
�b���Jx;T (m)

�
; which depends on the unit-root statistic Jx;T (m) ; and the

positive, �nite equalizing constant b���. Under Assumptions 2 and 3, Jx;T (m)
p! 0 and

therefore exp
�
�b���Jx;T (m)

� p! 1 for any b���; so the scaling factor does not play any role
and t�b�F ;� is asymptotically equivalent to tb�F . On the other hand, under Assumption 3�,
exp

�
�b���Jx;T (m)

�
= Op (1) ; and so the re-scaling factor introduces an additional source

of randomness that changes the shape and location of the asymptotic distribution of the
statistic.

Remark 3.2. The speci�c purpose of Jx;T (m) is to endogenously smooth discontinuities
in the limit distribution as the autoregressive root of xt is allowed to go from the stationary
to the integrated region. Since the asymptotic distribution of t�b�F ;� in (15) is di¤erent
under Assumptions 3 and 3�, the purpose of the constant b��� is to o¤set this divergence
at a certain percentile �% which, by design, will render the resultant testing procedure
asymptotically size correct independently of the stochastic properties of the predictor. In
other words, although the null asymptotic distribution of t�b�F ;� is not generally invariant
with respect to (c; �)0 ; there exists a constant value b��� for any arbitrary nominal level �%
and value of � which is able to bring the stationary and near-integrated distributions of
t�b�F ;� close together at the �-quantile. Although the resulting critical value still depends
on �; this is not particularly problematic as we can identify this term consistently from
the data. Note that b��� will be di¤erent for any target probability � and value of � and,
in general, will be data-dependent.

The asymptotic distributions of t�b�F ;� under Assumptions 1-2, and either Assumption
3 or 3�, are characterized in the following theorem.

Theorem 3.1. Under Assumptions 1-3 and the null hypothesis H 0 : � = 0; it follows as
T!1 that

t�b�F ;� � tb�F ) N
�
0;

1

1� �2

�
(16)

so t�b�F ;� is asymptotically equivalent to tb�F ; whereas under Assumption 1, 2 and 3�,
t�b�F ;� ) A (c; �) exp(�b���Jc (m)) � A�;m (c; �) (17)

with A (c; �) as de�ned in Theorem 2.1, and

Jc (m) =
�Z 1

0

�
VUc;m(r)

�2
dr

��1
�
�Z 1

0

�
VUc;m(r)

�2
dr �

Z 1

0

�
VRc (r)

�2
dr

�
(18)

with VUc;m and VRc denoting the residuals from the projection of x(r) onto the space spanned
by [1; r; r2; :::; rm], and a constant, respectively.

Proof. See Appendix for details.

Theorem 3.1 provides the basis to design quantile invariant inference. For instance,
assume that one is interested in testing H0 : � = 0 against a right-tailed alternative
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H1 : � > 0 at a �% nominal size. According to Theorem 3.1, b��� can be determined as
the solution of the implicit equation

Pr

 
Z >

z1��p
1� �2

!
= Pr

�
t�b�F ;� � �1��

�
= � (19)

where �1�� denotes the corresponding asymptotic upper-tail critical value of A�;m (0; �),
and z1�� is the (1��)th percentile of the standard normal distribution (e.g., z0:95 = 1:645
for � = 0:05). The distribution of t�b�F ;� when xt has an exact unit root, i.e., A�;m (0; �),
depends only on the values of �; but not on c; and so b��� is completely characterized
in terms of �: This property can be shown as a corollary to the previous theorem and
is used here to identify the constant that equals the cumulative distribution functions
under Assumptions 3 and 3�. Equation (19) can then be solved using numerical methods
after consistently estimating the correlation parameter � through its sample counterpart.
Given b���, the resultant statistic is ensured by construction to exhibit approximately �%
asymptotic size when the innovations have correlation �, given any value of the local-to-
unity parameter in the support (�1; 0]. Section 4.4 provides tables with values of b���
and corresponding critical values as a function of � and � for di¤erent sample lengths.
To gain insight and intuition on this issue, Figure 3.1 depicts the cumulative distri-

bution functions (c.d.f.) of t�b�F ;� for � = �0:95 computed based on 1; 000 Monte Carlo
simulations of a sample of T = 1; 000 observations for � = 0 and � = 1 with i.i.d normal
innovations. The equalizing constant b��� has been computed for a right-tailed test and
� = 0:05: Note that the values given to � correspond to the �extreme�cases representing
a stationary white noise process (c = �1000) and a random walk (c = 0). Given that the
asymptotic distribution of t�b�F ;� is well-de�ned and continuous in c, as shown in Theorem
3.1, the di¤erent c.d.f. of t�b�F ;� that would arise for values of c within these extremes will
lie in the area between the two functions depicted. We can observe that the distribution
of t�b�F ;�; as a function of c, is not generally invariant. The critical values depend on the
particular value of this nuisance term. Nevertheless, the 95%-quantile of any of these
distributions (square box in Figure 3.1) is, by construction, exactly the same, so we may
rely on the same critical values and ensure valid inference without knowledge of the true
value of this parameter.

[Insert Figure 3.1 around here]

Remark 3.3: Setting c = 0 to identify the equalizing constant may be seen as evocative
of the strategy employed by Lewellen (2004), who sets arbitrarily � ' 1 to approximate
numerically the unobservable bias b�� � in his analysis. Under stationarity, this leads to
the most conservative assumption for testing predictability which, in the case of Lewellen�s
test, has the unpleasant e¤ect of ensuring approximately correct size only if � ' 1; see also
Campbell and Yogo (2006). In sharp contrast, imposing c = 0 in the testing approach
to determine the equalizing constant in our procedure does not imply noticeable size
distortions in the subsequent t-statistics even if the autoregressive coe¢ cient � largely
enters into the stationary region, since the procedure holds for the whole support of c.
This property is discussed in greater detail below in the Monte Carlo analysis of section
4.1.

Remark 3.4: Paralleling the previous discussion, we can design a robust test in the con-
text of non-augmented regression, say t�b�;�; which will exhibit similar properties. The only
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di¤erence is that the equalizing constants for this test would be di¤erent. The procedure
would control size exactly in the same terms and exhibit similar power performance, as
discussed in the following subsection.

