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Abstract

In this paper, we examine the empirical validity of the baseline version of the forward-

looking monetary policy reaction function proposed by Clarida, Gali, and Gertler (2000). For

that purpose, we propose a moment conditions model averaging estimator in the Generalized

Method of Moments and Generalized Empirical Likelihood setups. We derive some of their

asymptotic properties under correctly speci�ed and misspeci�ed models. Although the model

averaging estimates and the standard procedures point to a stabilizing policy rule during the

Paul Volcker and Alan Greenspan tenures but not so during the pre-Volker period, our results

cast serious doubts on the signi�cance of the cyclical output variable as a forcing variable in

the FED funds dynamics during the Volcker-Greenspan period.
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1 Introduction

The forward-looking monetary policy reaction function proposed by Clarida, Gali, and Gertler

(2000, henceforth CGG), based on Clarida, Gali, and Gertler (1998), has become a fundamental

macroeconomic speci�cation in the context of the United States monetary policy in the postwar.

In this model, the central bank forms beliefs about the future state of the economy based on the

available information so far. The target rate depends on the expected in�ation and output gaps

with respect to their equilibrium values. Moreover, the monetary authorities do not immediately

set the actual interest rate to its targeted counterpart but rather adjusts it smoothly over time.

They employ the Generalized Method of Moments (GMM) methodology to estimate the

monetary policy using the Federal Funds rate as the instrument of policy making1. In particular,

they suggest that the FED monetary policy during the Paul Volcker and Alan Greenspan period

was more stable than during the �fteen or so years prior to Volcker�s appointment. The reasoning

for this claim is that the Volcker-Greenspan policy appeared to be much more sensitive to changes

in the expected in�ation.

In this study, we re-evaluate the empirical validity of the baseline model discussed by CGG.

For that purpose, we propose a new estimation method, which we call moment conditions model

averaging estimator, in the GMM and Generalized Empirical Likelihood (GEL) setups. For

completeness, we also employ existent moment and model selection criteria methods and the

Empirical Likelihood (EL) estimation approach. We do so for several reasons. First, the CGG

papers rely on a standard two-step GMM estimator, which may deviate substantially from its

small sample distribution - as discussed in Hansen, Heaton and Yaron (1996), for example, and

in the two special issues of the Journal of Business and Economic Statistics (1996, vol. 14(3)

and 2002, vol. 20(4)) dedicated to GMM. Furthermore, the GMM estimation is not invariant

to the speci�cation of the moment conditions, which means that the results depend on the

normalization adopted for the estimation. Another drawback is that the results hinge on the

weighting matrix used in the estimation2.

Given these disappointing properties of GMM, it has recently been proposed the GEL class

1There has been a considerable interest in the properties of the GMM estimator to the analysis of time series

dependent data. In fact, since the seminal contribution by Hansen (1982), one has witnessed the remarkable

growth of the theoretical and empirical research on this issue over the recent decades. One of the main reasons

why it became so popular in moment conditions models is its computational accessibility.
2 In CGG paper, it is not clear what weighting matrix is used. If by "optimal" they mean the HAC matrix

then still it is to �nd what kernel and bandwidth selection method are used.
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of estimators. Newey and Smith (2004) have shown that while GMM and GEL estimators have

identical �rst-order asymptotic properties, the latter are higher order e¢ cient, in the sense that

these estimators are able to eliminate some sources of GMM biases. For example, they show

that the bias of the EL estimator does not grow with the number of moment conditions, unlike

GMM. Similar properties have been established by Anatolyev (2005), in a time series setting.

The second main reason for re-evaluating the empirical results by CGG concerns the econo-

metric analysis of model selection in the context of moment condition models. In the standard

GMM and GEL estimation approaches (as in CGG, for the case of GMM), parameter estimates

are obtained with a given/�xed list of instruments (moment conditions, in general). On the

other hand, in model selection, one ranks the available moment conditions models (combina-

tions of instruments, in the linear IV case) according to the particular goal undertaken. Instead

of just one, in model selection there are "many" competing models.

Model selection based on information criteria, hypothesis testing or shrinkage-type estimat-

ors has already been studied in the GMM and GEL framework. See, for example, Smith (1992)

and Smith and Ramalho (2002) for model testing and Caner (2009) for a LASSO-type GMM

estimator. Out of these three lines of model selection research, we only apply the information

criteria to the CGG model. Based upon the evidence that the rejection of the J-statistic is an

indicator that some moment conditions are invalid, Andrews (1999) conceived a GMM inform-

ation criteria procedure for consistently selecting the correct moment conditions. Andrews and

Lu (2001) extend Andrews�paper to the case of jointly picking the moments and the parameter

(model) vector, that is, imposing zero restrictions on the parameters. Hong, Preston and Shum

(2003) extend these two previous papers to the GEL framework. Hall, Inoue, Jana and Shin

(2007) take a di¤erent approach: The information criteria used for moment selection is based on

the entropy of the limiting distribution of the GMM estimator.

We pursue an alternative methodological direction in model selection �Model Averaging

(MA). In MA the estimation procedure is based on a weighted combination of all candidate

models/estimators. The weights are chosen according to some relevant criterion. To smooth

estimators across several models is a neat strategy to improve the bias and variance balance.

Studies on least squares (Hansen, 2005), likelihood-based (see, for example, Hjort and Claeskens,

2003) and Bayesian (see, for example, Hoeting, Madigan, Raftery and Volinsky, 1999) MA have

already been developed. At the notable study of Bruce Hansen, in the regression setup, it is

through the well-known Mallows criterion that the weights are estimated. To our best knowledge,

there is no published work yet in GMM/GEL MA estimators.
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Thus, we propose GMM and GEL model averaging estimators and discuss some of their

asymptotic properties under correctly speci�ed and misspeci�ed models. We show that the MA

GMM asymptotic theory under misspeci�cation is not standard in the sense that the consistency

and distributional results depend on the weighting matrices and the pseudo-true values. The

optimal MA weights are found by means of particular moment and model selection criteria as

de�ned at Andrews (1999), Andrews and Lu (2001), Hong, Preston and Shum (2003) and Hall

et all (2007).

Although the MA estimates and the standard procedures point to the same conclusion,

which is the evidence for a stabilizing policy rule during the Paul Volcker and Alan Greenspan

tenures but not so during the pre-Volker period with respect to in�ation, our results raise serious

doubts on the signi�cance of the cyclical output variable as a forcing variable in the FED funds

dynamics during the Volcker-Greenspan period. Contrary to our results, CGG found that the

parameter associated with output gap was statistical signi�cant for most of the policy rule

speci�cations. Before us, Jondeau, Le-Bihan and Gallès (2004) also questioned this result at

CGG using standard GMM, CU and MLE methods.

In the next two sections, we brie�y review the forward-looking monetary policy rule pro-

posed by CGG and the econometrics of moment conditions models. In Section 4, we discuss

the existence of a linear combination of instruments that give rise to a GMM/GEL estimator

that attains the Chamberlain e¢ ciency bound relative to the set of all available instruments.

The approach on moment conditions model averaging is presented in Section 5. The empirical

application of the existing methods and the MA procedure to the baseline CGG model is in

Section 6 and a conclusion �nalizes this paper.

2 Forward-Looking Monetary Policy Reaction Function

In order to provide a strong empirical evidence that the FED monetary policy during the Paul

Volcker and Alan Greenspan period was more stable than during the �fteen or so years prior to

Volcker�s appointment, Clarida, Gali, and Gertler (2000), based on Clarida, Gali, and Gertler

(1998), estimates a policy rule for which the central bank has forward-looking expectations.

Due to this type of speci�cation, they used the GMM methodology to estimate the monetary

policy with the Federal Funds rate as the instrument of policy making during the aforementioned

periods. In this paper, we illustrate the merits of our approach on GMM model averaging using

the CGG forward-looking speci�cation of the monetary policy. To better understand the main
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aspects of model, we now discuss the monetary policy dynamics following their work in a very

close manner3.

CGG derived the forward-looking monetary policy reaction function without specifying a

central bank�s objective function that would lead to an optimal monetary instrument rule. The

baseline policy rule for the target nominal interest rate (nominal Federal Funds rate) at period

t; i�t ; is given by

i�t = i
� + � (Et�t;k � ��) + 
Etxt;q; (1)

where �t;k is the percent change in the price level between periods t and t + k; expressed in

annual rates, and xt;q is a measure of the average output gap between t and t+q: The output gap

is de�ned as the percent deviation between actual GDP and the corresponding target. Moreover,

�� denotes the target for in�ation and, by model construction, i� is the desired nominal interest

rate when both the in�ation rate and output are expected to be at their target levels. Et is the

expectation operator conditional on the information set available at time t;
t: Hence, Et�t;k

should be read as E (�t;kj
t) :

In this model, the central bank forms beliefs about the future state of the economy based

on the available information so far. The target rate at period t; i�t ; is a linear function of the

expected in�ation and output gaps with respect to their target levels. The interest rate policy

rules tend to be stabilizing for � > 1 and for 
 > 0 (the monetary rules are more likely to be

destabilizing for � � 1 and 
 < 0); as model (1) is equivalent to

r�t = r
� + (� � 1) (Et�t;k � ��) + 
Etxt;q; (2)

where r� = i� � �� is the equilibrium real interest rate and r�t = i
�
t �Et�t;k is the (ex-ante) real

interest rate target. Here, stability occurs as a result of low real interest rates which stimulate

economic activity and in�ation.

Another key feature of the model is that the monetary authorities do not immediately set the

actual interest rate to its targeted counterpart. To be in line with the literature, let us assume

that the actual interest rate deviate randomly from the target rate due to monetary shocks et;

such that Et�1et = 0; and that the adjustment goes smooth over time according to

� (L) it = (1� �) i�t + et; (3)

with the pth�order autoregressive lag polynomial � (L) = 1� �1L� :::� �pLp and

� � 1� � (1) = �1 + :::+ �p: (4)

3For more details, read Clarida, Gali, and Gertler (2000) and Clarida, Gali, and Gertler (1998), among others.
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The partial adjustment of the actual rate to the target value is observed through the equation

it = �1it�1 + :::+ �pit�p + (1� �) i�t + et; (5)

where it depends on a linear combination of its past values and on the current target rate (plus

a zero mean exogenous interest rate shock). The parameter � is interpreted as the degree of

smoothing of interest rate changes.

The CGG policy reaction rule for it results from combining the target nominal policy (1)

and the partial adjustment model that adjusts it gradually towards i�t ; (5). Substituting terms,

yields

it = �1it�1 + :::+ �pit�p + (1� �) [�+ �Et�t;k + 
Etxt;q] + et; (6)

where

� = i� � ��� = r� + (1� �)��: (7)

By the law of iterated expectations, equation (6) can be written as

it = �1it�1 + :::+ �pit�p + (1� �) [�+ ��t+k + 
xt+q] + "t; (8)

where the innovation "t follows the process

"t = et � (1� �) [� (�t+k � Et�t+k) + 
 (xt+q � Etxt+q)] : (9)

The most appropriate estimation method to the unknown quantities �; �; � and 
 is GMM

(or GEL, for that matter)4. Indeed, the forecast errors �t+k � Et�t+k and xt+q � Etxt+q are,

by construction, orthogonal to any variable at the information set 
t and, most likely, correl-

ated with �t+k and xt+q: The instrumental variables zt that belong to 
t are, most probably,

correlated with past it; �t+k and xt+q; as well.

In this paper, we build upon theoretical results on averaging GMM (and GEL) estimators.

In this sense, we take the scenario of studying a macroeconomic model but, for which, there is

possibly not a unique set of instruments to estimate the unknown parameters. To �x ideas, let

p; q and k be any given values. For a particular set of instruments i (collected in a mi� 1 vector

z
(i)
t ) one can de�ne a speci�c model Mi with orthogonality conditions

E
��
it � �1it�1 � :::� �pit�p � (1� �) [�+ ��t+k + 
xt+q]

�
z
(i)
t

�
= 0; (10)

which most likely provide distinct GMM estimates for di¤erent i:
4 In this model, � is identi�able but not i� and ��; jointly (notice that � is identi�ed through �t+k). Thus,

with the argument that �� is of some interest in the characterization of the monetary policy, following CGG, the

parameter of interest subject to estimation is �� and i� is measured as the observed sample average.
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3 Econometric Framework

In this section, we review the most important and well-established results regarding the GMM

and GEL estimation procedures as well as the moment and model selection criteria in moment

condition models.

