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Abstract

In this paper we propose an approach to detect persistence changes in fractionally in-
tegrated models based on recursive forward and backward estimation of the Breitung and
Hassler (2002) test. This procedure generalises to fractionally integrated processes the ap-
proaches of Leybourne, Kim, Smith and Newbold (2003) and Leybourne and Taylor (2003),
which are ADF and seasonal unit root type tests, respectively, for the conventional intenger
value context. Asymptotic results are derived and the performance of the new procedures
evaluated in a Monte Carlo exercise. The �nite sample size and power performance of the
procedures are very encouraging and compare very favourably to available tests, such as
those recently proposed by Hassler and Sheithauer (2009) and Sibbertsen and Kruse (2007).
We also apply the test statistics introduced to several world in�ation rates and �nd evidence
of change in persistence in most series.
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1 Introduction

Testing for the presence of unit roots is now routine practice in empirical research given the dif-

ferent statistical and economic implications of classifying a series as stationary or nonstationary.

Establishing this distinction is meaningful in that it helps understand the e¤ects of shocks on

economic and �nancial variables. While the impact of shocks will be transitory for stationary

series, for nonstationary ones any random shock may have persistent e¤ects. In other words,

while a stationary time series will display mean-reverting behaviour, a nonstationary variable

will display persistent behaviour, i.e., shocks will have long lasting e¤ects, thus preventing the

series from returning to any de�ned level.

However, in recent years, it has been observed that macroeconomic variables may display

both stationary and nonstationary features within a speci�c period; see, for instance, Halunga,

Osborn and Sensier (2009). Indeed, it seems that some series could be switching from I(0) to

I(1) behavior, or vice-versa. This has motivated the development of test procedures which look

to infer whether a stationary (I(0)) or a nonstationary (I(1)) series has changed its persistence

over time to I(1) or I(0), respectively; see, inter alia, Kim (2000), Kim, Belaire-Franch and

Amador (2002), Busetti and Taylor (2004) and Harvey Leybourne and Taylor (2006).

In recent work Sibbertsen and Kruse (2009), Hassler and Sheithauer (2009) and Hassler and

Meller (2009) look at this problem from a long-range dependencies perspective. They move from

the integer valued context to the fractional context in order to evaluate whether a time series

observed a persistence change from I(d0) to I(d1); with d0 6= d1; or vice versa.

Hassler and Scheithauer (2009) evaluate the tests proposed by Kim (2000), Kim et al. (2002)

and Busetti and Taylor (2004) for the null hypothesis of short-memory against a change to

nonstationarity, I(1), and show that these tests are also consistent to test for changes from I(0)

to I(d), d > 0 (long-memory). However, they observe that the estimators proposed for the

integer case (d = 1) are only reliable if d is close to 1.

Sibbertsen and Kruse (2009) follow Leybourne, Taylor and Kim [LTK] (2007) and adapt

their CUSUM of squares-based test statistics, computed from forward and reverse evaluation of

time series, to the context of long range dependencies and show that the break point estimator

proposed by LTK is consistent under long memory although at a slower rate of convergence

(which depends on d): Sibbertsen and Kruse (2009) observe that the LTK procedure su¤ers

from serious size distortions if the DGP has long memory and therefore provide new critical

values, appropriate for the I(d) framework, which depend on the memory parameter d.

Hassler and Meller (2009) introduced a test procedure which considers the regression-based

Lagrange Multiplier [LM] test of Demetrescu, Kuzin and Hassler (2008). In particular, they
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include a dummy variable in the test regression with the objective of accounting for a possible

break in long-memory. Allowing for a break fraction �; such that � 2 [�; 1��]; the supremum of

the sequence of squared t-statistics for the signi�cance of the break parameter is computed and

compared to the critical values in Andrews (1993). Through Monte Carlo simulations Hassler

and Meller (2009) show that this procedure presents good power particularly when the di¤erence

of the orders of integration before and after the break is larger than 0.3.

In this paper we propose a new method to detect persistence changes in fractionally inte-

grated models based on recursive forward and backward estimation of the Breitung and Hassler

(2002) test, in the spirit of the approach of Leybourne, Kim, Smith and Newbold [LKSN] (2003).

Asymptotic results are derived and the performance of the new procedures evaluated in a Monte

Carlo exercise. The �nite sample size and power performance of the procedures are very encour-

aging and compare very favourably with available tests, such as those proposed by Hassler and

Sheithauer (2009) and Sibbertsen and Kruse (2009). The performance of the test together with

its simplicity of application make it an interesting approach for empirical analysis. We apply

the new test statistics to several world in�ation rates and �nd evidence of persistence change in

most of the series.

This paper is organized as follows. Section 2 introduces the new procedures. Section 3

discusses the �nite sample properties of the test statistics and Section 4 presents an empirical

application which investigates persistence change in in�ation series. Finally, Section 5 concludes

the paper and an appendix collects the proofs.

2 Fractional Persistence Change

Consider data generated from a fractionally integrated process of order dt (FI (dt)); such that,

(1� L)dt yt = "t; (1)

where yt = 0 for t � 0; and "t satis�es a set of assumptions that will be discussed below. Under

the null hypothesis it will be assumed that the fractional integration parameter dt is constant

over the sample, i:e:; dt = d0: However, under the alternative two situations can be considered,

i) H01 : yt is I (d0) changing to I (d1) at time b��T c ) dt = d0 for t � b��T c and dt = d1 for

t > b��T c : Here, �� is unknown in � = [�l;�u] � (0; 1) and symmetric around 0.5; and ii) H10 :

yt is I (d1) changing to I (d0) at time b��T c.

Remark 2.1: Owing to nonstationarity, it is customary in the literature related to fractional

integration to assume ytI(t�0) = 0, either explicitly (e.g., Tanaka, 1999; Demetrescu, Kuzin
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and Hassler [DKH], 2008, and Hassler, Rodrigues and Rubia [HRR], 2009), or indirectly, by

requiring "tI(t�0) = 0 (e.g., Nielsen, 2004, 2005). This restriction ensures that the observable

process is well-de�ned in the mean-square sense regardless of the values of d; see Marinucci

and Robinson (1999), Tanaka (1999) and Robinson (2005) for further details. It is important

to note that the truncation imposed poses no loss of generality for the procedures proposed; see

also HRR. However, the assumption on the initial values is not a trivial one, as was shown by

Davidson and Hashimzade (2009), and care needs to be taken, particularly in contexts where this

di¤erence is likely to be crucial.

To be more precise regarding the assumptions underlying "t in (1) we consider a set of

assumptions similar to those of DKH and HRR.