3.2 Asymptotic power function

In this subsection, we discuss the properties of the robust test when the true value of �
departs from the null hypothesis. Considering, under stationarity, the local alternative
� = �a=

p
T ; with some constant j�aj > 0; we can show as a corollary of Theorem 3.1

that,

t�b�F ;� ) �a
�v

�"
p
1� �2

+
1p
1� �2

Z (20)

whereas, under near-integration, and for alternatives of the form � = �a=T; it follows that

t�b�F ;� ) �a
�v exp(�b��;�Jc (m))

�"

�R 1
0

�
J c(r)

�2
dr
��1=2 +A�;m (c; �) (21)

with A�;m (c; �) and Jc (m) as de�ned in (17) and (18), respectively. The limit results in
(20) and (21) allow us to characterize the asymptotic power function of t�b�F ;�; say P� (�a).
In particular, for a right-tailed alternative and under Assumption 3, we will have

P� (�a) = E

"
��

(
z1�� � �a

�v

�u
p
1� �2

)#
(22)

whereas under Assumption A3�,

P� (�a) = E

"
��

(
z1�� exp(b

�
��Jc (m))p

(1� �2)
� B (c; �)� �a

�v
�"

�Z 1

0

�
J c(r)

�2
dr

�1=2)#
(23)

where the expectation is taken over the distribution of (Jc(r);W (r))0; given �� f�g =
1�Pr (Z � �), and the bias term B (c; �) = A (c; �)�Z. Consequently, the test exhibits
non-trivial asymptotic power against local alternatives, i:e:; for �xed values � = �a,
P� (�a) ! 1 as T diverges, so the procedure is consistent. Note that, since the rate of
convergence of b�F under near-integration is T rather than pT ; the robust test is expected
to be more powerful in the near-integrated region, a property also shared by other tests
in this context.
Let P�n (�a) denote the power functions of the robust t-test, t�b�;�; computed in a

non-augmented predictive regression. Under stationarity, it is immediate to show that
P� (�a) = P�n (�a) = Ps (�a) for all �a, where Ps (�a) is the power function of the stan-
dard LS t-test in a non-augmented regression, so the power function is the same for the
three statistics. Similarly, in the near-integrated context, we can show that

P�n (�a) = E

"
��

(
z1�� exp(b

�na
�� Jc (m))p

(1� �2)
� B (c; �)� �a�v

�"

�Z 1

0

�
J c(r)

�2
dr

�1=2)#
(24)

where b�na�� denotes the non-augmented counterpart of b���; i.e., the value of the equalizing
constant for the modi�ed t-test from the non-augmented regression, namely, the implicit
solution to the equation

Pr
�
t�b�;� � z1��

�
= �: (25)
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Clearly, the power functions of both tests are the same if b��� = bna��. Because t
�b�F ;� =p

(1� �2)t�b�;�; then Pr
�
t�b�F ;� � x

�
=Pr

�
t�b�;� �

p
(1� �2)x

�
, and hence b��� = bna��. Con-

sequently, the distributions of the robust tests in the augmented and non-augmented
regressions only di¤er in the scaling factor

p
(1� �2); both under the null and the alter-

native hypotheses and, therefore, both tests are expected to exhibit similar asymptotic
performance.7

Nevertheless, and as noted by Campbell and Yogo (2006), it may be possible to obtain
relative e¢ ciency gains by using suitable estimation re�nements which are enabled in the
augmented regression framework. A �rst possibility is to use bias-reduction techniques
on the autoregressive coe¢ cient, as proposed by Amihud and Hurvich (2004). The bias
reduction may then feed into the estimation of � and ensure more precise estimates,
thereby increasing power. Secondly, it is possible to use estimation techniques of the
deterministic component in the predictor which avoid in�ating the autoregressive bias,
such as for instance recursive demeaning (see Shin and So, 2001). Simulations (available
upon request) showed that these deliver some improvements. In the Monte Carlo section,
we will analyse the basic performance of our test without the application of any bias
reduction approaches.

3.3 Generalizing the basic assumptions

Assumption 2 seems particularly restrictive for practical purposes given the stylized fea-
tures that characterize �nancial and economic data. We can instead consider the follow-
ing generalization that allows the innovations in equations (1)-(2) to exhibit short-run
dynamics and/or (conditional) heterogeneity, and which does not impose any particular
distributional restriction on the data. In the sequel, given a generic stochastic process �t;
we use F�

t to denote its �ltration, i.e., F�
t = � f�s; s � tg.

Assumption 2�. Let A (L) = 1�
Xp

j=1
�jL

j; p� 0; be a p-th order autoregressive �lter
in the lag-operator L with �xed roots and A(z) 6= 0 for all jzj � 1: Then:
i) fut;Fu

t g is a strictly stationary and ergodic Martingale Di¤erence Sequence (MDS)
with E(u4t ) <1:
ii) vt = A�1 (L) et, where fet;F e

t g is a strictly stationary and ergodic MDS with uncondi-
tional variance �2e; and E(e

4
t ) <1:

iii) Let �t = (ut; et)
0. Then; E[�t�

0
t] = 
ue � [�2u; �ue;�ue; �

2
e]; where E (e

2
t ) � �2e > 0;

E (u2t ) � �2u > 0; �ue = ��u�e for some � 2 (�1; 1) :

Under these general conditions, the predictor may be serially correlated and have up
to one unit root, with dynamics given by A (L) (1� �L) (xt � ��) = et. The short-run
component may be driven by a stationary AR(p) process with innovations obeying a MDS,
which in turn enables the conditional variance of the process to follow, among others,
(stationary) GARCH-type and stochastic volatility patterns. Other general restrictions,
such as mixing conditions, could alternatively be considered without signi�cantly changing
any of the results, provided that the partial sums of �t satisfy a functional central limit
theorem. It should be noted that Assumptions 3 and 3� still determine the long-run

7This has also been con�rmed through Monte Carlo simulations. Results can be obtained from authors
upon request.
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dynamics of the predictor and, hence, the underlying properties of the main statistics.
Under Assumptions 1, 2�and 3, xt is driven by a stationary AR(p + 1) process. Under
conditions 1, 2�and 3�, the largest root in the autoregressive representation of xt is near
unity, whereas the short-run dynamics is driven by a stationary AR(p) model. Note
that, for practical purposes, the short-run dynamics may be characterized by a stationary
and invertible linear process such that the AR(p) model, for some large enough p < 1,
approaches the underlying AR representation reasonably well.
The presence of contemporaneous correlation � 6= 0 of the innovations of the two-

equation system keeps playing a crucial role because of the simultaneity problem when
the largest autoregressive root is close to unity. It is necessary to identify this term in
order to devise correct inference, noting that � can be consistently estimated through the
sample correlation of the OLS residuals bet = xt�b��Pi=1;p+1 b�ixt�i and but = yt�b�+b�xt�1:
Because ut = �ueet + "t; with �ue � �ue=�

2
e: Under Assumptions 1 and 2�, where "t now

behaves as a MDS, we could still attempt to reduce part of the variability of yt which is
uncorrelated with xt�1 through the (feasible) augmented regressionh

yt � b�uebeti = �+ �xt�1 + "t (26)

to ensure more powerful testing, where b�ue is the slope estimate of the regression of but
on bet: The following theorem discusses formally the limit distributions of the resultant
t-stastistic under the set of general conditions considered.

Theorem 3.2. Let t�̂F ;p be the resulting t-statistic of the estimated slope coe¢ cient in
the augmented regression (26) : Under the null hypothesis and Assumptions 1 and 2�, it
follows, as T !1; that under Assumption 3

t�̂F ;p )
1p
1� �2

Z (27)

and under Assumption 3�,
t�̂F ;p ) A (c; �) (28)

with A (c; �) de�ned as in Theorem 2.1.

Proof. See Appendix for details.

