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Abstract

This paper presents a new approach to parameter identification analysis in
DSGE models wherein the strength of identification is treated as property of the
underlying model and studied prior to estimation. The strength of identification
reflects the empirical importance of the economic features represented by the pa-
rameters. Identification problems arise when some parameters are either nearly
irrelevant or nearly redundant with respect to the aspects of reality the model is
designed to explain. The strength of identification therefore is not only crucial
for the estimation of models, but also has important implications for model devel-
opment. The proposed measure of identification strength is based on the Fisher
information matrix of DSGE models and depends on three factors: the parameter
values, the set of observed variables and the sample size. By applying the proposed
methodology, researchers can determine the effect of each factor on the strength
of identification of individual parameters, and study how it is related to struc-
tural and statistical characteristics of the economic model. The methodology is
illustrated using the medium-scale DSGE model estimated in Smets and Wouters
(2007).
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1 Introduction

There is a considerable consensus among academic economists and economic policy

makers that modern macroeconomic models are rich enough to be useful as tools for

policy analysis. It is also well understood that when structural models are used for

quantitative analysis, it is crucial to use parameter values that are empirically relevant.

The best way of obtaining such values is to estimate and evaluate the models in a formal

and internally consistent manner. This is what the new empirical dynamic stochastic

general equilibrium (DSGE) literature attempts to do.

The estimation of DSGE models exploits the restrictions they impose on the joint

probability distribution of observed macroeconomic variables. A fundamental question

that arises is whether these restrictions are sufficient to allow reliable estimation of the

model parameters. This is known as the identification problem in econometrics, and

to answer it econometricians study the relationship between the true probability distri-

bution of the data and the parameters of the underlying economic model (Koopmans

(1949)). Such identification analysis should precede the statistical estimation of eco-

nomic models (Manski (1995)).

Although the importance of parameter identification has been recognized, the issue

is rarely discussed when DSGE are estimated. Examples of models with unidentifiable

parameters can be found in Kim (2003), Beyer and Farmer (2004) and Cochrane (2007).

That DSGE models may be poorly identified has been pointed out by Sargent (1976)

and Pesaran (1989). More recently, Canova and Sala (2009) summarize their study of

identification issues in DSGE models with the conclusion: “it appears that a large class

of popular DSGE structures can only be weakly identified”.

Most of the existing research on identification in DSGE models follows the econo-

metric literature where weak identification is treated as a sampling problem, i.e. as

an issue within the realm of statistical inference (see e.g. Stock and Yogo (2005) and

the survey in Andrews and Stock (2005)). For this reason the effort has been de-

voted to either devising tests for detecting weak identification (Inoue and Rossi (2008)),

or to developing methods for inference that are robust to identification problems

(Guerron-Quintana et al. (2009)). This paper proposes an alternative approach, based

on the premise that identification in DSGE models can be treated as a property of

the underlying economic model, and, as such, may be studied without reference to a

particular sample of data. This approach is in the spirit of the classical literature on
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identification, and is based on the fact that DSGE models provide a complete charac-

terization of the data generating process. Thus, any identification problem in the data

must have its origin in the underlying model. This is different from the typical situation

in structural econometrics, where the mapping from the economic model to the data is

known only partially. For instance, the degree of correlation between instruments and

endogenous variables in the simple linear instrumental variables model depends on nui-

sance parameters, which, in the absence of a fully-articulated economic model, have no

structural interpretation. In a general equilibrium setting all reduced-form parameters

become functions of structural parameters and one can investigate how the instruments’

strength is determined by the properties of the underlying model.

In the context of DSGE models important identification-related question include:

(1) which model parameters are identified and which are not; (2) how well identified

are the identifiable parameters; (3) if the identification of some parameters fails or is

weak, is this due to data limitations, or is it intrinsic to the structure of the model; (4)

what structural or statistical properties of the model are most important determinants

of the strength of identification of the parameters; (5) how the answers to (1)-(4) vary

across different regions in the parameter space and for different sets of observables. The

purpose of this paper is to show how answers to questions like these can be obtained

for any linearized DSGE model.

A central tool in the proposed approach is the expected Fisher information matrix,

the use of which for identification analysis was first suggested by Rothenberg (1971).

As Rothenberg points out, the information matrix “is a measure of the amount of infor-

mation about the unknown parameters available in the sample”. Information deficiency

results in identification problems and is associated with singular or nearly-singular infor-

mation matrix. In addition to the purely statistical dimension of these problems there is

also an economic modelling aspect, which is often far more important. Parameters are

unidentifiable or weakly identified if the economic features they represent have no em-

pirical relevance at all, or very little of it. This may occur either because those features

are unimportant on their own, or because they are redundant given the other features

represented in the model. These issues are particularly relevant to DSGE models, which

are sometimes criticized of being too rich in features, and possibly overparameterized

(Chari et al. (2009)). This paper shows how one can distinguish between the statisti-

cal and economic modelling aspects of identification problems, and provides tools for

determining the causes leading to them.
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Papers related to this one are Iskrev (2010) and Komunjer and Ng (2009), which

consider the parameter identifiability question, and Canova and Sala (2009), which is

focused on the weak identification problem. Iskrev (2010) presents an identifiability

condition that is easier to use and more general than the one developed here. The

condition is based on the Jacobian matrix of the mapping from theoretical first and

second order moments of the observable variables to the deep parameters of the model.

The condition is necessary and sufficient for identification with likelihood-based meth-

ods under normality, or with limited information methods that utilize only first and

second order moments of the data. However, that paper does not deal with the weak

identification issue, which is the main theme of this paper. Komunjer and Ng (2009)

derive a similar rank condition for identification using the spectral density matrix. The

paper of Canova and Sala (2009) was the first one to draw attention to the problem

of weak identification in DSGE models, and to discuss different strategies for detecting

it. Those include: one and two dimensional plots of the estimation objective function,

estimation with simulated data, and checking numerically the conditioning of matrices

characterizing the mapping from parameters to the objective function. The paper of

Canova and Sala (2009) differs form the present paper in several ways. First, they ap-

proach parameter identification from the perspective of a particular limited information

estimation method, namely, equally weighted impulse response matching. In addition

to the model and data deficiencies discussed above, weak identification in that setting

may be caused by the failure to use some model-implied restrictions on the distribution

of the data, and by the inefficient weighing of the utilized restrictions. Consequently,

it may be very difficult to disentangle the causes and quantify their separate contri-

bution to the identification problems. Second, it is very common in DSGE models to

have identification problems that stem from a near observational equivalence involving

a large number of parameters. This means that the objective function is flat with re-

spect to all of the parameters as a group. The plots used in Canova and Sala (2009)

are limited to only two parameters at a time, and it is far from straightforward to select

the appropriate pairs from a large number of free parameters. Third, Canova and Sala

(2009) do not discuss the role of the set of observables for identification. The effect of

using different observables for the estimation of a DSGE model is investigated in ?, who

finds that the parameter estimates and the economic and forecasting implications of the

model vary substantially with the choice of included variables. The last and perhaps

most important difference is in the approach itself. While it is possible in principle
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to address all identification questions discussed here by conducting Monte Carlo sim-

ulations, this is hardly a viable strategy for an a priori identification analysis of most

DSGE models. Estimating a multidimensional and highly non-linear model even once

is a numerically challenging and time consuming exercise. Doing that many times and

for a large number of parameter values is completely impractical. In contrast, the tools

used in this paper are simple, easy to apply, and general.

The remainder of the paper is organized as follows. Section 2 introduces the class of

linearized DSGE models, and outlines the derivation of the log-likelihood function and

the Fisher information matrix for Gaussian models. Section 3 explains the role of the

Fisher information matrix in the analysis of identification, and discusses different aspects

of the a priori approach to identification. The methodology is illustrated, in Section 4,

with the help of the medium-scale DSGE model estimated in Smets and Wouters (2007).

Section 5 discusses an a priori analysis of identification strength in a Bayesian setting.

Concluding comments are given in Section 6.

2 Preliminaries

This section provides a brief discussion of the class of linearized DSGE models and the

derivation of the log-likelihood function and the Fisher information matrix for Gaussian

models

2.1 Setup

A DSGE model is summarized by a system of non-linear equations. Currently, most

studies involving either simulation or estimation of DSGE models use linear approxima-

tions of the original models. That is, the model is first expressed in terms of stationary

variables, and then linearized around the steady-state values of these variables. Let ẑt

be a m−dimensional vector of the stationary variables, and ẑ∗ be the steady state value

of ẑt. Once linearized, most DSGE models can be written in the following form

Γ0(θ)zt = Γ1(θ) Et zt+1 + Γ2(θ)zt−1 + Γ3(θ)εt (2.1)

where zt is a m−dimensional vector of endogenous and exogenous state variables, and

the structural shocks εt are independent and identically distributed n-dimensional ran-

dom vectors with E εt = 0, E εtε
′
t = In. The elements of the matrices Γ0, Γ1, Γ2 and
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Γ3 are functions of a k−dimensional vector of deep parameters θ, where θ is a point

in Θ ⊂ R
k. The parameter space Θ is defined as the set of all theoretically admissible

values of θ.

There are several algorithms for solving linear rational expectations models (see for

instance Blanchard and Kahn (1980), Anderson and Moore (1985), King and Watson

(1998), Klein (2000), Christiano (2002), Sims (2002)). Depending on the value of θ,

there may exist zero, one, or many stable solutions. Assuming that a unique solution

exists, it can be cast in the following form

zt = A(θ)zt−1 + B(θ)εt (2.2)

where the m×m matrix A and the m× n matrix B are unique for each value of θ.

In most applications the model in (2.2) cannot be taken to the data directly since

some of the variables in zt are not observed. Instead, the solution of the DSGE model

is expressed in a state space form, with transition equation given by (2.2), and a mea-

surement equation

xt = Czt + Dut + νt (2.3)

where xt is a l-dimensional vector of observed variables, ut is a q-dimensional vector of

exogenous variables, and νt is a p-dimensional random vectors with E νt = 0, E νtν
′
t =

Q, where Q is p× p symmetric semi-positive definite matrix.

For a given value of θ, the matrices A, Ω := BB′, and ẑ∗ completely characterize

the equilibrium dynamics and steady state properties of all endogenous variables in the

linearized model. Typically, some elements of these matrices are constant, i.e. indepen-

dent of θ. For instance, if the steady state of some variables is zero, the corresponding

elements of ẑ∗ will be zero as well. Furthermore, if there are exogenous autoregressive

(AR) shocks in the model, the matrix A will have rows composed of zeros and the AR

coefficients. As a practical matter, it is useful to separate the solution parameters that

depend on θ from those that do not. I will use τ to denote the vector collecting the

non-constant elements of ẑ∗ , A, and Ω, i.e. τ := [τ ′
z, τ ′

A, τ ′
Ω]′, where τz, τA, and τΩ

denote the elements of ẑ∗, vec(A) and vech(Ω) that depend on θ.
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2.2 Log-likelihood function and the information matrix

The log-likelihood function of the data X = [x1, . . . ,xT] can be derived using the

prediction error method whereby a sequence of one-step ahead prediction errors et|t−1 =

xt−Cẑt|t−1 −Dut is constructed by applying the Kalman filter to the obtain one-step

ahead forecasts of the state vector ẑt|t−1. Assuming that the structural shocks εt are

jointly Gaussian, it follows that the conditional distribution of et|t−1 is also Gaussian

with zero mean and covariance matrix given by St|t−1 = CPt|t−1C
′, where Pt|t−1 =

E
(

zt − ẑt|t−1

) (

zt − ẑt|t−1

)′
is the conditional covariance matrix of the one-step ahead

forecast, and is also obtained from the Kalman filter recursion. This implies that the

log-likelihood function of the sample is given by

`T (θ) = const. −
1

2

T
∑

t=1

log det(St|t−1) −
1

2

T
∑

t=1

e
′

t|t−1S
−1
t|t−1et|t−1 (2.4)

The ML estimator θ̂T is the value of θ ∈ Θ which maximizes (2.4). As I will discuss

in Section 3.1, the precision of θ̂T is determined by the inverse of the Fisher information

matrix, defined as

IT (θ) := E

[{

∂`T (θ)

∂θ′

}′{
∂`T (θ)

∂θ′

}]

(2.5)

The next result, due to Klein and Neudecker (2000), provides an explicit expression

for the Fisher information matrix for Gaussian models.

Theorem 1. The expected Fisher information matrix is given by

IT (θ) =

T
∑

t=1

E

[(

∂et|t−1

∂θ′

)′

S−1
t

(

∂et|t−1

∂θ′

)]

+

1

2

T
∑

t=1

(

∂vec(St)

∂θ′

)′

(St ⊗ St)
−1

(

∂vec(St)

∂θ′

)

(2.6)

The asymptotic information matrix, defined as the limit of (2.6), can be computed

using the following result (see Ljung (1999))

Theorem 2. Let S∞ = CP∞C ′, where P∞ = lim
T→∞

Pt|t−1 is the steady state covariance
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matrix of the one-step ahead forecast vector ẑt|t−1. Then

I(θ) = E

[(

∂et|t−1

∂θ′

)′

S−1
∞

(

∂et|t−1

∂θ′

)]

+

1

2

(

∂vec(S∞)

∂θ′

)′

(S∞ ⊗ S∞)−1

(

∂vec(S∞)

∂θ′

)

(2.7)

To evaluate either (2.6) or (2.7), one needs the derivatives of the reduced-form ma-

trices A,Ω and C with respect to θ. Explicit formulas for computing these derivatives

can be found in Iskrev (2010). Therefore, the full information matrix and all measures

of identification strength discussed below can be evaluated analytically.

Since the Gaussian assumption is sometimes difficult to justify, it is important to un-

derstand the role it plays here. It has two important consequences. First, the likelihood

function involves only first and second-order moments of the observables. Therefore,

for an efficient estimation of the parameters it is sufficient to use the model-implied

restrictions on these moments only. Second, the Gaussian assumption facilitates the

computation of the optimal weights one should place on the restrictions to achieve ef-

ficiency. To see this, note that the ML estimator can be interpreted as a generalized

method of moments (GMM) estimator, where the moment function is given my the

difference between the vector of theoretical first and second order moments and the

vector of their sample counterparts. The optimal weighting matrix, given by the inverse

of the covariance matrix of the moment function, is not available in closed-form unless

Gaussianity is assumed. It can be shown that the inverse of the information matrix (2.7)

is smaller than the asymptotic covariance matrix of an efficient GMM estimator for a

general distribution. Thus, the measures of information strength computed using the

information matrix provide an upper bound on the strength of identification for general

estimation methods that utilize only first and second moments.

3 Identification Analysis

3.1 General principles

Let a model be parameterized in terms of a vector θ ∈ Θ ⊂ R
k, and suppose that

inference about θ is made on the basis of T observations of a random vector x with

a known joint probability density function p(X; θ), where X = [x′
1, . . . ,x

′
T]′. When
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considered as a function of θ, p(X; θ) contains all available sample information about

the value of θ associated with the observed data. Thus, a basic prerequisite for making

inference about θ is that distinct values of θ imply distinct values of the density function.

Formally, we say that a point θo ∈ Θ is identified if

p(X; θ) = p(X; θo) with probability 1 ⇒ θ = θo (3.1)

This definition is made operational by using the following property of the log-likelihood

function `T (θ) := log p(X; θ)

E0 `T (θo) ≥ E0 `T (θ), for any θ (3.2)

This follows from the Jensen’s inequality (see Rao (1973)) and the fact that the

logarithm is a concave function. It further implies that the function H(θo, θ) :=

E0 (`T(θ) − `T (θo)) achieves a maximum at θ = θo, and θo is identified if and only

if that maximum is unique. While conditions for global uniqueness are difficult to find

in general, local uniqueness of the maximum at θo may be established by verifying the

usual first and second order conditions, namely: (a) ∂H(θo,θ)
∂θ

|θ=θo = 0, (b) ∂2H(θo,θ)
∂θ∂θ′

|θ=θo

is negative definite. If the maximum at θo is locally unique we say that θo is locally

identified. This means that there exists an open neighborhood of θo where (3.1) holds

for all θ. Global identification, on the other hand, extends the uniqueness of p(X; θo)

to the whole parameter space. One can show that (see Bowden (1973)) the condition in

(a) is always true, and the Hessian matrix in (b) is equal to the negative of the Fisher

information matrix. Thus, we have the following result of Rothenberg (1971),

Theorem 3. Let θo be a regular point of the information matrix IT (θ) Then θo is

locally identifiable if and only if IT (θo) is non-singular.

A point is called regular if it belongs to an open neighborhood where the rank of the

matrix does not change. Without this assumption the condition is only sufficient for local

identification. Although it is possible to construct examples where regularity does not

hold (see Shapiro and Browne (1983)), typically the set of irregular points is of measure

zero (see Bekker and Pollock (1986)). Thus, for most models the non-singularity of the

information matrix is both necessary and sufficient for local identification. By definition,

a model is (locally) identified if all points in the parameter space are (locally) identified.

This can be checked by examining the rank of the information matrix at all points in
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Θ.

Verifying that the model is identified, at least locally, is important since identifiability

is a prerequisite for the consistent estimation of the parameters. Singularity of the

information matrix means that likelihood function is flat at θo and one has no hope

of finding the true values of some of the parameters even with an infinite number of

observations. Intuitively, this may occur for one of two reasons: either some parameters

do not affect the likelihood at all, or different parameters have the same effect on the

likelihood. This reasoning may be formalized by using the fact that the information

matrix is equal to the covariance matrix of the scores, and therefore can be expressed

as

IT (θo) = ∆
1
2 ĨT (θo)∆

1
2 (3.3)

where ∆ = diag(IT (θo)) is a diagonal matrix containing the variances of the elements

of the score vector, and ĨT (θo) is the correlation matrix of the score vector.

Hence, a parameter θi is locally unidentifiable if:

(a) Changing θi does not change the likelihood, i.e.

∆i := E

(

∂`T (θo)

∂θi

)2

= −E

(

∂2`(θ)

∂θ2
i

)

= 0 (3.4)

(b) The effect on the likelihood of changing θi can be offset by changing other param-

eters in θ, i.e.

%i := corr

(

∂`T (θo)

∂θi
,
∂`T (θo)

∂θ−i

)

= 1 (3.5)

where ∂`T (θo)
∂θ−i

is the partial derivative of the log-likelihood with respect to θ−i :=

[θ1, . . . , θi−1, θi+1, . . . , θk].

Both cases result in a flat likelihood function and lack of identification for one or more

parameters. Weak identification, on the other hand, arises when the likelihood is not

completely flat but exhibits very low curvature with respect to some parameters. The

issue of detecting and measuring weak identification problems is discussed next.
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3.2 Identification strength in the population

The rank condition ensures that the expected log-likelihood function is not flat and

achieves a locally unique maximum at the true value of θ. In general this suffices for

the consistent estimation of θ. However, the precision with which θ may be estimated

in finite samples depends on the degree of curvature of log-likelihood surface in the

neighborhood of θo, of which the rank condition provides no information. Nearly flat

likelihood means that small changes in the value of `T (θ), due to random variations

in the sample, result in relatively large changes in the value of θ that maximizes the

observed likelihood function. In this situations parameter identification is said to be

weak in the sense that the estimates are prone to be very inaccurate even when the

number of observations is large.

Intuitively, a weakly identified parameter is one which is either nearly irrelevant,

because it has only a negligible effect on the likelihood, or nearly redundant, because its

effect on the likelihood may be closely approximated by other parameters. Consequently,

the value of that parameter is difficult to pin down on the basis of the information

contained in the likelihood function. Using the notation introduced earlier, the two

causes for weak identification may be expressed as ∆i ≈ 0 and %i ≈ 1. The overall

effect is determined by the interaction of the two factors. The particular measure of

identification strength adopted here is

si(θ) :=
√

∆i (1 − %2
i ) (3.6)

The motivation behind using this measure comes from the following result which shows

how si(θ) is related to the Fisher information matrix.

Theorem 4. Suppose that the Fisher information matrix IT (θ) is not singular when

evaluated at θ. Then 1/si(θ) is equal to the square root of the i-th diagonal element of

I
−1
T (θ).

The proof of Theorem 4 uses the decomposition of IT (θ) shown in (3.3) and the prop-

erties of the correlation matrix. The result implies that si(θ) possesses a number of

useful properties discussed next.

Corollary 1. Let θ̃θi
be the value of θ that maximizes `(θ) given the value of θi. Also,
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let `p(θi) = `(θ̃θi
) be the profile log-likelihood of θi. Then

s2
i (θ) = E

(

∂`p(θi)

∂θi

)2

= −E

(

∂2`p(θi)

∂θ2
i

)

Corollary 1 shows that si(θ) is the expected value of the curvature of the profile log-

likelihood of θi. Thus si(θ) is analogous, in the multiparameter setting, to the Fisher

information (−E(∂2`(θ)/∂θ2)) in the single parameter case. Note that, unlike ∆i =

−E
(

∂2`(θ)

∂θ2
i

)

, which measures the sensitivity of `(θ) to θi keeping the other parameters

fixed, si(θ) gives the sensitivity of the log-likelihood to θi when the other parameters

are free to adjust optimally. Clearly, the latter sensitivity cannot be larger than the

former, but may be much smaller when θ−i could be varied so as to compensate most of

the effect of changing θi. This occurs when %i is large and indicates that there is little

independent information about θi in the likelihood.

Corollary 2. If θ̂ is an unbiased estimator of θ, and std(θ̂i) :=

√

E(θ̂i − θi)2, then

std(θ̂i) ≥
1

si(θ)
(3.7)

This corollary is a direct consequence of the Cramér-Rao lower bound inequality, which

states that the covariance matrix of any unbiased estimator of θ is bounded from below

by the inverse of the Fisher information matrix. It shows that the identification strength

of a parameter can be expressed in terms of bounds on a one-standard-deviation intervals

for unbiased estimators of the parameter. Such intervals may be easier to interpret and

more informative than the value of si(θ) alone.

It is worth emphasizing that si(θ) is derived from the population objective function

- the expected log-likelihood. It is solely based on the model-implied restrictions on the

statistical properties of the observables, and measures how informative they are for the

value of θi. Since no data is required, si(θ) can be used to evaluate the strength of

identification of the parameters prior to observing any data.