Assumptions:

A:1) The innovation process f"t;Gtg1�1 ; Gt = � ("j : j � t) ; forms a martingale di¤erence se-

quence (MDS) and veri�es E
�
"2t
�
= �2 < 1; E

�
"2t jGt�1

�
> 0 almost surely, with one of the

following restrictions holding true:

A:1:1) f"tg is independent and identically distributed and E
�
j"4t j1+r

�
is uniformly bounded

for some r > 0:

A:1:2) f"tg is strictly stationary and ergodic with
1X

l1=�1

1X
l2=�1

:::
1X

l7=�1
j�" (0; l1; :::; l7)j <1;

where �" (0; l1; :::; l7) is the eight-order joint cumulant of f"tg :

As indicated in HRR, assumption A:1:1 can be weakened by requiring that, conditional on

the �-�eld of events Gt; moments up to the fourth-order (and suitable cross-products of elements

of "t) equal the corresponding unconditional moments, so that essentially f"tg is only required to

behave as an i.i.d process up to the fourth-order moment. The main purpose of A:1:2 is to allow

for (unknown) time-varying conditional volatility patterns in f"tg : For instance, GARCH-type

and Stochastic Volatility models are permitted, among other forms of conditional heteroskedas-

ticity, under restrictions that limit the extent of temporal dependence. As in Gonçalves and

Kilian (2007), DKH and HRR, this holds by requiring the absolute summability of the eight-

order joint cumulants.

In our analysis we will relax Assumption A:1; by also allowing for stationary AR(p) dynamics

in the DGP, which may appear jointly with time-varying volatility patterns. Therefore, we also

consider as an alternative to assumption A:1 the following:
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A:2) The innovation process satis�es a (L) "t = vt; where a (L) = 1�
Pp
j ajL

j ; p � 0; such that

a (z) has all its roots outside the unit circle and fvt;Gtg ; is a strictly stationary and ergodic

MDS satisfying the restrictions in either Assumption A:1:1 or A:1:2:

For practical purposes, the short-run dynamics may be characterized by a stationary and

invertible linear process "t =
P1
j=0 bjvt�j such that the AR(p) model, for some large enough

p <1; approaches the underlying AR representation reasonably well. The actual performance

of this approximation, when the underlying correlation structure in the short-run component is

unknown, is ultimately an empirical question which we shall address in the Monte Carlo section.

2.1 Tests for persistence change

To introduce the persistence change tests, consider data generated from (1) with dt = d0 and

where "t satis�es assumption A.1: In this case, for each �xed � (� 2 (�; 1 � �)) the auxiliary

regression is simply,

xt = � (�)x�t�1 + et; t = 2; :::; b�T c ; (2)

where xt = 4d0yt and x�t�1 =
Pt�1
j=1

xt�j
j ; see Breitung and Hassler (2002) for details on the set

up of this regression for testing for fractional integration in the time domain (see also Robinson,

1994, for the approach in the frequency domain). Here, we use this test to look for changes

in the memory parameter by recursively estimating (2) over the complete sample. In practice,

the parameter � that de�nes the set of values for � is an arbitrary value, typically � =0.15 or

� =0.2.

Remark 2.2: If our DGP is yt = �t+xt and (1� L)d xt = et; where �t = z0t� is a deterministic

kernel (such as a constant or a constant and a time trend), the procedure just presented can still

be used but xt has to be replaced by xt = xt � z0tb�; which when d is an integer corresponds

to the least-squares residual obtained from the de-meaning or the de-trending regression of xt

on zt = 1 or zt = (1; t)0 ; respectively, for t = 1; :::; b�T c : For example, in the constant case,

�t = �; xt = xt � x (�) ; where x (�) = 1
b�T c

Pb�T c
t=1 xt: However, when d is not an integer,

following Robinson (1994) and DKH (p. 184) regress xt = (1� L)d yt on the di¤erenced trend

function,

(1� L)d zt =
t�1X
i=0

�izt�i;

where �i =
i�1�d
i �i�1 and �0 = 1: Similarly as in the integer case, the residuals x1;t = xt �b�0 (1� L)d zt replace xt in the test regression. According to Robinson (1994), Breitung and

Hassler (2002, p.171) and DKH, it can be shown that demeaning or detrending xt prior to
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computing the test statistic does not a¤ect the limiting distribution of the test. That is, under

the null hypothesis and replacing xt by x1;t; the limit distributions of our tests do not change,

i.e., these are invariant to deterministic components.

Proposition 2.1: Considering the auxiliary regression in (2) the OLS t- and squared t-statistics

to test b� (�) = 0; which we denote as �f (�) and �2f (�) ; respectively are,
�f (�) =

Pb�T c
t=2 xtx

�
t�1b�e (�)qPb�T c

t=2 x�2t�1

(3)

and �2f (�) =
�
�f (�)

�2
; where b�e (�) =q 1

b�T c�2
Pb�T c
t=2 be2t and bet is the least squares residual of

the auxiliary regression (2).

Generalizing the results of LTK, it follows that �f (�) is consistent against H10 (change

from I (d1) to I (d0) ; d0 < d1) but not against H01 (change from I (d0) to I (d1) ; d0 < d1):

Thus, to obtain power against H01 one needs to compute the reverse statistic, i.e., �r (�) ; where

xt is now replaced by the time-reversed series wt = xT�t+1. Thus, considering the remaining

(1��)T observations, it follows that the test regression necessary to compute the reverse statistic

is,

wt = � (�)w�t�1 + eet; t = 2; :::; b(1� �)T c ; (4)

where wt = xT�t+1 and w�t�1 =
Pt�1
j=1

wt�j
j =

Pt�1
j=1

xT�t+j+1
j = x�T�t+2:

Proposition 2.2: Considering the auxiliary regression in (4), the OLS t- and squared t-statistics

to test b� (�) = 0 are thus,
�r (�) =

Pb(1��)T c
t=2 wtw

�
t�1b�ee (�)qPb(1��)T c

t=2 w�2t�1

=

Pb(1��)T c
t=2 xT�t+1x

�
T�t+2b�ee (�)qPb(1��)T c

t=2 x�2T�t+2

(5)

and �2r (�) = [�r (�)]
2 ; respectively, where b�ee (�)r 1

b(1��)T c�2
Pb(1��)T c
t=2

bee2t and beet is the least
squares residual of the auxiliary regression (4).

If the direction of change is known under the alternative, either �f and �
2
f or �r and �

2
r ; can

be computed. However, if the direction is not known a priori as is generally the case, then the

use of the �min = min
�
�f ; �r

	
and �2max = max

�
�2f ; �

2
r

	
statistics to achieve higher power is

recommended. This follows along similar lines as the statistics proposed in Harvey et al. (2006)

for the integer I(1) versus I(0) or I(0) versus I(1) cases.

Given that generally the time of change is not known, the statistics of Propositions 2.1 and

2.2 are not directly usable. Instead the in�mum and supremum of the t and squared t statistics,

respectively have to be considered as given in the next proposition.
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Proposition 2.3: Based on the t- and squared t-statistics of Propositions 2.1 and 2.2, the

In�mum and Supremum statistics over � 2 ��, computed to investigate changes in the memory

parameter are respectively,

�k � inf
�2��

�k (�) for �
� � [�l;�u] ; (6)

and

�2k � sup
�2��

�2k (�) for �
� � [�l;�u] ; (7)

where k = r; f and �l and �u correspond to the lower and upper bounds of ��; respectively.