3.1 Moment Conditions Model

LetM be the collection of candidate moment conditions models. Here,M is a countable/�nite

or an uncountable set and a modelMi belongs to the family of modelsM :Mi 2M: The "true"

model may or may not be a member of M: Take any particular moment conditions model,

Mi; which, in our application, is characterized by a particular set of instruments (for example,

model (10) in CGG setup). When the number of instruments is large, it is possible that no

value of the parameter vector simultaneously satis�es all the moment restrictions exactly in the

population, resulting in a misspeci�ed model. Next, we distinguish a correctly speci�ed model

from a misspeci�ed one, as in Hall and Inoue (2003).

Correctly Speci�ed Model Consider the estimation of a p-dimensional parameter vector

�0 = (�0;1; :::; �0;p) 2 � � <p based on m � p moment conditions of the form

E[g(yt; �0)] � E[gt(�0)] = 0; (11)

for all t; where, usually, g(yt; �0) � gt(�0) = "(xt; �0) 
 zt for some set of variables xt and

instruments zt such that yt = (x0t; z
0
t)
0:When "t is univariate, gt(�0) = zt"(xt; �0) and zt is m�1;

which, for the linear regression model,5

gt(�0) = zt
�
yt � x0t�0

�
and E[zt

�
yt � x0t�0

�
] = 0: (12)

Due to linearity, gt(�) is most certainly an unbounded function in the data: sup
y
�0g(y; �) = 1

for any � and any unit vector �:

The m� p Jacobian matrix is de�ned as

G (�0) � G = E
 
@g (yt; �)

@�0

����
�=�0

!
(13)

5There should be no confusion in terms of notation: In the general case, yt is the set of all variables in the

model; In the linear case, yt is the dependent variable and xt the covariates. Similarly, xt at the monetary model

is the economic variable "output gap" and not a prede�ned set of covariates.
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and, under some regularity conditions, a CLT can be invoked:

p
T

 
1

T

TX
t=1

g(yt; �0)

!
d! Nm (0; S (�0)) ; (14)

as T !1; where the long-run variance of the process fg(yt; �0)g is some m�m positive de�nite

matrix

S (�0) � S = lim
T!1

V ar

"
T�1=2

TX
t=1

g(yt; �0)

#
: (15)

In the linear case,

G = E
�
ztx

0
t

�
and S = lim

T!1
V ar

"
T�1=2

TX
t=1

zt
�
yt � x0t�0

�#
; (16)

which, under no-dependence (martingale di¤erence sequence),

S = �0 = E
�
gt(�0)gt(�0)

0� = E �ztz0t"2t � : (17)

De�nition 1 (Correctly speci�ed model): The model is said to be correctly speci�ed if there

exists a unique value �0 in � � <p such that

E[g(yt; �0)] = 0: (18)

In this de�nition, the orthogonality condition is E[g(yt; �0)] = 0 and the identi�cation con-

dition (uniqueness) results from G full-column ranked6.

Misspeci�ed Model De�nition 2 (Misspeci�ed model): A model is said to be misspeci�ed

if there is no value of � which satis�es the orthogonality condition, that is,

E[g(yt; �)] = � (�) (19)

where � : �! <m such that k� (�)k > 0 for all � 2 �:

In the previous de�nition, E[g(yt; �)] is assumed to be constant for all t (it rules out mis-

speci�cation due to structural instability). Also, m > p because if m = p then there must exist

some value of � such that E[g(yt; �)] = 0: This is a non-local misspeci�cation as we are not

considering local misspeci�cation where E[g(yt; �0)] = T�1=2�; � 6= 0; say.

According to Schennach (2007), in a misspeci�ed model inf
�
kE[g(yt; �)]k > 0; whereas for

linear models, Maasoumi and Phillips (1982) de�ne misspeci�cation by E (zt"t) = �": Chen,

6 In this paper,we are not considering the many and weak instruments issues in the linear IV model nor weak

identi�cation in the general GMM estimation procedure.
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Hong and Shum (2007), among others, de�ne a misspeci�ed model di¤erently. For each � 2 �;

let P� =
�
P j
R
g (y; �) dP = 0

	
be a nonparametric family of measures for y which are consistent

with the moment conditions. Then, we can de�ne P = [�2�P� as the family of measures that

are compatible with the moment conditions model. The model P is misspeci�ed if the true

population distribution P0 =2 P (in fact, P� and P are induced by g and should be read as Pg�
and Pg; instead).

So that an extremum estimator has a well de�ned probability limit in a misspeci�ed model,

we need to impose the following identi�cation condition.

Assumption 1 (Identi�cation for a misspeci�ed model): There exists a pseudo-true value

�� 2 � such that Q0 (��) < Q0 (�) ;8� 2 �n f��g ; where Q0 (�) is the population objective

function, that is,

�� = argmin
�
Q0 (�) : (20)

Note that two di¤erent estimators may converge to di¤erent pseudo-values (due to two

di¤erent well-de�ned objective functions). Given the existence of ��; we de�ne the following

quantities:

�� � � (��) = E[g(yt; ��)]; (21)

G� = E

 
@g (yt; �)

@�0

����
�=��

!
; and

S� = lim
T!1

V ar

"
T�1=2

TX
t=1

(g(yt; ��)� ��)
#
(positive de�nite).

In the linear model, G� = G: Under some conditions given at Hall and Inoue (2003),

p
T

 
1

T

TX
t=1

(g(yt; ��)� ��)
!

d! Nm (0; S�) ; as T !1: (22)

When the number of moment conditions is large, it is possible that no value of � simultan-

eously satis�es all the moment restrictions exactly in the population, resulting in a misspeci�ed

model. Another reason for considering misspeci�cation stems from the fact that most models

are only approximations to the underlying phenomena. Although the imperfections of the model

can be, in some cases, avoided through the use of speci�cation tests, the consequences on estim-

ation may have little impact on the results. Also, misspeci�ed (and parsimonious) models may

have reasonable predictive properties. Just like in MLE, the object of interest is the pseudo-true

value of the parameter vector, which may not be unique since distinct objective functions may

be speci�ed.
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3.2 Estimation Procedures

In order to estimate (consistently and e¢ ciently) the unknown quantities �0 or ��; we discuss the

typical estimation procedures in moment condition models: GMM (IV for linear models), CUE

and GEL. For a sample of size T; de�ne the sample counterparts of the population moments as

bgT (�) =
1

T

TX
t=1

g(yt; �); bGT (�) = 1

T

TX
t=1

@g(yt; �)

@�0
and (23)

bST (�) = (HAC formula. See Den Haan and Levin, 1996, for example).

For the linear model,

bgT (�) = 1

T

TX
t=1

zt
�
yt � x0t�

�
and bGT (�) = 1

T

TX
t=1

ztx
0
t =

Z 0X

T
: (24)

The GMM estimator is de�ned as

b�GMM;T (W ) = argmin
�2�

bgT (�)0WTbgT (�) ; (25)

where WT is a weighting matrix such that WT
p! W; a positive de�nite matrix. When m > p;

the asymptotic variance of
p
T
�b�GMM;T � �0

�
depends on the p limWT = W: For the two-

step e¢ cient estimator, WT = bST �b�FS��1 � bS�1T ; where b�FS is a �rst-step consistent GMM
estimator (take WT = Im; for example):

b�EGMM;T = argmin
�2�

bgT (�)0 bS�1T bgT (�) ; (26)

where the random matrix bST p! S; as T ! 1: The GMM estimator depends on the weighting

matrix bS�1T which is in�uenced by the choice made for a �rst step consistent estimator. To over-

come this issue, the continuous-updating (CU-GMM) objective function contains the weighting

matrix as a function itself of the unknown � :

b�CUE;T = argmin
�2�

bgT (�)0 bS�T (�) bgT (�); (27)

where bS�T is the generalized inverse of bST :
Solving for � at FOC of the GMM objective function for the linear model, 

1

T

TX
t=1

ztx
0
t

!0
WT

 
1

T

TX
t=1

zt
�
yt � x0t�

�!
= 0; (28)

we obtain the IV estimator

b�IV;T = ��X 0Z
�
WT

�
Z 0X

���1 �
X 0Z

�
WT

�
Z 0y
�
: (29)
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For the time-series version, WT = bS�1T evaluated at b�FS = ((X 0Z) (Z 0X))�1 (X 0Z) (Z 0y) ;

whereas for the homoskecedastic with an error variance of one and no-dependence cross-section

version, WT =
�
1
T

PT
t=1 ztz

0
t

��1
=
�
Z0Z
T

��1
(�rst step estimator calculated using the inverse of

an instrument cross product matrix as the weighting matrix).

Given the often disappointing small sample properties of the GMM estimator, alternative

methods have been proposed recently such as those belonging to the GEL class of estimators.

Newey and Smith (2004) demonstrate that, while GMM and GEL estimators have identical

�rst-order asymptotic properties, the latter are able to eliminate some sources of GMM biases.

In particular, the bias of the EL estimator does not grow with the number of moment conditions,

unlike GMM. Similar properties have been recently established by Anatolyev (2005), in a time

series setting. This author demonstrates that, in the presence of correlation in g(yt; �), the

smoothed GEL estimator of Kitamura and Stutzer (1997) is e¢ cient, obtained by smoothing

the moment function with the truncated kernel, so that it solves the saddle point problem

b�SGEL;T = argmin
�2�

sup
�2�T (�)

1

T

T�KTX
t=KT+1

�[�0gtT (�)] (30)

with

gtT (�) =
1

2KT + 1

KTX
k=�KT

g (yt�k; �) : (31)

Here,

�T (�) = f� : �
0
gtT (�) 2 O; t = KT + 1; :::; T �KT g; (32)

where the open set O includes the zero number and � is the m�1 vector of lagrange multipliers

each associated with the jth moment condition, j = 1; :::;m: Moreover, the real function � :

< ! < is twice di¤erentiable and concave on O and de�nes the speci�c GEL estimator. When

� (v) = �(1 + v)2=2; the GEL estimator coincides with the CUE of Hansen et al (1996). If

�(v) = ln(1�v) we have the EL estimator of Kitamura (1997), whereas �(v) = � exp(v) leads to

the ET case presented by Kitamura and Stutzer (1997). In the i:i:d: case, the Newey and Smith

(2004) GEL typology sets KT = 0: The SEL variant, in particular, removes important sources

of bias associated with the GMM, namely the correlation between the moment function and its

derivative7, as well as third-order biases. Furthermore, Anatolyev (2005) shows that even when

there is no serial correlation, using smoothing and an appropriate HAC weight matrix, as in

Andrews (1991) or Newey and West (1994), leads to a reduction in estimation biases.

7This correlation leads to an increasing bias deterioration as the number of moment conditions increase.
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It has been shown that, under some regularity conditions, the GMM and the GEL estimators

have some probability limit and converge in distribution to some random variable under a correct

or misspeci�ed model. These results are summarized in the following lines.

Correctly Speci�ed Model Under correct model speci�cation, the estimators are con-

sistent: b�GMM;T
p! �0 and b�GEL;T p! �0; as T ! 1: Also, the EGMM and the GEL are

(�rst-order) equivalent:

p
n

0@ b�T � �0b�
1A d! Np+m (0; diag (V; P )) ; (33)

where

V =
�
G
0
S�1G

��1
and P = S�1 � S�1GV G0

S�1: (34)

Recall that for linear IV, G = E (ztx
0
t) and S depends on the properties of fzt"tg � fgtg : For

the GMM estimator with an arbitrary weighting matrix WT ;

p
T
�b�GMM;T � �0

�
d! N

�
0;
�
G
0
WG

��1 �
G
0
WSWG

��
G
0
WG

��1�
: (35)

The EGMM estimator is e¢ cient in the sense that it attains the smallest asymptotic variance

over the class of GMM estimators with alternative weighting matrices WT for a given set of

moment conditions. Chamberlain (1987) shows that the EGMM estimator is semiparametrically

e¢ cient, that is, �
G
0
S�1G

��1
=
�
E
�
xtz

0
t

�
S�1E

�
ztx

0
t

���1
(36)

is the lower bound for the variance of any estimation procedure based solely on the information

E[g(yt; �0)] = 0 and with unknown distribution. The GEL estimator also attain this e¢ ciency

bound. It can also be shown that adding moment conditions improves asymptotic e¢ ciency but

it increases the small sample bias (and it can increase the small sample variance).