Remark 3.5. The main implication of Theorem 3.2 is that t�̂F ;p is asymptotically distrib-
uted as tb�F : Hence, the main results discussed in Section 2 hold directly if the innovations
in the predictor are uncorrelated but not necessarily independent. Similarly, joint nor-
mality is not required. The existence of short-run dependence in the innovations of the
predictive variable is essentially handled in the same spirit as the long-run AR(1) dynam-
ics, namely, using augmentation to obtain the empirical proxy of the MDS innovations.
This technique is similar to the approach used in the well-known ADF unit-root test. As
in that test, the resulting test statistic is scale-invariant and, therefore, overrides the need
of estimating long-run variance parameters. In practice, the lag-order of the autoregres-
sive process is not required to be known and can be determined based on data-dependent
procedures (such as AIC or BIC, for instance). Because of the asymptotic equivalence, we
can use the same approach introduced previously to ensure valid inference in this context.
The properties of such statistics are discussed in the following Theorem.

14



Theorem 3.3. Let t�̂F ;p be the t-statistic in Theorem 3.2, and de�ne

t�b�F ;p = t�̂F ;p exp
�
�b���Jx;T (m)

�
a modi�ed t-statistic in the spirit of Theorem 3.1, with Jx;T (m) de�ned in (14) ; and the
same equalizing constant b��;� as in Theorem 3.1. Then, under the same conditions as in
Theorem 3.2, t�b�F ;p is asymptotically distributed as t�b�F ;� in Theorem 3.1.

Proof. See Appendix for details.

These results show that the values of the equalizing constant b��� and the corresponding
critical values related to the distribution discussed in the i.i.d. context and which are
applicable to t�b�F ;� are still valid for the �whitened� t�b�F ;p (�) statistic under the more
general conditions studied here. Given that these results are obtained under large-sample
theory, the following section analyzes the small-sample behavior of the main statistics
involved.

4 Experimental analysis

Throughout the following subsections, we analyze by means of Monte Carlo simulations
di¤erent issues related to the �nite-sample behavior of the robusti�ed t-test t�b�F ;� described
in the previous section. Firstly, we investigate whether inference based on the robusti�ed
test ensures approximately correct empirical size in small samples with independence of
the values of the nuisance parameter c. Secondly, we evaluate the power performance
of the procedure, and compare it to alternative procedures, when the predictive variable
is driven by either i.i.d. innovations or exhibits short-run dynamics. Finally, the last
experimental section provides the necessary equalizing constants and critical values of the
distribution as a function of the estimated � parameter for di¤erent sample lengths and
signi�cance levels.

4.1 Size analysis in small samples

As discussed in Section 3, implementing valid inference in the context of predictive regres-
sions implies dealing with the unknown parameters (c; �)0 that characterize the asymptotic
distribution. The basic approach to conduct inference on the basis of the robusti�ed test
is to �rst infer � (through its OLS counterpart) and, given this estimate and the choice of
the signi�cance level, to determine the suitable values of the equalizing constant b��� and
the corresponding critical value; see also Vogelsang (1998). In this context, therefore, the
most important question refers to whether t�b�F ;� exhibits approximately correct size, par-
ticularly, when the available sample is small, as asymptotic theory is expected to provide
good large sample approximations.
To address this question, we consider a one-sided test of predictability for H0 : � = 0

vs H1 : � > 0 at a nominal level of � = 5%. We chose this framework because it is common
in the empirical literature to consider right-sided alternatives, since �nance theory often
suggests � � 0 for many predictors, such as, for instance, the dividend yield. The main
aim of this experiment is to evaluate the average frequency of rejection of the test when
the true predictive coe¢ cient is � = 0.
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The design of the Monte Carlo experiment is as follows. We consider 5; 000 replications
of a sample of length T = 100 of the two-equation data generating process (1)-(2) setting
� = 0. The set of innovations �t = (ut; vt)

0 in this system is driven from an i.i.d. Gaussian
bivariate distribution with zero mean and covariance matrix having normalized diagonal
entries �2u = �2v = 1 and correlation parameter � 2 f0;�0:8� 0:9;�0:95g : This set
includes empirically relevant values that range from uncorrelated innovations, as in the
case of interest rates, to strongly contemporaneous negative correlations, as is typically
observed when considering valuation ratios. The intercepts � and � in equations (1) and
(2) are set to zero, and so are all initial conditions used to initialize the autoregressive
process. Finally, we focus on the general setting provided by Assumption 3�and assume an
autoregressive coe¢ cient of the form � = 1+ c=T; with c taking a continuous sequence of
values in the interval [�50; 0] : This set contains values that imply autoregressive dynamics
ranging from stationarity (� = 0:5) to integration (� = 1). The robust test statistic
t�b�F ;� is computed for each of these simulations using augmented predictive regression (6),
with the values of the equalizing constant chosen according to the LS-based estimateb� = PT

t=2 butbvt=T: For comparative purposes, we also consider the naive LS t-statistic
for b� computed from the non-augmented predictive regression (1), with critical values
corresponding to the standard normal distribution for all c and �. This test is expected
to largely overreject as c approaches zero and j�j increases, whereas the test proposed in
this paper is expected to show a frequency of rejection around the 5% level in all cases.
The average frequencies of rejection of these two tests are displayed in Figure 4.1.

[Insert Figure 4.1 around here]

The four panels in Figure 4.1 clearly show that, whereas the standard t-statistic su¤ers
considerable size distortions when � approaches its lower bound and c tends to zero, the
modi�ed robust t-statistic shows approximately correct size around the 5% level in all
cases analyzed. According to our simulations, the empirical size of this test lies in the
range [4:75%; 6:05%], which seems a fair price for the �exibility and tractability ensured
in this context. As noted previously, other alternative procedures may have problems to
control size properly uniformly on the support of c. For instance, the test in Lewellen
(2004) has optimal asymptotic properties if the true value of c is close to (but strictly less
than) one, but can be largely undersized otherwise; see, for instance, the experimental
analysis reported in Campbell and Yogo (2006). Similarly, the experimental simulations
in Jansson and Moreira (2006) report under the same Monte Carlo setting considered
here that the Bonferroni test of Campbell and Yogo (2006) is distorted when c departs
largely from the origin. The reason is that the test is designed to have asymptotic size
equal to 5% when c is bounded in the range [5;�50]. For instance, these authors report
an empirical size of 0:7% for c = �50 and � = �0:5 when T = 100, and even larger
distortions for other parametric con�gurations of the vector (c; �)0. In sharp contrast, our
testing procedure has empirical size approximately equal to the expected asymptotic level
in all these cases.