The a priori analysis of identification strength is different, though related to, the

problem of quantifying the sampling uncertainty arising in estimation. Typically, in

order to accurately characterize the uncertainty about an estimate, one has to take into

account the full shape of the actual log-likelihood function. In contrast, as an a priori

measure of identification strength, si(θ) only utilizes the curvature of the expected log-

likelihood. To see the relation between the two approaches, consider the construction
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of likelihood-based confidence interval for individual parameters. Define the signed root

log-likelihood ratio r(θi) := sign(θi − θ̂i)

√

2
(

`(θ̂) − `p(θi)
)

, where `p(θi) is the profile

log-likelihood of θi. Then an approximate 1 − α confidence interval for θi is the set of

all values such that

− qα/2 ≤ r(θi) ≤ qα/2 (3.8)

where qα/2 is the α/2 upper quantile of the standard normal distribution.

Figure 1 shows plots of r(θi) and the corresponding 1− α confidence intervals for cases

where the identification of θi is stronger (panel (a)) or weaker (panel (b)). In addition

to the likelihood-based confidence intervals, which are indicated with dashed lines, the

figure shows confidence intervals constructed using a linear approximation of r(θi); these

are marked with dotted lines. Note that the difference between the two plots is the slope

of the curves, which is larger when identification is stronger. Not surprisingly, the slope

is related to the curvature of the log-likelihood function as the next corollary shows

Corollary 3. If maximum likelihood estimate θ̂ is an interior point of Θ, then

si(θ̂) = E

(

∂r(θ̂i)

∂θi

)

(3.9)

Thus, si(θ̂) gives the expected value of the slope of the tangent to r(θi) at the maxi-

mum likelihood estimate of θi, indicated with thin solid line in Figure 1. The difference

between using only the curvature and using the full shape of the log-likelihood func-

tion is seen by comparing the two types of confidence intervals. Clearly, the bounds

of the intervals may be quite different when r(θi) is far from linear, or, equivalently,

when the likelihood function is far from quadratic. On the other hand, for reasonably

smooth functions, the length of the two types of intervals would provide similar answers

regarding the strength of identification. Thus, while it may be deficient as a basis for

statistical inference, the curvature of the likelihood function should provide an accurate

assessment of the identification strength of the parameters.

One thing that should be noted about Figure 1 is that the x-axes in the two plots

are the same. In fact, this is what allows us to say that θ1 is better identified than θ2

in the figure; the opposite could be true if the scales of the two plots were different.

In general we cannot compare the the values of si(θ) because the parameters may be

measured in very different units. Another way to see this is to note that si(θ) may be
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interpreted in terms of the percentage change in the value of the profile likelihood for

one unit change in θi. To obtain a scale-independent measure in terms of the elasticity

of the profile likelihood, we have to multiply si(θ) by the absolute value of θi. I will refer

to this measure as the relative strength of identification of θi and denote it by sri (θ).

Using the definition of si(θ), we have

sri (θ) =
√

θi∆i ×
√

1 − %2
i (3.10)

Note that the first term is simply the elasticity of the likelihood function with respect to

θi, holding the other parameters constant. I will refer to it as the sensitivity component

of the measure. The second term captures the effect of allowing the other parameter to

adjust and is determined by the degree of collinearity among the elements of the score

vector. I will refer to it as the collinearity component of sri (θ).

3.3 Discussion

Theorem 4 shows how to compute the measure of identification strength once we have

the Fisher information matrix. The latter is straightforward to obtain as discussed in

Section 2.2. Consider what is involved in the computation of IT (θ) in (2.6) or I(θ)

in (2.7). Taking the linearized structural model in (2.1) together with the assumption

about the distribution of u as given, the Fisher information matrix depends on: (1) the

true value of θ, (2) the set of observed variables in x, and, in the case of (2.6), on (3)

the number of observations T .

That identification is parameter-dependent is a property of all non-linear models, and

implies that θ may be identifiable in some regions of the parameter space, and uniden-

tified in others. Similarly, identification may be strong in some regions and weak in

others. Thus, in order to understand the identification of the parameters as a property

of the model, one has to study the behavior of the information matrix at all theoretically

plausible values, i.e. everywhere in Θ.

The set of observed variables may be considered as a part of the econometric model,

and in that sense as given. The practice in the empirical DSGE literature, however,

shows that it is to some extent a matter of choice how many and which macroeconomic

variables to include in the estimation. The relevance of this for identification is that

some parameters may be well identified if certain endogenous variables are included in

x, and poorly identified or unidentified if these variables are (treated as) unobserved.
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Finally, the value of T enters directly in the computation of IT (θ), and therefore may

affect the rank of that matrix. Having more observations may help identify parameters

which are otherwise unidentifiable. Naturally, the sample size also matters for the

strength of identification of θ.

The effect on identification of having different sets of observables or samples of

different sizes can be investigated by making the appropriate changes in C, the matrix

which selects the observed among all model variables (see equation (2.3)), or by varying

the value of T . Fixing these two dimensions of the statistical model, one can study

how identification varies with the value of θ by evaluating the information matrix at

all points in the parameter space. There are two problems with implementing this in

practice. First, it is usually impossible to know, before solving the model, for which

values of θ there are either zero or many solutions. Such points are typically deemed

as inadmissible, and have to be excluded from Θ. A second problem arises from the

fact that there are infinitely many points in Θ, and it is not feasible to evaluate the

information matrix at all of them. In view of these difficulties, one approach is to start by

specifying a larger set Θ′, such that the parameter space Θ is a subset of Θ′, and evaluate

the information matrix at a large number of randomly drawn points from Θ′, discarding

values of θ that do not imply a unique solution. The set Θ′ may be constructed by

specifying a lower and an upper bound for each element of θ. Such bounds are usually

easy to come by from the economic meaning of the deep parameters. An alternative

approach is to define Θ′ by specifying some univariate probability distribution for each

parameter θi. The benefit of this approach is that, by choosing the shape and parameters

of the distribution, one can achieve a better coverage of the parts of the space that are

believed to be more plausible. In practice the choice of distributions may follow the

logic of specifying a prior distribution for a Bayesian estimation of DSGE models (see

e.g. Del Negro and Schorfheide (2008)).

It should be stressed that the information matrix approach for identification analysis

applies only to full information methods. Identification with full information is necessary

but not sufficient for identification with limited information. The same applies to the

strength of identification - a well identified model may still suffer from weak identifica-

tion problems if the estimation approach is a limited information one. Thus, if a DSGE

model is to be estimated with methods, such as impulse response matching, that do not

utilize all model-implied restrictions on the distribution of the data, identification should

be studied differently. A general rank condition for local identification in DSGE models,
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which applies to any estimation approach that utilizes only first and second moments of

the data, is developed in Iskrev (2010). Applying that result, one can determine if θ is

identifiable from, for instance, the covariance and first-order autocovariance matrix of

some observable endogenous variables. This is useful to know even in a full information

setting since identification with limited information is sufficient, though not necessary,

for identification with full information methods. Thus, finding that the rank condition

in Iskrev (2010) is satisfied for some small number of second moments obviates the need

to compute the information matrix, which is generally more computationally expensive.

A second necessary condition for identification from Iskrev (2010), that does not de-

pend on statistical model and the distributional assumptions in particular, concerns the

invertibility of the mapping from τ - the reduced-form parameters, to θ. Note that by

the chain rule we have:

∂`T
∂θ′

=
∂`T
∂τ ′

∂τ

∂θ′
(3.11)

and therefore the information matrix may be written as

IT =

(

∂τ

∂θ′

)′

E

{(

∂`T
∂τ ′

)′(
∂`T
∂τ ′

)}(

∂τ

∂θ′

)

(3.12)

Thus, the Jacobian matrix ∂τ/∂θ′ must have full column rank in order for IT and

its limit I to be non-singular. If this condition does not hold some deep parameters

are unidentifiable for purely model-related reasons, not because of deficiencies of the

statistical model or lack of observations for some model variables. Furthermore, the

properties of the Jacobian matrix, when it has full column rank, has implications for

the strength of identification of θ. From (3.11) it is clear that the two types of weak

identification problems discussed in Section 3.1 may be due to either one of the fol-

lowing two transformations - from θ to τ , or from τ to `T , or to both. The second

transformation is partially determined by data limitations - how many and which of the

model variables are included, and the number of observations. The first one depends

only on the model, and the Jacobian matrix measures how sensitive are the elements of

τ to those of θ. A very low sensitivity means that relatively large changes in some deep

parameters have a very small impact on the value of τ . Consequently, these parameters

would be difficult to estimate even if one had data for all endogenous variables in the

model. In that sense we may say that such deep parameters are poorly identified in

the model. To find out what parameters are poorly identified, as well as what model
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features are causing the problem, one may proceed as in Section 3.3. Specifically, θi is

weakly identified in the model if either one of the following two conditions holds:

(a) τ is insensitive to changes in θi, i.e.

∂τ

∂θi
≈ 0 (3.13)

(b) The effect on τ of changing θi can be well approximated by changing other pa-

rameters in θ, i.e.

cos

(

∂τ

∂θi
,
∂τ

∂θ−i

)

≈ 1 (3.14)

If (a) is true, changing θi while keeping the other deep parameters fixed has almost

no effect on τ . This occurs when a parameter is almost irrelevant with respect to the

steady state and the dynamics of the model. If (b) is true, the angle between ∂τ/∂θi,

and the space spanned by the other columns of ∂τ/∂θ′ is nearly zero. This means that,

locally, the effect of changing θi is almost the same as changing one or more of the other

deep parameters.

4 Application: Identification in the Smets and

Wouters (2007) model

In this section I illustrate the identification analysis tools discussed above using a

medium-scale DSGE model estimated in Smets and Wouters (2007) (SW07 henceforth).

I start with an outline of the main components of the model, and then turn to the iden-

tification of the parameters.

4.1 The model

The model, based on the work of Smets and Wouters (2003) and Christiano et al. (2005),

is an extension of the standard RBC model featuring a number of nominal frictions and

real rigidities. These include: monopolistic competition in goods and labor markets,

sticky prices and wages, partial indexation of prices and wages, investments adjustment

costs, habit persistence and variable capacity utilization. The endogenous variables in

the model, expressed as log-deviations from steady state, are: output (yt), consumption
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(ct), investment (it), utilized and installed capital (kst , kt), capacity utilization (zt),

rental rate of capital (rkt ), Tobin’s q (qt), price and wage markup (µpt , µ
w
t ), inflation

rate(πt), real wage (wt), total hours worked (lt), and nominal interest rate (rt). The

log-linearized equilibrium conditions for these variables are presented in Table 1. The

last equation in the table gives the policy rule followed by the central bank, which sets

the nominal interest rate in response to inflation and the deviation of output from its

potential level. To determine potential output, defined as the level of output that would

prevail in the absence of the price and wage mark-up shocks, the set of equations in Table

1 is extended with their flexible price and wage version (see Table 2). The model has

seven exogenous shocks. Five of them - to total factor productivity, investment-specific

technology, government purchases, risk premium, and monetary policy - follow AR(1)

processes; the remaining two shocks - to wage and price markup, follow ARMA(1, 1)

processes.

The model is estimated using data of seven variables: output growth, consumption

growth, investment growth, real wage growth, inflation, hours worked and the nominal

interest rate. Thus, the vector of observables is given by

xt = [yt − yt−1, ct − ct−1, it − it−1, wt − wt−1, πt, lt, rt, ]
′ (4.1)

and the exogenous term in the measurement equation (2.3) is given by ut = 1 for all t,

and

D =
[

γ̄, γ̄, γ̄, γ̄, π̄, l̄, r̄
]′

(4.2)

where γ̄ is the growth rate of output, consumption, investment and wages, π̄ is the

steady state rate of inflation, l̄ is the steady state level of hours worked and r̄ is the

steady state nominal interest rate. Since there is no measurement error, the last term

in (2.3) is omitted.

The deep parameters of the model are collected in a 41-dimensional vector θ given

by1

θ = [δ, λw, gy, εp, εw, ρga, β, µw, µp, α, ψ, ϕ, σc, λ,Φ, ιw, ξw, ιp, ξp, σl,

rπ, r4y, ry, ρ, ρa, ρb, ρg, ρI , ρr, ρp, ρw, γ, σa, σb, σg, σI , σr, σp, σw, π̄, l̄]
′ (4.3)

1Note that by definition γ̄ = 100(γ−1), and r̄ is determined from the values of β, σc, γ and π̄ from

r̄ = 100( π̄γσc

β
− 1).
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4.2 Identification Analysis

The identifiability of the parameters in the SW07 model was studied in Iskrev (2010). It

was found that 37 out of the 41 parameters in (4.3) are locally identified; the remaining

four parameters - ξw, ξp, εw andεp, are not separately identifiable in the sense that in

the linearized model ξw cannot be distinguished from εw, and ξp cannot be distinguished

from εp. As in SW07, I will assume that εw and εp are known and are both equal to 10.

The purpose of this section is to study the strength of identification of the remaining

39 parameters.

4.2.1 Identification strength at the posterior mean

As a preliminary step I evaluate the strength of identification of θ at the posterior

mean reported in SW07. The purpose of doing this is twofold: first, the posterior mean

is of interest on its own as a value of θ where the empirical properties of the DSGE

model are in line with the post-war US data; second, the strength of identification at

the posterior mean will be used as a reference point to which the results for other points

in the parameter space are compared.

I evaluate the expected information matrix for T = 156 (the sample size in SW07),

and compute the measures of identification strength when θ is equal to the posterior

mean. Table 4 reports intervals of the form θ̂i ± std(θ̂i), where θ̂i denotes the posterior

mean and std(θ̂i) = 1/si(θ̂) is the the Cramér-Rao lower bound on the standard devi-

ation for θi. The meaning of the intervals depends on the exact sampling distribution

of the estimator of θ. In the case of normally distributed and unbiased estimators,

the reported intervals may be interpreted as liberal 68% confidence intervals.2 With

this interpretation in mind, it is interesting to compare the Cramér-Rao intervals with

the corresponding one-standard-deviation Bayesian intervals (see Table 3). Although

conceptually very different, by comparing the two types of intervals we can assess the

contribution of the prior information in the estimation of the parameters.

Starting with the behavioral and technology parameters, listed in the upper panel of

the table, the Cramér-Rao intervals are substantially larger, on average by 84%, than the

Bayesian intervals. Most pronounced are the differences for the discount factor β, the

wage stickiness parameter ξw, and policy response to inflation parameter rπ, for which

the intervals shown in Table 4 are 165%, 162% and 130% larger than the respective

2That is, the actual coverage probability of the intervals is smaller than 68%.
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Bayesian intervals. The differences are smallest for: the price stickiness parameter ξp

(3%), the capital share α (27%) and the price indexation parameter ιp (44%). Regarding

the structural shock parameters, the Cramér-Rao intervals are on average 28% larger

than the Bayesian intervals. Here the largest differences occur with respect to the MA

coefficient of the price markup shock µp (74%), the autoregressive coefficient of the

TFP shock ρa (56%), and the autoregressive coefficient of the monetary policy shock ρr

(46%). Among all model parameters, only for the trend growth rate γ is the Bayesian

credibility interval larger, with 24%, than the Cramér-Rao interval. Thus, the conclusion

we may draw from this comparison is that the prior information used in the estimation

of the model has a substantial effect in reducing the posterior uncertainty. The effect is

stronger for the behavioral and technology parameters because of the relatively tighter

priors, including the fact that δ, λw and gy are assumed known in Smets and Wouters

(2007).

In some cases it is easy to see, by inspecting the bounds in Table 4, whether the

identification of a parameter is strong or weak. For instance, the intervals are clearly

very large for parameters like ξw, σl or β, and very small for parameters like γ, ρ

and λ. However, due to the very different parameter values, it is difficult to assess

the relative strength of identification of different parameters. For instance it is not

immediately clear from the standard deviation bounds whether the capacity utilization

cost parameter (ψ) or the investment adjustment cost parameter (ϕ) is better identified.

A scale-independent measure of the strength of identification is sri (θ), defined earlier

as the absolute value of θi divided by the Cramér-Rao lower bound on the standard

deviation of the parameter. This measure are also reported in Table 4, and we can see

that in fact ψ is better identified than ϕ. Overall, the best identified are ρg, ρw, ρa, γ,

ρ and ρp, with values of sri (θ) between 87.5 and 15; the worst identified parameters are

l̄, β, ρr, σl, ιp, λw, and ry with values of sri (θ) between .4 and 2.2.

The different degrees of identification strength reflect differences in the importance

of the parameters in determining the empirical properties of the model. Identification is

weak when a parameter is either nearly irrelevant, because it does not affect much the

likelihood, or nearly redundant, because the effect of the parameter on the likelihood

can be replicated by other parameters. The importance of these two factors can be

determined using the factorization of sri (θ) in (3.10). The two components are shown in

Table 4 under the labels sens. and col. Furthermore, the last column shows the values of

the multiple correlation coefficients associated with the collinearity components, which
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are bounded between 0 and 1 and therefore easier to interpret. From there we can see

that strong collinearity is an important factor for many parameters, and in particular

for λw, ξw, σc, µp, µw ρp, rπ and λ. However, the overall strength of identification could

still be high if the sensitivity components are sufficiently large, as is the case for λ, ρp

and µw. On the other hand, there are parameters such as l̄, β and ρp, which are poorly

identified mainly because of their very low sensitivity components. Note that even if

we set the collinearity terms to 1, which is the upper bound achieved when there is

either zero collinearity or when all other parameters are assumed known, the relative

strength of identification for these three parameters would still be lower than for most

other parameters.

The correlation coefficients ρi in Table 4 are computed with respect to all 38 param-

eters other than θi. It is reasonable to expect that there are small subsets of parameters,

representing closely related features in the model, which are most important, while the

others having only a marginal contribution. To find out what these subsets are, I com-

pute the multiple correlation coefficients between ∂`(θ)/∂θi and ∂`(θ)/∂θ−i(n), where

θ−i(n) is a subset of n elements of θ−i, for all possible n-tuples, and pick the largest

one denoting it by %i(n). Table 5 shows the results for n between 1 and 4. For most

parameters, and in particular for those with the highest collinearity values, the results

with 4 parameters come very close to what we have for the coefficients of multiple cor-

relation (i.e. for %i(n) with n=38) in Table 4. Note also that in a few cases, namely for

the price markup shock coefficients (µp and ρp), and for the the wage stickiness and the

steady state wage markup parameters (ξw and λw), we have very large coefficients of

pairwise correlation (i.e. for n = 1). This suggest that the parameters in these pairs are

difficult to distinguish on the basis of their effects on the likelihood. In general, however,

it is not sufficient to examine the pairwise correlations in order to appreciate the full

extent of the collinearity problems. For instance, the largest pairwise correlations for

the monetary policy rule parameters rπ, ρ, and ry are around .3, while the multiple

correlation coefficients increase to .9 with 4 parameters, and are even larger when all 38

parameters are included.

One interpretation of large correlation coefficients in Table 5 is that some parameters

play very similar roles in the structural model, and virtually the same model features

are represented by several different parameters. However, we should keep in mind the

fact that the likelihood functions represents only seven of the variables in the model (see

eq. (4.1)). Thus, the collinearity patterns in Table 5, as well as the sensitivity values in
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Tables 4, are partially determined by the choice of observables, and may change with

a different or a larger set of variables. As suggested in Section 3.3, a simple way to

find out whether the identification problems are independent of the observables is to

study the Jacobian matrix of the reduced-form parameters τ with respect to θ. Since τ

fully characterizes the steady state properties and the equilibrium dynamics of all model

variables, parameters with very weak or highly collinear effects on τ are likely to have

similar problems with respect to any subset of observables. Table 6 reports measures of

sensitivity and collinearity in the model. Specifically, the sensitivity to parameter θi is

computed as the norm of the vector of elasticities of τ with respect to θi; the collinearity

of θi is measured by the cosine of the angle between ∂τ/∂θi and the hyperplane spanned

by the columns of ∂τ/∂θ−i. The table also shows measures of collinearity with respect

to smaller sets of parameters, selected to maximize the value of the cosine among all

possible sets of given size. A comparison with Tables 4 and 5 shows that, in many cases,

the identification properties of the parameters can be traced back to the structural

model. For example, parameters with very low sensitivity in terms of τ also have low

sensitivity components of sri (θ). A notable exception is the trend parameter γ, which

has one of the largest sensitivity components in Table 4 in spite of the relatively low

sensitivity in terms of τ . This is due to the disproportionately large influence on the

likelihood of the steady state component of the solution vector compared to most other

elements of τ . Comparing the last four columns of Tables 5 and 6 reveals that the

collinearity relationships with respect to the likelihood can be explained largely by the

very similar effects of parameters on the solution of the model. There appears to be

larger discrepancy between the two tables in terms of the overall measures of correlation

(column 2 in Table 5) and collinearity (column 3 in Table 6). Particularly striking is the

difference for the steady state parameter for hours (l̄), for which the numbers are .815

and 0, respectively. The explanation for this difference is that, while l̄ only affects the

mean of hours worked and is the only parameter that does that (hence the zero), the

value of %i also depends on the covariance matrix of the sample means of all observables;

since the latter is not diagonal, this results in a non-zero multiple correlation for l̄.

Some insights on the role of the observed variables in the identification of the pa-

rameters may be gained by comparing the strength of identification with and without

each variable. This would tell us, for instance, which observable is most informative for

a given parameter, and how much would be lost in terms of estimation precision if any

one of the seven variables is not used in the estimation of the model. Table 7 reports
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the ratios of the values of sri (θ) with six and with seven variables. All values are smaller

then 1, which means that all variables are informative, albeit to different degrees, for

all parameters. The most informative variables are the the ones whose exclusion leads

to the largest decrease in the identification strength. Thus, 4yt is the most informative

variable for 3 parameters (ρga, σa and σg), 4ct is the most informative variable for 8

parameters (σc, λ, ξw, ρb, ρg, σb, λw and gy), 4it is the most informative variable for 7

parameters (α, ψ, ϕ, ρI , γ, σI and δ), lt is the most informative variable for 5 parameters

(l̄,Φ, ξp, σl and ρa), πt is the most informative variable for 5 parameters (π̄, ιp, ry, ρ, and

σp), 4wt is the most informative variable for 7 parameters (µw, µp, ιw, ρp, ρw, and σw)

and rt is the most informative variable for 5 parameters (β, rπ, r4y, ρr, and σr).