Misspeci�ed Model The limiting distribution theory of the GMM estimator under mis-

speci�cation is derived by Hall and Inoue (2003). Its importance can be justi�ed through the

rejection of the model using the J-statistic and the need to keep the whole set of moment

conditions. The combination of overidenti�cation and misspeci�cation leads to a GMM estim-

ator whose p lim depends on the limit of the weigthing matrix and whose limiting distribution

depends on the limiting distribution of the elements of the weigthing matrix (its rate of conver-

gence included). As a consequence, there is no one single limiting distribution theory for the

12



GMM estimator8. This fact has also been proved by Maasoumi and Phillips (1982) for the IV

estimator in linear models and a particular weighting matrix - the matrix
�
Z0Z
T

��1
:

The identi�cation condition states that there exists �� (W ) 2 � such that Q0 (�� (W )) <

Q0 (�) ;8� 2 �n f�� (W )g ; where Q0 (�) = E [g (yt; �)]0WE [g (yt; �)] : That is, the GMM estim-

ator b�T is consistent for the pseudo-true value
�� (W ) = argmin

�
E [g (yt; �)]

0WE [g (yt; �)] ; (37)

where bQ (�) = 1

T
JT (�) = bgT (�)0WTbgT (�) p! E [g (yt; �)]

0WE [g (yt; �)] = Q0 (�) (38)

uniformly in �; if WT
p!W:

Hall and Inuoe (2003) consider four cases, each with its own speci�c limiting distribu-

tion. Whenever WT = W for all T or
p
T (WT �W ) is asymptotically normal,

p
T
�b�T � ���

converges in distribution to a normal process with zero expectation and a variance that de-

pends on several quantities and distinct from the correctly speci�ed model. The �rst case

includes the FS estimation, WT = Im; and the second case includes another FS estimator,

WT =
�
1
T

PT
t=1 ztz

0
t

��1 p! E (ztz
0
t) = W; and a second step estimator based on the assumption

that fzt (yt � x0t��)� ��g is a martingale di¤erence sequence,

WT =

 
1

T

TX
t=1

h
zt

�
yt � x0tb�T (1)�� b��1i hzt �yt � x0tb�T (1)�� b��1i0

!�1
(39)

where b�T (1) denotes the GMM estimator on the �rst-step such that p limb�T (1) = �� (1) andb�T (1) � �� (1) = Op
�
T�1=2

�
and b��1 = bgT �b�T (1)� : In the third case, WT is the inverse of a

centred HAC estimator, WT = bST �b�T (1)��1 ; where
bST �b�T (1)� = T�1X

i=�T+1
! (i=bT ) e�i; (40)

with

e�i =
8<:

1
T

PT
t=i+1

h
zt

�
yt � x0tb�T (1)�� b��1i hzt�i �yt�i � x0t�ib�T (1)�� b��1i0 ; if i � 0

1
T

PT
t=�i+1

h
zt+i

�
yt+i � x0t+ib�T (1)�� b��1i hzt �yt � x0tb�T (1)�� b��1i0 ; if i < 0 (41)

Let �� (2) = ��
�
S�1�

�
: If the bandwidth does not increase too quickly,

q
T
bT

�b�T (2)� �� (2)�
converges in distribution to a normal process with zero or non-zero expectation and a certain

8The iterated GMM changes its distribution at each iteration! Also, inference on the pseudo-true values is

troubling. Finally, we no longer have �rst-order equivalence.
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variance; Otherwise, bkT
�b�T � ��� p!constant (degenerates), where k > 0 is the characteristic

exponent of the kernel. Finally, the case where WT is the inverse of a uncentred HAC estimator:

bT

�b�T � ��� converges in probability to a constant, in most of the cases.
Contrary to the GMM procedure, the limiting properties of the GEL class of estimators un-

der misspeci�cation has not been fully derived yet. Recently, Schennach (2007) provides some

results for the EL and the ET estimators under some speci�c conditions. She proves that the

EL estimator may cease to be
p
T -consistent in the i:i:d: setting under model misspeci�cation

and unbounded moment conditions (relevant for the linear IV estimator) even when their ex-

pectations are bounded. The objective function Q0 (�) is a KLIC discrepancy measure for which

the EL pseudo-value �� does not exist because log
�
1 + �0g (yt; �)

�
is ill-de�ned for unbounded g:

Without a non-zero ��; one cannot de�ne a EL pseudo-true �� which satis�es the model moment

conditions. The existence and de�nition of a EL pseudo-true value for which the EL estimator

converges is still to be discussed. For bounded conditions and misspeci�cation,
p
T -consistent

of the EL estimator is possible.

In contrast, the ET estimator avoids this problem because, even with unbounded moments,

its objective does not restrict the values for ��: Therefore, the ET is more robust than EL un-

der misspeci�cation since their pseudo-true values are well-de�ned9. In her paper, Schennach

proposes a hybrid estimator, the so-called ETEL (Exponentially Tilted Empirical Likelihood),

that combines the EL and the ET estimators to exhibit the advantages of both. Under misspe-

ci�cation, she shows that the ETEL avoids EL�s pitfalls maintaining root
p
T convergence with

pseudo-true values (��; ��) that are generically well de�ned.

3.3 Moments and Model Selection Criteria

Due to the well-known bias/variance trade-o¤ in any estimation method, in this section we

present the main existing results on how to choose among a �nite number of instruments/moment

conditions in the GMM and GEL setup. Donald and Newey (2001) discuss on how to choose

among a list of instruments in a system of linear simultaneous equations using the 2SLS and

LIML instrumental variables estimators. In this setup, one chooses the (optimal) instruments,

with the corresponding estimator, such that the estimated mean square error is minimized.

In the GMM and GEL literature, the choice of moments is achieved according to some general

9Schennach (2007) refers to a 2000 paper by Yuichi Kitamura to justify the existence of a �nite asymptotic

variance at the
p
T -rate limiting distribution of the ET under misspeci�cation.
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information criteria instead10. The procedures described below assume that the selected moment

conditions (the correct model itself) is not misspeci�ed. On the other hand, the papers by Hall

and Inoue (2003) and Schennach (2007) on misspeci�ed models do not treat the issue of model

selection.

Based upon the evidence that the rejection of the J-statistic is an indicator that some

moment conditions are invalid, Andrews (1999) conceived a GMM procedure for consistently

selecting the correct moment conditions. Following his notation, let m denote the total number

of available moment conditions and let the GMM moment selection criteria for a given model

be de�ned as

MSCT (c) = JT (c)� �T (jcj � p) ; (42)

where c 2 <m is a moment selection vector that represents a list of "selected" moment conditions

(subset of g); jcj denotes the cardinality (number) of the "selected" moments c (jcj � m); JT (c) is

the J-statistic computed using the "selected" moments c; jcj�p is the number of overidentifying

restrictions and �T = o (T ) is a sequence that de�nes the selection criterion: �T = 2 for the

AIC; �T = log T for the BIC; and �T = Q log log T for some Q > 2 for the HQ-type criterion.

De�ning the unit-simplex set

C =
�
c 2 <mn f0g : cj = 0 or 1;81 � j � m; where c = (c1; :::; cm)0

	
; (43)

c is a vector of zeros (excluded conditions) and ones (included conditions) and jcj =
Pm
j cj for

c 2 C: Accordingly, for a GMM estimator based on the moment conditions c;b�T (c) ;
JT (c) = T inf

�2�
bgTc (�)0WT (c) bgTc (�) = TbgTc �b�T (c)�0WT (c) bgTc �b�T (c)� ; (44)

where WT (c) is the jcj � jcj weight matrix employed with the moment conditions bgTc (�) :
The moment selection criteria estimator is de�ned as

bcmsc = argmin
c2C
MSCT (c) = argmin

c2C
(JT (c)� �T (jcj � p)) ; (45)

where C � C; with f0g 2 C; is some parameter space for the moment selection vector. The

estimator bcmsc picks the moment conditions c over C such that the increase in JT (c) that
typically occurs when moment conditions are added (even if correct) is o¤set by the "bonus

term" �T (jcj � p) that rewards selection vectors that utilize more moment conditions. Under
10Quite often, empirical information criteria are used when proved to be consistent in choosing the correct

model and or when shown to equal the (unknown) MSE up to a constant.
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some technical conditions, Andrews (1999) shows that bc is a consistent11 estimator of c0; assumed
to be the single "correct" selection vector. If, additionally, one assumes that E (gc0 (�)) = 0 has

a unique solution �0 2 � (the "true" value of �; set at c0); then bc consistently estimates both c0
and �0:

At Andrews (1999), the selection of corrects moments is conditional on correct modeling.

Andrews and Lu (2001) extend Andrews�paper to the case of jointly picking the moments and

the parameter (model) vector, that is, imposing zero restrictions on the parameters. Now, let

(b; c) denote a pair of model and moment selection vectors and jbj and jcj denote the number of

parameter from the vector � (not necessarily all of them) and moments, respectively, selected

by (b; c) : The MMSC selects the pair (b; c) that minimizes JT (b; c)� �T (jcj � jbj) ; where

JT (b; c) = T inf
�[b]2�[b]

bgTc ��[b]�0WT (b; c) bgTc ��[b]� = TbgTc �b�T (b; c)�0WT (b; c) bgTc �b�T (b; c)� :
(46)

Here, b�T (b; c) 2 �[b] � � is the GMM estimator based on the model and moments selection

(b; c) : It can be shown that the pair
�bbmmsc;bcmmsc� is a consistent estimator. Hong, Preston

and Shum (2003) extend these two previous papers to the GEL framework: At the de�nition of

MMSC, replace JT (b; c) by

GELT (b; c) = 2Tmin
�[b]
sup
�c

1

T

T�KTX
t=KT+1

�
�
�0cgtT c(�[b])

�
; (47)

where gtT c
�
�[b]
�
= 1

2KT+1

PKT
k=�KT

gc
�
yt�k; �[b]

�
:

4 Model Averaging Instruments

So far, the literature on moment conditions models has essentially focused on estimation meth-

ods for a given model and on optimally selecting a model among a list of candidate alternatives.

In this section, we build upon the principle that gains can be obtained once we consider all the

available moment conditions in hand and average them out to obtain an alternative estimator.

Although the setup could be de�ned for general g functions, we take the special case of linear IV

moment conditions because averaging instruments makes the study more interesting and appeal-

ing. After de�ning some key concepts and optimality criteria we present instrument averaging

under correct and misspeci�ed models which, in this case, imply valid and invalid instruments.

11The GMM-AIC is not consistent and it has positive probability (even asymptotically) of selecting too few

moments.
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If one is not willing to do instrument averaging without dropping invalid instruments, then

previous to the analysis of model averaging under correct speci�cation one can do instruments

selection as proposed by Andrews (1999), Andrews and Lu (2001) and Hong, Preston and Shum

(2003).

4.1 De�nitions

For am-dimensional vector zt; t = 1; :::; T of available (valid or invalid) instruments, withm � p;

de�ne a p�m matrix �z � � of p linear combinations of the instruments such that zet = �zt is

p-dimensional. De�ne the set of all possible instrument averages (up to a constant)

Zt = fzet : zet = �zt; for some p�m matrix � such that � 6= 0 and �11 = 1g : (48)

For a well-de�ned criteria, the goal is to �nd an optimal weight b� that give rise to a selected vectorbzet 2 Zt in a way that the estimation of an overidenti�ed system is reduced to one that is exactly
identi�ed. We build optimal instruments instead of selecting instruments (as in Andrews, 1999

and Donald and Newey, 2001, among others). In our optimality criteria, the resulting estimator

ought to be consistent and, whenever possible, attain the Chamberlain e¢ ciency bound relative

to the set zt: When averaging instruments we do not consider the standard information criteria

since all the instruments are assumed to be used: c = �m (vector of ones) and jcj = m:

4.2 Correct Speci�cation

The identi�cation condition under a correctly speci�ed model does not change with a linear

transformation of the instruments. In fact, if �0 is unique in model (12) then the same parameter

of interest solves

E
�
zet
�
yt � x0t�0

��
= �E

�
zt
�
yt � x0t�0

��
= 0; (49)

for any given �: Moreover,

G (�) � G� = E
�
zetx

0
t

�
= �E

�
ztx

0
t

�
= �G (50)

and

S (�) � S� = lim
T!1

V ar

"
T�1=2

TX
t=1

zet
�
yt � x0t�0

�#
= �S�0; (51)

both p� p matrices. The IV estimator for this exactly identi�ed model (the weight matrix WT

does not play any role) is known to equal

b��;T = �Ze0X��1 Ze0y = ��Z 0X��1 �Z 0y =  � TX
t=1

ztx
0
t

!�1 
�

TX
t=1

ztyt

!
(52)
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with an asymptotic variance given by

V� = G
�1
� S�G

0�1
� = (�G)�1 �S�0

�
G0�0

��1
: (53)

To �nd the optimal matrix �; we need the estimator b��;T to have an asymptotic variance
that equal the Chamberlain e¢ ciency bound relative to the set zt;

�
E
�
xtz

0
t

�
S�1E

�
ztx

0
t

���1
=�

G0S�1G
��1

: The result is presented in the following Theorem.