4.2 Power analysis: independent and weakly correlated innova-
tions

In this section, we evaluate the empirical power of the robusti�ed test given a data gener-
ating process that allows the predictor to be driven by either i.i.d. or weakly-dependent
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innovations. As in the previous experiments, we test predictability against a right-tailed
alternative. For comparative purposes, we analyze the performance of the modi�ed t-test
in relation to other valid testing procedures in this setting. It should be noted that, in
the general context covered by the near-integration theory, there is no uniformly most
powerful test (Elliott, Rothenberg and Stock, 1996), and the performance of di¤erent
procedures is completely data-dependent. Our main purpose, therefore, is to o¤er a com-
parative reference to appraise the relative power of our test and validate its empirical
suitability rather than to conduct a horse race.
As benchmarking methods, we consider the Bonferroni t-test of Cavanagh et al. (1995),

which builds on the standard (non-augmented) predictive regression, the BonferroniQ-test
of Campbell and Yogo (2006), which builds on an augmented predictive regression, and
the robust test of Maynard and Shimotsu (2009), which is an alternative non-parametric
approach to regression-based tests. Our interest in the latter is further motivated by the
fact that this test will exhibit correct asymptotic size independently of all c 2 (�1; 0].
In the sequel, we brie�y sketch the main features of these tests.8

Cavanagh et al. (1995) proposed a Bonferroni method to make the t-test in the
predictive regression feasible, which essentially consists of constructing a 100 (1� �1)%
con�dence interval for �; say C� (�1) ; and then a 100 (1� �2)% con�dence interval for
� for any � 2 C� (�1) ; say C�j� (�2) : By Bonferroni�s inequality, the region [C�j� (�2) is
a 100 (1� �1 � �2)% con�dence level for � that does not depend on �: Following these
authors, we construct a one-sided 95% con�dence interval for �; using the Dickey-Fuller
unit-root test to construct the con�dence interval for �; and the asymptotic valid size-
adjusted re�nement method described therein. Similarly, the Bonferroni Q-test proposed
in Campbell and Yogo (2006) attempts to make the t-ratio tb�F in augmented predictive
regressions feasible using a completely similar strategy, but further improvements are
introduced in this test. Following these authors, a one-sided 95% con�dence interval
is constructed, using the DF-GLS unit-root test to de�ne a con�dence interval for �;
and then using the re�ned procedure described therein to make the resultant test less
conservative.
Finally, the non-parametric test in Maynard and Shimotsu (2009) ensures robust in-

ference independently of c. Note that, whereas our test can achieve this property for an
arbitrary quantile of the cumulative distribution function, the nonparametric test ensures
invariance over the whole distribution. The main statistic is denoted here as �T , with
�T =

PT�1
h=1 k (�) �~y�x (h), � = (h� 1) =mT , �~y�x (h) = T�1

PT
t=h+1 ~yt�xt�h; where mT

is a bandwidth and k(�) a kernel function satisfying the usual conditions. Under the null
hypothesis of no predictability,

p
T=mT�T ) N (0; &) as T is allowed to diverge, where

& > 0 is the limit variance. When the innovations ut are assumed to follow a MDS, & can
be consistently estimated as

1

mT

T�1X
h0=1

T�1X
h=1

k (�) k (� 0) k2

�
h0 � 1
m2T

�
��x�x (h

0 � h) �~y~y (h
0 � h) (29)

where � 0 = (h0 � 1) =mT ; m2T = o (mT ) is an additional bandwidth parameter, and k2 (�)
is a kernel. To implement this test, we follow Maynard and Shimotsu (2009) and consider

8We have also evaluated the performance of other tests such as the KPSS test (Lanne, 2002) and
the infeasible t-test (Valkanov, 2003), but given that the behaviour of these tests was always inferior
when compared to the behaviour of the procedures analysed, we opted for omitting these results (these
can however be obtained from the authors upon request). For the application of the infeasible t-test we
assumed that c is known and computed the respective critical values under this assumption.
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the Bartlett kernel for both k (�) and k2 (�) ; determine mT automatically through data-
dependent techniques and set m2T =

�
(mT )

0:9� :
We discuss the relative performance of all these tests to reject a sequence of local

alternatives of the form � = T�1�a; with �a in the interval [0; 20]. The design of the
Monte Carlo simulations is the same as in Sections 4.1 and 4.2, but fxtg is now allowed
to be driven by a more general class of DGPs, namely, (1 � �L)(1 � �L)xt = vt; with
either � = 0 corresponding to the case of i.i.d. increments (Assumption 2), or � = 0:5
corresponding to �rst-order stationary dynamics (Assumption 2�). We characterize the
asymptotic power function of the tests against the local alternative with T = 500. Figure
4.2 displays the average frequencies of rejection for di¤erent values of the nuisance vector
(c; �)0 and � = 0.

[Insert Figure 4.2]

The main conclusion from this analysis is that the robust t-test not only presents
correct size properties but also shows good size performance for empirically relevant values.
For c = �5, which corresponds to � = 0:99, the robust t-test and the re�ned Bonferroni
Q test show similar performance, with both tests largely dominating the Bonferroni t-test
and the non-parametric test. Because the rate of convergence of the non-parametric test
depends on the bandwidth, it has a much slower rate of convergence than the parametric
tests, and consequently is considerably less powerful in all cases analyzed. However, it
should be noted that it may show robustness properties under model misspeci�cation or
more general conditions than the other alternatives explored here.
For a smaller degree of persistence as measured by c; and/or endogenous correlation

as measured by j�j, the robust t-test dominates both the Bonferroni tests and the non-
parametric test in our simulations. However, it should be noted that the Bonferroni Q
test seems to dominate the other alternatives when c is in the neighborhood of zero,
which suggests complementary properties. When the degree of endogenous correlation
j�j decreases, the procedures in the augmented regression lose e¢ ciency in relation to
the standard regression, as expected from the theoretical discussion in Section 3.2. This
is con�rmed for c = �5 and � = �0:75: The Bonferroni Q-test and, particularly, the
robust t-test, still do a good job and largely dominate the other tests. When � = 0
(not reported here), all these tests show the same performance. Also, when the degree of
persistence decreases, all parametric tests lose e¢ ciency to reject the false null in relation
to the procedures in the standard regression setting, as expected from the di¤erent rate
of convergence. When c = �20, which corresponds to a slow mean-reverting process with
AR coe¢ cient of � = 0:965; the power function of the Bonferroni Q-test tends to collapse
around that of the Bonferroni t-test, and the robust t-test strongly dominates the other
alternatives. In summary, the overall evidence suggests that the robust t-test seems to be
a good procedure.

[Insert Figure 4.3]

Finally, Figure 4.3 presents the results of the Monte Carlo experiments when the
DGP includes short-run dynamics with an autoregressive parameter � = 0:5. Because
the order of short-run dynamics in the autoregressive model is unknown in practical
settings, we adopt the following strategy to obtain a picture of the power under more
realistic conditions. We consider a maximum lag-order �p = 6 and then use the Bayesian
Information Criteria to identify the most parsimonious model to be used in the case
of our test. The Bonferroni procedures use non-parametric estimates of the long-run
variance of the AR process, while the non-parametric tests still use the same approach. It
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should �rstly be remarked that the empirical size of the robust t-test t�b�F ;p (�) ranges from
5:7% to 6:39%, showing a mild oversizing e¤ect from considering additional lags in the
�rst-stage regression. Therefore, the presence of short-run dynamics can successfully be
accommodated through augmentation and, as discussed in Section 3.4, the distribution
discussed under i.i.d. still provides a good representation. As shown in Figure 4.3, the
main conclusions are similar to those obtained for the i.i.d. case. The most relevant
e¤ect is that the existence of short-run dynamics in the predictor improve the power
performance of all tests analyzed. Consequently, the robust test tends to exhibit good
power performance, both in absolute terms, and in relation to the alternative procedures.