2.2 Limit Null Distributions

For the purpose of exposition and without loss of generality, under the null hypothesis we

consider that d0 = 1. Note that for d0 = 0 the analysis follows along the same lines, and the

limit results will also be the same. Furthermore, the results presented will also hold when d0 is

a real value as will be discussed below.

Theorem 2.1 Considering data generated from (1) with dt = 1 (or dt = 0) and where "t

satis�es assumption A.1, i.e. yt is I (1) (or I(0)) throughout the sample period, it follows as

T ! 1 that for any �xed, known, � 2 ��; the statistics provided in Propositions 2.1 and 2.2

have the following limit distributions,

�f (�) ; �r (�)
d! N (0; 1) and �2f (�) ; �

2
r (�)

d! �2(1): (8)

For proof see appendix.

Furthermore, regarding the statistics of Proposition 2.3, their respective asymptotic distrib-

utions are provided in the following theorem.

Theorem 2.2 Under the same assumptions of Theorem 2.1 and de�ning �� � [�l;�u] ; it

follows as T !1 that,

�f ; �r
d! inf
�2��

�� and �2f ; �
2
r
d! sup
�2��

�� ; (9)

where �� � N (0; 1) and �� � �2(1): Furthermore,

�min
d! min

�
inf
�2��

�� ; inf
�2��

��

�
and �2max

d! max

�
sup
�2��

�� ; sup
�2��

��

�
: (10)

For proof see appendix.

Remark 2.3: Although the analytical expressions of the limiting distributions of the tests sta-

tistics are not straightforwardly determined, these have some noticeable properties. Take, for
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instance, the random variable inf
�2��

�� ; which is the in�mum of an uncountable number of stan-

dard normal random variables. If the random variables were independent and of a �nite number

(which is commonly done in practice, with b(1� �l)T c � b�lT c = T � and �l = 0:2); then the

distribution function would be given by fT � (x) = 1� (1� � (x))T
�
; which is the minimum or-

der statistic of a �nite number of independent standard normals. Clearly, the simulated critical

values in Table 3.1 do not resemble those of f (x) : A similar argument applies to the case of

sup
�2��

�� with chi-squared random variables.

Thus far our analysis only considered the restricted case that under the null hypothesis d0

is an integer (d0 = 0 or d0 = 1): However, the results presented are quite general in the sense

that they also hold when d0 is a real value. Hence the following corollary can be stated:

Corollary 2.1 Assuming that data is generated from (1) under assumptions A.1 or A.2 and

considering the stationary parameter space d0 < 0:5; with d0 known the limit results of Theorems

2.1 and 2.2 hold in this context as well as long as adequately �ltered data is used, i:e:; xt =

(1� L)d0 yt:

In this context, and following Breitung and Hassler (2002), DKH and HRR, the auxiliary

regression is set up using xt = (1� L)d0 yt and consequently, the previously derived limit results

hold under assumptions A.1 or A.2 for "t:

However, in general, d0 is unknown and therefore the previous corollary needs to be adapted

in order to cover this empirically relevant case.

Corollary 2.2 Assuming that data is generated from (1) under assumptions A.1 or A.2, but

considering d0 unknown, the limit results of Theorems 2.1 and 2.2 will hold in this context as well

as long as a
p
T� consistent estimator of d; bdT � bd, pT �bd� d� = Op (1) is used, such as, for

instance, the spectral MLE estimator of Fox and Taqqu (1986). Once a consistent estimator is

obtained, the transformed data bxt = (1� L)bd yt can be used to set up the test regression ensuring
that the limit null distributions presented in Theorems 2.1 and 2.2, hold in this context as well:

For proof see appendix.

We have until now assumed the null hypothesis to be true. Under the alternative H01

(or H10), bxt does not share the same properties of the DGPs xt;0 � "t (d0) ; for t � b��T c

and xt;1 � "t (d1) ; for t > b��T c ; as these have di¤erent behaviors whenever d0 6= d1: Thus,

to understand the behaviour of the tests under the alternative hypotheses, we provide next the

respective power functions, assuming under the null hypothesis that d0 = 1: To show analytically
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that the tests have power when d0 and d1 are both real is not trivial and we refer to the Monte

Carlo experiments below.

2.3 Power Functions

To characterize the power functions of the tests introduced in Propositions 2.1, 2.2 and 2.3, we

consider the behaviour of the statistics in a local and non-local context. Theorems 2.3 and 2.4

below detail the behaviour of the procedures in both contexts.

Remark 2.4: To ensure stationarity and invertibility of the fractional process, we need to re-

strict d to the interval (�0:5; 0:5) : For this interval, it is possible to derive the limiting laws ofPT
t=2 x

�2
t�1 and

PT
t=2 xtx

�
t�1 which are needed for the power analysis and the limit null distribu-

tions (when d0 is real) of the tests. Nevertheless, we can study the properties of the tests when

d does not belong to the (�0:5; 0:5) interval by resorting to Monte Carlo simulations.

Theorem 2.3 (Local Power). Consider data generated from (1) under H01; i.e., yt is I (1)

changing to I (d1;T ) ; where d1;T = 1 � �p
T
; � > 0; at time b��T c ; with �� unknown in � =

[�l;�u] � (0; 1) ; symmetric around 0.5 and with no serial correlation. Then, as T !1;

�f
d! N (0; ��) +N

 
��

s
(1� ��) �

2=6

�4"
; 1� ��

!
(11)

and

�r
d! N

 
��

s
�2=6

�4"
; 1

!
: (12)

For proof see appendix.

Theorem 2.4 (Non-Local Power). Consider again H01 but now yt is I (1) changing to I (d1) ;

where d1 = d 2 (0:5; 1) at time b��T c ; with �� unknown in � = [�l;�u] � (0; 1) ; symmetric

around 0.5 and with no serial correlation. As T !1;

1p
T
�f

p!
p
(1� ��) 
�(d� 1)

�"

q
��

(1���)�
2
"
�2

6 + �
2
x�(d� 1)

< 0 (13)

and
1p
T
�r

p!
p
(1� ��) 
�(d� 1)

�"�x�(d� 1)
< 0 (14)

where 
�(d� 1) and �x�(d� 1) are de�ned in the appendix.

For proof see appendix.