Theorem 1 (MA instruments in correctly speci�ed models): Assume that model (12) is cor-

rectly speci�ed. The e¢ cient general IV estimator (29) coincides to the IV estimator with MA

instruments b�T = � bZ 0X��1 bZ 0y =  TX
t=1

bztx0t
!�1 TX

t=1

bztyt! ; (54)

where the optimal instruments are given by bzt = b�ozt with weights
b�o =  1

T

TX
t=1

xtz
0
t

! bS�1T (55)

which attains the e¢ ciency bound
�
E
�
xtz

0
t

�
S�1E

�
ztx

0
t

���1
:

Proof: It is straightforward to show that

(�G)�1 �S�0
�
G0�0

��1
=
�
G0S�1G

��1
(56)

is solved for �o = E
�
xtz

0
t

�
S�1 = G0S�1; up to a constant. See also Anatoliev (2005) for more

details. QED.

The J-statistic with MA instruments is the same as the original one:

JT (�
o) = T inf

�2�

 
1

T

TX
t=1

�ozt
�
yt � x0t�

�!0
S�1 (�o)

 
1

T

TX
t=1

�ozt
�
yt � x0t�

�!
(57)

= T inf
�2�

 
1

T

TX
t=1

zt
�
yt � x0t�

�!0
S�1

 
1

T

TX
t=1

zt
�
yt � x0t�

�!
= JT

because

�o0
�
�oS�o0

��1
�o = S�1G

�
G0S�1SS�1G

��1
G0S�1 = S�1G

�
G0S�1G

��1
G0S�1 (58)

equals S�1 when we post(pre)-multiply both sides by G0 (G).

The matrix �o is not necessarily an "averaging" matrix. So that �o is some sort of (instru-

ment) weighting matrix it would have to be true that �oij � 0 and
P
j �

o
ij = 1 for all i = 1; :::; p

combinations. That is not usually the case for �o = E
�
xtz

0
t

�
S�1; which depends on E

�
xtz

0
t

�
and S�1: Recall that the GEL and the GMM estimators are �rst-order equivalent. For these

reasons, we do not discuss here the GEL procedure.
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4.3 Misspeci�cation

Building MA instruments under the assumption that not all of them are valid but none to

be discarded is more challenging than under correct model speci�cation. The task remains the

same: Reduce them-dimensional misspeci�ed model to a p-dimensional model according to some

optimally criteria. Regardless of the estimation method, by averaging the instruments we no

longer have a misspeci�ed model because when m = p there must exist some value of � such

that E[g(yt; �)] = 0: That is, the original model is misspeci�ed

E[zt
�
yt � x0t�

�
] = � (�) ; (59)

where � : � ! <m such that k� (�)k > 0 for all � 2 � but the average model is correctly

speci�ed

E
�
zet
�
yt � x0t�0�

��
= �E

�
zt
�
yt � x0t�0�

��
= 0; (60)

for any given �: Consequently, for any given �; there must exist some � (call it, �0 (�) � �0�)

such that12

�� (�0�) � �� (�0�) = 0p�1; k� (�0�)k > 0 for �0� 2 �: (61)

Consider the GMM estimation procedure. Contrary to the well-speci�ed model case, it is

not guaranteed that the pseudo-true value

�� (W ) = argmin
�
E
�
zt
�
yt � x0t�

��0
WE

�
zt
�
yt � x0t�

��
; (62)

for the larger misspeci�ed model, coincide with the true value

�0 (�) = argmin
�
E
�
zet
�
yt � x0t�

��0
E
�
zet
�
yt � x0t�

��
= E

�
�ztx

0
t

��1
E (�ztyt) ; (63)

for the just-identi�ed averaged model. For a given �;

E
�
zet
�
yt � x0t�0�

��0
E
�
zet
�
yt � x0t�0�

��
= 0; (64)

whereas, for a given W;

E
�
zt
�
yt � x0t��W

��0
WE

�
zt
�
yt � x0t��W

��
= � (��W )

0W� (��W ) > 0; (65)

becauseW is assumed to be positive de�nite and k� (��W )k > 0: The assumption of rank (W ) =

m is important because it rules out the case where both true values coincide forW = �0�; which
12We maintain the assumption of identi�cation in any misspeci�ed or correctly speci�ed model. Moreover, we

assume that the m� p free variables of the homogeneous system �� (�0�) = 0p�1 are not zero (the m� 1 solution

� (�0�) have no zero component at �0�) so that the condition k� (�)k > 0 for all � 2 � is not violated.
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is of reduced rank, rank (�0�) = p < m: Despite di¤erent values at the objective function, both

true values coincide for the following mapping between � and W :

Theorem 2 (True-values in correctly and misspeci�ed models): For

� = E
�
xtz

0
t

�
W; (66)

the true value �0 (�) and the pseudo-true value �� (W ) coincide.

Proof: Solving the FOC E (xtz0t)WE [zt (yt � x0t�)] = 0 with respect to �; we have

�� (W ) =
�
E
�
xtz

0
t

�
WE

�
ztx

0
t

���1
E
�
xtz

0
t

�
WE (ztyt) ; (67)

which equals �0 (�) = E (�ztx0t)
�1 �E (ztyt) when � = E (xtz0t)W noting that E (E (xtz0t)Wztx

0
t) =

E (xtz
0
t)WE (ztx

0
t) : QED.

So that the two GMM estimators (overidenti�ed and misspeci�ed model and the just-

identi�ed and correctly speci�ed model) converge in probability to the same value, � = E (xtz0t)W:

Hence, in this case, for a given W; we have

E
�
xtz

0
t

�
W� (��W ) = 0p�1 where ��W = (67) with k� (��W )k > 0: (68)

For the e¢ cient case we saw previously that W = S�1� implying �o = E (xtz0t)S
�1
� : Naturally,

for bzt = b�zt; where
b� =  1

T

TX
t=1

xtz
0
t

!
WT ; (69)

the two GMM estimators coincide (see (29) and (54) with bzt de�ned in the previous line). For
WT = bST �b�T (1)��1 ; de�ned by (40), this is a two-step estimator and it attains the e¢ ciency
bound

�
E
�
xtz

0
t

�
S�1� E

�
ztx

0
t

���1
:

According to Hall and Inoue (2003), the distribution and its rate of convergence depends

on W (limiting distribution of the elements of WT including its rate of convergence). We �rst

consider the cases where the general IV estimator is
p
T -consistent. In case (i), WT =W for all

T and
p
T
�b�T � ��� d! N(0;�1); where

�1 =
�
E
�
xtz

0
t

�
WE

�
ztx

0
t

���1
0BBB@

E (xtz
0
t)W
11WE (ztx

0
t)+

E (xtz
0
t)W
12 +
21WE (ztx

0
t)

+
22

1CCCA�E �xtz0t�WE �ztx0t���1
(70)

and 
ij are the asymptotic variances-covariances of the processes T�1=2
PT
t=1 (zt (yt � x0t��)� ��)

and
p
T
�
1
T

PT
t=1 ztx

0
t � E (ztx0t)

�0
W�� (in terms of notation, 
11 � S�): To have the same
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asymptotic e¢ ciency as the estimator without misspeci�cation,

VW = (�G)�1 �S�0
�
G0�0

��1
=

�
E
�
xtz

0
t

�
WE

�
ztx

0
t

���1
E
�
xtz

0
t

�
WSWE

�
ztx

0
t

� �
E
�
xtz

0
t

�
WE

�
ztx

0
t

���1
; (71)

it must hold

E
�
xtz

0
t

�
WSWE

�
ztx

0
t

�
+E

�
xtz

0
t

�
W
12+
21WE

�
ztx

0
t

�
+
22 = E

�
xtz

0
t

�
WSWE

�
ztx

0
t

�
; (72)

that is,

D1 � E
�
xtz

0
t

�
W
12 +
21WE

�
ztx

0
t

�
+
22 = 0; (73)

a condition that is hardly met. The e¢ ciency "di¤erence" D1 will let us conclude how mis-

speci�cation contaminates the e¢ ciency of the GMM estimator. If D1 is positive de�nite then

e¢ ciency drops; otherwise, ifD1 is negative de�nite misspeci�cation leads to e¢ ciency gains. For

a givenW; if E (xtz0t)W
12 is PD, then so it is D1 because 
22 is PD. In case (ii),
p
T (WT �W )

converges to a normal distribution. Then,
p
T
�b�T � ��� d! N(0;�2); where �2 is similar to

�1 but includes extra terms (asymptotic variances-covariances of
p
T (WT �W )�� and the two

processes in case (i)) in the inside brackets. In this case, the e¢ ciency "di¤erence" is

D2 � D1 + E
�
xtz

0
t

�

33E

�
ztx

0
t

�
+ E

�
xtz

0
t

�
W
13E

�
ztx

0
t

�
+E

�
xtz

0
t

�

31WE

�
ztx

0
t

�
+
23E

�
ztx

0
t

�
+ E

�
xtz

0
t

�

32: (74)

With respect to the last two cases, the rate of convergence of the general IV estimator is

smaller than
p
T or it is even degenerated. In case (iii), where WT is the inverse of a centred

HAC estimator, the limiting law depends on the rate of increase of the bandwidth bT ; converging

to a normal (can even have a nonzero mean) or being degenerated. In case (iv), where WT is

the inverse of a uncentred HAC estimator, bT
�b�T � ��� converges in probability to a constant

in most of the cases. For more details, see Section 2.3 of this paper or Hall and Inuoe (2003).

Now, let � 6= E (xtz0t)W for all possibleW; up to a constant. In this case, the two estimators

do not coincide nor converge in probability to the same value, which makes any comparison

unreasonable and purely mathematical. The general IV estimator (29) converges in probability

to (67) and has the above distribution, which depends on W; whereas the IV estimator for the

just-identi�ed model with (restricted) MA instruments has the following properties.

De�nition 3 (IV estimator with restricted MA instruments): For a given p�m weight matrix

� such that � 6= E (xtz
0
t)W for all possible W; up to a constant, where W = p limWT of the

21



overidenti�ed and misspeci�ed model, de�ne the IV estimator with MA instruments as

b�T� = �Ze0X��1 Ze0y =  TX
t=1

�ztx
0
t

!�1 TX
t=1

�ztyt

!
; (75)

where zet = �zt and
p
T
�b�T� � �0�� d! N (0; V�) ; (76)

where �0� = (63) and

V� = G
�1
� S�G

0�1
� =

�
�E
�
ztx

0
t

���1
�S�0

�
E
�
xtz

0
t

�
�0
��1 6= VW : (77)

Very often, b�T� is unfeasible (not arbitrarily given nor observable) and a consistent estimator
for � is required. Ruling out the e¢ cient case where b� = � 1T PT

t=1 xtz
0
t

� bST �b�T (1)��1 ; or any
other b� such that p lim b� = � = E (xtz0t)W; the asymptotic distribution is derived through

p
T
�b�Tb� � �0�� = �

24 1
T

TX
t=1

b�ztx0t
!035�1pT  1

T

TX
t=1

b�zt �yt � x0t�0��
!
; (78)

under the assumption that a CLT can be invoked for the process f�zt (yt � x0t�0�)g for some

� = p lim b�:
The theory behind GEL estimators using averaged instruments is not pursued due to the lack

of established results under misspeci�ed results. As explained in the third chapter, Schennach

(2007) proves that the EL estimator may cease to be
p
T -consistent but a pseudo-true value

for which the EL estimator converges is not well-de�ned besides its limit distribution being

unknown. With respect to the ET we only know that it is
p
T -consistent. This is a topic that

deserve further developments as, contrary to the GMM case, the GEL pseudo-true value does

not necessarily depend on a matrix such as W:

5 Model Averaging Estimators

In model averaging instruments we are not averaging estimators but only instruments. In that

approach, we estimate the model once after obtaining an optimal set of instruments. The

quantity of interest is this best linear combination of instruments. In this section, we present

a methodology where we average a list of candidate estimators to obtain a truly averaged one.

The optimal weights associated with each estimator are to be chosen according to some criteria.