4.3 Values of b��;� and critical values as a function of �

One of the main advantages of the procedure introduced in (15) is that the critical values
for the modi�ed t-statistic at a nominal size of �% may readily be computed by straight-
forward simulation under the null hypothesis of no predictability, H0 : � = 0. Table
4.1 presents several �nite-sample and asymptotic upper tail null critical values for this
test as a function of the degree of contemporaneous correlation �. Table 4.2 presents the
(asymptotic) values of the corresponding equalizing constants. In the simulations, the
dependent variable was generated under the null hypothesis, yt = ut; and given that the
null critical values do not depend on c nor on other population characteristics, we may
directly set xt = vt: The innovations (ut; vt)

0 were simulated according to a multivari-
ate Normal distribution with zero mean vector and covariance matrix with unit diagonal
entries and o¤-diagonal elements characterized by �: Following standard practices, we
considered T = 1; 000 to approach the asymptotic distribution.

[Insert Table 4.1 and 4.2 about here]

Note, from Table 4.1, that the standard normal distribution may be a reasonable
distribution in the context of relatively mild negative contemporaneous correlation, i:e:;
for � � �0:5: However, and as expected from the theoretical results, the relevant critical
values largely depart from those of the standard normal distribution for larger levels of
the correlation parameter.

5 Empirical Application

To illustrate empirically the performance of the tests introduced in this paper, we analyze
the S&P 500 index data as well as the annual, quarterly and monthly NYSE/AMEX value-
weighted index data from the CRSP database analyzed in Campbell and Yogo (2006).9

Our objective here is to illustrate the usefulness of our testing method and compare the
results with those obtained in the original study under an alternative testing procedure, as
we have discussed that both tests may complement each other and seem to exhibit better
power properties than other alternative procedures. The data covers the period from
1880-2002 and we analyze predictability in three periods: i) the full sample 1880-2002 for
all variables considered, ii) the subsample from 1880 to 1994 also for all variables, and
�nally iii) a subsample from 1952 to 2002 only for the CRSP data. The main predictors

9For a detailed description of the data and construction of the variables see Campbell and Yogo (2006,
pp. 45-46). We thank the authors for making those data available.
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are the earnings-price and the dividend price ratios. The interest in the latter period lies
in that it allows for the analysis of two additional predictor variables, namely the three-
month T-bill rate and the long-short yield spread. Note that Campbell and Yogo (2006)
suggest a testing procedure to formally determine whether a conventional t-statistic could
deliver reliable inference. Because our testing ensures correct size independently of the
extent of persistence, the need of conducting pre-testing on the properties of the predictor
is overridden.
Table 5.1 presents the results of the modi�ed t-statistic, for b� estimated from the

conventional predictive regression (1), and b�F;p computed from the modi�ed augmented
regression, for the empirical estimate of the correlation coe¢ cient (�) and the order of
augmentation (p) used to capture the dynamics of the predictor variables. The results
presented in this section can be directly compared with those obtained by Campbell and
Yogo (2006).

[Insert Tables 5.1 about here]

When considering the full sample, Campbell and Yogo (2006) reject the null of no
predictability for the earnings-price at all frequencies and for the dividend ratio on the
basis of the Bonferroni Q-test. These authors also apply the Bonferroni t-test, noting that
it never rejects the null hypothesis of no predictability. From Table 5.1, we observe that
our testing procedure rejects the null hypothesis, thereby reaching the same qualitative
conclusions about the existence of predictability as those reported in Campbell and Yogo
(2006).
In the subsample through 1994 the results are qualitatively similar. In particular,

the Bonferroni Q-test and our modi�ed t-test �nd predictability with the earnings-price
ratio at all frequencies. The Bonferroni t-test also �nds predictability in this sub-sample.
The concordance of all these procedures suggests that the evidence for predictability is
particularly strong in this period. Finally, in the sub-sample starting from 1952, we cannot
reject the null hypothesis for valuation ratios, but we �nd predictability in terms of the
T-bill rate and the yield spread at all frequencies except at the annual frequency. Hence,
from this limited empirical analysis a similar conclusion as in Campbell and Yogo (2006)
can be drawn, con�rming the evidence of a predictable time-varying expected return
component.

6 Conclusion

A large number of tests for predictability have been proposed in the literature over the
last two decades. In particular, attention has been given to two main characteristics: i)
the strong negative correlation between the predictive regression errors and the errors
of the process underlying the generation of the predictor (which is typically assumed to
be an autoregressive process) and ii) the near integrated (strong persistent) regressors
used in predictive regressions. In this paper we introduced a modi�ed t-statistic for
predictability computed from an augmented predictive regression in which the dependant
variable is stationary and the predictor is allowed to be either stationary, near-integrated
or integrated.
Our procedure ensures valid inference with approximately correct size in small samples

and shows good power properties for empirical applications. Correct size is ensured by
construction, whereas augmented predictive regressions provide improved power over al-
ternative procedures. Together with its methodological simplicity, these properties make
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the test introduced in this paper relevant for empirical applications. Our test shows two
appealing features: it builds upon a variance-reduction technique that ensures more ef-
�cient estimates (and hence, has better power properties), and ensures approximately
correct size independently of the extent of persistence and the stochastic properties of
the predictor. Furthermore, the theoretical setting studied in this paper can readily be
extended to account for more general data generating processes, such as long-memory
dynamics in the predictor variable, and parameter instability, which raise interesting
questions to be analyzed in future research.
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Technical Appendix

Given y = (y1; :::; yT )
0, denote y� = y�E (ujv) ; with u = (u1; :::; uT )0 and v = (v1; :::; vT )0 ;

noting that " = u � �uvv: Let X be the (T � 2) matrix of regressors in (1) and (2),
and denote � = (�; �)0 and � = (�; �)0 as the vectors of unknown parameters in these
equations; the respective OLS estimators are denoted as bu, bv, b� and b� in the sequel. The
following are useful results to prove the theoretical statements presented in the main text.

Lemma A1. Under Assumptions 1 and 2, with either Assumption 3 or 3�it follows that,
i) b� = � + �uv

�b�� ��+ (X 0X)�1(X 0"):

ii) b� = �+(X 0X)�1(X 0v):

iii) v = bv +X
�b�� �� :

Proof. The proof of i) follows as in Stambaugh (1999). The proof of the remaining
statements is immediate and follows from the standard OLS properties of equation (2).
�

Lemma A2. Let �t = ("t; vt)
0 ; with "t = ut � �uvvt; and de�ne  t = ~xt�1�t, �

2
x =

�2v=
�
1� �2

�
and 
� = diag f�2"; �2vg ; with �2" = �2u (1� �2) : Under Assumptions 1 and

2,
P[Tr]

t=1 �t=
p
T ) 


1=2
� (W1 (r) ;W2 (r))

0 = B (r) ; in 0� r � 1; where (W1 (r) ;W2 (r))
0

is a two dimensional vector of independent Wiener processes in D [0; 1]�D [0; 1]. Then,
the following statements hold true under Assumptions 1 and 2, and as the sample size is
allowed to diverge:
i) Under Assumption 3, T�1