It is important to remember that the results discussed so far are conditional on

the particular parameter values used to evaluate the information matrix. There is no

guarantee that what was found regarding the (relative) strength of identification, the

sensitivity and collinearity patterns among the parameters and the role of observables

remains true in other regions of the parameter space. To establish that, it is necessary

to apply the analysis to other points in Θ. This is the subject of the next section.

4.2.2 Identification strength in Θ

Here I proceed along the lines discussed in Section 3.3. Specifically, I draw randomly

100, 000 points from Θ, which is defined using the prior distribution in SW07 (see

Table 3), and evaluate the identification strength of the parameters at each point. As

before, the expected information matrix is evaluated for T = 156. The results are

summarized in Table 8 showing the means, the coefficient of variation,3 and the deciles

of the distributions of sri (θ).

A close examination of the table sheds some light on the the generality of the findings

regarding the strength of identification at the posterior mean. For more than half of the

parameters the values of sri (θ) at the posterior mean of θ are smaller than the 2-th deciles

in Table 8. For 7 of the 39 parameters identification at the posterior mean is weaker than

the 1-th deciles, and only 9 of them are better identified at the posterior mean than the

median values in Table 8. On average, the median values in Table 8 are 2.4 times larger

than respective values of sri (θ) at the posterior mean; however, the difference is much

larger in the case of l̄ (17.7 times), γ (11.8 times), ρr (5.9 times), ιp (5 times), and goes

in the opposite direction for parameters like ξw (.7 times), µp (.5 times), µw (.15 times)

3The coefficient of variation is defined as the standard deviation divided by the mean.
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and ρw (.04 times). All of this suggests that the posterior mean value of θ is located in

a region of the parameters space where, with a few exceptions, the parameters in the

model are much worse identified than in the rest of Θ. Furthermore, there are some

striking differences in the ranking of the parameters in terms of identification strength

when θ is equal to the posterior mean, and the ranking in Table 8 using either the mean

or the median values of the bounds. In particular, ρp, ρw, µw are better identified than

most parameters at the posterior mean, but are among the worst identified in general,

according to the results in Table 8. Conversely, ρr and ψ are relatively well identified

in general, but are worse identified than most parameters at the posterior mean. Apart

from this, the results at the posterior mean are consistent with those in Table 8 in

ranking λw, ξw, l̄, β, σl, and ry among the worst identified, and γ, ρ, λ, ξp, Φ, σg, σa

and σr among the best identified parameters in the model.

It is worth noting that the strength of identification of many parameters changes

quite substantially as θ varies in the parameter space. Comparing the first and ninth

deciles in Table 8 shows that the highest values of sri (θ) for the relatively weakly iden-

tified parameters exceed the lowest values of the relatively well identified ones. For in-

stance, while only 5 parameters have values of sri (θ) greater than 10 in the first deciles,

only 6 parameters have values of less than 10 in their ninth deciles. This implies that,

with some exceptions, the strength of identification cannot be regarded as a constant

feature of the model, but is something which depends on where in Θ we evaluate the

model.

As before, the results in Table 8 can be explained with the relative importance of each

parameter in determining the statistical implications of the DSGE model. Tables 9 and

10 summarize the distributions of the sensitivity and collinearity (in terms of %i) factors

in the decomposition of sri (θ). From there we see that γ is generally very well identified

because both components are large and relatively stable across Θ. This means that

γ is a parameter with a strong and unique effect on the probability distribution of the

observables, irrespectively of the value of θ. From the other well identified parameters, ρ,

λ, ξp and Φ tend to have much smaller collinearity terms which, however, is compensated

by sufficiently large sensitivity components. The reverse is true for the shock parameters

σg, σa and σr. Among the worst identified parameters, λw, ξw, σl and ϕ have large

sensitivity and small collinearity components. Thus, in the SW07 model each one of

these parameters represents a structural feature that is well identified empirically, but is

associated with more than one deep parameters. The weak identification of l̄ is mostly
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due to the very small sensitivity component, while that of β - to the relatively small

values of both the sensitivity and the collinearity components.

The extend to which these properties of the parameters are inherent in the structure

of the model, and not caused by the limited set of observables, is investigated by studying

the behavior of the derivative of τ as θ varies in Θ. Table 11 provides information

about the distribution of the elasticity of τ with respect to θ, and Table 12 does the

same for the collinearity among the columns of the matrix. The results are consistent

with what was found for the posterior mean: the likelihood tends to be more sensitive

to parameters to which τ is very elastic, and strong collinearity with respect to the

likelihood is typically associated with strong collinearity among the derivatives of τ . A

few notable exceptions to these patterns are: (1) γ, which, as in Section 4.2.1, has a very

strong effect on the likelihood, in spite of the very low elasticity of the reduced-form

parameters to it; and (2) the markup shock parameters ρw, µp, µw tend to have relatively

large multiple correlation coefficients and relatively low collinearity with respect to τ .

These, and other less pronounced discrepancies may be explained with the process of

constructing the likelihood function (see Section 2.2), which results in assigning very

different weights to the elements of τ as they enter in the information matrix for a

particular set of observables. On the other hand, each parameter in τ is weighted

equally in the measures of sensitivity and collinearity with respect to τ .

The large values of %i in Table 10 suggest that the collinearity problems are pervasive

in the SW07 model. This means that many model features can be well approximated

by more than one deep parameter. From Section 4.2.1 we know that it is often possible

to find small subsets of parameters that explain most of the collinearity captured by %i.

There is no guarantee, however, that the optimal selections of parameters remain the

same for values of θ different from the posterior mean. To explore this further, I proceed

as in Section 4.2.1 and compute, for each θi, the coefficients of multiple correlation

between ∂`(θ)/∂θi and ∂`(θ)/∂θ−i(n) for all possible subsets of n = 1, . . . , 4 elements

of θ−i. This is done for the parameter values corresponding to the deciles of %i in Table

10, and the results are reported in Tables 13 to 15 for the first, fifth and ninth deciles.

As in Section 4.2.1, it is often sufficient to use four or fewer parameters to reach to a

degree of collinearity close to the one with all 38 parameters. However, although there

is some degree of consistency in the selected parameters, the optimal sets change quite

substantially depending on where in the parameter space we evaluate the model. For

instance, the effect of the labor supply elasticity parameter (σl) may be closest to that of
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either the wage stickiness parameter (ξw), the wage markup parameter (λw), the policy

rule coefficient (r4y) or the intertemporal substitution parameter (σc); when two or

more parameters are considered, the optimal selections include also other labor market-

related parameters - µw, ιw and σw, or preference parameters - λ and σc. The tables

also indicate that there is a strong similarity among the monetary policy parameters

(rπ, ry, r4y, ρ, ρr, σr), the price markup (ρp, µp, σp) and wage markup (ρw, µw, σw) shock

parameters.

4.3 Identification strength and model features

One of the more striking findings of the previous section is the large variability in the

strength of identification across different regions in the parameter space. This suggests

that most parameter in the model may be either very well or very poorly identified

depending on where in Θ we evaluate the model. A natural question to ask is: what

determines these differences. The purpose of this section is to try to answer this ques-

tion by establishing links between different features of the model and the strength of

identification of the parameters.

An obvious place to start are the values of individual deep parameters. Naturally,

there is a substantial variability in the values of θ associated with the deciles of sri (θ)

in Table 8. It is conceivable that these variations are to some extend systematic, i.e

that there is a systematic relationship between the values of one or more parameters

and the strength of identification of a given θi. Such relationship exists when the values

of a parameter, say θj , in the region of Θ where θi is well identified, are systematically

different from the values in the region of Θ where θi is poorly identified. This idea

underlies a procedure known as Monte Carlo filtering (see Ratto (2008) for a detailed

discussion and a different application in the context of DSGE models). The decision of

whether the values θj in the two regions of Θ are different is made on the basis of the

outcome from a two-sample Kolmogorov-Smirnov test for equality of two distribution

functions. The two-sided version of the test rejects if the two distributions are different,

which indicates that there is a systematic relationship between the value of θj and the

strength of identification of θi. A one-sided version may also be used to determine the

sign of the relationship, i.e. whether larger values of θj are associated with stronger or

weaker identification of θi.

Four types of outcomes are possible: (1) there is a systematic positive relationship;

(2) there is a systematic negative relationship; (3) there is a systematic relationship
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which is positive for some values of θj and negative for other values; (4) there is no

systematic relationship, i.e. the distributions of θj in the two subsets are the same.

Figure 2 illustrates each of these cases, showing the cumulative distribution functions

(CDFs) of the interest rate smoothing parameter (ρ), the Taylor rule coefficient on

inflation (rπ), the autoregressive coefficient of the risk premium shock (ρb), and the

Taylor rule coefficient on output growth (r4y) in regions of Θ where the elasticity of

intertemporal substitution (σc) is more strongly (solid line) and more weakly (dashed

line) identified. The figure is constructed using the previously obtained sample from Θ

from which the two regions of the parameter space are defined using the 2-th and 8-th

decile of sri (θ) for σc. In panel (a) the CDF of ρ in the region of stronger identification

of σc is larger than in the region of weaker identification. This means that larger values

of ρ tend to be associated with stronger identification of σc. The reverse is true for

rπ - larger values tend to be associated with weaker identification of σc, as may be

seen from panel (b) of Figure 2. In panel (c) the CDFs of ρb in the two regions of Θ

intersect at approximately ρb = .5. This means that the region of Θ where σc is better

identified is associated with smaller values of ρb when ρb is smaller than .5, and with

larger values of ρb when it is greater than .5. In panel (d) we see that the CDFs of r4y

in the two regions of Θ lie on the top of each other, implying that there is no systematic

relationship between the values of that parameter and the strength of identification of

σc. In all cases the conclusions from the visual inspection of the CDFs are supported

by the outcomes from the two-sample Kolmogorov-Smirnov test.

Proceeding with visual inspection and formal testing for equality of the distribu-

tions for all possible pairs of parameters produces the results shown in Table 16 with

the following notation: in cell (i, j) the sign “+” (“−”) indicates that the cumulative

distribution function of θj in the region of Θ where θi is better identified is everywhere

greater (smaller) than the cumulative distribution function of θj where θi is worse iden-

tified. With “±” are indicated the cases where the two distributions are different, but

the cumulative distribution functions intersect. Lastly, an empty cell means that that

the two distributions are the same.

From Table 16 it is clear that the strength of identification of most parameters is

influenced by many of the structural features of the model. Furthermore, the plots of

the distribution functions show that in most cases the parameter values on which the

distribution functions assign positive mass are the same in the region of stronger as

in the region of weaker identification. This means that there are no values that are
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exclusively associated with either stronger or weaker identification of the parameter in

question. Some exceptions to this observation are presented in Figures 3 and 4. In

panels (a) to (i) of Figure 3 are shown cases where very large values of a parameter are

located only in the region of stronger identification and/or very small values are located

only in the region of weaker identification; in panels (j) to (l) the opposite is true: very

large values are located only in the region of weaker identification and/or very small

values are located only in the region of stronger identification. Note that in most cases

the relationship is between the value of a parameter and the strength of identification of

the same parameter. Figure 4 is similar, except that it focuses on the effect of structural

shock parameters. According to the plots, very persistent or very volatile shocks are

associated with stronger identification for all except the last four of the depicted deep

parameters.

In addition to quantifying the structural characteristics of the model, the value

of θ determines the statistical properties of the model variables. We can therefore

ask whether there is a systematic relationship between properties such as persistence,

volatility and correlation structure of the observables, and the strength of identification

of the deep parameters. Some evidence for such relationships may be found in Table 16

since the shock parameters affect directly the degree of persistence and volatility of the

variables, while many of the other deep parameters represent frictions which have similar

effect through the transmission mechanism in the model. To study the question formally

I use the same Monte Carlo filtering procedure as before. The variables’ volatility and

correlation are obtained from the theoretical covariance matrix, while the persistence is

measured as the population value of the sum of the first five autoregressive coefficients.4

As can be seen from Table 17, both persistence and volatility tend to be larger in the

better identified regions for most parameters. Notable exceptions are l̄, π̄, γ and β,

for which the relationship is reversed, and µw, µp, ρa and ρg, for which there is no or

little evidence for systematic relationships. The results for the correlation structure

are presented separately, in Tables 18 and 19, for the positive and negative values

of the correlation coefficients. This accounts for the possibility that the sign of the

correlation coefficients may affect the relationship between their magnitude and the

strength of identification. This is indeed the case for some parameters; for instance,

the correlation between consumption and the interest rate tends to be stronger when

4There is no unique universally accepted measure of persistence. The result I report are not sensitive
to the number of autoregressive coefficients included in the sum.
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positive but weaker when negative in the region where the Taylor rule parameters rπ

and ry are better identified. However, in most cases what matters is the absolute value

of the correlation, and larger correlations of the variables are associated with stronger

identification of the deep parameters.

Before concluding this section, a comment on the number of parameter draws is in

order. It is difficult to say how many draws are required to cover the parameter space

of model. The identification analysis in this section is only intended as an illustration of

the general approach and not as a complete study of identification issues on the SW07

model. One possible test on the generality of the results is to check whether summary

statistics of the distributions of the identification strength measures (e.g. the means,

and the deciles) have converged. I have found that the results in in Table 8 change very

little if instead of the full sample of 100, 000 I use only half of the draws.

5 Identification strength when θ is random

Until now the parameters were treated as non-random. This is consistent with the fre-

quentist tradition of parametric statistical inference where θ is regarded as unknown but

fixed. It is also the natural approach if one wants to understand how the identification

properties of a model depend on the particular value of θ. In this section I consider the

case where θ is regarded as a random variable, which is an essential characteristics of

the Bayesian approach to inference.

According to the Bayesian point of view, there is no true unknown value of θ.

Instead, one has prior beliefs about the probability of different values, and updates

these beliefs on the basis of the evidence provided by the data. Specifically, if p(θ) is

the prior distribution of θ, and p(X; θ) is the likelihood function, the Bayesian inference

for θ is based on the joint density:

p(X, θ) = p(X; θ)p(θ) (5.1)

The Bayesian information matrix may be defined similarly to (2.5)

J := EX,θ

[{

∂ log p(X, θ)

∂θ′

}′{
∂ log p(X, θ)

∂θ′

}]

, (5.2)

where the subscript indicates that the expectation is with respect to the joint probability

density. Van Trees (1968) shows that the inverse of J plays the role of a posterior bound

29



analogous to the Cramér-Rao lower bound in classical statistics. In particular, if θ̂ is a

Bayesian estimator of θ, then the mean squared error of θ̂ is bounded as follows

EX,θ

[

(

θ̂ − θ
)(

θ̂ − θ
)′
]

≥ J
−1 (5.3)

Unlike the Cramér-Rao lower bound, the inequality in (5.3) holds for biased estimators.

It is assumed, however, that some regularity conditions are satisfied, one of which is that

the prior p(θ) is zero at the boundary of its support (see Van Trees (1968) for details).

Since p(X, θ) = p(X; θ)p(θ), the Bayesian information matrix can be decomposed as

the sum of two matrices

J = J D + J P , (5.4)

where J D := Eθ [I(θ)] is the data component of J and J P := Eθ

[

{

∂ log p(θ)
∂θ′

}′ {
∂ log p(θ)
∂θ′

}

]

is the prior component of J . Note that, like the Fisher information matrix, J does not

depend on a particular X. Thus, it can be used to assess the strength of identification

of θ in a Bayesian setting prior to the estimation of the model. For instance, (5.3) im-

plies that the root mean squared error (RMSE), or the standard deviation for unbiased

estimators, of θ̂i is bounded from below by the i-th diagonal element of J
−1/2. The

required expectations with respect to the prior distribution of θ are straightforward to

compute numerically. This is illustrated in Table 20, where I show the Bayesian bounds

for the posterior mean in SW07, computed using the previously obtained sample of

100,000 draws from Θ. To make the comparison with the earlier results easier, the

bounds are shown in terms of θ̂i± (the value of the bound for the RMSE of θ̂i). Also, in

the table I have replicated the posterior one-standard-deviation intervals, as well as the

frequentist Cramér-Rao bounds. There is a remarkable similarity between the Bayesian

a priori and posterior bounds. On average, the a priori bounds are about 5% wider,

which may be explained with the fact that three parameters (δ, λw and gy) were fixed

in the estimation of θ. The frequentist bounds, on the other hand, are on average 50%

wider than the Bayesian a priori bounds. As in Section 4.2.1, the differences are much

smaller for the structural shock parameters and the growth rate γ, while for parameters

like λw and ξw, the frequentist bounds are about three times as large as the Bayesian

ones.

It is clear from (5.4) that the size of the Bayesian bounds is determined by the

interaction of the likelihood and the prior distribution. Furthermore, unless both J D

and J P are diagonal, the bound for each parameter in general depends on the prior
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distribution of every other parameter. A common approach to assess the sensitivity to

priors is to re-estimate the models using increasingly diffuse priors. A simple alternative

is to compute the derivative of the bound in (5.3) with respect to the prior precision

parameters. In the case of independent priors, one could compute the derivatives with

respect to the prior standard deviations. This would provide some indication on the

relation between prior and posterior uncertainty. Table 21 reports measures of sensitivity

to the prior uncertainty in the SW07 model, expressed in terms of the rate at which

an increase in the prior standard deviation is translated into an increase in the bound

on the RMSE. For instance, 1 in the (i, j) cell of the table means that 100% increase

in the prior standard deviation of parameter θj leads to a 1% increase in the bound

for parameter θi. Empty cells in the table indicate that the effect is less than 1%. As

may be expected, the strongest effect of increasing the prior uncertainty of a parameter

is on the posterior uncertainty bound of the same parameter. The magnitude of the

effect varies from more than 70% for π̄, δ and λw to 1% or less for γ, ρa, ρg, ρw and the

standard deviations of the seven shocks.5 In many cases there is also a substantial effect

on the bounds of other parameters; for instance, an increase of 1% in the prior standard

deviations of rπ leads to a .23% increase in the posterior bounds for ρ and ry. Note that

the patterns revealed in Table 21 are quite similar to what was discovered earlier about

the collinearity relationships among the parameters’ effects on the likelihood function.

This is not surprising as both measures reflect the fact that information, whether in the

likelihood or the prior, is shared among parameters with overlapping functions in the

structural model.

A related question concerns the effect of fixing some parameters, i.e. reducing the

prior uncertainty to zero. This is a common practice in the DSGE literature; for instance,

Smets and Wouters (2007) fix three parameters - δ, λw and gy. How this would affect

the estimation results can be analyzed by measuring the change in the posterior bounds

before and after a parameter is fixed. The effect of fixing any one of the parameters in

the SW07 model is reported in Tables 22 and 23. We can see that the effects of fixing

δ or gy are relatively small, at most 4% and 1.1%, respectively. Fixing λw, on the other

hand, has a significant effect for two parameters - 16% for ξw and 5% for λ, and weaker

effects of about 1% for φ, σl, ρ, β and µw. There are a significant (between 16% and

21%) reductions of the bounds of the Taylor rule parameters (ρ, ry and rπ) when any

5The columns for ρa, ρg, ρw and the standard deviations of the shocks are omitted from Table 21
because all sensitivities to these parameters are less than 1%.
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of them is fixed. Other notable examples of a strong effect include λ and σc as well as

some of the structural shock parameters (ρb and σb, ρI and σI , µp and ρp). Overall, the

patterns are similar to what we have in Table 21.

6 Concluding Remarks

There are two main reasons why we should care about identification in DSGE mod-

els. First, using such models for policy analysis hinges upon having reliably estimated

parameters. Obtaining such estimates is impossible when identification fails or is very

weak. Second, identification failures often have their roots in the underlying model and

the economic theory that motivated it. Thus, detecting identification problems and

investigating the causes leading to them may provide useful insights to researchers who

are not interested in estimation.

This paper develops a new framework for analyzing parameter identification in lin-

earized DSGE models. By following the steps and applying the tools described here,

researchers can assess how well identified the model parameters are, and determine the

causes for identification problems when they occur. The main advantage of the method-

ology is that it does not involve simulation or estimation. This makes it suitable for

analysis of large and complicated models prior to their empirical evaluation.

An important lesson learnt from the application of the methodology is that the

identification properties of a model are strongly dependent on the parameter values,

and may change quite dramatically across different regions in the parameter space.

Therefore, it is a mistake to label a model as “weakly identified” or “strongly identified”,

unless it is determined that either one of this conclusions applies to the large majority

of the theoretically plausible parameter values. Unfortunately, the results indicate that

many parameters in the Smets and Wouters (2007) model are quite poorly identified in

most of the parameter space. The analysis also shows that the identification problems

are largely due to the structure of the model, and could not be resolved by extending

the set of observed variables. Thus, it may be concluded that this and other similar

models are indeed nearly overparameterized, as has been suggested in the literature.