By the fact that the criteria need not be unique, it is important to notice that more than one

weighted estimator can be de�ned. In moment conditions models, averaged estimators can be
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discussed for general g functions, which have the linear IV as a special case. Next, we de�ne a

model averaging estimator and then we de�ne the criteria to �nd the weights and discuss the

statistical properties of the averaged estimator under correct and misspeci�ed models.

5.1 De�nitions

Following some previous notation, let m denote the full set of available moment conditions and

c 2 <m a moment selection vector that belongs to the unit-simplex

C =
�
c 2 <mn f0g : cj = 0 or 1;81 � j � m; where c = (c1; :::; cm)0

	
: (79)

Quantities such as bgTc (�) ;WTc and b�Tc are obtained after deleting the moments corresponding
to cj = 0: For example, bgTc (�) is a jcj � 1 vector.

Let ! =
�
!1; :::; !jCj

�0 be a weight vector in the unit-simplex in <jCj; where
jCj = 2m �

p�1X
j=0

0@ m

j

1A =

mX
j=p

0@ m

j

1A ; (80)

with the binomial coe¢ cients

0@ m

j

1A = m!
j!(m�j)! which reads m choose j13; is the number of

di¤erent elements at C :

Hm =

(
! 2 [0; 1]jCj :

X
c2C

!c = 1

)
: (81)

A model average estimator of the unknown p� 1 vector � is

b�T (!) =X
c2C

!cb�Tc: (82)

Clearly, no model average occurs when !c� = 1 for some c� and !c0 = 0 for c0 6= c� in whichb�T (!) = b�Tc� :
For an arbitrarily given ! we have an estimator b�T (!) : But ! is assumed to be unknown

and, therefore, needs to be estimated according to some criterion. In this paper, we suggest

two alternative data-based criteria to optimally �nd estimated weights b! with corresponding
averaged estimate b�T (b!) =X

c2C
b!cb�Tc: (83)

13To the total of combinations 2m we need to exclude
Pp�1

j=0

0@ m

j

1A ; those for which m < p:
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The �rst criteria is based on the asymptotic distribution of b�T (!) ; which depends on !:
Whenever b�T (!) is pT -consistent, ! can be chosen such that it minimizes the asymptotic vari-
ance (and the MSE as well). In this scenario, we need to distinguish the cases of correct model

speci�cation and of model misspeci�cation. This is dealt bellow in the text. The analysis of the

distributional properties of b�T (!) is also useful for the understanding of the asymptotic distribu-
tion of the model averaging estimators that arise from any other criterion. The minimization of

a weighted asymptotic variance-covariance matrix can be related to one of the moment selection

criteria suggested by Hall et al (2007). Contrary to Andrews (1999), they suggest selecting a

model according to the relevant moment selection criterion

RMSCT (c) = ln
����bVc����+ �T (jcj � p) =T; (84)

where the e¢ cient GMM variance-covariance matrix bVc is evaluated at b�Tc: This note can also
be relevant to what follows next.

In the other criterion, the selection of the weight vector ! is based on the existing moment

selection criteria, namely, the MSCT (c) (see (42)) and the GELT (c) (see (47)), evaluated at

the estimator b�T (!) : The empirical MSC selected weight vector is de�ned as
b! = arg min

!2Hm
MSCTc (!) = arg min

!2Hm
(JTc (!)� �T (jcj � p)) ; (85)

where, for a chosen set of moment conditions c and a given WTc (usually, WTc = bS�1Tc );
JTc (!) = TbgTc �b�T (!)�0WTcbgTc �b�T (!)� : (86)

To achieve maximum e¢ ciency, one can pick c = �m; a vector of ones that implies using the

whole set of moment conditions (in this case, jcj = m and, in terms of notation, "c" is dropped):

JT (!) = TbgT �b�T (!)�0WTbgT �b�T (!)� : (87)

For the linear IV case,

JTc (!) = T

 
1

T

TX
t=1

zc;t

 
yt � x0t

X
c2C

!cb�Tc!!
0

WTc

 
1

T

TX
t=1

zc;t

 
yt � x0t

X
c2C

!cb�Tc!! : (88)

The corresponding GEL selected weight vector (with c = �m and KT = 0; for sake of simplicity

of exposition) is b! = arg min
!2Hm

(GELT (!)� �T (m� p)) ; (89)

where

GELT (!) = 2T sup
�(!)

1

T

TX
t=1

�
�
� (!)0 bgT �b�T (!)�� : (90)
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One may think of an alternative averaged MSC criterion. In this case, the empirical selected

weight vector is de�ned as

b! = arg min
!2Hm

AMSCT (!) = arg min
!2Hm

X
c2C

!cMSCTc; (91)

where MSCTc = JTc � �T (jcj � p) and

JTc = TbgTc �b�Tc�0WTcbgTc �b�Tc� : (92)

Note that, in general,

JT (!) = TbgT �b�T (!)�0WTbgT �b�T (!)� 6=X
c2C

!cTbgc;T �b�Tc�0WcTbgc;T �b�Tc� =X
c2C

!cJTc:

(93)

The GEL counterpart is

b! = arg min
!2Hm

AGELT (!) = arg min
!2Hm

X
c2C

!c (GELTc � �T (jcj � p)) ; (94)

where (for KT = 0)

GELTc = 2Tmin
�2�

sup
�c

1

T

TX
t=1

�
�
�0cgTc(�)

�
: (95)

Nonetheless, this criteria is not interesting in practice because, obviously, the optimal weights

are given by !bc = 1 and !bc = 0; otherwise. This is because the AMSC criteria is linear in !

and, therefore, no weight is given other than to the selected (smallest) MSC model. Hence, the

MA GMM estimator coincides with the estimator for the selected model by means of the MSC.

TheMSCT (!) criteria is a (normalized) weighted squared loss for correctly speci�ed models,

up to the constant �T (m� p) : The loss function is LT (!) = 1
T JT (!) (see (87)) that can be

decomposed as �bgT �b�T (!)�� 0�0WT

�bgT �b�T (!)�� 0� (96)

where the vector bgT �b�T (!)� is an estimator of E [gt (�0)] = 0 and for which the distance is

weighted by WT : The risk function is

RT (!) = E (LT (!)) = E

�bgT �b�T (!)�0WT

�bgT �b�T (!)��� : (97)

Therefore, for a �xed ! and WT ; the quantity 1
TMSCT (!) is an unbiased estimator of the risk

function up to a o (1) constant, that is,

E

�
1

T
MSCT (!)

�
= E

�
1

T
JT (!)

�
+
1

T
�T (m� p) = RT (!) + o (1) : (98)
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For misspeci�ed models, the relationship between 1
TMSCT (!) and RT (!) is hard to establish

14.

With respect to the AMSCT (!) criteria, it is also the J�statistic that dominates asymp-

totically:

1

T
AMSCT (!) =

X
c2C

!c
1

T
JTc �

1

T
�T
X
c2C

!c (jcj � p) =
X
c2C

!c
1

T
JTc + o (1) ; (99)

where 1
T JTc = bgTc �b�Tc�0WTcbgTc �b�Tc� : As long as WTc

p!Wc;

1

T
JTc (�) = bgTc (�)0WTcbgTc (�) p! E [gc (yt; �)]

0WcE [gc (yt; �)] ; (100)

as T !1; a result that holds for correct or misspeci�ed models. Hence, 1TAMSCT (!) converges

in probability to a linear combination of the p lim
�
1
T JTc

�b�Tc��0 s and where each weight is
given by !c: Once again, deriving p lim

�
1
T JTc

�b�Tc�� ; c 2 C; in misspeci�ed models is not

straightforward. On the other hand, in correctly speci�ed models, if p lim
�
1
T JTc

�b�Tc�� = 0 for
all c 2 C then ! cannot be identi�ed asymptotically because, in this case,

P
c2C !c

1
T JTc ! 0

for all !:

Any of the solutions b! are found by numerical algorithms. The solution solves a constraint
optimization problem in which the constraints are nonnegativity (!c 2 [0; 1] ; for all c) and a

summation that equals one (
P
c2C !c = 1). The solution b! can put zero weights on some of the

candidate models, specially for large jCj (large m): The (asymptotic) distribution of b! is beyond
the scope of this paper. This is not an easy exercise (we do not even know for the case of least

squares MA estimators - see Hansen, 2007, for details) despite its relevance for inference such

as a null of !c = 0; c 2 C:

Still, some open questions deserve special attention. First, does the choice of c at the

criteria MSCTc (!) condition the solution b!? Our guess is that b! is not neutral to c when
using MSCTc (!) : It might be reasonable to admit that MSCTc (!) draws a solution b! whereb!c = 1 :Pc2C b!cb�Tc = b�Tc and JTc (b!) = JTc: Second, and maybe the most interesting question,
will models with invalid instruments (misspeci�ed moment conditions) get zero weight? If so, the

criteria suggested in this paper using MA estimators can be interpreted as equivalent procedures

to those of Andrews (1999), Andrews and Lu (2001), Hong, Preston and Shum (2003).

14Basically, the MA estimator b�T (!) converges to a linear combination of pseudo-true values, each depending
on W; and E

h
gt
�
p limb�T (!)�i = � 6= 0 by de�nition.
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5.2 Correct Speci�cation

For a given !; the limit statistical properties of b�T (!) =Pc2C !c
b�Tc follow a linear combination

of the random processes b�Tc; c 2 C: Under correct model speci�cation, the p limb�Tc = �0 for

all c 2 C and b�Tc is pT -gaussian (this is true for both GMM and GEL) and the asymptotic

variance of the GMM b�Tc is
Vc =

�
G
0
cWcGc

��1 �
G
0
cWcScWcGc

��
G
0
cWcGc

��1
: (101)

Recall thatGc = E (zc;tx0t) ; for the linear IV case. The asymptotic variance of the GEL estimator

and the e¢ cient GMM
�
Wc = S

�1
c

�
is given by

Vc =
�
G
0
cS
�1
c Gc

��1
: (102)

Hence, for a �xed !;b�T (!) is also consistent and also pT -normal.
Theorem 3 (Distribution of MA estimator under correct speci�cation): Assume that the model

is correctly speci�ed. As T !1; for any ! 2 Hm;

b�T (!) p! �0; (103)

where b�Tc; c 2 C; is the GMM or the GEL estimator. Moreover, for the GMM estimator,

p
T
�b�T (!)� �0� d! � =

X
c2C

!c�c; (104)

where the k� 1 random variable �c � N (0; Vc) ; with Vc = (101) : For the e¢ cient GMM or the

GEL estimator,

Vc =
�
G
0
cS
�1
c Gc

��1
: (105)

The limit process � is gaussian with zero expectation.

Proof: Consistency follows from

b�T (!) =X
c2C

!cb�Tc p!
X
c2C

!c�0 = �0: (106)

The asymptotic distribution follows from the limiting law for
p
T
�b�Tc � �0� noting thatpT �b�T (!)� �0�

equals
p
T

 X
c2C

!cb�Tc �X
c2C

!c�0

!
=
X
c2C

!c
p
T
�b�Tc � �0� (107)

because
P
c2C !c = 1: Alternatively, the result can be shown by taking the FOC for a given

c 2 C; bGTc �b�Tc�0WTcbgTc �b�Tc� = 0; (108)
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and expand bgTc �b�Tc� around bgTc (�0) using the Mean Value Theorem:
bGTc �b�Tc�0WTcbgTc (�0) + bGTc �b�Tc�0WTc

bGTc ��Tc� �b�Tc � �0� = 0; (109)

where �Tc is some value "between" b�Tc and �0: Rearranging terms,
p
T
�b�Tc � �0� = � � bGTc �b�Tc�0WTc

bGTc ��Tc���1 bGTc �b�Tc�0WTc

p
TbgTc (�0) ; (110)

where, for the linear IV case,

bGTc �b�Tc� = bGTc ��Tc� = � 1
T

TX
t=1

ztx
0
t: (111)

Finally, � is gaussian because it is a linear combination of normal variables and it has zero

expectation because E (�c) = 0; c 2 C: QED.

In general, the variance of � does not equal the (squared) weighted sum of variances Vc; that

is,

V (�) = V

 X
c2C

!c�c

!
6=
X
c2C

!2cV (�c) : (112)

This is because there are pairs c1; c2 2 C; c1 6= c2; such that �c1 and �c2 are not independent,

in particular when c1 and c2 have common moment conditions. It is also not unusual to have

distinct moment conditions with positive correlation.