PT
t=2 ~x

2
t�1

p! �2x; T
�1PT

t=2 bv2t p! �2v; T
�1PT

t=2 ~xt�1vt
p! 0;

and T�1=2
PT

t=2  t ) �xB (1) ;

ii) Under Assumption 3�, T�2
PT

t=2 ~x
2
t�1 ) �2v

R 1
0
J
2

c(r)dr; T
�1PT

t=2 bv2t p! �2v; and T
�1PT

t=2  t )
�v
R 1
0
J c(r)dB (r) ; with J c(r) de�ned in Theorem 2.3, noting that W (r) � W2 (r) :

Proof. Under Assumption 2, the innovation vector �t is a Gaussian i.i.d. process with
zero mean and covariance matrix 
� bounded away from in�nity and zero. Therefore, the
invariance principle T�1=2

P[Tr]
t=1 �t ) 


1=2
� B (r) holds; see Davidson (1994). For part i),

note that fxtg is a strictly stationary and ergodic process with �nite second-order mo-
ments, while

�
~xt�1"t;F �

	
is a strictly stationary, ergodic and square-integrable MDS. The

required results hold from the weak law of large numbers (WLLN) and the Central Limit
Theorem; see White (2001) and Davidson (1994). Part ii) follows from the Continuous
Mapping Theorem (CMP) and the convergence of partial sums to stochastic integrals; see
Phillips (1987, 1988). �

Proof of Theorem 2.1. Note that,�b�F � �
�
=

PT
t=2 ~xt�1"tPT
t=2 ~x

2
t�1

+ �uv

�b�� �
�
: (A.7)

Hence, under Assumptions 1, 2 and 3, it follows that

p
T
�b�F � �

�
=

T�1=2
PT

t=2 ~xt�1"t

T�1
PT

t=2 ~x
2
t�1

+ �uv
T�1=2

PT
t=2 ~xt�1vt

T�1
PT

t=2 ~x
2
t�1

) N
 
0;
�2"
�
1� �2

�
�2v

!
+ �uvN (0; 1� �2) (A.8)
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from Lemma A2i). Since the t-ratio is de�ned as

tb�F =
p
T
�b�F � �

�
�
 
T�1

TX
t=2

~x2t�1

!1=2 b��1" (A.9)

and b�2" = T�1
PT

t=2 "
2
t +op (1) ; with T

�1PT
t=2 "

2
t

p! �2" from the WLLN, it follows directly
from Cramér�s Theorem and under the null hypothesis H0 : � = 0 that

tb�F ) Z + �p
1� �2

Z = N
�
0;

1

1� �2

�
(A.10)

as required. Alternatively, under Assumptions 1, 2 and 3�, and operating in a similar way,
we can show from Lemma A2ii) that

T
�b�F � �

�
=

T�1
PT

t=2 ~xt�1"t

T�2
PT

t=2 ~x
2
t�1

+
�uvT

�1PT
t=2 ~xt�1vt

T�2
PT

t=2 ~x
2
t�1

) �u
�v

p
(1� �2)

R 1
0
J c(r)dW1(r)R 1

0
J
2

c(r)dr
+
�uv
�2v

R 1
0
J c(r)dW2(r)R 1
0
J
2

c(r)dr

=
�u
�v

"p
(1� �2)

R 1
0
J c(r)dW1(r)R 1

0
J
2

c(r)dr
+ �

R 1
0
J c(r)dW2(r)R 1
0
J
2

c(r)dr

#
: (A.11)

Noting that tb�F = T
�b�F � �

�
�
�
T�2

PT
t=2 ~x

2
t�1

�1=2
=b�", it follows readily under the null

hypothesis,

tb�F ) Z + �
�
1� �2

��1=2�Z 1

0

�
J c(r)

�2
dr

��1=2 Z 1

0

J c(r)dW2(r): (A.12)

The statement in the text holds by recalling that W (r) � W2(r). �

Proof of Theorem 3.1. The limiting results obtain directly from Theorem 2.1 and
Cramér�s theorem, noting that Jx;T (m) ) Jc (m) under Assumptions 1, 2 and 3�as in
Park (1990) and Park and Choi (1988). �

Proof of Theorem 3.2. The OLS estimates can still be written as

b�F;p =
PT

t=2 ~xt�1

�
~yt � b�uebet�PT

t=2 ~x
2
t�1

(A.13)

with bet denoting the corresponding residuals from the autoregression of the predictive
variable. We �rst discuss the asymptotic behavior of this test under Assumptions 1, 2�
and 3. The process fxtg obeys a a strictly stationary and ergodic AR(p + 1) process, sobet = ~xt �Xp+1

j=1

b��j ~xt�j; where b��j = �b�j � b�j�1b�� ; j = 1; :::; p for �0 = 1 and ��p+1 � �p�:

Noting that bet = et �
�b����0 ~Xt�1 (A.14)
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with � =
�
��1; :::; �

�
p

�0
, ~Xt�1 = (~xt�1; :::; ~xt�p�1)

0; and after denoting as b� the OLS coun-
terpart of �; we can write

p
T
�b�F;p � �

�
=

"
T�1=2

PT
t=2 ~xt�1"t

T�1
PT

t=2 ~x
2
t�1

#
+

24b�ue
�
T�1

PT
t=2 ~xt�1

~X 0
t�1

� hp
T
�b����i

T�1
PT

t=2 ~x
2
t�1

35
= [I1T ] + [I2T ] ; (A.15)

with I1T ; and I2T de�ned implicitly. Rede�ne the random innovations � = ("t; et)
0 and

note that
n
�t;F

�
t

o
is a stationary and ergodic MDS vector with �nite variance, and so

is
n
~xt�1�t;F

�
t

o
; since, under Assumption 2�and from the Cauchy-Schwartz inequality,

E
�
~x2t�1�

2
it

�
�E
�
~x4t�1

�
E
�
�4it
�
< 1: Therefore, using the appropriate central limit theory

(White 2001, cf. Theorem 5.25), we can show as in Lemma A2i) that I1T ) N (0; �2a=�2x):
In order to analyze the asymptotic convergence of I2T ; note that ~xt�1 ~Xt = (~x

2
t�1; :::; ~xt�1~xt�p�1)

0

is a stationary and ergodic vector, so T�1
PT

t=2 ~xt�1
~Xt�1

p! �1 holds from the ergodic
theorem (Davidson 1994, cf. Theorem 13.2), where �1 =

�
�2x; 1; :::; p

�0
; with j =

E (~xt~xt�j) denoting the j-th autocovariance. Next, note that
�b���� = hPT

t=2

�
~Xt�1 ~X

0
t�1

�i�1
�
hPT

t=2
~Xt�1et

i
; where

n
~Xt�1et;F �

t

o
is a stationary and ergodic MDS vector. Therefore,

invoking a suitable CLT (Davidson 1994, Theorem 13.2) together with the Cramér-Wold

device, and noting that
PT

t=2

�
~Xt�1 ~X

0
t�1

�
p! � from ergodicity, it follows readily that

p
T
�b����) N (0; �2e��1); with

� =

26664
�2x 1 ::: p
1 �2x ::: p�1
...