One limitation of the approach in this paper is that it cannot detect certain types

of global identification problems. It is possible that some parameters are well identified

locally, and yet globally unidentifiable or poorly identified. Such identification failures

are less common, but not impossible. Unfortunately, they are very difficult to discover
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in large and highly non-linear models as those estimated in the DSGE literature.
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Table 1: Log-linearized equations of the SW07 model (sticky-price-wage economy)

(1) yt = cyct + iyit + rksskyzt + εgt

(2) ct =
λ/γ

1 + λ/γ
ct−1 +

1

1 + λ/γ
Et ct+1 +

wsslss(σc − 1)

cssσc(1 + λ/γ)
(lt − Et lt+1)

− 1−λ/γ
(1+λ/γ)σc

(rt − Et πt+1) −
1−λ/γ

(1+λλ/γ)σc
εbt

(3) it = 1
1+βγ(1−σc) it−1 + βγ(1−σc)

1+βγ(1−σc) Et it+1 + 1
ϕγ2(1+βγ(1−σc))

qt + εit

(4) qt = β(1 − δ)γ−σc Et qt+1 − rt + Et πt+1 + (1 − β(1 − δ)γ−σc) Et r
k
t+1 − εbt

(5) yt = φp(αk
s
t + (1 − α)lt + εat )

(6) kst = kt−1 + zt

(7) zt = 1−ψ
ψ rkt

(8) kt = (1 − δ)/γkt−1 + (1 − (1 − δ)/γ)it + (1 − (1 − δ)/γ)ϕγ2(1 + βγ(1−σc))εit

(9) µpt = α(kst − lt) − wt + εat

(10) πt = βγ(1−σc)

1+ιpβγ(1−σc) Et πt+1 +
ιp

1+βγ1−σc ιp
πt−1 −

(1−βγ(1−σc)ξp)(1−ξp)

(1+ιpβγ(1−σc))(1+(φp−1)εp)ξp
µpt + εpt

(11) rkt = lt + wt − kt

(12) µwt = wt − σllt −
1

1−λ/γ (ct − λ/γct−1)

(13) wt = βγ(1−σc)

1+βγ(1−σc) (Etwt+1 + Et πt+1) + 1
1+βγ(1−σc) (wt−1 + ιwπt−1) −

1+βγ(1−σc)ιw
1+βγ(1−σc) πt

− (1−βγ(1−σc)ξw)(1−ξw)

(1+βγ(1−σc))(1+(φw−1)εw)ξw
µwt + εwt

(14) rt = ρrt−1 + (1 − ρ)(rππt + ry(yt − y∗t )) + r4y((yt − y∗t ) − (yt−1 − y∗t−1)) + εrt

(15) εat = ρaε
a
t−1 + ηat

(16) εbt = ρaε
b
t−1 + ηbt

(17) εgt = ρgε
a
t−1 + ρgaη

a
t + ηgt

(18) εit = ρIε
I
t−1 + ηIt

(19) εrt = ρrε
r
t−1 + ηrt

(20) εpt = ρpε
p
t−1 + ηpt − µpη

p
t−1

(21) εwt = ρwε
w
t−1 + ηwt − µwη

w
t−1

Note: The model variables are: output (yt), consumption (ct), investment (it), utilized and
installed capital (ks

t , kt), capacity utilization (zt), rental rate of capital (rk
t ), Tobin’s q (qt),

price and wage markup (µp
t , µ

w
t ), inflation rate(πt), real wage (wt), total hours worked (lt),

and nominal interest rate (rt). The shocks are: total factor productivity (εa
t ),

investment-specific technology (εi
t), government purchases (εg

t ), risk premium (εb
t), monetary

policy (εr
t ), wage markup (εw

t ) and price markup (εp
t ).
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Table 2: Log-linearized equations of the SW07 model (flexible-price-wage economy)

(1) y∗t = cyc
∗
t + iyi

∗
t + rksskyz

∗
t + εgt

(2) c∗t =
λ/γ

1 + λ/γ
c∗t−1 +

1

1 + λ/γ
Et c

∗
t+1 +

wsslss(σc − 1)

cssσc(1 + λ/γ)
(l∗t − Et l

∗
t+1)

− 1−λ/γ
(1+λ/γ)σc

r∗t −
1−λ/γ

(1+λλ/γ)σc
εbt

(3) i∗t = 1
1+βγ(1−σc) i

∗
t−1 + ββγ(1−σc)

1+βγ(1−σc) Et i
∗
t+1 + 1

ϕγ2(1+βγ(1−σc))
q∗t + εit

(4) q∗t = β(1 − δ)γ−σc Et q
∗
t+1 − r∗t + (1 − β(1 − δ)γ−σc) Et r

k∗
t+1 − εbt

(5) y∗t = φp(αk
s∗
t + (1 − α)l∗t + εat )

(6) ks∗t = k∗t−1 + z∗t

(7) z∗t = 1−ψ
ψ rk∗t

(8) k∗t = (1 − δ)/γk∗t−1 + (1 − (1 − δ)/γ)i∗t + (1 − (1 − δ)/γ)ϕγ2(1 + βγ(1−σc))εit

(9) µp∗t = α(ks∗t − l∗t ) − w∗
t + εat

(10) µp∗t = 1

(11) rk∗t = l∗t + w∗
t − k∗t

(12) µw∗t = −σll
∗
t −

1
1−λ/γ (c∗t + λ/γc∗t−1)

(13) w∗
t = µw∗t

Note: The model variables are: output (y∗t ), consumption (c∗t ), investment (i∗t ), utilized and
installed capital (ks∗

t , k∗t ), capacity utilization (z∗t ), rental rate of capital (rk∗
t ), Tobin’s q (q∗t ),

price and wage markup (µp∗
t , µw∗

t ), real wage (w∗
t ), and total hours worked (l∗t ).
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Table 3: Prior and posterior distribution

prior posterior

par. interpretation density mean std. mean std. mean ± std.

ϕ invest. adj. cost N 4.000 1.500 5.744 1.029 4.715 6.773
σc inv. elast. intert. subst. N 1.500 0.375 1.380 0.131 1.249 1.511
λ habit B 0.700 0.100 0.714 0.041 0.673 0.755
ξw wage rigidity B 0.500 0.100 0.701 0.071 0.630 0.771
σl inv. elast. hours N 2.000 0.750 1.837 0.619 1.217 2.456
ξp price rigidity B 0.500 0.100 0.650 0.058 0.592 0.709
ιw wage indexation B 0.500 0.150 0.589 0.133 0.456 0.722
ιp price indexation B 0.500 0.150 0.244 0.092 0.152 0.336
ψ cap. utilization cost B 0.500 0.150 0.546 0.115 0.431 0.662
Φ fixed cost N 1.250 0.125 1.604 0.078 1.527 1.682
rπ response to inflation N 1.500 0.250 2.045 0.181 1.864 2.227
ρ int rate smoothing B 0.750 0.100 0.808 0.024 0.784 0.833
ry response to output N 0.125 0.050 0.088 0.022 0.065 0.110
r4y response to output growth N 0.125 0.050 0.224 0.027 0.196 0.251
π̄ st.state infl. G 0.625 0.100 0.785 0.098 0.687 0.883
β′ discount factor∗ G 0.250 0.100 0.166 0.060 0.106 0.227
l̄ st. state hours N 0.000 2.000 0.542 0.605 -0.063 1.147
γ trend growth rate N 0.400 0.100 0.431 0.014 0.417 0.445
α capital share N 0.300 0.050 0.191 0.018 0.173 0.208
δ depreciation rate† B 0.025 0.005 n.a. n.a. n.a. n.a.
λw wage markup† N 1.500 0.250 n.a. n.a. n.a. n.a.
gy government/output† N 0.180 0.050 n.a. n.a. n.a. n.a.

ρa AR prod. shock B 0.500 0.200 0.958 0.010 0.947 0.968
ρb AR risk premium B 0.500 0.200 0.217 0.084 0.133 0.301
ρg AR government B 0.500 0.200 0.976 0.008 0.968 0.985
ρI AR investment B 0.500 0.200 0.711 0.059 0.652 0.770
ρr AR mon. policy B 0.500 0.200 0.151 0.065 0.086 0.217
ρp AR price markup B 0.500 0.200 0.891 0.046 0.845 0.938
ρw AR wage markup B 0.500 0.200 0.968 0.013 0.955 0.981
µp MA price markup B 0.500 0.200 0.699 0.087 0.612 0.786
µw MA wage markup B 0.500 0.200 0.841 0.051 0.790 0.893
ρga prod. shock in G B 0.500 0.200 0.521 0.089 0.432 0.610
σa st.dev. prod. shock IG 0.100 2.000 0.460 0.027 0.432 0.487
σb st.dev. risk premium IG 0.100 2.000 0.240 0.023 0.217 0.264
σg st.dev. government IG 0.100 2.000 0.529 0.030 0.499 0.559
σI st.dev. investment IG 0.100 2.000 0.453 0.048 0.405 0.502
σr st.dev. mon. policy IG 0.100 2.000 0.245 0.015 0.231 0.260
σp st.dev. price markup IG 0.100 2.000 0.140 0.017 0.123 0.157
σw st.dev. wage markup IG 0.100 2.000 0.244 0.022 0.222 0.266

Note: N is Normal distribution, B is Beta-distribution, G is Gamma distribution, IG is Inverse
Gamma distribution.
∗ β′ := 100(β−1 − 1) where β is the discount factor.
† these parameters are assumed known in SW07.
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Table 4: Identification strength at the posterior mean

Par. θ̂i θ̂i ± std(θ̂i) sri (θ̂) sens. col. %i
ϕ 5.744 3.432 8.056 2.5 5.5 0.45 0.894
σc 1.380 1.086 1.675 4.7 21.9 0.21 0.977
λ 0.714 0.651 0.777 11.4 33.1 0.34 0.939
ξw 0.701 0.515 0.886 3.8 40.3 0.09 0.996
σl 1.837 0.767 2.906 1.7 4.4 0.39 0.920
ξp 0.650 0.590 0.711 10.8 28.3 0.38 0.924
ιw 0.589 0.379 0.799 2.8 4.0 0.70 0.716
ιp 0.244 0.110 0.377 1.8 4.1 0.44 0.898
ψ 0.546 0.373 0.719 3.2 5.4 0.58 0.812
Φ 1.604 1.467 1.742 11.7 24.7 0.47 0.882
rπ 2.045 1.628 2.463 4.9 16.4 0.30 0.955
ρ 0.808 0.762 0.854 17.6 50.2 0.35 0.937
ry 0.088 0.047 0.128 2.2 6.2 0.35 0.937
r4y 0.224 0.174 0.273 4.5 9.3 0.48 0.876
π̄ 0.785 0.555 1.016 3.4 5.9 0.57 0.818
β′ 0.166 0.006 0.326 1.0 1.9 0.55 0.835
l̄ 0.542 -0.966 2.050 0.4 0.6 0.58 0.815
γ 0.431 0.420 0.442 39.7 40.4 0.98 0.180
α 0.191 0.168 0.213 8.6 14.0 0.61 0.789
δ 0.025 0.014 0.036 2.4 5.3 0.44 0.897
λw 1.500 0.707 2.293 1.9 20.2 0.09 0.996
gy 0.180 0.109 0.251 2.5 4.0 0.64 0.769

ρa 0.958 0.942 0.974 60.0 95.2 0.63 0.777
ρb 0.217 0.127 0.307 2.4 5.1 0.47 0.881
ρg 0.976 0.965 0.988 87.5 120.0 0.73 0.684
ρI 0.711 0.643 0.778 10.6 24.6 0.43 0.903
ρr 0.151 0.056 0.247 1.6 2.1 0.76 0.650
ρp 0.891 0.832 0.951 15.0 66.6 0.22 0.974
ρw 0.968 0.952 0.984 61.4 124.4 0.49 0.870
µp 0.699 0.548 0.850 4.6 29.8 0.16 0.988
µw 0.841 0.781 0.902 14.0 51.5 0.27 0.963
ρga 0.521 0.416 0.626 5.0 5.5 0.90 0.438
σa 0.460 0.424 0.495 12.9 17.3 0.75 0.666
σb 0.240 0.213 0.268 8.7 17.3 0.50 0.865
σg 0.529 0.493 0.564 14.9 17.3 0.86 0.513
σI 0.453 0.402 0.505 8.8 17.3 0.51 0.862
σr 0.245 0.228 0.263 13.9 17.3 0.81 0.591
σp 0.140 0.117 0.163 6.2 17.3 0.36 0.934
σw 0.244 0.216 0.272 8.7 17.4 0.50 0.865

Note: The values of std(θ̂i) = 1/si(θ̂) are computed using the Cramér-Rao lower

bounds for θi at the posterior mean θ̂. Under the labels sens. and col. are shown
the sensitivity and collinearity components of the relative strength of identification
(sr

i (θ̂) := |θi|/ std(θ̂i) = sens.× col.); %i is the coefficient of multiple correlation
between ∂`(θ)/∂θi and ∂`(θ)/∂θ−i .
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Table 5: Maximal multiple correlation coefficients at the posterior mean

Par. %i %i(1) %i(2) %i(3) %i(4)
ϕ 0.894 0.753 (ρI) 0.806 (λ,ρI) 0.812 (λ,Φ,ρI) 0.825 (λ,ξw,ρI ,λw)
σc 0.977 0.739 (λ) 0.849 (ξw,λw) 0.898 (β′,ξw,λw) 0.930 (β′,λ,ξw,λw)
λ 0.939 0.739 (σc) 0.794 (σc,gy) 0.822 (β′,σc,gy) 0.833 (β′,σc,ρb,gy)
ξw 0.996 0.944 (λw) 0.982 (σc,λw) 0.987 (µw,σc,λw) 0.990 (β′,µw,σc,λw)
σl 0.920 0.790 (λw) 0.815 (µw,ξw) 0.848 (λ,r4y,λw) 0.858 (µw,λ,r4y,λw)
ξp 0.924 0.796 (ρp) 0.828 (ξw,ρp) 0.853 (ξw,ρp,σw) 0.872 (ξw,rπ,ρp,σw)
ιw 0.716 0.440 (σw) 0.572 (σp,σw) 0.652 (ξw,σp,σw) 0.686 (ξw,ρp,σp,σw)
ιp 0.898 0.813 (µp) 0.851 (µp,σp) 0.867 (µp,ρp,σp) 0.880 (µw,µp,ρp,σp)
ψ 0.812 0.535 (δ) 0.564 (r4y,δ) 0.606 (λ,r4y,δ) 0.645 (Φ,ξp,σa,δ)
Φ 0.882 0.461 (ξp) 0.559 (ξp,σa) 0.634 (α,ξp,σa) 0.678 (α,ξp,σa,δ)
rπ 0.955 0.553 (ρ) 0.866 (ry,ρ) 0.912 (σc,ry,ρ) 0.924 (σc,r4y,ry,ρ)
ρ 0.937 0.553 (rπ) 0.824 (rπ,ry) 0.870 (σc,rπ,ry) 0.898 (σc,rπ,ry,ρr)
ry 0.937 0.517 (rπ) 0.813 (rπ,ρ) 0.886 (σc,rπ,ρ) 0.901 (σc,rπ,ρ,ρI)
r4y 0.876 0.521 (λ) 0.606 (λ,σr) 0.665 (λ,rπ,σr) 0.721 (λ,rπ,ρr,σr)
π̄ 0.818 0.809 (l̄) 0.815 (l̄,β′) 0.818 (l̄,β′,γ) 0.818 (l̄,β′,α,γ)
β′ 0.835 0.361 (π̄) 0.432 (π̄,α) 0.562 (σc,ξw,λw) 0.623 (σc,λ,ξw,λw)
l̄ 0.815 0.809 (π̄) 0.814 (π̄,γ) 0.815 (π̄,β′,γ) 0.815 (π̄,β′,α,γ)
γ 0.180 0.114 (l̄) 0.150 (l̄,π̄) 0.178 (l̄,π̄,β′) 0.180 (l̄,π̄,β′,α)
α 0.789 0.601 (δ) 0.665 (Φ,δ) 0.694 (Φ,σa,δ) 0.714 (β′,Φ,σa,δ)
δ 0.897 0.601 (α) 0.708 (α,gy) 0.756 (α,ρa,gy) 0.784 (α,ψ,ρa,gy)
λw 0.996 0.944 (ξw) 0.984 (σc,ξw) 0.989 (β′,σc,ξw) 0.991 (β′,σc,ξw,ry)
gy 0.769 0.461 (δ) 0.542 (r4y,δ) 0.587 (r4y,ry,δ) 0.602 (Φ,r4y,ry,δ)

ρa 0.777 0.358 (ρg) 0.534 (ρg,δ) 0.650 (σc,ρg,δ) 0.671 (σc,λ,ρg,δ)
ρb 0.881 0.834 (σb) 0.868 (λ,σb) 0.870 (σc,λ,σb) 0.870 (σc,λ,r4y,σb)
ρg 0.684 0.358 (ρa) 0.448 (ρa,δ) 0.554 (σc,ρa,δ) 0.575 (σc,λ,ρa,δ)
ρI 0.903 0.840 (σI) 0.882 (ϕ,σI) 0.886 (ϕ,σI ,δ) 0.888 (ϕ,r4y,σI ,δ)
ρr 0.650 0.451 (ρ) 0.547 (r4y,ρ) 0.580 (r4y,ρ,σr) 0.587 (r4y,ρ,ρb,σr)
ρp 0.974 0.964 (µp) 0.968 (µp,ξp) 0.969 (µp,ιp,ξp) 0.973 (µp,ιp,ξp,σp)
ρw 0.870 0.756 (ξw) 0.809 (ξw,δ) 0.822 (ξw,ry,δ) 0.828 (µw,ξw,ry,δ)
µp 0.988 0.964 (ρp) 0.976 (ρp,σp) 0.986 (ιp,ρp,σp) 0.987 (µw,ιp,ρp,σp)
µw 0.963 0.904 (ξw) 0.933 (ξw,σw) 0.941 (ξw,rπ,σw) 0.946 (ξw,σl,rπ,σw)
ρga 0.438 0.233 (Φ) 0.263 (Φ,ξp) 0.290 (Φ,ξp,gy) 0.311 (Φ,ξp,ry,gy)
σa 0.666 0.316 (Φ) 0.376 (ψ,Φ) 0.431 (ψ,Φ,ξp) 0.485 (α,ψ,Φ,δ)
σb 0.865 0.834 (ρb) 0.842 (λ,ρb) 0.848 (σc,λ,ρb) 0.850 (σc,λ,ρb,gy)
σg 0.513 0.214 (Φ) 0.261 (ψ,Φ) 0.327 (ψ,Φ,gy) 0.370 (ψ,Φ,ξp,gy)
σI 0.862 0.840 (ρI) 0.841 (ρI ,δ) 0.843 (α,ρI ,δ) 0.845 (σl,ρI ,ρw,δ)
σr 0.591 0.318 (r4y) 0.370 (rπ,r4y) 0.414 (rπ,r4y,ρr) 0.454 (rπ,r4y,ry,ρr)
σp 0.934 0.880 (µp) 0.904 (µp,ιp) 0.918 (µp,ιw,ιp) 0.924 (µp,ιw,ιp,ρp)
σw 0.865 0.725 (µw) 0.802 (µw,ιw) 0.819 (µw,ιw,ξp) 0.827 (µw,ιw,ξp,ρw)

Note: For θ equal to the posterior mean and n between 1 and 4, the table shows the values of
%i(n), defined as largest among all coefficients of multiple correlation between ∂`(θ)/∂θi and
∂`(θ)/∂θ−i(n) for θi in the first column and all possible combinations of n parameters from θ−i.
The selected parameters are shown in parentheses. %i in the second column is the coefficient of
multiple correlation between ∂`(θ)/∂θi and ∂`(θ)/∂θ−i
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Table 6: Sensitivity and collinearity in the model at the posterior mean

collinearity, ] of parameters

Par. sens. all 1 2 3 4

ϕ 233 0.9364 0.522 (Φ) 0.734 (Φ,ρI) 0.803 (ρ,ρI ,ρp) 0.8187 (β′,ρ,ρI ,ρp)
σc 595 0.9983 0.918 (λ) 0.956 (α,λ) 0.977 (α,λ,ρa) 0.9888 (λ,σl,r4y,λw)
λ 1753 0.9971 0.918 (σc) 0.952 (α,σc) 0.977 (σc,σb,δ) 0.9853 (σc,σl,r4y,λw)
ξw 765 0.9997 0.992 (λw) 0.995 (ry,λw) 0.997 (ιw,ry,λw) 0.9986 (ιw,σl,ry,λw)
σl 289 0.9917 0.876 (λw) 0.931 (ρa,λw) 0.951 (σc,ξw,σb) 0.9774 (σc,λ,r4y,λw)
ξp 1721 0.9961 0.831 (ιp) 0.945 (Φ,ρw) 0.964 (Φ,ιp,λw) 0.9728 (Φ,ιw,ρp,λw)
ιw 148 0.9712 0.508 (ρp) 0.746 (ξp,ρp) 0.838 (ξp,ρp,δ) 0.9119 (ξw,ξp,ρp,ρw)
ιp 186 0.9673 0.831 (ξp) 0.894 (ξp,λw) 0.925 (ξp,δ,λw) 0.9292 (ξp,ρ,δ,λw)
ψ 229 0.4165 0.221 (β′) 0.263 (ry,ρw) 0.330 (α,σl,δ) 0.3554 (α,σl,ρp,δ)
Φ 1969 0.9893 0.796 (ξp) 0.961 (ξp,ρw) 0.969 (ξp,σl,ρw) 0.9745 (ξw,ξp,r4y,λw)
rπ 481 0.9993 0.987 (ρ) 0.998 (ry,ρ) 0.998 (r4y,ry,ρ) 0.9985 (r4y,ry,ρ,σb)
ρ 551 0.9984 0.987 (rπ) 0.997 (rπ,ry) 0.997 (ιp,rπ,ry) 0.9975 (ιp,ξp,rπ,ry)
ry 169 0.9950 0.845 (rπ) 0.963 (rπ,ρ) 0.969 (ξw,rπ,ρ) 0.9812 (ξp,rπ,ρ,ρp)
r4y 163 0.9935 0.979 (rπ) 0.983 (rπ,λw) 0.987 (rπ,σr,λw) 0.9897 (α,ιw,rπ,σr)
π̄ 1 0.6756 0.364 (β′) 0.411 (β′,α) 0.502 (β′,α,δ) 0.5787 (β′,α,δ,λw)
β′ 33 0.9428 0.555 (γ) 0.755 (α,γ) 0.791 (α,ξw,γ) 0.8585 (π̄,α,δ,λw)
l̄ 1 0.0000 ∅ ∅ ∅ ∅
γ 51 0.7825 0.611 (δ) 0.730 (β′,δ) 0.748 (π̄,β′,δ) 0.7607 (π̄,β′,λ,δ)
α 333 0.9634 0.512 (r4y) 0.746 (σl,r4y) 0.859 (β′,δ,λw) 0.8991 (β′,σl,r4y,δ)
δ 166 0.9819 0.703 (ρw) 0.888 (ξw,ρw) 0.916 (α,ξw,ρw) 0.9408 (α,ξw,ρa,ρw)
λw 586 0.9998 0.992 (ξw) 0.995 (ξw,ry) 0.997 (ξw,σl,ry) 0.9988 (ιw,ξw,σl,ry)
gy 189 0.9003 0.730 (rπ) 0.777 (rπ,δ) 0.811 (rπ,ρa,δ) 0.8392 (α,Φ,ξp,rπ)