Regarding the reverse alternative, H10; the following corollaries can be stated.
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Corollary 2.3 (Local Power). Consider H10; where d1;T = 1� �p
T
; � > 0: As T !1;

�f
d! N

 
��

s
�2=6

�4"
; 1

!
= Op (1) (15)

and

�r
d! N (0; ��) +N

 
��

s
��
�2=6

�4"
; ��

!
= Op (1) : (16)

Corollary 2.4 (Non-Local Power). Consider H10; where d1 = d 2 (0:5; 1) : As T !1;

1p
T
�f

p!
p
��


�(d� 1)
�"�x�(d� 1)

< 0 (17)

and
1p
T
�r

p!
p
��


�(d� 1)

�"

q
(1���)
�� �2"

�2

6 + �
2
x�(d� 1)

< 0: (18)

As can be observed from Theorems 2.3 and 2.4, under the local H01 case, where d1;T =

1 � �p
T
; � > 0; or the non-local H01 case, where d1 = d; the �f and �r; test statistics reach a

minimum at � = 1 and � = ��; respectively. Thus, it follows that under H01 (H10) �r and �
2
r (�f

and �2f ) are more powerful tests than �f and �
2
f (�r and �

2
f ) and the di¤erence in power increases

(decreases) with �� (see also the Monte Carlo section below). Furthermore, it follows that under

H01 (in both the local and non-local contexts) the �r (�
2
r) test statistics can be used to obtain a

consistent estimator of �� as b� = argmin
�2��

�r (�) whereas under H10; �f is the more powerful test

and can therefore be used to obtain a consistent estimator for �� as b� = argmin
�2��

�f (�) :

Corollary 2.5 Under H01 (local and non-local power) it follows from Theorems 2.2 and 2.3

that �2f ; �
2
r are consistent tests with �

2
r having the highest power and useful to obtain a consistent

estimate of ��: Similarly, under H10 (local and non-local power) it follows from Corollaries 2.3

and 2.4 that �2f ; �
2
r are also consistent tests but now �2f has the largest power and is useful to

obtain a consistent estimate of ��:

Corollary 2.6 Under H01 or H10; where d1 = d 2 (0:5; 1) ; �min and �max are
p
T�consistent

tests.

The proof of Corollary 2.4 follows from Theorems 2.3 and 2.4, noting that �min = min
�
�f ; �r

	
and �max = max

�
�2f ; �

2
r

	
: For an unspeci�ed alternative (union of H01 and H10); and assuming

that H01 is true, then, �min = min
�
�f ; �r

	
= �r: If, on the other hand, H10 is true, it follows

that �min = min
�
�f ; �r

	
= �f :
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Remark 2.5: If we reject the null hypothesis with �min = min
�
�f ; �r

	
= �r; then, the null

hypothesis is rejected in favour of H01 and b� = argmin
�2��;

�r (�) ; on the contrary, if �min =

min
�
�f ; �r

	
= �f ; support for H10 is found and b� = argmin

�2��;
�f (�) :

2.4 Serial Dependence

Consider the DGP as in (1) with dt = d0 and where "t now satis�es assumption A.2. Clearly,

xt = 4d0yt will share the same proprieties with "t; under the null, as xt = "t and, by invertibility,

xt =
P1
j=1 ajxt�j + "t:

For the purpose of testing for persistence change, i.e., changes in d when the errors are

autocorrelated we use the augmented LM test (under H0 of dt = d0) proposed by DKH; see also

HRR. The application of the augmented LM test that we suggest, considers for each �xed � the

following test regressions;

xt = � (�)x�t�1 +

pX
k=1


k (�)xt�k + vt; t = p+ 1; :::; b�T c ; (19)

and

wt = � (�)w�t�1 +

pX
k=1

#k (�)wt�k + ut; t = p+ 1; :::; b(1� �)T c ; (20)

where

xt = (1� L)d0 yt; wt = xT�t+1; x
�
t�1 =

t�1X
j=1

xt�j
j

and w�t�1 =
t�1X
j=1

wt�j
j

:

Based on successive applications of (19) and (20) we construct the sequences {
�
�f (�) ; �r (�)

�
;

� 2 [�l;�u]g; where �k (�) ; k = f; r; is the t-ratio associated with b� (�) computed from the

above sub-sample regressions. The null hypothesis of a constant d is rejected for large negative

values of the statistics computed as in (6) and (7) using the forward and reverse regressions:

Under the null hypothesis, � (�) = 0 for any � and it is assumed that p = o
�
T 1=4

�
as p!1

and T ! 1; see DKH (p.181) or HRR, for details. In practice, p is not known. Following

DKH, we use an automated, deterministic optimal lag length selection as suggested by Schwertz

(1989), i.e.,

pK =

"
K

�
T

100

�1=4#
; with K = 4 or K = 12;

where [�] denotes the largest integer part of a real number. It is important to note that in this

case, computation of the t-statistic requires using White standard errors bs�b� (�)� (see DKH,
p.182, and HRR, for details).
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3 Finite Sample Results

In this section, we address the �nite sample properties of the test procedures proposed in this

paper. We �rst provide the �nite sample critical values for the statistics introduced and proceed

next to the analysis of the empirical size and power performance of the tests.

3.1 Finite Sample Critical Values

For the purpose of computing the necessary critical values for the �f ; �
2
f ; �r; �

2
r ; min(�f ; �r) and

max(�2f ; �
2
r) statistics, we consider the DGP (1� L) yt = "t; where yt = 0 for t � 0 and "t �

nid(0; 1). Table 3.1 presents critical values for di¤erent sample sizes T; T 2 f100; 250; 500; 1000g;

which were computed based on 5000 Monte Carlo replications.

hPlease insert table 3.1 about herei

Note that the critical values are valid for test regressions with and without deterministics,

given that as previously indicated (see Remark 2.2) the statistics are invariant to these vari-

ables. Hence, all results presented in this Section are computed for test regressions in which no

deterministic variables where considered. However, experiments with demeaned and detrended

variables were also considered, but since the results obtained where qualitatively the same as

those reported below we have omitted them.

One immediate consequence of the results in Table 3.1 is that they con�rm the results put

forward in Theorem 2.2. We observe from this Table that the critical values for the �f and �r;

and the �2f and �
2
r statistics are in fact the same as put forward in this Theorem.

3.2 Empirical Size and Power

In order to evaluate the �nite sample size and power performance of the statistics proposed in

this paper, data was generated from the following DGP,

(1� L)d1 yt = "t; t = 1; :::; [�T ] (21)

(1� L)d2 yt = "t; t = [�T ] + 1; :::; T (22)

where � = 0:5; d1 = 0; d2 = 0 + �; � = f0; 0:1; 0:2; :::; 0:9g; yt = 0 for t � 0 and "t � nid(0; 1):

Hence, the size performance of the tests is evaluated when the data is generated from a white

noise process (d1 = d2 = 0). The results can be found in Tables 3.2 - 3.4.1 Results on the size

and power performance of the tests when d1 and d2 are real are provided in Table 3.5.
1 In order to save space and given that qualitatively the results were the same, we do not report the results for

the case when d1 = 1 and d2 = 1� �: However, these results can be obtained from the authors.
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hPlease insert tables 3.2 - 3.5 about herei

Table 3.2 presents the empirical size and power performance of the di¤erent tests presented

in Theorem 2.2. Given the nature of the null hypothesis (d1 = d2 = 0) and the alternatives

considered (d1 = 0; d2 = 0 + �), we expect, based on the theoretical results put forward in the

text (see Theorems 2.3 and 2.4, and Corolaries 2.3 and 2.4) that the �r and �
2
r statistics will

display the largest power. This is in fact con�rmed by the results of Table 3.2. We observe from

this Table that all tests have empirical size (when � = 0) very close to the 5% nominal level

considered and that as we move away from 0; i:e: as � increases the empirical power of the �r

and �2r tests increases as well. This behaviour is even more marked for T=250.