In terms of the smallest V (�) it is not clear that it is attained for !�c� = 1; where c
� = �m;

and !�c0 = 0; for all c
0 6= c� (the MA estimator coincides with the estimator obtained using the

whole set of moment conditions). For sake of simplicity, consider the e¢ cient case (102). We

conjecture that it is not always true that, for all p-dimensional vector � 6= 0;

�0V (��) � � �0V (�) �; (113)

where

V (��) = V
�
��m
�
= E

�
��m�

0
�m

�
=
�
G
0
S�1G

��1
(114)

and

V (�) = E

  X
c2C

!c�c

! X
c2C

!c�c

!0!

=
X
c2C

!2c

�
G
0
cS
�1
c Gc

��1
+

X
c1;c22C
c1 6=c2

!c1!c2E
�
�c1�

0
c2

�
: (115)
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In practice, �nding the argument b! that minimizes the asymptotic variance of pT �b�T (!)� �0�
can be achieved by means of the minimization of the trace of V (�) :

tr (V (�)) =
X
c2C

!2c :tr

��
G
0
cS
�1
c Gc

��1�
+

X
c1;c22C
c1 6=c2

!c1!c2tr
�
E
�
�c1�

0
c2

��
: (116)

Replacing V (�c) =
�
G
0
cS
�1
c Gc

��1
by a consistent estimator, larger weights given to mod-

els c with more moment conditions (for e¢ ciency matters15) can be o¤set by the covariances

E
�
�c1�

0
c2

�
: Also, the optimal weight vector b! in terms of asymptotic variance is not necessarily

the same as the best weight in small samples.

In summary, despite knowing the asymptotic law of the MA estimator, uniformly in !; the

variance criterion to choose the optimal vector b! is not that handy in practice. Fortunately, there
are alternative criteria based on the existing moment selection criteria MSCT (c) and GELT (c)

although b! needs to be found by numerical algorithms and whose (asymptotic) properties are
yet to be known.

5.3 Misspeci�cation

In this section, we assume model misspeci�cation in the sense that, for c� = �m;

E[gc�(yt; �)] = �c� (�) ; (117)

where �c� : � ! <m such that k�c� (�)k > 0 for all � 2 �; although there might exist some

other ec 6= c� such that
E[gec(yt; �0)] = 0: (118)

Here, we assume that not all the moment conditions are necessarily introducing model misspe-

ci�cation (this is more likely to happen in the case of instruments). Adding conditions may

increase (asymptotic) e¢ ciency but will create model misspeci�cation and bias. In terms of

notation, we may use either g�m or g (similar for �c� among others). We restrict attention to

the MA GMM estimator, following the results by Hall and Inoue (2003). As explained be-

fore, Schennach (2007) does not provide an asymptotic theory for the GEL estimator under

misspeci�cation and the ETEL estimator is beyond the scope of this paper16.

15Recall that adding moment conditions improves asymptotic e¢ ciency.
16Schennach (2007) derives the asymptotic distribution of the ETEL estimator under misspeci�cation. It is

p
T -consistent and gaussian and therefore it would be interesting to study the properties of a MA ETEL estimator

under model misspeci�cation.
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Under model misspeci�cation, the GMM estimator b�Tc is consistent for the pseudo-true value
��c (Wc) = argmin

�
E [gc (yt; �)]

0WcE [gc (yt; �)] ; (119)

where
1

T
JTc (�) = bgTc (�)0WTcbgTc (�) p! E [gc (yt; �)]

0WcE [gc (yt; �)] (120)

ifWTc
p!Wc: The way we assumed model misspeci�cation implies that necessarily ���m � �� is a

pseudo-true value that depends on W�m �W but there may exist a true unknown ��c (Wc) = �0

for some c 6= �m and for all Wc: Consequently, k� (��)k > 0 but �c (��c (Wc)) = �c (�0) = 0; for

some c 6= �m:

Next, we derive the asymptotic properties of the MA GMM estimator b�T (!) =Pc2C !c
b�Tc:

Clearly, for a �xed ! and as T !1;

p limb�T (!) =X
c2C

!c:p limb�Tc =X
c2C

!c��c (Wc) �
X
c2C

!c��c: (121)

Note that the p limb�T (!) is a linear combination of the pseudo-values ��c; each depending on
Wc: This means that the p limb�T (!) depends on the choice for WTc; c 2 C: That is, for each

given model c one can specify di¤erent weight matrices WTc that converge in probability to

distinct matrices Wc; which, consequently, will imply di¤erent probability limits for the MA

estimator b�T (!) :
The rate of convergence at which b�T (!) converge to Pc2C !c��c is in�uenced by the way

WTc converges to Wc; for each given model c 2 C: In some cases, b�T (!) is pT -gaussian but
it might happen that the distribution collapses or diverges in the limit (recall the four cases of

convergence of the GMM estimator under model misspeci�cation.) Due to the equality

aT

 X
c2C

!cb�Tc �X
c2C

!c��c

!
=
X
c2C

!caT

�b�Tc � ��c� =X
c2C

!c
aT
aTc

aTc

�b�Tc � ��c� ; (122)

where the rate of convergence of the MA GMM estimator is aT ! 1; as T ! 1; the MA

estimator b�T (!) is pT -gaussian whenever WTc is chosen in a way that aT = aTc =
p
T

and
p
T
�b�Tc � ��c� is gaussian for at least one c 2 C and when aTc

�b�Tc � ��c� = Op (1)

and
p
T

aTc
= o (1) for the remaining models c: This covers the case of all models c 2 C having

p
T
�b�Tc � ��c��asymptotic normality. Assuming that aTc �b�Tc � ��c� = Op (1) for some aTc;

for all c; the distribution of the MA GMM estimator collapses or diverges in the limit depending

on the orders of magnitude aT
aTc
; c 2 C:
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To simplify the analysis we consider a "local" speci�cation, in the spirit of White (1982) for

the MLE. Suppose that the pseudo-true value is indexed by the sample size through WcT :

��c;T (WcT ) � ��c;T = argmin
�
E [gc (yt; �)]

0WcTE [gc (yt; �)] : (123)

With WTc
p!Wc; we have something like ��c;T = ��c + op (1) : The "local" characteristic of this

setup is a result of the following assumption.

Assumption 1 (Local model misspeci�cation): Assume that, for all c 2 C; the function

�c : �! <m is such that
p
T�c (��c;T )! 0; as T !1: (124)

The previous assumption17 keeps the key properties of �c of time-invariance and k�c (�)k > 0

for all � 2 �: Now, we add the "local" condition that the sequence ��c;T is such that �c (��c;T ) =

o
�
T�1=2

�
; which means that there exists a sequence ��c;T responsible for a model misspeci�cation

that disappears at a rate that is faster than
p
T : As expected, by imposing "local" misspeci�c-

ation, the MA GMM estimator is now gaussian and
p
T - consistent, as the correctly speci�ed

case, regardless of the rate of convergence of WTc to Wc:

Theorem 4 (Distribution of MA GMM estimator under misspeci�cation): Assume that the

model is misspeci�ed according to Assumption 1. As T !1; for any ! 2 Hm;

b�T (!) p!
X
c2C

!c��c (Wc) ; (125)

where b�Tc; c 2 C; is the GMM estimator and ��c = (119) : Moreover, for the GMM estimator,

p
T

 b�T (!)�X
c2C

!c��c;T

!
d! �� =

X
c2C

!c��c; (126)

where the k � 1 random variable ��c � N (0; V�c) ; with

V�c =
�
G
0
�cWcG�c

��1 �
G
0
�cWcS�cWcG�c

��
G
0
�cWcG�c

��1
: (127)

Here,

��c � �c (��c) = E[gc(yt; ��c)]; (128)

G�c = E

 
@gc (yt; �)

@�0

����
�=��c

!
; and (129)

S�c = lim
T!1

V ar

"
T�1=2

TX
t=1

(gc(yt; ��c)� ��c)
#
: (130)

17Local misspeci�cation is usually de�ned as S�1=2ET [g(yt; �0)] = T�1=2�; where � is a vector of �nite constants.

See Newey (1985) or Hall (2005) for details.
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For Wc = S
�1
�c ; c 2 C;

V�c =
�
G
0
�cS

�1
�c G�c

��1
: (131)

The limit process �� is gaussian with zero expectation.

Proof: Consistency was shown above. To derive the asymptotic distribution we start with

the MVT (see the proof of Theorem 3)

bGTc �b�Tc�0WTcbgTc (��c;T ) + bGTc �b�Tc�0WTc
bGTc ��Tc� �b�Tc � ��c;T� = 0; (132)

where �Tc is some value "between" b�Tc and ��c;T : Rearranging terms,
p
T
�b�Tc � ��c;T� = � � bGTc �b�Tc�0WTc

bGTc ��Tc���1 bGTc �b�Tc�0WTc

p
TbgTc (��c;T ) : (133)

Then, for a �xed !;

p
T

 b�T (!)�X
c2C

!c��c;T

!
(134)

= �
X
c2C

!c

� bGTc �b�Tc�0WTc
bGTc ��Tc���1 bGTc �b�Tc�0WTc

p
TbgTc (��c;T )

= �
X
c2C

!c

� bGTc �b�Tc�0WTc
bGTc ��Tc���1 bGTc �b�Tc�0WTc

p
T (bgTc (��c;T )� �c (��c;T ))

�
X
c2C

!c

� bGTc �b�Tc�0WTc
bGTc ��Tc���1 bGTc �b�Tc�0WTc

p
T�c (��c;T )

= �
X
c2C

!c

� bGTc �b�Tc�0WTc
bGTc ��Tc���1 bGTc �b�Tc�0WTc

p
T (bgTc (��c;T )� �c (��c;T )) + op (1) ;

by Assumption 1, which converges in distribution to
P
c2C !c��c; where ��c � N (0; V�c) ; with

V�c =
�
G
0
�cWcG�c

��1 �
G
0
�cWcS�cWcG�c

��
G
0
�cWcG�c

��1
: (135)

QED.

A few comments are worth mentioning. The Assumption 1 is important to guarantee a zero

expectation of ��: If, instead, the sequence ��c;T is such that �c (��c;T ) = O
�
T�1=2

�
; that is,

p
T�c (��c;T )

p! e��c 6= 0; for all c 2 C; then the expectation of �� is
�
X
c2C

!c

�
G
0
�cWcG�c

��1
G
0
�cWce��c 6= 018: (136)

Another key feature is that the p limb�T (!) can be regarded as a linear combination of a true
value and pseudo-true values when it is accepted that, for some models c 6= �m; there is correct
18Notice that this is still a "local" misspeci�cation result as �c (��c;T )

p! 0 for all c:
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speci�cation. This follows from the decomposition

p limb�T (!) =
X
c2C

!c��c =
X
c2C0

!c�0 +
X
c2C�

!c��c (Wc)

= !0�0 + (1� !0)
X
c2C�

�
!c

1� !0

�
��c (Wc) ; (137)

where !0 =
P
c2C0 !c and C0 is the set of correctly speci�ed models. The larger C0 is, the

"closer" to �0 the p limb�T (!) gets. Finally, picking the optimal weight b! is even harder than
the correctly speci�ed case: The p limb�T (!) and the variance of �� depend on the arbitrarily
choice for Wc for all models c 2 C: Hopefully, the alternative criteria based on MSCT (c) and

GELT (c) lead to b!; found by numerical algorithms.
6 Empirical Results

In this section, we estimate the CGG forward-looking monetary policy reaction function for

the same period as theirs by GMM and extend the analysis to the GEL and model averaging

approaches. The relative merits of each approach are evaluated by building error measures of

the di¤erences between the actual and the targeted FED funds rate during the last four decades

of the twentieth century.

6.1 A Monetary Policy Rule

We apply the MA GMM approach to the CGG benchmark model. Recall that for any AR lag

p and in�ation and output delays k and q; the CGG model is given by

it = �1it�1 + :::+ �pit�p + (1� �) [�+ �Et�t;k + 
Etxt;q] + et; (138)

where � = i� � ���: We adopt their baseline speci�cation for which k = q = 1 (one period

forward) and where the monetary authorities set an expected interest rate that is a linear

combination of the target rate and the observed rate at the two previous periods, p = 219 :

it = �1it�1 + �2it�2 + (1� �) [�+ �Et�t+1 + 
Etxt+1] + et: (139)

Moreover, we take their baseline in�ation and "output gap" measures. These are the (annualized)

rate of change of the GDP de�ator between two subsequent quarters and the series constructed

19CGG also consider the more realistic cases of k = 4 and q = 1 and of k = 4 and q = 2 but concluded that the

results are qualitatively very similar to the baseline speci�cation.
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by the Congressional Budget O¢ ce (CBO), respectively. By �xing p; k; q and the de�nitions

of in�ation and output gap we focus, in this paper, on the di¤erences that occur when one

uses di¤erent estimation procedures (GMM versus GEL) and how the choice of the instruments

may a¤ect the empirical conclusions. On the other hand, combining di¤erent set of instruments

allows us to derive estimates for the MA GMM and GEL procedures. The choice of the weight

matrix for the GMM methodology is also taken into account.