ρa 3124 0.9523 0.710 (σa) 0.756 (ρga,σa) 0.815 (ξw,σl,σa) 0.8360 (α,σc,λ,σa)
ρb 22 0.8222 0.546 (λ) 0.621 (λ,σr) 0.652 (λ,ρw,σr) 0.6774 (λ,ρw,σb,σr)
ρg 13241 0.7272 0.302 (σg) 0.401 (σa,σg) 0.467 (ρga,σa,σg) 0.5183 (σl,ρa,σg,λw)
ρI 231 0.8600 0.800 (σI) 0.818 (ϕ,σI) 0.827 (ϕ,Φ,σI) 0.8342 (ϕ,ρ,ρp,σI)
ρr 24 0.3119 0.280 (σr) 0.280 (σb,σr) 0.299 (r4y,ρ,σr) 0.3052 (ιp,r4y,ρ,σr)
ρp 1965 0.9955 0.821 (ξp) 0.924 (ιw,ξp) 0.953 (ιw,ξp,δ) 0.9751 (ιw,ξp,ρw,λw)
ρw 390 0.9946 0.851 (λw) 0.965 (ξw,δ) 0.971 (ρa,δ,λw) 0.9745 (α,ξw,ρa,δ)
µp 567 0.8629 0.477 (ξp) 0.542 (ιw,ξp) 0.585 (ξp,r4y,ry) 0.6253 (ξp,r4y,ry,ρp)
µw 220 0.7073 0.556 (ξw) 0.602 (ξw,ρw) 0.633 (ξw,ρw,δ) 0.6510 (ξw,ρw,σw,δ)
ρga 458 0.6516 0.536 (ρa) 0.600 (ρa,ρg) 0.625 (ρa,ρg,σg) 0.6336 (ρa,ρg,σa,σg)
σa 1182 0.7528 0.710 (ρa) 0.724 (ρa,ρg) 0.732 (ρga,ρa,ρg) 0.7329 (ρga,ρa,ρg,σg)
σb 65 0.9835 0.840 (λ) 0.936 (λ,ρw) 0.952 (λ,σl,δ) 0.9571 (λ,ξw,δ,λw)
σg 1146 0.4797 0.351 (ρga) 0.421 (ρga,ρg) 0.429 (ρga,ρg,σa) 0.4338 (ρga,α,ρg,σa)
σI 332 0.8589 0.800 (ρI) 0.804 (α,ρI) 0.806 (α,ρI ,gy) 0.8090 (β′,ϕ,ρI ,gy)
σr 44 0.7358 0.570 (σb) 0.624 (ρb,σb) 0.651 (ρb,σb,σp) 0.6688 (ρb,ρr,σb,σp)
σp 264 0.5094 0.317 (σw) 0.404 (σr,σw) 0.418 (µp,σr,σw) 0.4318 (µp,ξp,σr,σw)
σw 79 0.3854 0.317 (σp) 0.348 (µw,σp) 0.364 (µw,ξw,σp) 0.3702 (µw,ιw,ξw,σp)

Note: Sensitivity is measured by the square root of
∑

(

∂τj

∂θi

θi

τj

)2

. Collinearity is measured by the

cosine of the angle between ∂τ/∂θi and ∂τ/∂θ−i. Also shown are subsets of 1 to 4 elements of θ−i

having the strongest collinearity with θi among all subsets of that size.
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Table 7: Observables and identification strength at the posterior mean

the observables include 4yt,4ct,4it, lt, πt,4wt, rt except:

Par. 4yt 4ct 4it lt πt 4wt rt
ϕ 0.9175 0.6979 0.3236 0.8432 0.6811 0.9308 0.5405
σc 0.9121 0.2445 0.7113 0.8406 0.4865 0.8989 0.3338
λ 0.8746 0.5580 0.7333 0.7737 0.8924 0.8821 0.5659
ξw 0.6062 0.2256 0.6419 0.4985 0.4608 0.6874 0.3554
σl 0.8482 0.5258 0.8662 0.4549 0.7735 0.7993 0.7277
ξp 0.2994 0.8582 0.7301 0.2375 0.4429 0.4177 0.8178
ιw 0.9688 0.9572 0.9626 0.9526 0.3448 0.1226 0.9571
ιp 0.9388 0.9622 0.9812 0.8730 0.2605 0.3383 0.9715
ψ 0.6011 0.7836 0.5492 0.7855 0.7986 0.7637 0.7286
Φ 0.1494 0.8367 0.6064 0.1108 0.9048 0.7300 0.8098
rπ 0.9565 0.8046 0.9133 0.8221 0.3534 0.8752 0.3477
ρ 0.9618 0.9231 0.9545 0.8152 0.2755 0.8938 0.4263
ry 0.6299 0.8162 0.9228 0.7884 0.4108 0.8877 0.4255
r4y 0.3836 0.6153 0.8856 0.8659 0.7429 0.9027 0.2656
π̄ 0.9995 0.9819 0.9978 0.9993 0.1485 0.9970 0.9970
β′ 0.9399 0.2993 0.7729 0.8840 0.1138 0.9266 0.1026
l̄ 0.9975 0.9940 0.9957 0 0.9983 0.9971 0.9980
γ 0.9510 0.6022 0.5798 0.9745 0.9960 0.8920 0.7600
α 0.2157 0.4822 0.1895 0.7773 0.2963 0.9123 0.2526
δ 0.7813 0.6654 0.5670 0.6936 0.7600 0.8806 0.6058
λw 0.5803 0.2271 0.6198 0.4691 0.4247 0.8994 0.3443
gy 0.1586 0.1291 0.4374 0.8766 0.8614 0.8765 0.8765

ρa 0.6654 0.7134 0.6799 0.5937 0.9500 0.9323 0.7644
ρb 0.9810 0.4628 0.8894 0.9599 0.9753 0.9590 0.5670
ρg 0.5040 0.4693 0.6799 0.7352 0.9642 0.9534 0.7889
ρI 0.9672 0.8290 0.3691 0.9275 0.9413 0.9768 0.8564
ρr 0.9538 0.8472 0.9726 0.7943 0.6401 0.9658 0.0186
ρp 0.7883 0.9681 0.9828 0.7730 0.7265 0.1979 0.9716
ρw 0.9614 0.7960 0.8279 0.7516 0.9117 0.5463 0.9027
µp 0.9015 0.9403 0.9799 0.8342 0.5569 0.2710 0.9787
µw 0.9508 0.8159 0.9309 0.9011 0.7818 0.1166 0.8876
ρga 0.0573 0.6349 0.5892 0.2364 0.8550 0.9455 0.8096
σa 0.1067 0.8499 0.5556 0.1340 0.8861 0.8560 0.7687
σb 0.9808 0.1355 0.9542 0.9515 0.9833 0.9777 0.4700
σg 0.0610 0.3711 0.4565 0.5855 0.8308 0.8824 0.8466
σI 0.9753 0.9055 0.1282 0.9463 0.9523 0.9658 0.8515
σr 0.9418 0.8562 0.9425 0.7715 0.3946 0.9640 0.0097
σp 0.9272 0.9948 0.9875 0.8728 0.2123 0.3072 0.9654
σw 0.9661 0.9641 0.9542 0.9367 0.6986 0.0433 0.9586

Note: Each column reports the strength of identification of θi when the variable in the
first row is unobserved, relative to when all seven variables are observed.
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Table 8: Identification strength in Θ

deciles of sri (θ)

Par. mean CoV 1 2 3 4 5 6 7 8 9

ϕ 4.6 0.88 2.4 3.5 4.0 4.4 4.8 5.4 6.1 6.9 9.0
σc 5.0 0.90 2.5 3.7 4.1 4.7 5.3 5.8 6.7 8.2 10.3
λ 48.1 3.05 10.0 16.3 19.6 23.7 28.5 35.8 49.2 65.4 113.1
ξw 3.0 1.46 0.5 1.2 1.7 2.2 2.8 3.5 4.2 5.5 7.7
σl 5.2 8.90 1.2 2.2 3.0 3.5 4.2 5.5 6.6 8.6 12.6
ξp 18.6 0.98 7.2 12.4 14.9 17.2 19.3 22.5 26.9 30.4 39.0
ιw 7.0 1.12 1.8 3.2 4.1 5.2 6.3 7.7 9.7 12.2 16.9
ιp 10.0 1.26 2.2 4.1 5.5 7.1 9.1 11.0 13.9 17.5 25.0
ψ 10.1 10.50 2.9 5.2 6.0 8.1 9.5 11.1 13.5 16.6 27.2
Φ 31.1 6.16 11.0 17.9 20.8 23.7 27.0 35.1 40.8 54.0 74.3
rπ 9.2 1.66 2.6 4.3 5.3 7.0 7.5 8.9 11.6 17.6 24.0
ρ 29.3 1.30 10.1 16.0 18.6 21.5 25.3 30.6 35.4 45.3 65.4
ry 2.2 1.16 0.6 1.2 1.4 1.7 2.0 2.4 2.9 4.1 5.1
r4y 7.3 1.25 1.8 3.2 4.2 5.2 6.4 7.7 9.5 12.2 17.4
π̄ 6.6 0.84 1.7 3.1 3.9 4.9 5.8 7.4 9.4 12.1 16.8
β′ 1.5 1.12 0.6 1.0 1.1 1.4 1.5 2.0 2.0 2.5 3.2
l̄ 8.0 1.10 0.8 2.0 3.4 4.5 6.4 8.3 11.2 15.1 22.1
γ 302.7 0.64 121.9 283.0 349.9 399.6 468.2 612.7 627.9 761.4 946.3
α 17.0 5.12 6.4 11.8 13.7 16.3 19.6 24.1 26.7 30.1 45.9
δ 5.6 2.15 1.7 3.5 4.1 4.4 5.3 6.5 7.9 10.2 14.2
λw 2.8 1.50 0.5 1.1 1.6 2.1 2.7 3.3 4.1 5.3 6.9
gy 7.6 2.13 2.7 4.4 5.5 6.5 7.5 8.8 11.4 12.7 19.5

ρa 8.8 1.06 2.7 4.8 6.0 7.2 8.7 10.3 12.3 15.3 20.4
ρb 17.3 4.73 2.5 4.6 5.8 7.2 9.1 11.8 15.4 22.1 39.2
ρg 8.9 1.03 2.8 4.9 6.1 7.4 8.7 10.3 12.3 15.3 20.4
ρI 7.7 0.91 2.4 4.2 5.3 6.4 7.5 8.9 10.9 13.2 17.9
ρr 25.8 7.60 2.4 4.3 5.7 7.3 9.4 12.8 17.5 27.2 53.1
ρp 3.5 2.25 0.3 0.8 1.2 1.7 2.2 2.9 3.9 5.5 9.3
ρw 3.8 2.25 0.3 0.8 1.2 1.8 2.4 3.1 4.2 5.8 10.0
µp 4.2 1.34 0.3 0.7 1.0 1.4 2.1 2.8 4.9 10.5 20.3
µw 4.5 1.36 0.3 0.7 1.1 1.5 2.1 3.1 4.9 9.0 19.8
ρga 6.1 1.00 0.8 1.9 2.9 3.9 5.2 6.8 8.8 11.8 17.7
σa 12.0 0.14 9.6 13.6 14.8 15.1 15.6 15.8 16.3 16.7 17.0
σb 8.7 0.20 6.7 9.0 9.4 9.9 10.3 11.0 11.6 12.3 13.6
σg 12.8 0.08 11.3 15.0 15.6 15.8 16.0 16.5 16.6 16.8 17.0
σI 8.7 0.12 7.6 9.7 10.1 10.3 10.5 10.8 11.1 11.4 12.2
σr 11.2 0.23 7.5 11.0 12.2 13.4 14.6 15.4 16.2 16.7 17.0
σp 9.4 0.21 6.7 9.8 10.7 11.6 12.0 12.5 13.0 13.6 14.1
σw 9.6 0.19 7.1 10.0 10.9 11.6 12.2 12.8 13.3 13.9 14.4

Note: The table shows the mean, the coefficient of variation, and the deciles of the relative strength of
identification measure (sr

i (θ̂) := |θi|/ std(θ̂i), where std(θ̂i) is the Cramér-Rao lower bound for θi).
The results are based on 100, 000 draws from Θ.
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Table 9: Distributions of the sensitivity components

deciles

Par. mean CoV 1 2 3 4 5 6 7 8 9

ϕ 43.3 2.11 8.6 11.6 14.9 18.7 23.5 29.9 39.0 54.0 87.2
σc 93.4 2.71 27.3 32.7 38.1 44.5 52.5 63.6 79.7 107.1 170.3
λ 327.6 3.91 33.8 48.4 65.1 86.2 115.0 156.1 220.1 333.6 625.4
ξw 173.4 2.23 25.8 35.8 47.7 62.3 81.4 107.7 146.6 212.0 363.9
σl 52.1 3.00 5.7 8.5 11.9 16.3 22.0 30.2 42.3 63.1 111.6
ξp 133.7 2.96 22.0 27.8 34.8 44.1 56.9 75.5 103.7 154.8 271.7
ιw 21.7 2.36 3.2 4.7 6.3 8.3 10.6 13.8 18.6 26.5 44.7
ιp 28.9 2.60 6.0 7.6 9.2 11.3 14.0 17.8 23.8 34.1 57.8
ψ 48.4 3.68 9.7 13.6 17.5 21.8 26.9 33.5 43.0 58.5 92.7
Φ 210.9 3.72 48.4 63.8 78.9 96.2 117.0 144.4 183.6 250.9 398.1
rπ 59.0 3.92 14.2 17.6 21.0 25.0 30.0 36.7 46.6 63.7 104.9
ρ 301.4 5.90 41.5 56.4 72.1 90.4 114.4 148.2 200.1 294.7 530.3
ry 11.0 3.28 2.2 3.1 3.8 4.7 5.7 7.1 9.1 12.6 20.4
r4y 36.1 5.46 4.9 7.2 9.5 12.1 15.4 19.7 26.2 37.2 64.7
π̄ 24.2 0.90 6.4 9.1 11.7 14.6 17.9 21.9 27.1 34.8 49.3
β′ 10.5 11.32 3.1 4.1 5.0 6.0 7.0 8.4 10.1 12.6 17.9
l̄ 26.5 1.26 2.4 4.9 7.8 11.3 15.5 21.0 28.6 40.3 63.2
γ 312.0 0.68 127.0 164.9 198.1 231.6 267.2 308.0 357.5 425.8 540.9
α 84.0 12.32 17.7 23.6 29.7 36.7 45.0 55.9 71.7 97.4 155.3
δ 17.6 12.86 3.3 4.5 5.7 7.0 8.7 10.9 14.2 19.6 31.9
λw 195.0 2.37 25.1 36.0 49.0 65.0 86.0 115.3 160.3 236.0 412.5
gy 38.4 3.82 6.8 9.5 12.3 15.3 19.1 24.1 31.4 43.8 72.8

ρa 12.5 1.83 2.9 4.2 5.3 6.5 7.9 9.6 12.0 15.5 23.1
ρb 139.9 8.25 5.9 9.4 13.4 18.5 25.9 37.4 58.1 101.9 233.9
ρg 12.5 3.21 3.0 4.2 5.4 6.6 8.0 9.7 11.9 15.3 22.6
ρI 16.1 2.01 3.9 5.8 7.4 9.0 10.9 13.0 15.7 19.5 27.3
ρr 120.0 10.51 3.2 5.0 7.1 10.1 14.6 22.1 35.7 65.8 163.0
ρp 18.7 4.56 2.8 5.1 7.2 9.3 11.5 14.2 17.5 22.4 32.3
ρw 18.0 3.68 2.8 4.9 6.8 8.8 10.9 13.2 16.2 20.7 29.9
µp 16.1 0.97 3.8 5.8 7.7 9.8 12.4 15.7 20.1 24.4 30.2
µw 15.3 1.14 3.5 5.3 7.2 9.2 11.5 14.6 18.7 23.2 29.0
ρga 7.6 1.56 0.9 1.7 2.5 3.4 4.5 5.8 7.6 10.3 16.1
σa 14.1 0.01 14.0 14.0 14.0 14.1 14.1 14.1 14.1 14.1 14.1
σb 14.2 0.01 14.1 14.1 14.1 14.2 14.2 14.2 14.2 14.3 14.3
σg 14.1 0.01 14.0 14.0 14.1 14.1 14.1 14.1 14.1 14.1 14.2
σI 14.1 0.00 14.0 14.1 14.1 14.1 14.1 14.1 14.2 14.2 14.2
σr 14.1 0.01 14.1 14.1 14.1 14.1 14.1 14.1 14.2 14.2 14.2
σp 14.1 0.01 14.0 14.0 14.0 14.1 14.1 14.1 14.1 14.2 14.2
σw 14.1 0.01 14.0 14.0 14.0 14.1 14.1 14.1 14.1 14.1 14.2

Note: The sensitivity component of the measure of identification strength is defined as the square root of
E (θi∂`(θ)/∂θi)

2
. The table shows the mean, the coefficient of variation and the deciles of the sensitivity

components computed on the basis of 100, 000 draws from Θ.
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Table 10: Distributions of the multiple correlation coefficients

deciles

Par. mean std. 1 2 3 4 5 6 7 8 9

ϕ 0.971 0.36 0.922 0.9512 0.9678 0.9785 0.9857 0.99067 0.99411 0.99654 0.99833
σc 0.996 0.05 0.990 0.9935 0.9952 0.9963 0.9972 0.99790 0.99848 0.99898 0.99943
λ 0.967 0.31 0.926 0.9487 0.9616 0.9705 0.9772 0.98255 0.98697 0.99087 0.99464
ξw 0.998 0.04 0.996 0.9982 0.9991 0.9995 0.9997 0.99984 0.99992 0.99997 0.99999
σl 0.976 0.31 0.941 0.9630 0.9747 0.9824 0.9877 0.99152 0.99443 0.99666 0.99839
ξp 0.947 0.53 0.868 0.9054 0.9308 0.9499 0.9650 0.97666 0.98556 0.99211 0.99673
ιw 0.816 1.64 0.560 0.6749 0.7575 0.8197 0.8673 0.90601 0.93673 0.96130 0.98060
ιp 0.868 0.88 0.746 0.7894 0.8228 0.8523 0.8796 0.90619 0.93146 0.95452 0.97587
ψ 0.941 0.75 0.855 0.9100 0.9374 0.9547 0.9670 0.97591 0.98305 0.98889 0.99400
Φ 0.964 0.50 0.909 0.9454 0.9634 0.9743 0.9817 0.98701 0.99122 0.99461 0.99734
rπ 0.966 0.40 0.916 0.9457 0.9614 0.9720 0.9796 0.98545 0.99011 0.99394 0.99710
ρ 0.973 0.32 0.933 0.9564 0.9689 0.9773 0.9835 0.98835 0.99220 0.99529 0.99780
ry 0.936 0.68 0.845 0.8953 0.9248 0.9450 0.9600 0.97145 0.98058 0.98811 0.99433
r4y 0.914 0.79 0.802 0.8543 0.8883 0.9147 0.9367 0.95490 0.97001 0.98241 0.99219
π̄ 0.874 1.75 0.620 0.7853 0.8728 0.9229 0.9529 0.97169 0.98370 0.99142 0.99645
β′ 0.974 0.34 0.938 0.9608 0.9722 0.9794 0.9847 0.98868 0.99186 0.99463 0.99710
l̄ 0.848 1.84 0.559 0.7219 0.8213 0.8864 0.9287 0.95606 0.97398 0.98606 0.99389
γ 0.217 1.14 0.085 0.1165 0.1446 0.1719 0.2003 0.23049 0.26530 0.30726 0.36881
α 0.933 0.65 0.846 0.8916 0.9188 0.9377 0.9524 0.96453 0.97502 0.98413 0.99216
δ 0.867 1.06 0.719 0.7948 0.8393 0.8714 0.8964 0.91710 0.93513 0.95228 0.97010
λw 0.999 0.03 0.997 0.9988 0.9993 0.9996 0.9998 0.99987 0.99993 0.99997 0.99999
gy 0.913 0.96 0.779 0.8532 0.8973 0.9264 0.9479 0.96407 0.97667 0.98652 0.99395

ρa 0.405 2.61 0.096 0.1494 0.2089 0.2761 0.3552 0.44536 0.54920 0.66671 0.80784
ρb 0.941 0.50 0.868 0.8960 0.9186 0.9376 0.9538 0.96771 0.97880 0.98720 0.99369
ρg 0.416 2.45 0.119 0.1800 0.2408 0.3052 0.3763 0.45557 0.54644 0.65387 0.78761
ρI 0.816 0.71 0.739 0.7709 0.7903 0.8052 0.8189 0.83262 0.84758 0.86514 0.89308
ρr 0.758 2.24 0.406 0.5688 0.6805 0.7664 0.8324 0.88502 0.92450 0.95420 0.97796
ρp 0.928 1.49 0.773 0.9337 0.9615 0.9753 0.9840 0.99017 0.99461 0.99756 0.99938
ρw 0.916 1.71 0.731 0.9213 0.9536 0.9700 0.9804 0.98786 0.99332 0.99702 0.99925
µp 0.950 0.91 0.837 0.9431 0.9656 0.9770 0.9845 0.99017 0.99446 0.99749 0.99937
µw 0.940 1.02 0.813 0.9282 0.9541 0.9689 0.9792 0.98713 0.99301 0.99692 0.99924
ρga 0.360 2.10 0.139 0.1807 0.2194 0.2598 0.3064 0.36207 0.43138 0.52800 0.68229
σa 0.468 1.97 0.199 0.2819 0.3497 0.4109 0.4693 0.52731 0.58746 0.65378 0.73305
σb 0.774 1.15 0.628 0.7097 0.7543 0.7836 0.8059 0.82402 0.84084 0.85835 0.87930
σg 0.378 1.58 0.174 0.2316 0.2793 0.3241 0.3691 0.41524 0.46464 0.52045 0.59603
σI 0.783 0.66 0.711 0.7495 0.7696 0.7834 0.7950 0.80562 0.81633 0.82815 0.84437
σr 0.528 2.53 0.165 0.2620 0.3603 0.4585 0.5512 0.63702 0.71213 0.78095 0.85045
σp 0.725 1.13 0.576 0.6206 0.6571 0.6899 0.7207 0.75224 0.78609 0.82639 0.88183
σw 0.706 1.20 0.539 0.5875 0.6318 0.6717 0.7079 0.74223 0.77812 0.81747 0.86652

Note: The table shows the mean, the standard deviation (multiplied by 10) and the nine deciles of

%i := corr
(

∂`(θ)
∂θi

, ∂`(θ)
∂θ

−i

)

computed on the basis of 100, 000 draws from Θ.
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Table 11: Sensitivity in the model