Given the importance of allowing for serial correlation, in Tables 3.3 - 3.4 we present the �nite

sample behaviour of the tests when applied to data generated from a DGP such as (21) - (22)

with short-run dynamics in the errors of the type: (1� �L)"t = (1+ �L)ut; with ut � nid(0; 1);

(� = 0:5; � = 0); (� = 0; � = 0:5) and (� = 0; � = �0:5). In order to decide on the order of

augmentation to use, following DKH and as suggested in Section 2.4, we resort to Schwertz�s

(1989) rule, i:e:, p = int[4(T=100)1=4]: Table 3.3 presents the results of the tests when the errors

display autoregressive (AR) dynamics and Table 3.4, when moving average (MA) dynamics is

considered.

The results in Table 3.3 are informative with respect to the impact of the inclusion of

unnecessary lags on the procedures�performance. Using the Schwertz rule for T=100, we used

4 lags of the dependent variable to correct for autocorrelation, however, in e¤ect one lag would

have been su¢ cient to account for this short-run dynamics. The implications on power of the

use of the additional unnecessary lags in small samples (T=100) is severe. Comparing the results

of Table 3.3 with those of Table 3.2 we observe that, for instance, for d1 = 0; d2 = 0:9 power, for

a sample of T=100, in the iid case was around 0.99 for �r and 0.98 for �
2
r ; but reduces to 0.28

for �r and �
2
r in the context of Table 3.3. It is important to highlight that power considerably

improves in larger samples (see results for T=250).

Table 3.4 presents the �nite sample behaviour of the tests when the errors follow MA dy-

namics. One immidiate observation that can be made is that negative MA dynamics (� = �0:5)

has larger implications on the tests�power performance than positive MA dynamics (� = 0:5):

The tests are slightly undersized in both sample sizes considered and power is severely a¤ected

particularly when T=100. However, also in this case it is observed that as the sample increases

so does the performance of the test.

Table 3.5 consideres a di¤erent exercise. Instead of imposing a fractional parameter d under
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the null hypothesis, we �rst estimated d for the whole sample using the spectral MLE estimator

of Fox and Taqqu (1986) and then computed the tests using the estimate, d̂. Two cases where

considered under the null hypothesis d1 = d2 = 0 and d1 = d2 = 0:3: The top panel of Table

3.5 presents the test results when the null hypothesis is d1 = d2 = 0 and the alternative

d1 = 0; d2 = 0+�: Note from this panel that the results in this case in terms of test performance

are switched, note that the best performance is now observed for the �f and �
2
f tests. This is

an obvious consequence of the �ltering that has been used to set up the test regression in this

context. Given that in the Monte Carlo set up we are considering that d1 < d2;thus as a result of

the �ltering we obtain d�1 and d
�
2 for the corresponding subsamples, so that now d�1 > d�2: Overall

we observe that there is a small sample bias in the estimation of d; which naturally translates

negatively into the performance of the test. However, considering both cases under analysis and

the sizes of the samples used, we conclude that the distortion observed, which is relatively small,

is acceptable.

4 Empirical Application

The macro foundations of the reduced-form New Keynesian Phillips curve equations for in�ation

in developed countries has played a crucial role in showing that in�ation exhibits very strong

persistence, approaching that of a random-walk process, which is constant over time, specially

after WWII; see, inter alia, Fuhrer and Moore (1995), Pivetta and Reis (2007) for the US econ-

omy and O�Reilly and Whelan (2005) for the Euro area. However, Benatti (2008), building upon

distinct world experiences of monetary regimes, casts doubts on the stability of the structural

parameters that measure in�ation persistence, bringing relevance to the Lucas critique. It is

not surprising that a structural change in persistence is observed over time given the shifts in

monetary policy regimes occurred since WWII. Hence, the aim of this section is to add some

further discussion to this literature by applying our proposed test statistics to several world

in�ation rates.

A single persistence change in the yearly in�ation series was tested for the following economies:

the United Kingdom, the United States, Spain, France, Canada, Italy, Japan, Germany and

OECD countries (excluding high in�ation countries). These are monthly series spanning from

January 1951 to December 2009 for Canada (708 observations), from March 1956 to December

2009 for Spain, from January 1971 to December 2009 for the OECD and from January 1956 to

December 2009 for the remaining countries. Figure 4.1 presents plots of the time series.
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Figure 4.1: Yearly In�ation Rates
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We perform the tests under the null hypothesis that the series are I(1), i.e. that d0 = 1;

and also for I(d), d real, running the regressions of interest with a constant only and with

pK =
h
K
�
T
100

�1=4i
;K = 4; lags to accommodate for serial correlation in the data. For the

fractionally integrated case I(d), d real, we considered two approaches for the estimation of d : bd
using the entire sample; and bd (�) for the forward and time-reversed subsamples:

For those cases where we �nd a change in persistence, we obtained the estimated break

point, b� ; and the two memory parameters, one for each subperiod, either with the forward or
the reversed version of the test. Whenever needed, we estimated the long-memory parameter by

the spectral maximum likelihood estimator of Fox and Taqqu (1986). In most cases, we obtain

similar results using the Geweke and Porter-Hudak (1983) method. The results are provided in

Tables 4.1 - 4.3.
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Table 4.1: Persistence change test results (d0 = 1)

H0: yt is I (1) min
�
�f ; �r

�
max

�
�2f ; �

2
r

� b� (date) d̂1; d̂2

UK �2:6453� 6:9978� 0:691 (1993:4) 0:7667�� ! 0:4544��

USA �2:7286�� 7:4457� 0:492 (1982:7) 1# ! 0:3085��

Spain �3:1238�� 9:7584�� 0:559 (1986:3) 1#! 0:5898��

France �2:7626�� 7:6323� 0:552 (1985:10) 0:6375�� ! 0:7287�

Canada �3:2113�� 10:313�� 0:693 (1991:10) 1# ! 0:4893��

Italy �2:398� 5:7507 0:324 (1973:6) 1# ! 0:6502��

Japan �1:6834 2:8338 � �

Germany �2:1723 4:7191 � �

OECD �2:9616�� 8:7713�� 0:531 (1991:8) 1# ! 0:4065��

Notes: ** and * indicate signi�cant at 5% and 10% nominal levels, respectively;

# indicates that the null of d=1 cannot be rejected (value reported under the null).

Only for two out of the nine countries (Japan and Germany) can the hypothesis of constant

persistence over time not be rejected (see Table 4.1). For the remaining series we �nd sup-

port for a change in memory based on the reversed version of the test, min
�
�f ; �r

�
= �r and

max
�
�2f ; �

2
r

�
= �2r : According to the estimation results, in�ation behaved as a random walk up

to a certain point but, more recently, price stability was achieved with a long-memory estimate

at the mean and level-reversion range. The estimated break point occurs roughly in the middle

of the sample, except for the cases of Italy (1973 oil prices shock), the UK (impact of Britain�s

exit from the ERM in the second half of 1992) and Canada (1991 recession).