Using the two-step GMM estimation method with quarterly US data (1960:1-1996:4), CGG

found that during the Volcker-Greenspan policy period there were more sensitive changes in

expected in�ation than in the pre-Volcker period (prior to 1979:3). In a smaller parameter

scale, the same conclusion was obtained with respect to the output gap variable. They show

that during the Volcker-Greenspan period the monetary rule was stabilizing. Nonetheless, the

impact of output on the interest rate policy was sensitive to the particular choice of the output

gap measure. In fact, 
 is not statistically signi�cant for the Volcker-Greenspan period when

x is obtained over either the detrended output or the unemployment rate. Using the series

constructed by the CBO, b
 is twice its value and 
 is statistically signi�cant in both periods.
Jondeau et al (2004), using the CBO series and the GMM and Continous-Updating GMM

estimation methods, obtained a wide range of estimates for 
 depending on the choice of the

weighting matrix (from 0:3 to 3:4, statistically signi�cant in some cases but not in all). The

estimates of the in�ation target �� seemed plausible: 4:25% for the pre-Volcker period and about

3:5% post-Volcker. Finally, the estimate of the smoothing parameter � is high (about 0:7 pre-

Volcker and 0:8 post-Volcker) re�ecting the inertia at the interest rate dynamics and that the

FED smooths adjustments in its monetary instrument.

6.2 Data and List of Available Instruments

The data is the same as in CGG20. This way, we can compare the standard GMM results with the

alternative estimation procedures such as the GEL and the model averaging techniques. We have

US quarterly data for the period 1960:1-1996:4. This period is divided into two subsamples: One

spanning from 1960:1 to 1979:2 (pre-Volker) and the second from 1979:3 to 1996:4 corresponding

to the Paul Volcker and Alan Greenspan as FED�s chairmen. It is argued that these two periods

correspond to the unstable and stable eras of recent history. Due to lagged/leaded variables in

the model, the sample period is in fact 1961:1-1996:3.

20We thank the authors for providing us the data used in their paper. See CGG paper for more details about

the data.
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Following CGG, in�ation is measured as the (annualized) rate of change of the GDP de�ator

between two subsequent quarters and the output gap is the series constructed by the CBO.

Moreover, the interest rate corresponds to the average Federal Funds rate in the �rst-month of

each quarter, expressed in annual rates. Lagged variables are used as instruments, as well as the

lags of commodity price in�ation and the "spread" between the long-term bond rate and the

three-month Treasury Bill rate. We have four lags of each variable available in the data. CGG

used these four lags to estimate the baseline model by GMM (see CGG, Table II, page 157).

In terms of notation, the list of available instruments is

zt�1 = (1; it�1; :::; it�4;�t�1; :::; �t�4;xt�1; :::; xt�4;dct�1; :::; dct�4;sprt�1; :::; sprt�4)
0
: (140)

Nevertheless, we also considered the estimation with only two �xed lags and, for the moments

and model selection criteria and the model averaging procedure, we estimated the model for

(almost) all possible combinations of instruments out of the available set. The two lags are

chosen with the purpose of minimizing potential biases due to the large number of identifying

restrictions; The array of instrument combinations has to do with the theoretical approach

presented at the previous sections. For a particular model Mi; the orthogonality conditions for

the baseline speci�cation are

E
�
(it � �1it�1 � �2it�2 � (1� �) [�+ ��t+1 + 
xt+1]) z

(i)
t�1

�
= 0; (141)

where z(i)t�1 is a subset of zt�1:

6.3 Estimation and Model Selection Criteria

We begin by discussing the results based on the GMM/GEL estimation of (141). We conduct

estimations for the period 1960:1 to 1979:2 (PV stands for pre-Volcker), the more recent vintage

of the data, which spans from 1979:3 to 1996:4 (VG stands for Volcker-Greenspan) and for the

whole period (W stands for "whole" period from 1960:1 to 1996:4). The GMM estimation refers

to the two-step e¢ cient procedure and the Empirical Likelihood (EL) is the GEL-type method

under consideration. For now, we let the number of lagged instruments to be either four (4l) or

two (2l). The results are presented in Table 1. The standard errors are reported in parentheses

and the p-value of the J-statistic is denoted by "J": No values are reported for the EL, 4l, VG

case due to convergence problems at the estimation algorithm.

Some issues are worth mentioning. First, we observe that, overall, the estimators produce

consistent and comparable results for each given period. Secondly, estimates of � and 
 tend
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Table 1: GMM and EL Estimates with a Fixed Number of Instruments

�� � � 
 J

GMM PV 4:681
(0:119)

0:509
(0:063)

0:970
(0:049)

0:173
(0:064)

0.969

4l VG 3:916
(0:141)

0:357
(0:114)

1:750
(0:185)

�0:155
(0:146)

0.907

W 4:065
(0:208)

0:711
(0:038)

1:394
(0:144)

0:361
(0:177)

0.799

PV 4:556
(0:158)

0:554
(0:092)

0:884
(0:058)

0:139
(0:085)

0.406

2l VG 3:839
(0:152)

0:567
(0:096)

2:396
(0:331)

0:045
(0:271)

0.855

W 4:221
(0:290)

0:722
(0:040)

1:243
(0:233)

0:445
(0:225)

0.514

EL PV 4:908
(0:236)

0:876
(0:029)

1:497
(0:249)

0:794
(0:229)

0.829

4l VG n/a n/a n/a n/a n/a

W 4:066
(0:298)

0:874
(0:020)

1:544
(0:212)

0:610
(0:252)

0.841

PV 5:174
(0:465)

0:687
(0:076)

0:593
(0:148)

0:321
(0:172)

0.177

2l VG 3:815
(0:179)

0:679
(0:065)

2:874
(0:381)

0:206
(0:251)

0.208

W 3:984
(0:338)

0:892
(0:041)

2:456
(0:646)

0:929
(0:819)

0.122
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to suggested that the pre-Volcker policy was unstabilizing through in�ation and the Volcker-

Greenspan rule was stabilizing despite neutral with respect to the product. Third, estimates of

�; 
 and � for the whole period suggest a stabilizing FED monetary policy rule over the second

half of the century (
 is marginally signi�cant).

With the exception of the EL with 4 lags, the point estimates of � are smaller than one for

the PV period (a 95% con�dence interval for the GMM with 4 lags includes values for � � 1):

On the other hand, for the VG period all estimates are larger than one and even for 2 lags these

are about 2:5: This makes evidence for stabilizing rules during VG tenure and not so much for

the PV period with respect to in�ation. Once we consider the whole sample, point estimates of

� are barely above one.

In terms of 
; we conclude that it is statistical signi�cant for the PV period (with small but

positive point estimates) but not signi�cant for the VG tenures. Hence, it re�ects stabilizing

rules for the PV period and a neutral policy for the VG period with respect to the output gap.

For the whole sample, 
 is statistically signi�cant with slightly larger point estimates than those

for the PV period.

There is evidence that the FED smooths adjustments in its monetary instrument. The

inertia at the rate dynamics is similar for the two subperiods (with the exception of the GMM

with 4 lags for the VG period in which b� = 0:357; a relatively small value) despite important

di¤erences across estimation methods. The GMM estimate is about 0:55; the EL with 4 lags is

0:87 and it is 0:68 considering 2 lags. The estimates are larger for the whole sample than for

any of the two subperiods. The point estimates of the in�ation target �� are relatively close to

the expected ones (4:5%� 5% during the PV period and 3:5%� 4% for the VG tenures). The

J-statistic does not allow us to rejected the model for any of the estimation procedures.

Next, we performed the moment/instrument selection exercise as described by Andrews

(1999). Rather than �xing the list of instruments to either 2 or 4 lags of the variables, this

method allows the data to determine the "best" model out of the possible combinations of

instruments. Accordingly, the instrument selection criteria estimator is de�ned as

bcmsc = argmin
c2C
MSCT (c) = argmin

c2C
(JT (c)� �T (jcj � p)) ; (142)

where �T = 2 for the AIC; �T = log T for the BIC; and �T = 2 log log T for the HQ-type criterion.

Recall that the AIC is not consistent and it has positive probability (even asymptotically) of

selecting too few moments. We considered two weight matrices: The e¢ cient one W e
T =

bS�1T ;

evaluated at b�FS = ((X 0Z) (Z 0X))�1 (X 0Z) (Z 0y) ; and alsoW z
T =

�
1
T

PT
t=1 ztz

0
t

��1
=
�
Z0Z
T

��1
:
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Table 2: GMM Estimates with Moment Selection Criteriabc �� � � 
 J

PV 4l see Table 1

W e
T VG 4l see Table 1

W 4l see Table 1

W 4l-�t�3 4:026
(0:230)

0:725
(0:035)

1:278
(0:143)

0:371
(0:182)

0.896

PV 4l-dct�1; dct�2; dct�4 4:899
(0:186)

0:721
(0:071)

0:862
(0:059)

0:426
(0:043)

0.970

W z
T VG n/a n/a

W n/a n/a

We do not have results for the EL model selection criteria because there were convergence

problems at the estimation procedure for most of the models.

The total number of instrument combinations is

jCj = 2m �
p�1X
j=0

0@ m

j

1A =
mX
j=p

0@ m

j

1A =
mX
j=p

m!

j! (m� j)! ; (143)

which equals 2089605; in our case where m = 21 and p = 5: To make the procedure more

tractable, we split the list of available instruments in two groups: There are seven instruments

that are kept �xed,

zF;t�1 = (1; it�1; it�2;�t�1; �t�2;xt�1; xt�2)
0

(144)

(the two lags of the variables of the model belong to any list of instruments) and the 14 remaining

are combined to construct the z matrix. This way, it is considered
P14
j=0

14!
j!(14�j)! = 2

14 = 16384

di¤erent models. The same model was chosen for the three criteria, except for the case of

the whole sample and the weight matrix W e
T : In this case, the model with 4 lags (full set of

instruments) was chosen for the BIC and HQ criteria but for the AIC criterion the best model

was the 4 lags without �t�3 as an instrument (4 lags was the third best model). The results

are in Table 2. The 4 lags model was the preferred speci�cation when the weight matrix is W e
T

(see Table 1 for the economic implications of the results). For the case of W z
T and VG and W

periods, all models have a zero pvalue for the J-statistic and due to the non-acceptance of the

models we do not report the results. For the PV period, (most of) the lags of the commodity

price in�ation were taken out in order to obtain the selected model. Relatively to the model

with four lags, the former speci�cation gave rise to larger point estimates of � and 
:
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6.4 MA Estimators

Now, we apply the model averaging method described earlier in the paper to the baseline forward-

looking monetary policy rule. The MA estimator is given by

b�T (b!) =X
c2C

b!cb�Tc; (145)

where the optimal weights b!c are estimated by some criteria and b�Tc is a GMM or GEL es-

timator for model c21: We basically proposed two criteria for choosing b!: One results from the

minimization of a consistent estimator of

tr (V (�)) =
X
c2C

!2c :tr

��
G
0
cS
�1
c Gc

��1�
+

X
c1;c22C
c1 6=c2

!c1!c2tr
�
E
�
�c1�

0
c2

��
: (146)

Because we are not able to derive the second quantity, we only minimize

X
c2C

!2c :tr

��
G
0
cS
�1
c Gc

��1�
: (147)

It is clearly assumed that some bias exists in the estimation of ! without the covariance terms.