Par. mean CoV deciles

1 2 3 4 5 6 7 8 9

ϕ 652 34 51 67 83 103 127 161 214 311 578
σc 1750 22 119 162 207 261 330 427 579 865 1666
λ 2585 17 186 263 347 446 575 753 1032 1544 2913
ξw 884 51 54 74 96 121 154 199 268 398 746
σl 442 28 35 46 58 71 89 112 149 218 411
ξp 1298 51 84 113 144 179 223 286 385 567 1082
ιw 137 33 6 9 12 16 22 29 41 62 119
ιp 300 61 20 27 34 42 53 68 91 134 249
ψ 526 19 55 73 91 112 138 175 231 338 620
Φ 2134 39 147 198 251 315 395 509 683 1014 1906
rπ 1130 86 63 85 108 135 171 221 299 446 866
ρ 1896 39 106 159 216 284 374 499 694 1058 2023
ry 259 66 13 19 25 32 41 54 73 109 206
r4y 200 38 14 19 25 33 42 55 75 112 212
π̄ 1 0 1 1 1 1 1 1 1 1 1
β′ 50 28 3 5 6 8 10 13 17 25 47
l̄ 1 0 1 1 1 1 1 1 1 1 1
γ 51 35 4 5 7 8 11 14 18 27 51
α 751 25 73 94 116 142 174 219 288 418 785
δ 217 41 18 22 27 34 42 53 70 103 199
λw 1089 33 76 102 131 165 209 270 365 542 1030
gy 212 20 17 24 30 37 47 60 80 118 223

ρa 420 32 20 31 43 58 76 101 138 207 402
ρb 435 46 15 24 34 45 60 80 113 178 370
ρg 235 28 12 19 25 33 43 58 80 121 233
ρI 530 35 17 28 42 58 79 107 151 231 451
ρr 256 18 10 14 20 27 38 55 82 135 288
ρp 318 29 10 16 23 32 45 63 93 154 321
ρw 529 120 10 17 24 33 46 64 94 150 309
µp 218 26 8 11 15 21 30 42 62 101 211
µw 331 85 8 11 15 20 28 40 58 95 201
ρga 335 37 7 13 20 29 40 55 80 130 271
σa 675 33 27 47 65 85 109 144 200 304 607
σb 233 45 19 23 24 26 31 39 55 85 175
σg 526 31 19 34 49 66 87 116 162 250 503
σI 654 43 29 42 54 69 87 114 156 237 480
σr 129 24 9 10 12 16 20 25 35 56 117
σp 155 40 12 13 15 18 24 31 44 68 141
σw 134 62 11 12 13 15 17 20 27 41 85

Note: The sensitivity in the model is measured by the square root of
∑

(

∂τj

∂θi

θi

τj

)2

. The

table shows the mean, the coefficient of variation and the deciles of the measure computed
on the basis of 100, 000 draws from Θ.
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Table 12: Collinearity in the model

deciles

Par. mean std. 1 2 3 4 5 6 7 8 9

ϕ 0.887 0.088 0.763 0.812 0.846 0.8749 0.9004 0.9252 0.9490 0.97139 0.99049
σc 0.998 0.003 0.995 0.997 0.998 0.9988 0.9992 0.9996 0.9998 0.99990 0.99998
λ 0.996 0.007 0.990 0.995 0.997 0.9982 0.9989 0.9994 0.9997 0.99988 0.99997
ξw 0.997 0.006 0.992 0.996 0.998 0.9988 0.9993 0.9996 0.9998 0.99993 0.99999
σl 0.979 0.018 0.955 0.967 0.974 0.9791 0.9835 0.9874 0.9910 0.99464 0.99805
ξp 0.970 0.028 0.933 0.953 0.964 0.9725 0.9786 0.9838 0.9882 0.99231 0.99662
ιw 0.896 0.081 0.782 0.827 0.858 0.8839 0.9070 0.9298 0.9530 0.97550 0.99290
ιp 0.912 0.068 0.818 0.854 0.879 0.9007 0.9205 0.9405 0.9609 0.97971 0.99412
ψ 0.334 0.121 0.195 0.228 0.258 0.2865 0.3161 0.3490 0.3860 0.43084 0.49697
Φ 0.946 0.034 0.900 0.919 0.932 0.9427 0.9517 0.9603 0.9686 0.97672 0.98530
rπ 0.981 0.028 0.949 0.970 0.981 0.9874 0.9919 0.9950 0.9973 0.99878 0.99969
ρ 0.962 0.049 0.897 0.935 0.956 0.9705 0.9806 0.9879 0.9932 0.99684 0.99914
ry 0.971 0.037 0.923 0.952 0.967 0.9771 0.9844 0.9899 0.9939 0.99698 0.99908
r4y 0.823 0.150 0.601 0.703 0.770 0.8207 0.8631 0.8989 0.9291 0.95633 0.98027
π̄ 0.682 0.027 0.658 0.673 0.680 0.6849 0.6887 0.6918 0.6946 0.69724 0.70028
β′ 0.905 0.054 0.833 0.857 0.875 0.8898 0.9040 0.9183 0.9350 0.95667 0.98447
l̄ 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000
γ 0.678 0.153 0.494 0.551 0.592 0.6277 0.6609 0.6963 0.7380 0.80171 0.92215
α 0.916 0.058 0.843 0.872 0.890 0.9055 0.9207 0.9368 0.9546 0.97194 0.98785
δ 0.875 0.090 0.750 0.805 0.840 0.8672 0.8908 0.9126 0.9341 0.95604 0.97706
λw 0.998 0.004 0.993 0.996 0.998 0.9987 0.9993 0.9996 0.9998 0.99993 0.99998
gy 0.887 0.060 0.812 0.836 0.854 0.8697 0.8846 0.9006 0.9191 0.94308 0.97360

ρa 0.660 0.139 0.479 0.555 0.603 0.6413 0.6754 0.7064 0.7376 0.77175 0.81571
ρb 0.944 0.100 0.849 0.923 0.953 0.9701 0.9810 0.9883 0.9935 0.99708 0.99917
ρg 0.560 0.180 0.327 0.406 0.463 0.5128 0.5603 0.6078 0.6562 0.71170 0.78947
ρI 0.460 0.232 0.173 0.245 0.308 0.3679 0.4285 0.4955 0.5764 0.67751 0.80729
ρr 0.706 0.259 0.302 0.444 0.569 0.6800 0.7754 0.8545 0.9158 0.95969 0.98771
ρp 0.783 0.176 0.517 0.632 0.714 0.7785 0.8301 0.8734 0.9103 0.94230 0.97084
ρw 0.594 0.206 0.317 0.397 0.466 0.5321 0.5967 0.6600 0.7233 0.78980 0.87117
µp 0.640 0.172 0.393 0.496 0.566 0.6203 0.6668 0.7081 0.7470 0.78743 0.83897
µw 0.468 0.157 0.251 0.329 0.387 0.4359 0.4790 0.5197 0.5605 0.60357 0.65764
ρga 0.862 0.187 0.587 0.778 0.865 0.9136 0.9432 0.9624 0.9756 0.98525 0.99247
σa 0.790 0.216 0.443 0.638 0.750 0.8244 0.8747 0.9115 0.9391 0.96073 0.97862
σb 0.926 0.082 0.802 0.859 0.901 0.9328 0.9579 0.9759 0.9876 0.99467 0.99840
σg 0.814 0.183 0.532 0.687 0.778 0.8379 0.8816 0.9142 0.9396 0.96067 0.97826
σI 0.408 0.180 0.217 0.262 0.299 0.3342 0.3709 0.4114 0.4603 0.52861 0.65535
σr 0.860 0.089 0.734 0.782 0.816 0.8448 0.8707 0.8947 0.9182 0.94224 0.96909
σp 0.533 0.153 0.351 0.408 0.449 0.4854 0.5204 0.5573 0.5984 0.65193 0.73699
σw 0.331 0.135 0.195 0.230 0.257 0.2816 0.3063 0.3329 0.3640 0.40648 0.48542

Note: The collinearity in the model is measured by cos
(

∂τ

∂θi
, ∂τ

∂θ
−i

)

. The table shows the mean, the standard

deviation and the deciles of the measure computed on the basis of 100, 000 draws from Θ.
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Table 13: Maximal multiple correlation coefficients (first decile of %i)

Par. %i %i(1) %i(2) %i(3) %i(4)
ϕ 0.922 0.377 (λ) 0.519 (λ,δ) 0.636 (λ,ξw,λw) 0.771 (λ,ξw,ry,λw)
σc 0.990 0.698 (β′) 0.948 (β′,λ) 0.959 (β′,λ,σI) 0.970 (β′,λ,σb,σI)
λ 0.926 0.700 (ϕ) 0.828 (ϕ,ρb) 0.846 (ϕ,ρb,σb) 0.880 (β′,σc,ξw,λw)
ξw 0.996 0.960 (σl) 0.983 (ιw,σl) 0.988 (ιw,σl,σw) 0.989 (µp,ιw,σl,σw)
σl 0.941 0.853 (ξw) 0.870 (ιw,ξw) 0.884 (ιw,ξw,σw) 0.890 (ιw,ξw,ξp,σw)
ξp 0.868 0.284 (µp) 0.716 (ιp,ρp) 0.740 (µp,ιp,ρp) 0.754 (µp,ιp,ρp,σp)
ιw 0.560 0.520 (σl) 0.524 (ιp,σl) 0.529 (µp,σl,ρp) 0.534 (λ,σl,ρb,σb)
ιp 0.746 0.332 (ρp) 0.420 (rπ,ρp) 0.480 (λ,rπ,ρp) 0.541 (λ,r4y,ry,ρp)
ψ 0.855 0.377 (gy) 0.489 (Φ,gy) 0.589 (α,Φ,δ) 0.699 (α,Φ,σa,δ)
Φ 0.909 0.506 (ψ) 0.704 (α,ψ) 0.769 (α,ψ,gy) 0.823 (α,ψ,σc,gy)
rπ 0.916 0.669 (σc) 0.809 (σc,ry) 0.838 (σc,ξp,ry) 0.853 (σc,ξp,ry,ρw)
ρ 0.933 0.765 (rπ) 0.862 (rπ,ρb) 0.913 (rπ,r4y,ρb) 0.924 (ξp,rπ,r4y,ρb)
ry 0.845 0.371 (ρr) 0.527 (ξw,ρ) 0.692 (ξw,rπ,ρ) 0.741 (ξw,rπ,ρ,ρb)
r4y 0.802 0.613 (ρ) 0.692 (rπ,ρ) 0.711 (rπ,ρ,ρr) 0.726 (ιw,rπ,ρ,ρr)
π̄ 0.620 0.591 (β′) 0.603 (l̄,β′) 0.612 (l̄,β′,δ) 0.616 (l̄,β′,γ,δ)
β′ 0.938 0.770 (π̄) 0.864 (π̄,α) 0.893 (l̄,π̄,α) 0.901 (l̄,π̄,α,gy)
l̄ 0.559 0.337 (β′) 0.500 (π̄,β′) 0.555 (π̄,β′,γ) 0.558 (π̄,β′,α,γ)
γ 0.085 0.068 (π̄) 0.083 (l̄,π̄) 0.084 (l̄,π̄,σc) 0.084 (l̄,π̄,σc,ρ)
α 0.846 0.500 (Φ) 0.717 (ψ,δ) 0.756 (ψ,ιw,δ) 0.777 (ψ,ιw,ιp,δ)
δ 0.719 0.310 (σc) 0.475 (σc,ry) 0.531 (α,σc,ry) 0.601 (α,ψ,σc,ry)
λw 0.997 0.897 (ξw) 0.932 (σc,ξw) 0.959 (β′,σc,ξw) 0.983 (β′,ϕ,σc,ξw)
gy 0.779 0.559 (σc) 0.627 (α,σc) 0.670 (α,ξw,λw) 0.687 (α,ξw,ρg,λw)

ρa 0.096 0.092 (ρg) 0.095 (ρg,σa) 0.096 (ρga,ρg,σa) 0.096 (ρga,Φ,ρg,σa)
ρb 0.868 0.767 (σb) 0.812 (λ,σb) 0.818 (λ,r4y,σb) 0.842 (λ,ry,ρ,σb)
ρg 0.119 0.096 (ρa) 0.104 (ρa,gy) 0.106 (ρa,σg,gy) 0.108 (Φ,ρa,σg,gy)
ρI 0.739 0.737 (σI) 0.737 (ϕ,σI) 0.738 (ϕ,σc,σI) 0.738 (ϕ,σc,λ,σI)
ρr 0.406 0.216 (ρ) 0.332 (ιw,ρ) 0.347 (ιw,ρ,δ) 0.360 (ιw,r4y,ρ,σr)
ρp 0.773 0.702 (µp) 0.771 (µp,σp) 0.771 (µw,µp,σp) 0.772 (µw,µp,ρw,σp)
ρw 0.731 0.489 (µw) 0.723 (µw,σw) 0.726 (µw,µp,σw) 0.728 (µw,µp,ρp,σw)
µp 0.837 0.744 (ρp) 0.813 (ρp,σp) 0.814 (ιp,ρp,σp) 0.821 (ιp,ξp,ρp,σp)
µw 0.813 0.592 (σw) 0.791 (ρw,σw) 0.799 (ρw,σw,λw) 0.808 (ξw,σl,ρw,σw)
ρga 0.139 0.028 (α) 0.037 (α,ψ) 0.046 (α,ψ,δ) 0.060 (l̄,π̄,β′,α)
σa 0.199 0.026 (ψ) 0.055 (ψ,gy) 0.093 (β′,α,ψ) 0.117 (π̄,β′,α,ψ)
σb 0.628 0.301 (ρb) 0.356 (σc,ρb) 0.386 (σc,ξw,ρb) 0.439 (σc,ξp,ρa,ρb)
σg 0.174 0.074 (ψ) 0.115 (ψ,Φ) 0.124 (α,ψ,Φ) 0.136 (α,ψ,Φ,ξp)
σI 0.711 0.295 (ρI) 0.393 (ρI ,δ) 0.451 (ϕ,ξp,ρI) 0.498 (ϕ,ξp,σl,ρI)
σr 0.165 0.120 (r4y) 0.146 (rπ,r4y) 0.153 (rπ,r4y,ry) 0.157 (rπ,r4y,ry,ρ)
σp 0.576 0.254 (µp) 0.450 (µp,ρp) 0.450 (µp,rπ,ρp) 0.451 (β′,µp,rπ,ρp)
σw 0.539 0.535 (µw) 0.539 (µw,ρw) 0.539 (µw,ξp,ρw) 0.539 (µw,r4y,ρw,λw)

Note: The table shows the 1th decile of %i := corr
(

∂`(θ)
∂θi

, ∂`(θ)
∂θ

−i

)

and the corresponding values of

%i(n), defined as the largest (in absolute value) among all coefficients of multiple correlation
between ∂`(θ)/∂θi and ∂`(θ)/∂θ−i(n) for θi in the first column and all possible combinations of
n = 1, . . . , 4 parameters from θ−i. The selected parameters are shown in parentheses.
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Table 14: Maximal multiple correlation coefficients (median of %i)

Par. %i %i(1) %i(2) %i(3) %i(4)
ϕ 0.9857 0.559 (σl) 0.685 (ξp,λw) 0.861 (λ,ξp,λw) 0.883 (λ,ξp,ρb,λw)
σc 0.9972 0.847 (β′) 0.894 (β′,λ) 0.974 (β′,ξw,λw) 0.985 (β′,ϕ,ξw,λw)
λ 0.9772 0.770 (σc) 0.834 (ϕ,σc) 0.859 (ϕ,σc,σI) 0.892 (β′,σc,ξw,λw)
ξw 0.9997 0.965 (σl) 0.988 (ιw,σl) 0.989 (ιw,σl,σw) 0.993 (β′,ϕ,σc,λw)
σl 0.9877 0.885 (r4y) 0.939 (r4y,λw) 0.956 (ξw,r4y,ry) 0.968 (λ,r4y,ry,λw)
ξp 0.9650 0.647 (Φ) 0.701 (Φ,ιw) 0.744 (α,ψ,Φ) 0.799 (α,ψ,Φ,λw)
ιw 0.8673 0.498 (ρb) 0.643 (λ,ρb) 0.707 (λ,ρb,λw) 0.760 (σl,ρb,σw,λw)
ιp 0.8796 0.723 (µp) 0.792 (µp,ξp) 0.818 (µp,ξp,rπ) 0.832 (µp,ξp,rπ,r4y)
ψ 0.9670 0.493 (gy) 0.637 (Φ,gy) 0.763 (Φ,ξp,λw) 0.830 (Φ,ξp,λw,gy)
Φ 0.9817 0.663 (ψ) 0.931 (ψ,gy) 0.952 (α,ψ,gy) 0.958 (α,ψ,ξp,gy)
rπ 0.9796 0.811 (ρ) 0.911 (ρr,δ) 0.952 (ry,ρ,δ) 0.965 (ξp,σl,ρ,δ)
ρ 0.9835 0.745 (ry) 0.895 (r4y,ry) 0.939 (rπ,r4y,ry) 0.961 (rπ,r4y,ry,σr)
ry 0.9600 0.920 (rπ) 0.926 (rπ,r4y) 0.939 (rπ,r4y,ρb) 0.942 (ιw,rπ,r4y,ρb)
r4y 0.9367 0.793 (σl) 0.873 (rπ,ρ) 0.886 (λ,rπ,ρ) 0.904 (α,λ,rπ ,ρ)
π̄ 0.9529 0.916 (β′) 0.923 (l̄,β′) 0.936 (β′,α,gy) 0.946 (l̄,β′,α,gy)
β′ 0.9847 0.777 (π̄) 0.799 (π̄,σc) 0.849 (σc,ξw,λw) 0.899 (π̄,σc,ξw,λw)
l̄ 0.9287 0.890 (π̄) 0.911 (π̄,β′) 0.917 (π̄,β′,γ) 0.921 (π̄,β′,α,gy)
γ 0.2003 0.187 (l̄) 0.197 (l̄,β′) 0.199 (l̄,π̄,β′) 0.200 (l̄,π̄,β′,δ)
α 0.9524 0.707 (Φ) 0.806 (Φ,δ) 0.883 (ψ,Φ,δ) 0.924 (ψ,Φ,ξp,δ)
δ 0.8964 0.478 (ψ) 0.745 (rπ,ry) 0.784 (σc,ry,ρ) 0.818 (ξw,rπ,ry,λw)
λw 0.9998 0.918 (ξw) 0.965 (σc,ξw) 0.997 (ϕ,σc,ξw) 0.999 (β′,ϕ,σc,ξw)
gy 0.9479 0.569 (ψ) 0.719 (ψ,Φ) 0.851 (α,ψ,δ) 0.884 (ψ,Φ,ξp,δ)

ρa 0.3552 0.080 (ξp) 0.140 (Φ,ξp) 0.203 (α,ψ,gy) 0.211 (α,ψ,Φ,gy)
ρb 0.9538 0.602 (ξw) 0.786 (rπ,ρ) 0.833 (rπ,ρ,σb) 0.873 (ξw,rπ,ρ,σb)
ρg 0.3763 0.294 (ρa) 0.309 (α,ρa) 0.314 (α,σl,ρa) 0.319 (α,σl,ρa,ρb)
ρI 0.8189 0.777 (σI) 0.785 (ϕ,σI) 0.787 (ϕ,σI ,δ) 0.788 (ϕ,σl,σI ,λw)
ρr 0.8324 0.381 (ξp) 0.636 (ξp,ρ) 0.663 (ξp,ρ,σr) 0.696 (ιp,ξp,rπ,σr)
ρp 0.9840 0.970 (µp) 0.974 (µp,σp) 0.975 (µp,ξp,σp) 0.976 (µp,ϕ,ξw,σp)
ρw 0.9804 0.976 (µw) 0.977 (µw,σw) 0.977 (µw,rπ,σw) 0.978 (µw,rπ,ry,σw)
µp 0.9845 0.980 (ρp) 0.984 (ρp,σp) 0.984 (ιp,ρp,σp) 0.984 (ιp,ξp,ρp,σp)
µw 0.9792 0.960 (ρw) 0.975 (ρw,σw) 0.975 (ry,ρw,σw) 0.976 (ξp,r4y,ρw,σw)
ρga 0.3064 0.219 (ψ) 0.239 (α,ψ) 0.259 (α,ψ,rπ) 0.269 (α,ψ,ry ,δ)
σa 0.4693 0.089 (ψ) 0.126 (ψ,Φ) 0.191 (ψ,Φ,gy) 0.273 (α,ψ,Φ,gy)
σb 0.8059 0.554 (ρb) 0.622 (λ,ρb) 0.670 (σc,λ,ρb) 0.726 (λ,ξw,ρb,λw)
σg 0.3691 0.055 (Φ) 0.134 (ψ,Φ) 0.159 (ψ,Φ,ξp) 0.202 (ψ,Φ,ξp,δ)
σI 0.7950 0.690 (ρI) 0.694 (ρI ,δ) 0.698 (β′,σc,ρI) 0.715 (α,ρI ,δ,gy)
σr 0.5512 0.190 (rπ) 0.254 (ιw,rπ) 0.327 (ιw,rπ,ρr) 0.388 (ιw,rπ,ry,ρr)
σp 0.7207 0.632 (µp) 0.690 (µp,ρp) 0.699 (µp,ιp,ρp) 0.702 (µp,ιp,ξp,ρp)
σw 0.7079 0.626 (µw) 0.686 (µw,ρw) 0.690 (µw,ξw,ρw) 0.696 (µw,ξw,σl,ρw)

Note: The table shows the median of %i := corr
(

∂`(θ)
∂θi

, ∂`(θ)
∂θ

−i

)

and the corresponding values of

%i(n), defined as the largest (in absolute value) among all coefficients of multiple correlation
between ∂`(θ)/∂θi and ∂`(θ)/∂θ−i(n) for θi in the first column and all possible combinations of
n = 1, . . . , 4 parameters from θ−i. The selected parameters are shown in parentheses.
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Table 15: Maximal multiple correlation coefficients (ninth decile of %i)