The conclusions which can be taken from the tests do not necessarily match those based on

the MLE estimation; results for the cases of the UK and France suggest that d1 = 1 is generally

rejected. Evidence of long-memory properties can be found for most of the in�ation rates using

the entire sample (UK: 0.7684; USA: 0.7062; France: 0.7278; Canada: 0.6211; Japan: 0.6442).

This phenomenon is consistent with the results in Hassler and Wolters (1995). The test results

for d0 real are provided in Tables 4.2 and 4.3.
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Table 4.2: Persistence change test results (d0 real and bd �xed)
H0: yt is I (d0) min

�
�f ; �r

�
max

�
�2f ; �

2
r

� b� (date) d̂1; d̂2

UK �3:0765�� 9:4652�� 0:697 (1993:9) 1:021&! 0:7808��

USA �2:2669 5:1390 � �

Spain �3:2022�� 10:2544�� 0:612 (1989:2) 0:8332&! 0:6039��

France �3:2129�� 10:3228�� 0:462 (1981:1) 1:0494&! 0:7264��

Canada �3:1708�� 10:0541�� 0:745 (1994:2) 1:0212&! 0:7783�

Italy �2:8781�� 8:2839�� 0:510 (1983:7) 0:9639&! 0:9164�

Japan �1:8076 3:2675 � �

Germany �2:2162 4:9117 � �

OECD �1:6341 2:6703 � �

Notes: ** and * indicate signi�cant at 5% and 10% nominal levels, respectively;

& indicates that the null of d=1 cannot be rejected (MLE point estimate is reported);

Table 4.3: Persistence change test results (d0 real and bd (�))
H0: yt is I (d0) min

�
�f ; �r

�
max

�
�2f ; �

2
r

� b� (date) d̂1; d̂2

UK �3:2782�� 10:7469�� 0:341 (1974:7) 1:1923&! 0:6332��

USA �2:9464�� 8:6816�� 0:635 (1990:4) 1:0573&! 0:4481��

Spain �3:4050�� 11:5940�� 0:559 (1986:4) 0:7833&! 0:5898��

France �3:2013�� 10:2483�� 0:321 (1973:6) 0:5627��! 0:8992&

Canada �3:2079�� 10:2911�� 0:691 (1990:12) 0:9251&! 0:6642��

Italy �3:0310�� 9:1870�� 0:323 (1973:6) 0:7407&! 0:6600��

Japan �1:6729 2:7987 � �

Germany �2:3118 5:3446 � �

OECD �2:9594�� 8:7580�� 0:695 (1998:2) 0:8648&! 0:2974��

Notes: ** and * indicate signi�cant at 5% and 10% nominal levels, respectively;

& indicates that the null of d=1 cannot be rejected (MLE point estimate is reported);

In general, the results reinforce the previous �ndings. With the exception of Japan and

Germany, countries experimented a decline in in�ation rate persistence with no level-reversion

up to the 1980�s followed by relative price stability during recent years. More speci�cally,

in�ation resembles an I (1) process changing to I (d2) ; d2 < 1; at time bb�T c :
Sibbertsen and Kruse (2009) also applied their long-range dependency tests to the US in-

�ation rate. Using quarterly CPI data from 1953Q1 to 2004Q4, they found 1982Q1 to be the

estimated breakpoint and bd2 = 0:246: Our change point is basically the same (1982:7, eleven

17



quarters after the beginning of Volcker�s chairmanship at the Federal Reserve) and we estimate

a slightly higher persistence level for the second-half of the sample, bd2 = 0:308:
The US in�ation rate was also studied by Kim (2000), Kim et al. (2002) and Busetti and

Taylor (2004), in the integer context, with all �nding evidence of a change of persistence. In

Busetti and Taylor (2004), the change goes from I(1) to I(0) with an estimated break in the

fourth quarter of 1990, which is extremely close to ours when d0 is real (see Table 4.3). Using

the GNP de�ator from the second quarter of 1948 to the third quarter of 2000, Kim et al.

(2002) concluded that in�ation rate undergoes changes from stationarity to a unit root around

the fourth quarter of 1973. The increase in persistence is due to the estimation of an earlier

changepoint. We revisited their partial sums ratio tests using our own updated US monthly

sample. The null is strongly rejected for all tests (mean, exp, max, in both directions under the

alternative). Following Hassler and Sheithauer (2009), the series changes from I(1) to I(d) in

January 1982 (based on LTK�s change point estimator) which is very similar to what we and

Sibbertsen and Kruse (2009) conclude about the in�ation rate during the postwar period.

5 Conclusion

In this paper, we propose regression-based procedures that allow testing for persistence change

in fractionally integrated models. The tests can be computed from simple least-squares regres-

sions. Augmented versions of these tests are asymptotically robust against weakly-dependent

errors following unknown patterns under quite general conditions, and exhibit good statistical

performance in samples of moderate size.

Furthermore, the application of the tests to World in�ation rates reveal, with the exception

of Japan and Germany, a shift in persistence in the in�ation series considered. In particular,

the results indicate a change from more persistent to less persistent behaviour, suggesting the

possible application of improved monetary policy measures over the latter part of the series.

Hence, the simplicity of application and the good performance in �nite samples makes the

procedures discussed in this paper a valuable tool when addressing persistence change in a

fractional context.
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A Appendix

Proof of Theorem 2.1

Considering the DGP in (1), under the null hypothesis with d0 = 1; assumption A.1 and

� 2 �� and �xed. Thus, xt = �yt = "t and the statistics in (3) and (5) of Propositions 2.1 and

2.2 are, respectively,

�f (�)
H0=

Pb�T c
t=2 "t"

�
t�1b�e (�)qPb�T c

t=2 "�2t�1

and �r (�)
H0=

Pb(1��)T c
t=2 "T�t+1"

�
T�t+2b�ee (�)qPb(1��)T c

t=2 "�2T�t+2

;

where "�t�1 =
Pt�1
j=1

"t�j
j and "�T�t+2 =

Pt�1
j=1

"T�t+j+1
j :

Since, following Hassler and Breitung (2006, Lemma A (ii) and (iii), p. 1105) and Tanaka

(1999),

1

b�T c

b�T cX
t=2

"�2t�1
p! �2"

�2

6
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�
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;
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b(1� �)T c
1

b�T c

b�T cX
t=2

"�2t�1 + op (1)
p! �2"

�2

6

21



and b�2e (�) = 1
b�T c�2

Pb�T c
t=2 be2t p! �2": These moments have the same asymptotic distribution due

to the fact that "t is i:i:d:: Hence, it follows that, as T ! 1; �f (�)
a:s
= �r (�)

d! N (0; 1) and

consequently, �2f (�)
a:s
= �2r (�)

d! �2(1) for any given � 2 �
�. �

Proof of Theorem 2.2

The proof follows from the results in Theorem 2.1. �

Before providing the proof of Theorem 2.3 consider �rst the following Lemmatta.