The other criteria is

b! = arg min
!2Hm

MSCTc (!) = arg min
!2Hm

(JTc (!)� �T (jcj � p)) ; (148)

for a �xed model c: We considered c = �m (4 lags) and c = "F" (only the �xed instruments,

Zc = ZF ):

For computational reasons and so that the estimated weights b!c were not excessively small
and, for that reason, meaningless for interpretation, we only considered the 100 models with

smallest MSCT (c) �HQ (note that 1=16384 = 6:103 � 10�5): All of this best models have p-

values for the J-statistic (way) larger than 10% and, therefore, one can invoke the mathematical

and statistical properties of the MA GMM estimator under correct speci�cation that we have

shown earlier in this paper. The MA parameter and weight estimation results are displayed in

Tables 3 and 4, respectively. In the �rst place, we observe extremely similar results for c = �m

and Zc = ZF and for the Trace criteria, in some extension. A possible explanation is that the

MA GMM estimator is averaging out the 100 di¤erent point estimators, which are common for

distinct criteria.
21Due to the convergence problems with the EL, we only report the results for the MA GMM estimator. Also,

we only considered W e
T as the GMM weight matrix due to rejection of the models with W z

T ; as explained at the

previous subsection.
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Table 3: MA GMM Estimates

�� � � 


PV 4.703 0.569 0.962 0.241

Trace VG 3.876 0.448 1.895 -0.066

W 4.114 0.722 1.298 0.375

MSC PV 4.699 0.557 0.966 0.231

c = �m VG 3.879 0.408 1.853 -0.081

W 4.109 0.713 1.293 0.368

MSC PV 4.699 0.557 0.966 0.231

Zc = ZF VG 3.879 0.408 1.854 -0.082

W 4.109 0.713 1.293 0.369

The point estimates con�rm the main conclusions drawn from standard methods. There

is evidence support for a stabilizing policy rule during the VG tenures, albeit neutral to the

cyclical output variable, but not stabilizing during the PV period with respect to in�ation. In

fact, the estimates for � are (slightly) bellow one and (way) above one for the PV and VG

periods, respectively, and the estimates for 
 are positive and negative (probably not statistical

signi�cant since the sign is not the expected one) for the PV and VG periods, respectively.

The value for b
 for the PV period is larger than the one obtained from standard estimation

procedures. For the whole sample, there is evidence of stabilizing rules. The point estimates

for �� and � are similar to those from standard methods, noting that b� by MA GMM is a value

between the standard estimates with 4 and 2 lags.

In terms of the estimated weights, a number of interesting results stand out. First, the

model that gets the largest estimated weight is never the selected one by means of the standard

MSC. The model with the largest estimated weight is consistently the one with 4 lags without

two or three instruments. The model selected by MSC can be ranked from number 12 (withb!bc = 0:1008 - clearly above 0:01) to number 93 (with b!bc = 0:007 - just bellow 0:01): Note

secondly that the range of estimated weights is relatively wide for the trace criterion but not so

much for the MSC criteria and that it does not di¤er for di¤erent sample periods. Finally, we

conclude that although the trace and the MSC criteria provide very similar point estimates, the

corresponding estimated weights do not seem to be exactly the same across models.
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Table 4: MA GMM Weights

! !bc (rank) bc : max!
PV [0:007; 0:029] 0.007 (93) 4l-dct�1; dct�4

Trace VG [0:006; 0:030] 0.010 (20)
4l-dct�2; sprt�3; xt�3

4l-it�3; dct�2

W [0:008; 0:023] 0.010 (34)
4l-dct�1

4l-�t�4; dct�1

MSC PV [0:00979; 0:01014] 0.00993 (76) 4l-�t�3; sprt�4; xt�4

c = �m VG [0:00950; 0:01111] 0.00981 (79) 4l-it�3; �t�4; dct�2

W [0:00979; 0:01043] 0.01008 (14) 4l-�t�4; dct�1

MSC PV [0:00978; 0:01016] 0.00992 (78) 4l-�t�3; sprt�4; xt�4

Zc = ZF VG [0:00944; 0:01109] 0.00979 (81) 4l-it�3; �t�4; dct�2

W [0:00973; 0:01058] 0.01008 (12) 4l-�t�4; dct�1

6.5 Targeting the Interest Rate

Following CGG, we now measure how well the estimated target rules

i�t = i
� + b� (Et�t+1 � b��) + b
Etxt+1; (149)

where the point estimates are found by standard methods and by the MA GMM approach,

characterize the behavior of the actual Funds rate22. For matter of comparison, we also consider

the Taylor-type rule (not forward-looking and without unknown coe¢ cients) as in Woodford

(2001):

i�t = i
� + 1:5 (�t � ��) + 0:5xt: (150)

Taylor rules go back to Taylor (1993) claiming that the following original rule was appropriate

for the FED during the period 1987-1992,

i�t = r
� + �t + 0:5 (�t � ��) + 0:5xt; (151)

where r� = �� = 0:02: At the equilibrium (�t = ��; xt = 0) we have i�t = i
�: The terms 1:5 and

0:5 represent the FED responses to in�ation and output deviations from equilibrium. Basically,

the FED respond positively to both variables but more e¤ectively to in�ation giving top priority

22As CGG point out, we do not compare the actual rate with the �tted model that allows for partial adjustment.

This way, the estimated target rate does not perform as well as the �tted model.
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Table 5: Error Measures when Targeting the Interest Rate: Standard Approaches

MSE RMSE MAD

PV 6.716 2.591 2.214

TR VG 7.663 2.768 2.097

W 11.445 3.383 2.643

PV 2.351 1.533 1.292

GMM 4l VG 7.100 2.665 2.005

W 11.614 3.408 2.616

PV 2.103 1.450 1.199

GMM 2l VG 11.784 3.433 2.443

W 11.440 3.382 2.558

W z
T ;bc =4l-dct�1; dct�2; dct�4 PV 2.837 1.684 1.410

W e
T ;bc =4l-�t�3 W 11.071 3.327 2.557

PV 9.733 3.119 2.651

EL 4l VG n/a n/a n/a

W 15.209 3.900 3.008

PV 2.459 1.568 1.198

EL 2l VG 17.415 4.173 2.871

W 32.222 5.676 4.472

to price-presures instead of growth. If �t < �� then the FED would have the opposite reaction.

For stabilization, we need � > 1 (the proportional reaction does not su¢ ce so that the real

interest rate has e¤ects at the real economy) and 
 > 0: Otherwise, the monetary policy may

generate an in�ation spiral.

We measure the quality of the policy rules by the mean squared error (MSE) and its root

(RMSE) and the mean absolute deviation (MAD). The error is given by it � i�t and the average

is over the period under discussion. The results are presented in Tables 5 and 6.

Overall, the results are relatively poor once we observe a RMSE of around three and a MAD

of approximately two percentage points. Despite the fact that we are not comparing the actual

rate with the �tted rate but with the target rate, this result may indicate that the CGG forward-

looking model does not fully capture the interest rate dynamics and that it targets a FED rate

that is a bit o¤ the observed value.
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Table 6: Error Measures when Targeting the Interest Rate: MA GMM Approach

MSE RMSE MAD

PV 2.460 1.568 1.327

Trace VG 7.934 2.817 2.101

W 11.127 3.336 2.550

MSC PV 2.449 1.565 1.323

c = �m VG 7.698 2.774 2.074

W 11.051 3.324 2.542

MSC PV 2.449 1.565 1.323

Zc = ZF VG 7.700 2.775 2.075

W 11.055 3.324 2.542

Moreover, the target rules consistently do better during the PV period than during the VG

tenures. The worst performances occur for the entire sample. If it is possible to extrapolate

on this result then one may conclude that the Taylor and the CGG rules are worse suited for

stabilizing periods. In fact, in terms of MAD, the Taylor rule does better during the VG than

the PV period but this may be because Taylor studied the 1987-1992 period originally.

As expected, the performance of the MA GMM approach is essentially the same for di¤erent

criteria because the point estimates were very similar. For the whole sample, the MA GMM

beats all other methods. For the PV and VG periods, the best performance is not achieved by

the MA GMM method but it gets very close to best one and, in fact, it outperforms the EL

approach. See Table 7 for details on the ranking performances.

In general, the best results are obtained by GMM and the models selected by the standard

MSC (usually, 4 lags of instruments) do as well as the GMM with 2 lags. The EL and the TR

(even for the VG period) are not as good as the GMM methodologies, averaged or standard. In

conclusion, the MA GMM procedure is as valid as the standard GMM approaches to estimate the

FED�s target rule. To illustrate, we present in Figures 1 and 2 the MA GMM target estimates

and the actual rates for the two subperiods. Despite signi�cant gaps, the upward and downward

swings are reasonably captured the estimated policy rule23.

23CGG present the same plots for GMM in pages 158 and 159. The truth is that for the VG period our MA

GMM captures the swings better than theirs.
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Table 7: Error Measures when Targeting the Interest Rate (Ranked)

RMSE MAD

PV GMM2l 1.450 EL2l 1.198

GMM4l 1.533 GMM2l 1.199

MAGMM 1.565 GMM4l 1.292

EL2l 1.568 MAGMM 1.323

TR 2.591 TR 2.214

VG GMM4l 2.665 GMM4l 2.005

TR 2.768 MAGMM 2.074

MAGMM 2.774 TR 2.097

GMM2l 3.433 GMM2l 2.443

EL2l 4.173 EL2l 2.871

W MAGMM 3.324 MAGMM 2.542

GMM 2l 3.382 GMM2l 2.558

TR 3.383 GMM4l 2.616

GMM4l 3.408 TR 2.643

EL4l 3.900 EL4l 3.008

Figure 1: Actual versus Target Rates: Pre-Volcker Era and MA GMM Estimates
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Figure 2: Actual versus Target Rates: Volcker-Greenspan Era and MA GMM Estimates

7 Conclusion

The United States monetary policy in the postwar era has become of particular interest in mac-

roeconomics. In this paper, we revisit the model and the results presented in Clarida, Gali,

and Gertler (2000) by employing a new estimation procedure, which we call Model Averaging

estimator. Their baseline forward-looking monetary policy reaction function is estimated by

moment condition procedures but we resort to procedures that averages instruments and estim-

ators. This way, we focus on the potential gains in averaging estimators rather than assuming

a �xed moment speci�cation as implicitly assumed by standard techniques.

Thus, we de�ne GMM and GEL model averaging estimators and discuss some of their asymp-

totic properties under correctly speci�ed and misspeci�ed models. We show that the asymptotic

theory under misspeci�cation is not standard in the sense that the consistency and distribu-

tional results depend on the weight matrices and the pseudo-true values. The MA estimators

are a weighted average of a list of standard GMM or GEL estimators for each possible model

speci�cation. The optimal weights are found by means of particular moment and model selection

criteria that share some good statistical properties. We also discuss the existence of a linear

combination (average) of instruments that results in a GMM/GEL estimator that attains the
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Chamberlain e¢ ciency bound relative to the set of all instruments.

We apply our MA GMM procedure to the same data and baseline policy model as in Clarida,

Gali, and Gertler (2000) and compare the results with those obtained by standard approaches:

E¢ cient GMM with �xed instruments and with instruments selected by information criteria

and by Empirical Likelihood. The methods point to similar conclusions where, according to

the point estimates, there is evidence for a stabilizing policy rule during the Paul Volcker and

Alan Greenspan tenures, albeit neutral to the cyclical output variable, but not so during the

pre-Volker period with respect to in�ation.

That is, before Volcker came to o¢ ce, the FED raised the nominal interest rates by a smaller

proportion than the increase of expected in�ation. This would led to a decline of short-run real

interest rates. In short, it seems that the FED�s primary objective was growth as the funds

rate responded to output �uctuations and not so much the control for prices. On the contrary,

Volcker and Greenspan tenures were characterized by an anti-in�ationary policy. By increasing

the nominal rates by more than the expected in�ation, the real interest rates tent to raise as

well. During this period, there is quantitative evidence for a monetary policy that did not react

to product �uctuations.

To evaluate the merits of our approach, we measure the quality of the policy target rules

estimated by the di¤erent methods relative to the actual rates by the mean squared error and the

mean absolute deviation. We conclude that the MA GMM method do as well as the standard

approaches and the Taylor rule for the Volcker-Greenspan period and that it does even better

than the EL. The target rules consistently do better during the pre-Volcker period than during

the stabilizing Volcker-Greenspan tenures. The upward and downward swings of the data are

reasonably captured the estimated policy rules despite a disappointing mean absolute deviation

of approximately two percentage points. Along this lines, it seems that there is room for ad-

ditional research on how to improve the CGG forward-looking rule in terms of explaining the

data.

Although the empirical analysis of the paper resorts on the CGG model, our theoretical

results on the moment conditions model averaging estimator suggest that alternative applications

to economic models should be considered, such as the New Keynesian model. Also, it would

be important to investigate further on the statistical properties of the MA estimator, and to

compare them to the standard approaches, by means of Monte Carlo experiments. We leave

this for future research.
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