... :::
...

p p�1 ::: �2x

37775 : (A.16)

Then, since T�1
PT

t=2 ~x
2
t�1

p! �2x from the WLLN, we have from Cramér�s Theorem that

I2T ) N (0; �
2
ue

�2e�
4
x

�01�
�1�1); (A.17)

but since �01�
�1�1 = �2x and, recalling that �

2
" = �2u(1 � �2); we conclude after trivial

algebra that
p
T
�b�F;p � �

�
) N

�
0; �2" [(1� �2)�2x]

�1
�
; which is a result equivalent to

the one obtained in Theorem 3.2 under Assumptions 1-3. Thus, it is now immediate to
show that

t�b�F;p ) N
�
0;

1

1� �2

�
(A.18)

as required.
Consider now the behavior of the statistic under Assumptions 1, 2�and 3�. Hence, the

largest autoregressive root of xt obeys near-integrated dynamics, whereas the remaining
roots are inside the unit circle. In this case, it is convenient to consider alternatively an
equivalent representation of the autoregressive process that generates ~xt. Thus, following
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Fuller (1996), we can write ~xt = ��~xt�1+
Xp

k=1
#k�~xt�k+et; with �

� = �+(1��)
pX
j=1

�j;

and

#j =

8><>: ��j�+ (1� �)

pX
k=j+1

�k; 1 � j � p� 1

��p�; j = p

: (A.19)

Since bet = et �
�b�� �

�
~xt�1 �

Xp

k=1

�b#k � #k

�
�~xt�k; it follows that,

T
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�
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T�1

PT
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2
t�1

#
+
hb�ueT �b�� � ��
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+

24TPT
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�b#k � #k
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�~xt�kPT

t=2 ~x
2
t�1

35
= [I3T ] + [I4T ] + [I5T ] (A.20)

with these terms de�ned implicitly.
Let (W1(r);W2(r))

0 be a two dimensional vector standard Brownian motion inD [0; 1]�
D [0; 1] :As in Lemma A2, the partial sum process obeys T�1=2

P[Tr]
t=2 �t ) (�"W1(r); �eW2(r))

0 ;
and T�1=2x[Tr] ) !Jc(r); 0 � r � 1; !2 = �2e=A

2 (1). Therefore, it follows from the CMT
and as in Phillips (1987, 1988) that

I3T )
�u
p
(1� �2)

R 1
0
J c(r)dW1(r)

!
R 1
0
J
2

c(r)dr
(A.21)

and, similarly,

I4T ) �ue!�e

Z 1

0

J c(r)dW2(r)

�
!2
Z 1

0

J
2

c(r)dr

��1
: (A.22)

Finally,

I5T =
Xp�1

k=1

p
T
�b#k � #k

� T�3=2PT
t=2 ~xt�1�~xt�k

T�2
PT
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2
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�
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�
= op (1) (A.23)

because b#k is apT�consistent estimate of #k and, T�1PT
t=2 ~xt�1�~xt�k ) !2�2e

R 1
0
J c(r)dW2(r):

Consequently,

T
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) �u
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(A.24)

and, therefore,

t�b�F;p )
R 1
0
J c(r)dW1(r)�R 1
0
J
2

c(r)dr
�1=2 + �p

(1� �2)

R 1
0
J c(r)dW2(r)�R 1
0
J
2

c(r)dr
�1=2

= Z + �p
(1� �2)

�Z 1

0

J
2

c(r)dr

��1=2 Z 1

0

J c(r)dW2(r) (A.25)

which is asymptotically equivalent to the distribution of tb�F under Assumptions 1, 2 and
3�. �

Proof of Theorem 3.4. The limiting results obtain directly from Theorem 3.3 and
Cramér�s theorem, noting that Jx;T (m) ) Jc (m) when replacing Assumption 2 with 2�.
This completes the proof. �
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Figures

Figure 3.1: Cumulative distribution functions of t�b�;�
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Note: Asymptotic cumulative distribution functions of the modi�ed t-test tb�;� for � = 1
(solid line) and � = 0 (dashed line) given � = �0:95 and b��;� computed for a 95% right-
tailed test.
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Figure 4.1: Empirical sizes for T=100.
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Note: Empirical sizes of the modi�ed t-test tb�;� (solid line) from an augmented predic-
tive regression and the standard t-test (dashed line) from a standard predictive regression.
Both tests are one-sided and considered at the 5% nominal level for the value of � dis-
played, T = 100.
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Figure 4.2: Power functions based on i.i.d. innovations
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Note: Power against local alternatives of the form � = �a=T; with �a in the range [0; 20]
given di¤erent values of (c; �)0 and i.i.d. innovations. The tests considered in the analysis
are the Bonferroni t-test, Bt; the Bonferroni Q test, BQ; the robust t-test tb�;�, and the
non-parametric test, MS.

Figure 4.3: Power functions based on dependent innovations
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Note: Power against local alternatives of the form � = �a=T; with �a in the range [0; 20]
given di¤erent values of (c; �)0 and innovations following an AR(1) process with coe¢ cient
� = 0:5. The tests considered in the analysis are the Bonferroni t-test, Bt; the Bonferroni
Q test, BQ; the robust t-test tb�;�, and the non-parametric test, MS.
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Table 4.1: Critical values for the modi�ed t�b�;� (�) tests
0.0100 0.0500 0.1000 0.5000 0.9000 0.9500 0.9750 0.9900

T=100 -2.3492 -1.6613 -1.2867 0.0096 1.3108 1.7172 2.0504 2.3878
0 T=250 -2.3047 -1.6495 -1.2750 0.0270 1.2750 1.6339 1.9226 2.2949

T=500 -2.3116 -1.6077 -1.2534 0.0148 1.2898 1.6295 1.9461 2.3028
T=1000 -2.2940 -1.6190 -1.2529 -0.0022 1.2799 1.6677 1.9683 2.3358
T=100 -2.4025 -1.7074 -1.3202 -0.0176 1.2766 1.6763 2.0162 2.3739

-0.1 T=250 -2.3577 -1.6918 -1.3049 -0.0032 1.2536 1.6130 1.9080 2.2816
T=500 -2.3462 -1.6383 -1.2639 -0.0090 1.2788 1.6237 1.9167 2.2877
T=1000 -2.3318 -1.6543 -1.2846 -0.0204 1.2745 1.6660 1.9627 2.3301
T=100 -2.4705 -1.7773 -1.3684 -0.0526 1.2596 1.6552 2.0062 2.3754

-0.2 T=250 -2.4260 -1.7485 -1.3679 -0.0258 1.2483 1.6029 1.9214 2.2779
T=500 -2.4214 -1.6838 -1.3079 -0.0309 1.2758 1.6170 1.8995 2.2834
T=1000 -2.3789 -1.6978 -1.3267 -0.0419 1.2691 1.6494 1.9676 2.3499
T=100 -2.5698 -1.8635 -1.4462 -0.0840 1.2757 1.6576 2.0122 2.4112

-0.3 T=250 -2.5001 -1.8257 -1.4253 -0.0644 1.2518 1.6252 1.9593 2.2861
T=500 -2.4936 -1.7486 -1.3641 -0.0573 1.2881 1.6331 1.9374 2.2895
T=1000 -2.4322 -1.7648 -1.3743 -0.0673 1.2840 1.6866 2.0158 2.3899
T=100 -2.7063 -1.9626 -1.5307 -0.1181 1.2925 1.6750 2.0466 2.4843