Lemma A.1 Consider "t � i:i:d:
�
0; �2"

�
and de�ne

"�t�1 =
t�1X
j=1

"t�j
j

and "�;1t�1 =
1X
j=1

"t�j
j
=

1X
j=0

 �j"t�1�j ;

where  �j =
1
j+1 and

"��t�2 =
t�1X
j=1

"�t�j�1
j

and "��;1t�2 =

1X
j=1

"�;1t�1�j
j

=

1X
j=0

 �j

1X
k=0

 �k"t�2�j�k:

Then, as T !1;

1

T

TX
t=2

�
"��t�2

�2 p! E
�
"��;1t�2

�2
= �2��;

1p
T

TX
t=2

"t"
��
t�2 = Op (1) ;

1

T

TX
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p! E
�
"t"

��;1
t�2

�
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1

T

TX
t=2

"�t�1"
��
t�2

p! E
�
"�;1t�1 "

��;1
t�2

�
= 
�;��;

for some �2�� > 0 and 
�;�� 6= 0:

Proof of Lemma A.1

The process "�;1t�1 is stationary and ergodic since "t � i:i:d: and  �j is square summable,P1
j=0  

�2
j =

P1
j=0

1
(j+1)2

< 1: Similarly, "��;1t�2 also satis�es the properties of stationarity and

ergodicity (see, for example, DKH, p. 208). Moreover,

"�t�1 = "�;1t�1 �
1X
j=t

 �j"t�j = "�;1t�1 �Op
�
1=
p
t
�
;

because

E

0@ 1X
j=t

 �j"t�j

1A2 = 1X
j=t

 �2j E
�
"2t�j

�
= �2"

0@ 1X
j=0

 �2j �
t�1X
j=0

 �2j

1A = O (1=t)

and "��t�2 = "��;1t�2 �Op
�
ln t=

p
t
�
; see DKH. Therefore, as T !1;

1

T

TX
t=2

�
"��t�2

�2
=

1

T

TX
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�
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�2
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TX
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�
ln t=

p
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T

TX
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�
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p
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�
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TX
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p! E
�
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�2
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1

T

TX
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TX
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T

TX
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"tOp

�
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p
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�
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T
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��;1
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�
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�
= 0;

1p
T

TX
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��
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��;1
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T

TX
t=2

"tOp

�
ln t=

p
t
�
= Op (1)
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1=
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���
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�
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p
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=
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T
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t=2

"�;1t�1 "
��;1
t�2 + op (1)

p! E
�
"�;1t�1 "

��;1
t�2

�
= 
�;��;

where the last two results follow from the fact that "��;1t�2 will correlate with "�;1t�1 but not with

"t due to the i:i:d: property of f"tg : �

Lemma A.2 (Local Power) Let fytg be generated from (1) under dT = �p
T
with � �xed, that

is, xt � I
�

�p
T

�
with i:i:d: errors, and x�t�1 =

Pt�1
j=1

xt�j
j : Then, as T !1;

1

T

TX
t=2

x�2t�1
p! �2"

�2

6
and

1p
T

TX
t=2

xtx
�
t�1

d! N

�
�2

6
�; �4"

�2

6

�
:

Proof of Lemma A.2

The second result is a direct application of Theorem 3.1 in Tanaka (1999). To show the �rst

result, note that xt = (1� L)�dT "t; where "t satis�es assumption A.1; can be decomposed as

xt = "t +
�p
T

t�1X
k=1

"t�k
k

+Op (1=T ) = "t +
�p
T
"�t�1 + op (1) ;

following Tanaka (1999, p. 579), and therefore,

x�t�1 =
t�1X
j=1

yt�j
j

= "�t�1 +
�p
T
"��t�2 + op (1) :

Then, following Hassler and Breitung (2006, Lemma A) and Lemma A.1 we observe that,

1

T

TX
t=2

x�2t�1 =
1

T

TX
t=2

"�2t�1 +
�2

T

1

T
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t=2

"��2t�2 + 2
�p
T

1

T
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p! �2"
�2

6
:

�
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Lemma A.3 (Global Power) Let fytg be generated by model (1) with dt = d 2 (�0:5; 0:5)

(non-local alternative), that is, xt � I (d) with i:i:d: errors and x�t�1 =
Pt�1
j=1

xt�j
j : Then, as

T !1;
1

T

TX
t=2

x�2t�1
p! �2y�(d) and

1

T

TX
t=2

xtx
�
t�1

p! 
�(d);

where

�2y�(d) = �2"

1X
j=0

'�2j;d and 
�(d) = �2"

1X
j=1

'j;d'
�
j�1;d

with

'j;d =
� (j + d)

� (d) � (j + 1)
=
1

j!

j�1Y
k=0

(d+ k) � 1

� (d)
jd�1 for large j;

'�j;d =

jX
k=0

1

(k + 1)!
'j�k;d and � (�) is the Gamma function.

Moreover, if d 2 (0; 0:5) then 
�(d) > 0; whereas if d 2 (�0:5; 0) then 
�(d) < 0:

Proof of Lemma A.3:

Here, the DGP is xt = (1� L)�d "t; where "t satis�es assumption A.1; and can no longer be

decomposed as

xt = "t + d
t�1X
k=1

"t�k
k

+Op (1=T ) = "t + d"
�
t�1 + op (1) ;

since

xt =

�
1 + dL+

d (d+ 1)L2

2!
+
d (d+ 1) (d+ 2)L3

3!
+ :::

�
"t

= "t + d"t�1 +
(d+ 1)

1!
d
"t�2
2
+
(d+ 1) (d+ 2)

2!
d
"t�3
3
+ :::

= "t + d"
�
t�1

+

�
(d+ 1)

1!
� 1
�
d
"t�2
2
+ :::+

�
(d+ 1) (d+ 2) ::: (d+ t� 2)

(t� 2)! � 1
�
d
"1
t� 1

+
(d+ 1) (d+ 2) ::: (d+ t� 1)

(t� 1)! d
"0
t
+ :::

Even if one assumes that "t = 0; t � 0;

xt = "t + d"
�
t�1 + d

t�1X
l=2

 
�l�1i=1 (d+ i)

(l � 1)! � 1
!
"t�l
l
+ op (1)
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�
t�1 + d

�
"t�1 + "

�;d
t�1

�
+ op (1) ;

where

"�;dt�1 =
t�1X
j=1

 j;d
"t�j
j
; with  j;d =

�j�1i=1 (d+ i)

(j � 1)! � 1:
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Under this assumption,

x�t�1 =

t�1X
j=1

xt�j
j

= "�t�1 + d"
��
t�2 + d

t�1X
j=1

1

j

�
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= "�t�1 + d"
��
t�2 + d

�
"�t�2 + "

��;d
t�2

�
+ op (1) ;
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;
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1

j
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1

j
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1

t� 1"0 = "�t�2 + op (1) :

It would then remain to be shown that
n
"�;d;1t�1

o
; where "�;d;1t�1 =

P1
j=1  j;d

"t�j
j ; with  j;d =

�j�1i=1 (d+i)
(j�1)! � 1; is stationary and ergodic, which, by Lemma A.1, would imply
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TX
t=2

xtx
�
t�1

p! 
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for some �2y�(d) and 
�(d) that depend on d; where the last result follows from the fact that yt

will correlate with x�t�1: To show that  
�
j;d =

1
j

�
�j�1i=1 (d+i)
(j�1)! � 1

�
is square summable (or absolute

summable) for some interval of d can be a tedious job.