Par. %i %i(1) %i(2) %i(3) %i(4)
ϕ 0.99833 0.81145 (λ) 0.98506 (λ,ξw) 0.99207 (λ,ξw,ρ) 0.99297 (λ,ξw,ρ,σI)
σc 0.99943 0.89038 (σl) 0.96498 (ξw,λw) 0.98345 (ϕ,ξw,λw) 0.99202 (ϕ,ξw,ρ,λw)
λ 0.99464 0.81240 (σc) 0.98556 (ϕ,σc) 0.98976 (ϕ,ξw,λw) 0.99136 (ϕ,ξw,ξp,λw)
ξw 0.99999 0.99974 (λw) 0.99986 (σc,λw) 0.99988 (β′,σc,λw) 0.99991 (ϕ,σc,ιw,λw)
σl 0.99839 0.94778 (σc) 0.97158 (σc,λ) 0.98572 (σc,λ,ξw) 0.98938 (ϕ,σc,λ,ξw)
ξp 0.99673 0.94541 (Φ) 0.96691 (Φ,λw) 0.97858 (Φ,λw,gy) 0.98559 (Φ,ξw,λw,gy)
ιw 0.98060 0.85876 (λ) 0.95268 (σl,λw) 0.95571 (σc,λ,ιp) 0.96547 (λ,ιp,σl,λw)
ιp 0.97587 0.85476 (ιw) 0.89863 (r4y,ρr) 0.93783 (ξp,rπ,ry) 0.95123 (ϕ,ξp,rπ,ry)
ψ 0.99400 0.82614 (Φ) 0.89645 (Φ,ξp) 0.95783 (Φ,ξp,gy) 0.97411 (α,Φ,ξp,δ)
Φ 0.99734 0.68871 (ξp) 0.86201 (ξp,gy) 0.90494 (α,ξp,gy) 0.94724 (ρga,α,ξp,gy)
rπ 0.99710 0.93258 (ρ) 0.99185 (r4y,ρ) 0.99290 (r4y,ρ,σr) 0.99439 (σl,ρ,ρb,λw)
ρ 0.99780 0.95205 (rπ) 0.96706 (rπ,r4y) 0.99248 (rπ,r4y,ry) 0.99385 (rπ,r4y,ry,σr)
ry 0.99433 0.73895 (ρ) 0.94225 (rπ,ρ) 0.98481 (rπ,r4y,ρ) 0.98721 (σc,rπ,r4y,ρ)
r4y 0.99219 0.93367 (σl) 0.97368 (ry,ρ) 0.98087 (ιw,ry,ρ) 0.98648 (σl,ry,ρ,λw)
π̄ 0.99645 0.99133 (l̄) 0.99202 (l̄,β′) 0.99302 (l̄,β′,δ) 0.99567 (l̄,β′,α,gy)
β′ 0.99710 0.90748 (l̄) 0.97199 (l̄,δ) 0.98497 (l̄,α,gy) 0.98593 (l̄,α,ρ,gy)
l̄ 0.99389 0.99313 (π̄) 0.99324 (π̄,β′) 0.99334 (π̄,β′,δ) 0.99373 (π̄,β′,α,gy)
γ 0.36881 0.23413 (l̄) 0.32814 (l̄,π̄) 0.33485 (l̄,π̄,β′) 0.34041 (l̄,π̄,β′,gy)
α 0.99216 0.93565 (β′) 0.96944 (β′,δ) 0.98670 (l̄,β′,δ) 0.98848 (l̄,β′,δ,gy)
δ 0.97010 0.83430 (β′) 0.95203 (α,gy) 0.95439 (α,ψ,gy) 0.95688 (α,ρI ,σI ,gy)
λw 0.99999 0.99924 (ξw) 0.99940 (ϕ,ξw) 0.99974 (ϕ,σc,ξw) 0.99988 (ϕ,σc,ξw,ρ)
gy 0.99395 0.85649 (δ) 0.90031 (ψ,δ) 0.96347 (β′,ψ,Φ) 0.97188 (β′,ψ,Φ,δ)

ρa 0.80784 0.67293 (ρg) 0.67606 (α,ρg) 0.68167 (ψ,ρg,ρr) 0.69204 (r4y,ry,ρ,ρg)
ρb 0.99369 0.96676 (rπ) 0.98713 (rπ,ρ) 0.98871 (λ,rπ,ρ) 0.98952 (σc,rπ,ry,ρ)
ρg 0.78761 0.66588 (ρa) 0.67389 (α,ρa) 0.69044 (α,ρa,δ) 0.70724 (α,ρa,δ,gy)
ρI 0.89308 0.79356 (σI) 0.80223 (ϕ,σI) 0.80750 (ϕ,σI ,δ) 0.81581 (ry,ρ,ρb,σI)
ρr 0.97796 0.70338 (Φ) 0.90007 (ξp,rπ) 0.91201 (ιp,ξp,rπ) 0.94076 (ξp,σl,ρ,λw)
ρp 0.99938 0.99929 (µp) 0.99938 (µp,σp) 0.99938 (µp,ιp,σp) 0.99938 (µw,µp,ιp,σp)
ρw 0.99925 0.99918 (µw) 0.99924 (µw,σw) 0.99924 (µw,σl,σw) 0.99924 (µw,σl,ρb,σw)
µp 0.99937 0.99914 (ρp) 0.99928 (ρp,σp) 0.99932 (ιp,ρp,σp) 0.99934 (ιp,ξp,ρp,σp)
µw 0.99924 0.99912 (ρw) 0.99922 (ρw,σw) 0.99923 (σl,ρw,σw) 0.99923 (ξw,σl,ρw,σw)
ρga 0.68229 0.43952 (Φ) 0.54756 (Φ,ξp) 0.58745 (Φ,ξp,r4y) 0.61203 (Φ,ξp,r4y,σa)
σa 0.73305 0.18253 (α) 0.22426 (α,ψ) 0.32075 (ψ,Φ,ξp) 0.39813 (α,ψ,Φ,ξp)
σb 0.87930 0.60097 (ρb) 0.71635 (ξw,ρb) 0.77775 (ξw,ρb,λw) 0.79927 (λ,ξw,ρb,λw)
σg 0.59603 0.19834 (α) 0.29379 (α,ψ) 0.42390 (ψ,Φ,ξp) 0.47155 (ψ,Φ,ξp,δ)
σI 0.84437 0.43444 (ρI) 0.61363 (ϕ,σc) 0.66783 (ϕ,σc,ρI) 0.72918 (ϕ,σc,λ,ρI)
σr 0.85045 0.45770 (r4y) 0.53670 (rπ,r4y) 0.66280 (rπ,r4y,ρ) 0.72346 (rπ,r4y,ρ,ρr)
σp 0.88183 0.81031 (µp) 0.82076 (µp,ιw) 0.83493 (µp,ιw,ξp) 0.84210 (µp,ιw,ξp,ρp)
σw 0.86652 0.85882 (µw) 0.86052 (µw,ιw) 0.86166 (µw,ιw,ρw) 0.86476 (µw,ιw,ξw,σl)

Note: The table shows the 9th decile of %i := corr
(

∂`(θ)
∂θi

, ∂`(θ)
∂θ

−i

)

and the corresponding values of %i(n),

defined as the largest (in absolute value) among all coefficients of multiple correlation between
∂`(θ)/∂θi and ∂`(θ)/∂θ−i(n) for θi in the first column and all possible combinations of n = 1, . . . , 4
parameters from θ−i. The selected parameters are shown in parentheses.
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Table 16: Identification strength and structural features of the model

Par. ϕ σc λ ξw σl ξp ιw ιp ψ Φ rπ ρ ry r4y π̄ β′ l̄ γ α δ λw gy ρa ρb ρg ρI ρr ρp ρw µp µw ρga σa σb σg σI σr σp σw

ϕ − + + . . . . . + . − + − . . . . . . . − . . ± . − + + . . + . + . . − + + -
σc − + − - . . . . + . − + . . . . . . + . − . . ± . + + + − + + . + − + ± + + -
λ − + + − . . . . . . − + . . . . . . + . − . . + . − + . − . + . + + + − + . -
ξw . + . + . . . . . . − + . . . . . . . . + . . + . . + . − . + . . . . . + + -
σl . − . − + + . . . + . + . . . . . . . . − . . + . + + + − - + . . + + + . + -
ξp . + + . . + . . − + − + . . . . . . . + . . . + − + + − . + . . − + − + + − .
ιw . + + + . − + . . . − + . . . . . . . . . . . + . . + + − - + . . + . . + + -
ιp . + + − + − . + . − - + . . . . . . . . − . . + . . + − . + . . . + . . + − .
ψ . − + + . . . . + + − + . . . . . . + + . . − + − + + + . . . − - + − + + + +
Φ . − + + − . . . − . − + . . . . . . . + + . − + − + + . + . . . − + − + + . +
rπ . + + . . . . . + . − - . . . . . . + . . . . + . + + . . + + . . + . + − + -
ρ . + + − . . . . + . − + . . . . . . . . − . . + . + + . . . + . . + . + − + -
ry − + + + . + . . . + − - + . . . . . + . . . . + . . + + . . . . . + . . − + .
r4y − + + . . . . . − . − + . + . . . . + . . . . + . . + . . . . . + + . . − + .
π̄ . − - . . + . . . + + − . . + . . . . . + . . − . . − - − + . . . − . . − - .
β′ − - − . . . . . . . . . . . . + . − + . . . . − . . . . . . + . . − . . − + .
l̄ . − - − + − . . . . + − + . . . ± . . . − . . − . . − - − . . . . − . . − . .
γ − . . . . − . . − - . . . . . . . + − . . . − - − - . − - + + . − . − - . − -
α . − + + . . . . − + − + . . . . . . + + . . − + − + . . . . . . − + − + . . .
δ . − + + . + . . . + − + . . . . . . + + . . − + − + + . . + + . − + − + + . .
λw . + . . . . . . . . . + . . . . . . . . . . . + . . + . . . . . . . . . + + .
gy . + + + − . . . . + − + . . . . . . . + + + . + − + + + + . . − - + − + + + +
ρa . + . . . . . . . . . . . . . . . . . . . . + . . . . . . . . + + . − . . . .
ρb . + + . . . . . . . . . . . . . . . . . − . . + . . + . − . + . . + . . . . -
ρg . + . . . . . . . . . . . . . . . . . . . . . . + . . . − . . + + . . . . . -
ρI . + + . . . . . . . . . . . . . . . . . . . . . . + . . . . + . . . . + . . -
ρr . . . − . . . . . . . + . . . . . . . . . . . . . . + . − . + . . . . . + . -
ρp . . . . . . . . . . . . . . . . . . . . . . . . . . . + . + . . . . . . . . .
ρw . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . + . . . . . . . +
µp . . . . . . . . . . . . . . . . . . . . . . . . . . . − . + . . . . . . . . .
µw . . . . . . . . . . . . . . . . . . . . . . . . . . . . − . + . . . . . . . .
ρga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . − . . . .
σa . − + + − . . . − . − + . . . . . . − + + . − + − + + . . + . − - + − + + . +
σb − + + − + . . . . . . . . . . . . . + . − . . + . − + . − + + . + + + − + − -
σg . − + + − . . . − + − + . . . . . . − + + . − + − + + + + . . − - + − + + + +
σI − + + − + . . . + − . . . . . . . . + . − . . + . − . − - + + . . + . + . − -
σr . + + . . . . . . . . − . . . . . . . . . . . + . . − . . . + . + + . . − . -
σp − + . − + − . + . − . + − . . . . . . . . . . + . . . − . + . . . + . − . . -
σw . . . − . . . . . . . . . . . . . . . . − . . . . . . . − . + . . . . . . . -

Note: The table shows the relationship between the values of the parameters and the strength of identification measured. Positive (negative) sign
in cell (i, j) means that θj tends to be larger (smaller) in the region of Θ where θi is better identified, than in the region where θi is worse
identified. The sign ± indicates that there is a systematic effect whose sign changes above certain value of θj . An empty cell indicates the absence
of a systematic effect.
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Table 17: Identification strength and time series properties of the model

persistence volatility
Par. 4yt 4ct 4it lt πt 4wt rt 4yt 4ct 4it lt πt 4wt rt
ϕ + + + + + + ± + + + + + + +
σc + + + + + + + + + + + + + +
λ + + . + + + + + + + + + + +
ξw + + + + + + + + + + + + + +
σl . . + . + + + + + + + + + +
ξp + + + + + + + + + + + + + +
ιw + + . + ± + + + + + + + + +
ιp + + − . + + + + + + + + + +
ψ + + + + + + + + + + + + + +
Φ + + + + + + + + + + + + + +
rπ + + + + + + + + + + + + + +
ρ + + + + + + + + + + + + + +
ry + + + + + + + + + + + + + +
r4y + + . + + + + + + + + + + +
π̄ − − − − − − − − − − − − − −
β′ . − + + − − − − − − − − − −
l̄ − − − − − − − − − − − − − −
γ − − − − . − − − − − − − − −
α + + + + + + + + + + + + + +
δ + + + + + + + + + + + + + +
λw + + . + + + + + + + + + + +
gy + + + + + + + + + + + + + +
ρa . . . . . . . . . . . . . .
ρb + + + + + + + + + + + + + +
ρg . . . . . . . . . . . . . .
ρI + + + + + + + + + + + + + +
ρr + + + + + + + + + + + + + +
ρp + + + + . + . + + + + + + +
ρw . . + + + . . . . . + . . .
µp . . . . . . . . . . . . . .
µw . . . . . . . . . . . . . .
ρga + . . + . . . . . . . . . .
σa + + + + + + + + + + + + + +
σb + + − . + + + + + + + + + +
σg + + + + + + + + + + + + + +
σI . + − − + + + + + + + + + +
σr . + − − . + + + + + + + + +
σp − . − − + − + + + + + + + +
σw − . − − . . . + . . . . + .

Note: The table shows the relationship between the the persistence and the volatility of the
observables and the strength of identification of the parameters. Positive (negative) sign in cell
(i, j) means that the variable in column j tends to be more (less) persistent/volatile in the region of
Θ where θi is better identified, than in the region where θi is worse identified. The sign ± indicates
that there is a systematic effect whose sign changes with the degree of persistence/volatility. An
empty cell indicates the absence of a systematic effect.
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Table 18: Identification strength and correlation structure (positive correlations)

Par. (Y,C) (Y, I) (Y, L) (Y, π) (Y,w) (Y, r) (C, I) (C,L) (C, π) (C,w) (C, r) (I, L) (I, π) (I, w) (I, r) (L, π) (L,w) (L, r) (π,w) (π, r) (w, r)
ϕ + + − + + n.a. + + + + + . + + n.a. + . + + + .
σc ± + − + + n.a. ± ± + + + + + + n.a. + + + + + .
λ + + − + + n.a. − + + + n.a. − − + n.a. + + + + + .
ξw + + − + + n.a. − + + + + − . + n.a. + + + + + .
σl ± + + + + n.a. ± − . + . + + + n.a. + + + + + +
ξp + + ± + + n.a. + + + + n.a. + + + n.a. + + + + + n.a.
ιw + + − + + n.a. + + + + . . . + n.a. + + + + + +
ιp + + + + + n.a. + + + + . − . + n.a. + + + . + n.a.
ψ + + − + + n.a. ± ± + . + + + + n.a. + . + + + .
Φ + + − + + n.a. ± − + . + + + + n.a. + . + + + n.a.
rπ + + . . + n.a. − + + + + . . + n.a. + + + + + n.a.
ρ + + − + + n.a. + + + + . − + + n.a. + + + + + .
ry . + − . + n.a. . + + . + . . + n.a. − + + + + n.a.
r4y + + . + + n.a. + + + + n.a. . . + n.a. + + + + + n.a.
π̄ − − + − − n.a. − − − − − + . − n.a. − − − − − .
β′ − − − . − n.a. − − − − . + + − n.a. − − − . − .
l̄ − − + − − n.a. − − − − . + . − n.a. − − − − − .
γ + . + . . n.a. + . . . . . . . n.a. + . . . − .
α . + − + + n.a. − ± + . + + + . n.a. + . + + + .
δ + + − + + n.a. ± ± + + + + + + n.a. + + + + + +
λw + . − + + n.a. − + + + + − − + n.a. + + + + + .
gy + + − + + n.a. + − + . + + + + n.a. + . + + + .
ρa . . − . + n.a. . . + + . − . . n.a. + . . . . .
ρb + + − + + n.a. + + + + . . . + n.a. + + + + + .
ρg . . − . + n.a. . + + + . . . . n.a. + + + . . .
ρI − − . + + n.a. − . + + . . + . n.a. + + + + + .
ρr + + − + + n.a. + . + + . . . + n.a. + + + + + .
ρp . + − . . n.a. . . . . . . . + n.a. − − . . + .
ρw . . − . − n.a. . . . − . . . − n.a. − + . . . .
µp . . . . . n.a. . . . . . . . . n.a. + + . . . .
µw . . . . . n.a. . . . . . . . . n.a. . . . . . .
ρga + + − . . n.a. . . . . . . . . n.a. + − . . . .
σa + + − + + n.a. ± − + . + + + + n.a. + . + + + .
σb + + . + + n.a. + + + + n.a. − . + n.a. + + + + + .
σg + + − + + n.a. + − + − + + + + n.a. + − + + + .
σI + + + + + n.a. − + + + + − − + n.a. + + + + + .
σr + + + + + n.a. − + + + n.a. − − + n.a. + + + + + n.a.
σp + . + . + n.a. + + + + . . . + n.a. + + + . + .
σw . . + + + n.a. . + + + . . . + n.a. + + + + . .

Note: The table shows the relationship between the degree of positive correlation among observables and the strength of identification. Positive
(negative) sign in cell (i, j) means that correlation between the j-th pair of variables tends to be stronger (weaker) and positive in the region of Θ

where θi is better identified, than in the region where θi is worse identified. The sign “±” indicates that there is a systematic effect whose sign
changes with the degree of correlation. An empty cell indicates the absence of a systematic effect. With “na” are indicated the cases where there
are not enough points with positive correlation in the two regions to test for difference in the distributions.
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Table 19: Identification strength and correlation structure (negative correlations)

Par. (Y,C) (Y, I) (Y, L) (Y, π) (Y,w) (Y, r) (C, I) (C,L) (C, π) (C,w) (C, r) (I, L) (I, π) (I, w) (I, r) (L, π) (L,w) (L, r) (π,w) (π, r) (w, r)
ϕ n.a. n.a. n.a. − n.a. − n.a. n.a. − n.a. − n.a. − n.a. − n.a. n.a. n.a. − n.a. −
σc n.a. n.a. n.a. − n.a. − n.a. n.a. − n.a. − − − n.a. − n.a. n.a. n.a. − n.a. −
λ n.a. n.a. n.a. . n.a. + n.a. n.a. n.a. n.a. + n.a. − n.a. − n.a. n.a. n.a. . n.a. +
ξw n.a. n.a. n.a. − n.a. − n.a. n.a. − n.a. − n.a. − n.a. − n.a. n.a. . − n.a. −
σl n.a. n.a. n.a. − n.a. + n.a. n.a. . n.a. + . − n.a. + n.a. n.a. . − n.a. −
ξp n.a. n.a. n.a. n.a. n.a. + n.a. n.a. n.a. n.a. + − + n.a. + n.a. n.a. n.a. n.a. n.a. +
ιw n.a. n.a. n.a. − n.a. − n.a. n.a. − n.a. − . − n.a. − n.a. n.a. . − n.a. −
ιp n.a. n.a. n.a. n.a. n.a. + n.a. n.a. n.a. n.a. + − + n.a. . n.a. n.a. n.a. n.a. n.a. +
ψ n.a. n.a. n.a. − n.a. . n.a. n.a. − n.a. . − − n.a. + n.a. n.a. n.a. − n.a. +
Φ n.a. n.a. n.a. − n.a. + n.a. n.a. − n.a. . − − n.a. + n.a. n.a. n.a. − n.a. +
rπ n.a. n.a. n.a. − n.a. + n.a. n.a. − n.a. + − − n.a. + n.a. n.a. n.a. − n.a. +
ρ n.a. n.a. n.a. − n.a. + n.a. n.a. − n.a. + − − n.a. + n.a. n.a. n.a. − n.a. +
ry n.a. n.a. n.a. − n.a. + n.a. n.a. − n.a. + − − n.a. + n.a. n.a. n.a. − n.a. +
r4y n.a. n.a. n.a. . n.a. + n.a. n.a. . n.a. + . . n.a. + n.a. n.a. n.a. . n.a. +
π̄ n.a. n.a. n.a. + n.a. − n.a. n.a. n.a. n.a. − . . n.a. + n.a. n.a. n.a. − n.a. −
β′ n.a. n.a. n.a. − n.a. − n.a. n.a. − n.a. − − − n.a. − n.a. n.a. n.a. − n.a. −
l̄ n.a. n.a. n.a. + n.a. . n.a. n.a. + n.a. . . . n.a. . n.a. n.a. . . n.a. .
γ n.a. n.a. n.a. . n.a. . n.a. n.a. . n.a. . . + n.a. . n.a. n.a. . . n.a. .
α n.a. n.a. n.a. − n.a. + n.a. n.a. − n.a. . − − n.a. + n.a. n.a. n.a. − n.a. +
δ n.a. n.a. n.a. − n.a. + n.a. n.a. − n.a. . − − n.a. + n.a. n.a. n.a. − n.a. +
λw n.a. n.a. n.a. − n.a. − n.a. n.a. − n.a. − n.a. − n.a. − n.a. n.a. . − n.a. −
gy n.a. n.a. n.a. − n.a. − n.a. n.a. − n.a. . . − n.a. + n.a. n.a. − − n.a. +
ρa n.a. n.a. n.a. . n.a. . n.a. n.a. . n.a. . . . n.a. . n.a. n.a. n.a. . n.a. .
ρb n.a. n.a. n.a. + n.a. + n.a. n.a. n.a. n.a. + . + n.a. + n.a. n.a. n.a. + n.a. +
ρg n.a. n.a. n.a. . n.a. . n.a. n.a. . n.a. . − . n.a. . n.a. n.a. n.a. . n.a. .
ρI n.a. n.a. n.a. . n.a. + n.a. n.a. . n.a. + . . n.a. + n.a. n.a. n.a. . n.a. +
ρr n.a. n.a. n.a. . n.a. . n.a. n.a. . n.a. . . + n.a. − n.a. n.a. n.a. + n.a. −
ρp n.a. n.a. n.a. − n.a. − n.a. n.a. . n.a. . . − n.a. − n.a. n.a. n.a. − n.a. −
ρw n.a. n.a. n.a. . n.a. . n.a. n.a. . n.a. . . . n.a. . n.a. n.a. n.a. . n.a. .
µp n.a. n.a. n.a. + n.a. . n.a. n.a. . n.a. . . + n.a. . n.a. n.a. n.a. + n.a. +
µw n.a. n.a. n.a. . n.a. . n.a. n.a. . n.a. . . . n.a. . n.a. n.a. n.a. . n.a. .
ρga n.a. n.a. n.a. . n.a. − n.a. n.a. . n.a. . . . n.a. . n.a. n.a. n.a. . n.a. .
σa n.a. n.a. n.a. − n.a. + n.a. n.a. − n.a. . − − n.a. + n.a. n.a. n.a. − n.a. +
σb n.a. n.a. n.a. . n.a. + n.a. n.a. n.a. n.a. + n.a. − n.a. − n.a. n.a. n.a. . n.a. +
σg n.a. n.a. n.a. − n.a. − n.a. n.a. − n.a. − . − n.a. + n.a. n.a. n.a. − n.a. +
σI n.a. n.a. n.a. . n.a. + n.a. n.a. n.a. n.a. + n.a. . n.a. − n.a. n.a. n.a. . n.a. +
σr n.a. n.a. n.a. . n.a. + n.a. n.a. . n.a. + − − n.a. + n.a. n.a. n.a. . n.a. +
σp n.a. n.a. n.a. + n.a. + n.a. n.a. + n.a. + − + n.a. . n.a. n.a. n.a. + n.a. +
σw n.a. n.a. n.a. . n.a. + n.a. n.a. . n.a. + . . n.a. . n.a. n.a. n.a. . n.a. .