-0.4 T=250 -2.6240 -1.9461 -1.5117 -0.1082 1.2818 1.6647 2.0206 2.3586
T=500 -2.6275 -1.8439 -1.4514 -0.0861 1.3082 1.6839 1.9971 2.3275
T=1000 -2.5688 -1.8640 -1.4537 -0.0928 1.3091 1.7194 2.0635 2.4681
T=100 -2.8999 -2.0849 -1.6611 -0.1683 1.3432 1.7549 2.1143 2.5717

-0.5 T=250 -2.8267 -2.0987 -1.6265 -0.1355 1.3333 1.7370 2.1034 2.4888
T=500 -2.7819 -1.9965 -1.5744 -0.1179 1.3542 1.7754 2.1047 2.4885
T=1000 -2.7493 -2.0038 -1.5703 -0.1228 1.3710 1.7978 2.1530 2.5681
T=100 -3.1689 -2.2951 -1.8445 -0.2154 1.4037 1.8458 2.2361 2.6642

-0.6 T=250 -3.1166 -2.2739 -1.8009 -0.1899 1.4096 1.8581 2.2335 2.7058
T=500 -3.0686 -2.1965 -1.7460 -0.1611 1.4112 1.8795 2.2385 2.6865
T=1000 -2.9920 -2.1787 -1.7360 -0.1525 1.4554 1.9234 2.3328 2.7799
T=100 -3.6204 -2.6225 -2.1210 -0.2865 1.5303 2.0334 2.4600 2.9241

-0.7 T=250 -3.5468 -2.5640 -2.0521 -0.2558 1.5510 2.0640 2.4677 3.0013
T=500 -3.4882 -2.4948 -1.9979 -0.2152 1.5292 2.0438 2.5113 2.9941
T=1000 -3.3853 -2.4421 -1.9536 -0.1964 1.5951 2.1033 2.5830 3.1104
T=100 -4.3167 -3.1545 -2.5397 -0.3901 1.7525 2.3570 2.8747 3.4153

-0.8 T=250 -4.3164 -3.0815 -2.4792 -0.3412 1.8031 2.4141 2.8782 3.4421
T=500 -4.1578 -3.0098 -2.4167 -0.3060 1.7808 2.4017 2.9254 3.5953
T=1000 -4.0821 -2.9404 -2.3503 -0.2681 1.8623 2.5217 3.0309 3.6845
T=100 -5.8311 -4.3048 -3.4740 -0.5794 2.2676 3.1066 3.7234 4.5195

-0.9 T=250 -5.8782 -4.2185 -3.3869 -0.5080 2.3766 3.1842 3.8641 4.7141
T=500 -5.7596 -4.1876 -3.3827 -0.4675 2.3618 3.2384 3.9309 4.8453
T=1000 -5.6735 -4.0893 -3.2778 -0.4216 2.5172 3.3948 4.1356 5.0216
T=100 -7.7399 -5.7147 -4.6256 -0.8185 2.9004 4.0315 4.9292 5.9929

-0.95 T=250 -8.0211 -5.7684 -4.6546 -0.7279 3.1554 4.2295 5.1694 6.3454
T=500 -7.9215 -5.7844 -4.6761 -0.6953 3.2659 4.3705 5.3933 6.5447
T=1000 -7.8824 -5.7237 -4.5584 -0.6092 3.4714 4.6876 5.7366 6.9599
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Table 4.2: Asymptotic b-values for the t-test
b��;�

� 10% 5% 1%

0.00 0.0030 0.0000 0.0000

-0.10 0.0390 0.0192 0.0157

-0.20 0.8750 0.0657 0.0250

-0.30 0.1302 0.0950 0.0690

-0.40 0.1980 0.1670 0.1096

-0.50 0.2580 0.2120 0.1950

-0.60 0.3410 0.2580 0.2405

-0.70 0.4408 0.3620 0.3150

-0.80 0.5495 0.4270 0.3530

-0.90 0.6448 0.5870 0.4550

-0.95 0.7200 0.6250 0.5400

Note: Values of the equalizing constant b��;� for the �% one-sided test given di¤erent values
of �:
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Table 5.1: Predictability analysis
Panel A

T xt p b� b�F;p t�b�F ;p (�) b�
S&P500 123 d-p 3 0.057 0.061 2.402 -0.85

123 e-p 1 0.091 -0.022 -2.579 -0.74

CRSPAnnual 77 d-p 1 0.158 0.126 2.325* -0.70

77 e-p 1 0.162 0.107 4.610* -0.94

CRSPQuarterly 305 d-p 1 0.034 0.021 2.799 -0.93

305 e-p 1 0.047 0.030 8.490* -0.98

CRSPMonthly 913 d-p 2 0.008 0.004 2.015 -0.95

913 e-p 1 0.013 0.007 7.606* -0.99

Panel B
T xt p b� b�F;p t�b�F ;p (�) b�

S&P500 115 d-p 3 0.083 0.088 2.586 -0.84

115 e-p 1 0.125 -0.028 -0.881 -0.69

CRSPAnnual 69 d-p 1 0.269 0.22 3.038* -0.67

69 e-p 1 0.269 0.186 6.746* -0.94

CRSPQuarterly 273 d-p 1 0.054 0.034 3.639 -0.93

273 e-p 1 0.077 0.052 12.478* -0.98

CRSPMonthly 817 d-p 2 0.012 0.006 2.488 -0.94

817 e-p 2 0.021 0.013 9.646* -0.98

Panel C
T xt p b� b�F;p t�b�;�;p (�) b�

CRSPAnnual 51 d-p 1 0.154 0.113 1.463 -0.72

51 e-p 1 0.113 0.073 1.697 -0.94

51 r3 2 -1 -1.051 -1.162 0.05

51 y-r1 1 1.847 1.527 0.943 -0.24

CRSPQuarterly 204 d-p 1 0.038 0.024 3.036 -0.97

204 e-p 1 0.029 0.018 2.589 -0.98

204 r3 4 -0.374 -0.392 -1.847 -0.09

204 y-r1 2 0.84 0.816 1.937* -0.10

CRSPMonthly 612 d-p 1 0.012 0.007 2.805 -0.96

612 e-p 1 0.009 0.005 2.304 -0.98

612 r3 2 -0.15 -0.157 -2.49 -0.07

612 y-r1 1 0.366 0.362 2.926* -0.07

Note: In Panel A, the S&P500 sample covers the period from 1880 to 1994 whereas the CRSP sample

starts in 1926 and ends in 1994. In Panel B, the S&P500 sample covers the period from 1880 to 1994

whereas the CRSP sample starts in 1926 and ends in 1994. In Panel C, only CRSP data is considered

and the sample starts in 1952 and ends in 2002. In the table, T denotes the sample length; b� andb�F;p denote, respectively, the OLS slope estimate in the non-augmented predictive regression and the
augmented predictive regression with p+ 1 lags; t�b�F ;p (�) is the value of robust t-test and b� is the
estimated correlation coe¢ cient in the empirical innovations. The predictors are the dividend-price ratio

(d-p), the earnings-price ratio (e-p), the three-month T-bill rate (r3) and the long-short yield spread
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