Note: The table shows the relationship between the degree of negative correlation among observables and the strength of identification. Positive
(negative) sign in cell (i, j) means that correlation between the j-th pair of variables tends to be stronger (weaker) and negative in the region of Θ

where θi is better identified, than in the region where θi is worse identified. The sign “±” indicates that there is a systematic effect whose sign
changes with the degree of correlation. An empty cell indicates the absence of a systematic effect. With “na” are indicated the cases where there
are not enough points with negative correlation in the two regions to test for difference in the distributions.
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Table 20: Bayesian and frequentist bounds at the posterior mean

posterior a priori bounds

Par. θ̂i θ̂i ± std(θ̂i) bayesian frequentist

ϕ 5.744 4.715 6.773 4.571 6.917 3.432 8.056
σc 1.380 1.249 1.511 1.247 1.514 1.086 1.675
λ 0.714 0.673 0.755 0.674 0.754 0.651 0.777
ξw 0.701 0.630 0.771 0.638 0.763 0.515 0.886
σl 1.837 1.217 2.456 1.268 2.405 0.767 2.906
ξp 0.650 0.592 0.709 0.604 0.696 0.590 0.711
ιw 0.589 0.456 0.722 0.468 0.710 0.379 0.799
ιp 0.244 0.152 0.336 0.150 0.337 0.110 0.377
ψ 0.546 0.431 0.662 0.444 0.648 0.373 0.719
Φ 1.604 1.527 1.682 1.521 1.688 1.467 1.742
rπ 2.045 1.864 2.227 1.850 2.241 1.628 2.463
ρ 0.808 0.784 0.833 0.782 0.835 0.762 0.854
ry 0.088 0.065 0.110 0.065 0.110 0.047 0.128
r4y 0.224 0.196 0.251 0.193 0.255 0.174 0.273
π̄ 0.785 0.687 0.883 0.696 0.875 0.555 1.016
β′ 0.166 0.106 0.227 0.091 0.242 0.006 0.326
l̄ 0.542 -0.063 1.147 -0.375 1.458 -0.966 2.050
γ 0.431 0.417 0.445 0.420 0.442 0.420 0.442
α 0.191 0.173 0.208 0.174 0.208 0.168 0.213
δ na na na 0.021 0.029 0.014 0.036
λw na na na 1.289 1.711 0.707 2.293
gy na na na 0.141 0.219 0.109 0.251

ρa 0.958 0.947 0.968 0.945 0.971 0.942 0.974
ρb 0.217 0.133 0.301 0.137 0.296 0.127 0.307
ρg 0.976 0.968 0.985 0.966 0.986 0.965 0.988
ρI 0.711 0.652 0.770 0.654 0.767 0.643 0.778
ρr 0.151 0.086 0.217 0.070 0.232 0.056 0.247
ρp 0.891 0.845 0.938 0.842 0.941 0.832 0.951
ρw 0.968 0.955 0.981 0.954 0.982 0.952 0.984
µp 0.699 0.612 0.786 0.590 0.808 0.548 0.850
µw 0.841 0.790 0.893 0.791 0.892 0.781 0.902
ρga 0.521 0.432 0.610 0.433 0.610 0.416 0.626
σa 0.460 0.432 0.487 0.430 0.489 0.424 0.495
σb 0.240 0.217 0.264 0.215 0.266 0.213 0.268
σg 0.529 0.499 0.559 0.497 0.561 0.493 0.564
σI 0.453 0.405 0.502 0.405 0.501 0.402 0.505
σr 0.245 0.231 0.260 0.230 0.261 0.228 0.263
σp 0.140 0.123 0.157 0.121 0.159 0.117 0.163
σw 0.244 0.222 0.266 0.220 0.268 0.216 0.272

Note: The values of std(θ̂i) are estimated from the posterior sample. The a priori
bounds are computed using the (Bayesian) information matrix and are based on the
(Bayesian) Cramér-Rao lower bound.
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Table 21: Sensitivity to prior uncertainty

Par. ϕ σc λ ξw σl ξp ιw ιp ψ Φ rπ ρ ry r4y π̄ β′ l̄ γ α δ λw gy ρb ρI ρr ρp µp µw ρga

ϕ 61 . 1 . . . . . . . . . . . . . . . . . 1 . . 1 . . . . .
σc . 13 5 1 1 . . . . . 2 . 1 . . 9 . . . 2 7 1 . . . . . . .
λ 3 4 16 . 4 . . . 1 1 . . . 3 . 3 . . . 1 1 1 2 . . . . . .
ξw . . . 39 4 1 1 . . . . . . . . . . . . . 21 . . . . . . 1 .
σl . . 1 3 57 . . . . . . . . 2 . . . . . . 1 . . . . . . . .
ξp . . . 2 . 21 . . 2 3 1 . . . . . . . . . . . . . . 1 . . .
ιw . . . . . . 65 . . . . . . . . . . . . . . . . . . . . . .
ιp . . . . . . . 39 . . . . . . . . . . . . . . . . . . 8 . .
ψ . . . . . 1 . . 47 1 . . . 1 . . . . . 1 . 1 . . . . . . .
Φ . . . . . 1 . . 2 45 . . . 1 . . . . 1 1 . 2 . . . . . . 1
rπ . . . . . . . . . . 61 3 8 1 . . . . . . . . . . . . . . .
ρ . 1 . . 1 . . . . . 23 7 6 . . . . . . . 1 . . . 3 . . . .
ry . 1 . . . . . . . . 23 2 21 . . . . . . . . 1 . . . . . . .
r4y . . 1 . 4 . . . 1 1 1 . . 38 . . . . . . . 1 . . 1 . . . .
π̄ . . . . . . . . . . . . . . 80 . 4 . . . . . . . . . . . .
β′ . 2 1 . . . . . . . . . . . . 57 . . 1 . 1 . . . . . . . .
l̄ . . . . . . . . . . . . . . 14 1 21 . . . . . . . . . . . .
γ . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . .
α . . . . . . . . . 4 . . . . . 3 . . 11 5 . . . . . . . . .
δ . . . . . . . . 1 . . . . . . . . . 1 77 . . . . . . . . .
λw 1 1 . 11 1 . . . . . . . . . . 1 . . . . 71 . . . . . . . .
gy . . . . . . . . 1 1 . . . 1 . . . . . . . 61 . . . . . . .
ρa . 1 . . . . . . 1 2 . . . . . 1 . . 1 6 . . . . . . . . .
ρb . . 2 . . . . . . . . . . . . . . . . . . . 16 . . . . . .
ρg . 1 . . . . . . 1 . . . . . . 1 . . . 2 . 1 . . . . . . .
ρI 6 . . . . . . . . . . . . . . . . . . 1 . . . 8 . . . . .
ρr . . . . . . . . . . . 1 . 3 . . . . . . . . . . 16 . . . .
ρp . . . . . 2 . 1 . . . . . . . . . . . . . . . . . 6 16 . .
ρw . . . 1 . . . . 1 . 1 . . . . . . . . 3 . . . . . . . 1 .
µp . . . . . . . 10 . . . . . . . . . . . . . . . . . 3 30 . .
µw . . . 8 1 1 . 2 . . 1 . . . . . . . . . 1 . . . . . . 6 .
ρga . . . . . . . . . 2 . . . . . . . . . . . 1 . . . . . . 20
σa . . . . . . . . 2 8 . . . . . . . . . . . . . . . . . . .
σb . . 1 . . . . . . . . . . . . . . . . . . . 10 . . . . . .
σg . . . . . . . . 1 3 . . . . . . . . . . . 1 . . . . . . .
σI 1 . . . . . . . . . . . . . . . . . . 1 . . . 4 . . . . .
σr 1 . . . 1 . . . . . . . . 5 . . . . . . . . . . 1 . . . .
σp . . . . . . 4 5 . . . . . . . . . . . . . . . . . . 10 . .
σw . . . . . 1 9 1 . . . . . . . . . . . . . . . . . . . 1 .

Note: Cell (i, j) of the table shows (100 ×) the elasticity of the Bayesian bound on the root mean
squared error of parameter θi to the prior standard deviation of parameter θj .
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Table 22: Effect of fixing parameters (part I)

Par. ϕ σc λ ξw σl ξp ιw ιp ψ Φ rπ ρ ry r4y π̄ β′ l̄ γ α δ λw gy

ϕ 100 0.1 2.5 0.0 . 0.4 . . . 0.4 0.1 0.2 0.1 0.1 . . . . . . 0.9 .
σc 0.1 100 16.6 0.9 1.1 0.3 . . . . 1.7 2.2 3.2 0.1 . 7.8 0.2 . 1.5 1.2 5.0 1.1
λ 2.5 16.6 100 . 3.1 . . . 0.7 0.8 0.1 . 0.8 4.5 . 2.3 0.1 . 0.6 0.6 0.6 1.1
ξw . 0.9 . 100 4.0 2.5 0.4 0.1 . . 0.1 0.5 0.1 0.1 . 0.1 . . 0.1 . 15.9 .
σl . 1.1 3.1 4.0 100 . . . 0.3 0.2 . 0.5 . 3.1 . 0.1 . . 0.1 . 0.9 0.2
ξp 0.4 0.3 . 2.5 . 100 0.1 . 2.2 3.2 0.7 0.4 0.6 0.5 . 0.1 . . 0.2 . 0.1 0.3
ιw . . . 0.4 . 0.1 100 0.1 . . . . . . . . . . . . . .
ιp . . . 0.1 . . 0.1 100 . . . 0.2 . . . . . . . . . .
ψ . . 0.7 . 0.3 2.2 . . 100 1.7 . 0.1 . 1.2 . . . . 0.1 0.9 . 1.0
Φ 0.4 . 0.8 . 0.2 3.2 . . 1.7 100 . 0.1 0.2 1.4 . . . . 4.1 0.4 0.1 1.4
rπ 0.1 1.7 0.1 0.1 . 0.7 . . . . 100 21.1 21.4 1.0 . 0.3 . . 0.2 . . .
ρ 0.2 2.2 . 0.5 0.5 0.4 . 0.2 0.1 0.1 21.1 100 15.8 0.3 . 0.3 . . 0.3 . 0.9 .
ry 0.1 3.2 0.8 0.1 . 0.6 . . . 0.2 21.4 15.8 100 0.3 . 0.4 . . 0.1 0.2 0.3 0.6
r4y 0.1 0.1 4.5 0.1 3.1 0.5 . . 1.2 1.4 1.0 0.3 0.3 100 . . . . 0.3 . . 0.8
π̄ . . . . . . . . . . . . . . 100 0.2 9.4 0.1 . . . .
β′ . 7.8 2.3 0.1 0.1 0.1 . . . . 0.3 0.3 0.4 . 0.2 100 0.9 0.1 2.4 0.1 0.8 0.2
l̄ . 0.2 0.1 . . . . . . . . . . . 9.4 0.9 100 0.4 . . . .
γ . . . . . . . . . . . . . . 0.1 0.1 0.4 100 . . . .
α . 1.5 0.6 0.1 0.1 0.2 . . 0.1 4.1 0.2 0.3 0.1 0.3 . 2.4 . . 100 3.5 0.1 .
δ . 1.2 0.6 . . . . . 0.9 0.4 . . 0.2 . . 0.1 . . 3.5 100 . 0.1
λw 0.9 5.0 0.6 15.9 0.9 0.1 . . . 0.1 . 0.9 0.3 . . 0.8 . . 0.1 . 100 .
gy . 1.1 1.1 . 0.2 0.3 . . 1.0 1.4 . . 0.6 0.8 . 0.2 . . . 0.1 . 100
ρa . 5.2 0.3 0.1 . 0.9 . . 1.2 2.1 0.2 0.1 . 0.1 . 1.2 . . 2.6 3.9 0.1 .
ρb . 0.1 5.3 . 0.1 . . . 0.1 . 0.1 0.1 0.1 0.2 . . . . . . . .
ρg . 4.9 0.4 . 0.4 0.4 . . 0.9 0.2 . . . 0.2 . 0.9 . . 2.2 1.6 . 0.6
ρI 4.9 1.1 0.2 . 0.2 . . . 0.2 . 0.2 0.1 0.3 0.1 . 0.2 . . . 0.5 . .
ρr . 0.2 . 0.1 0.2 . . . . . 0.2 8.6 0.5 3.9 . . . . . . 0.1 .
ρp . . . 0.1 0.1 5.8 0.3 0.9 0.1 . . . 0.1 . . . . . . . . .
ρw . 0.5 0.3 1.9 0.1 1.2 0.3 0.1 0.8 0.1 0.5 . 0.9 . . . . . . 1.9 . 0.2
µp . . . . 0.1 . 0.1 14.3 . 0.1 . . . . . . . . . . . .
µw 0.2 0.4 . 11.2 0.6 2.3 0.1 2.2 . 0.2 0.5 1.0 0.7 0.1 . 0.1 . . . 0.3 0.8 .
ρga . . 0.1 . . 0.1 . . 0.2 2.7 . . . 0.2 . . . . . . . 0.5
σa . . 0.1 . 0.1 0.8 . . 2.0 9.3 . . . 0.1 . . . . 2.1 0.3 . 0.3
σb . 1.4 3.3 . 0.2 . . . . 0.1 . . . 0.3 . 0.2 . . 0.1 0.1 . 0.1
σg . . . . . 0.4 . . 1.4 3.5 . . . . . 0.1 . . 0.1 . . 0.9
σI 0.7 . 0.2 . 0.1 0.2 . . . . 0.2 . 0.2 0.2 . . . . 0.1 0.3 0.1 .
σr 0.6 . 0.5 . 0.4 . . . . . 0.3 0.5 . 7.1 . . . . . . . 0.1
σp 0.1 . . 0.1 0.2 0.2 3.3 6.0 . . 0.1 . . . . . . . . . . .
σw 0.1 . . 0.3 0.3 2.5 6.7 1.6 0.1 . . 0.3 0.1 . . . . . . . . .

Note: Cell (i, j) of the table shows the percentage reduction of the Bayesian bound on the root mean squared error of parameter θi due to fixing
parameter θj .
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Table 23: Effect of fixing parameters (part II)

Par. ρa ρb ρg ρI ρr ρp ρw µp µw ρga σa σb σg σI σr σp σw

ϕ . . . 4.9 . . . . 0.2 . . . . 0.7 0.6 0.1 0.1
σc 5.2 0.1 4.9 1.1 0.2 . 0.5 . 0.4 . . 1.4 . . . . .
λ 0.3 5.3 0.4 0.2 . . 0.3 . . 0.1 0.1 3.3 . 0.2 0.5 . .
ξw 0.1 . . . 0.1 0.1 1.9 . 11.2 . . . . . . 0.1 0.3
σl . 0.1 0.4 0.2 0.2 0.1 0.1 0.1 0.6 . 0.1 0.2 . 0.1 0.4 0.2 0.3
ξp 0.9 . 0.4 . . 5.8 1.2 . 2.3 0.1 0.8 . 0.4 0.2 . 0.2 2.5
ιw . . . . . 0.3 0.3 0.1 0.1 . . . . . . 3.3 6.7
ιp . . . . . 0.9 0.1 14.3 2.2 . . . . . . 6.0 1.6
ψ 1.2 0.1 0.9 0.2 . 0.1 0.8 . . 0.2 2.0 . 1.4 . . . 0.1
Φ 2.1 . 0.2 . . . 0.1 0.1 0.2 2.7 9.3 0.1 3.5 . . . .
rπ 0.2 0.1 . 0.2 0.2 . 0.5 . 0.5 . . . . 0.2 0.3 0.1 .
ρ 0.1 0.1 . 0.1 8.6 . . . 1.0 . . . . . 0.5 . 0.3
ry . 0.1 . 0.3 0.5 0.1 0.9 . 0.7 . . . . 0.2 . . 0.1
r4y 0.1 0.2 0.2 0.1 3.9 . . . 0.1 0.2 0.1 0.3 . 0.2 7.1 . .
π̄ . . . . . . . . . . . . . . . . .
β′ 1.2 . 0.9 0.2 . . . . 0.1 . . 0.2 0.1 . . . .
l̄ . . . . . . . . . . . . . . . . .
γ . . . . . . . . . . . . . . . . .
α 2.6 . 2.2 . . . . . . . 2.1 0.1 0.1 0.1 . . .
δ 3.9 . 1.6 0.5 . . 1.9 . 0.3 . 0.3 0.1 . 0.3 . . .
λw 0.1 . . . 0.1 . . . 0.8 . . . . 0.1 . . .
gy . . 0.6 . . . 0.2 . . 0.5 0.3 0.1 0.9 . 0.1 . .
ρa 100 0.2 13.8 . . . 0.4 . 0.5 . 0.9 0.1 0.1 . . . .
ρb 0.2 100 0.1 . 0.1 . . . . . . 39.5 . . . . .
ρg 13.8 0.1 100 . . . 0.2 . 0.1 . 0.2 0.1 . . . . .
ρI . . . 100 . . 0.6 . . . . 0.1 . 31.7 . . .
ρr . 0.1 . . 100 . . . 0.1 . . . . . 1.8 . .
ρp . . . . . 100 0.3 32.4 0.2 . . . . . . 0.8 0.2
ρw 0.4 . 0.2 0.6 . 0.3 100 0.1 5.3 . 0.1 . . 0.2 . 0.1 1.7
µp . . . . . 32.4 0.1 100 0.4 . . . . . . 18.6 0.6
µw 0.5 . 0.1 . 0.1 0.2 5.3 0.4 100 . . . . 0.1 . 1.0 10.0
ρga . . . . . . . . . 100 0.3 . 0.2 . . . .
σa 0.9 . 0.2 . . . 0.1 . . 0.3 100 . 0.7 . . . .
σb 0.1 39.5 0.1 0.1 . . . . . . . 100 . . . . .
σg 0.1 . . . . . . . . 0.2 0.7 . 100 . . . .
σI . . . 31.7 . . 0.2 . 0.1 . . . . 100 0.1 0.1 .
σr . . . . 1.8 . . . . . . . . 0.1 100 . .
σp . . . . . 0.8 0.1 18.6 1.0 . . . . 0.1 . 100 0.8
σw . . . . . 0.2 1.7 0.6 10.0 . . . . . . 0.8 100

Note: Cell (i, j) of the table shows the percentage reduction of the Bayesian bound on the root mean squared error of parameter θi

due to fixing parameter θj .
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Figure 1: Likelihood-based (dashed lines) and linearized (dotted lines) confidence inter-
vals.
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Figure 2: Cumulative distribution functions of four parameters in regions of the param-
eter space where the identification of σc is stronger (solid line) and weaker (dotted line).
The two regions consist of point θ for which the relative CRLB for σc are below the
second decile and above the 8 decile.
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identification is stronger (solid line) and weaker (dotted line).

59



0 0.5 1
0

0.5

1

ρI

F
(ρ

I
)

(a) CDF of ρI and identification of α

0 1 2 3
0

0.5

1

σI

F
(σ

I
)

(b) CDF of σI and identification of α

0 1 2 3
0

0.5

1

σI

F
(σ

I
)

(c) CDF of σI and identification of ψ

0 1 2 3
0

0.5

1

σw

F
(σ

w
)

(d) CDF of σw and identification of ψ

0 1 2 3
0

0.5

1

σa

F
(σ

a
)

(e) CDF of σa and identification of ϕ

0 1 2 3
0

0.5

1

σr

F
(σ

r
)

(f) CDF of σr and identification of ϕ

0 1 2 3
0

0.5

1

σp

F
(σ

p
)

(g) CDF of σp and identification of ϕ

0 0.5 1
0

0.5

1

ρp

F
(ρ

p
)

(h) CDF of ρp and identification of σc

0 0.5 1
0

0.5

1

ρI

F
(ρ

I
)

(i) CDF of ρI and identification of Φ

0 1 2 3
0

0.5

1

σI

F
(σ

I
)

(j) CDF of σI and identification of Φ

0 1 2 3
0

0.5

1

σr

F
(σ

r
)

(k) CDF of σr and identification of ιp

0 1 2 3
0

0.5

1

σr

F
(σ

r
)

(l) CDF of σr and identification of ξp

0 0.5 1
0

0.5

1

ρb

F
(ρ

b
)

(m) CDF of ρb and identification of rπ

0 2 4 6
0

0.5

1

σb

F
(σ

b
)

(n) CDF of σb and identification of r∆

0 1 2 3
0

0.5

1

σI

F
(σ

I
)

(o) CDF of σI and identification of δ

0 1 2 3
0

0.5

1

σp

F
(σ

p
)

(p) CDF of σp and identification of ιw

0 1 2 3
0

0.5

1

σw

F
(σ

w
)

(q) CDF of σw and identification of ιw

0 1 2 3
0

0.5

1

σp

F
(σ

p
)

(r) CDF of σp and identification of ιp

0 1 2 3
0

0.5

1

σp

F
(σ

p
)

(s) CDF of σp and identification of ξp

0 1 2 3
0

0.5

1

σw

F
(σ

w
)

(t) CDF of σw and identification of σl

Figure 4: Cumulative distribution functions in regions of the parameter space where the
identification is stronger (solid line) and weaker (dotted line).
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