Thus, to prove the result in this Lemma and to obtain closed form expressions for �2y�(d)

and 
�(d) we pursue an alternative approach. Let d < 0:5: Then, fxtg is stationary and has the

in�nite order MA representation xt =
P1
j=0 'j;d"t�j ; where 'j;d =

�(j+d)
�(d)�(j+1) =

1
j!

j�1Y
k=0

(d+ k) �

1
�(d)j

d�1 for large j; and � (�) is the Gamma function (see, for example, Baillie, 1996). Then,

from DKH and Lemma 2.1 it follows that,

x�;1t�1 =
1X
j=1

xt�j
j

=

1X
j=0

'�j;d"t�1�j ;

where '�j;d =
Pj
k=0

1
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1
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�(j�k+d)
�(d)�(j�k+1) is stationary and ergodic (

n
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o
j
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�
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p
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�
it follows that,
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see DKH (p. 193). Moreover,
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by the i:i:d: assumption of f"tg : Clearly, if 0 < d < 0:5 then 
�(d) > 0: This statement can be

proven given any of the following equalities:
1X
i=1

'i;d'
�
i�1;d

=
1X
i=1

i�1X
k=0

1

(k + 1)!
'i;d'i�1�k;d =
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=
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24 1X
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�
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On the other hand, if �0:5 < d < 0;
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�
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�
= d

1X
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1
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1
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�
d+ i+ j
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�35 > 0;
not being clear which of the two dominates. It is known that for the "antipersistent" fractional

white noise process with d 2 (�0:5; 0) ; all autocovariances, 
l; l � 1; are negative. Then, if

�0:5 < d < 0; we have 
�(d) < 0 because

�2"

1X
i=1

'i;d'
�
i�1;d = �2"

1X
i=1

i�1X
k=0

1
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X
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1

l!

l < 0:

�

Proof of Theorem 2.3

Assume H01; where d1;T = 1 � �p
T
; � > 0: Fix � 2 �� and consider the case where � �

��: From Theorem 2.1, and regardless of whether local or global alternatives are considered,

�f (�) = Op (1) as �f (�)
d! N (0; 1) : Now, consider the case where � > ��; so that,
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6

�
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T
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�
� �p
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Hence, when � > �� and the alternative is local,

�f (�) =
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;

where
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Thus, �f (�) is a normal random variable with expectation ��
q�

����
�

� �2=6
�4"

< 0 and variance

larger than 1 (note that
Pb��T c
t=2 xtx

�
t�1 and

Pb�T c
t=b��T c+1 xtx

�
t�1 have a positive covariance that

equals a multiple of �2" because both processes depend on "s; s � b��T c :) Note that when � = ��

or � = 0 we have the null distribution N (0; 1) : By the CMT,

�f = inf
�2��;

�f (�)
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�2��;
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because ��
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�4"

is monotonically decreasing in � (the in�mum is attained at � = 1):

The further the departure from the null hypothesis (� larger) and/or the earlier the break occurs

(�� smaller), the more likely it is to reject the null as the distribution shifts to the left of zero.

This proves the existence of (local) power of the �f statistic:

Regarding the �r (�) statistic, consider that � > ��; where �r (�) is computed for I (d1;T )

data, and d1;T = 1� �p
T
; � > 0: Then, by Lemma A.2,
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which does not depend on � :
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In the case of � � ��;
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is monotonically decreasing in � ; for � � �� (the in�mum

is attained at � = ��): This makes proof that the statistic �r also has (local) power.

�

Proof of Theorem 2.4:

Assume H01; where d1 = d: Fix � 2 �� and consider the case � � ��; �f (�) = Op (1) ; from

Theorem 2.1. Now, consider the case where � > ��:

Then, by Lemma A.3,

1p
T
�f (�) =

1p
T
p
b(����)T c

Pb��T c
t=2 xtx

�
t�1 +

p
b(����)T cp

T
1

b(����)T c
Pb�T c
t=b��T c+1 xtx

�
t�1

b�e (�)q b��T c
b(����)T c

1
b��T c

Pb��T c
t=2 x�2t�1 +

1
b(����)T c

Pb�T c
t=b��T c+1 x

�2
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p!
p
(� � ��)
�(d� 1)

�"

q
��

(����)�
2
"
�2

6 + �
2
x�(d� 1)

:
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By the CMT,

1p
T
�f = inf

�2��;

1p
T
�f (�)

d! inf
�2��;

8>>>><>>>>:
N (0; 1) if � � ��

p
(����)
�(d�1)

�"

q
��

(����)�
2
"
�2

6
+�2

x� (d�1)
if � > ��

:

Then, the in�mum is reached at � = 1 and

1p
T
�f

p!
p
(1� ��)
�(d� 1)

�"

q
��

(1���)�
2
"
�2

6 + �
2
x�(d� 1)

< 0 (see Lemma A.3),

which, essentially, depends on �� (power decreases with ��) and d (power decreases with d -

departure from unity). Hence, �f is
p
T consistent against H01 : �f ! �1; as T ! 1; under

H01 (global).

Regarding �r (�) ; for � > ��; by Lemma A.3 �r (�) = Op(1) and when � � ��;

1p
T
�r (�) =

A�r(� ; ��)
B�r(� ; ��)
p!

p
(1� ��)
�(d� 1)

�"

r
�2x�(d� 1) +

�
����
1���

�
�2"

�2

6

;

where

A�r(� ; ��) =

p
b(1� ��)T cp

T

1

b(1� ��)T c

b(1���)T cX
t=2

xT�t+1x
�
T�t+2

+
1p
T

p
b(�� � �)T cp
b(1� ��)T c

1p
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1
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Therefore,
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T
�r = inf
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T
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Clearly, the in�mum is attained at � = �� and

1p
T
�r

p!
p
(1� ��) 
�(d� 1)

�"�x�(d� 1)
< 0 (see Lemma A.3),
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which, essentially, also depends on �� (power decreases with ��) and d (power decreases with

d): Hence, �r is also
p
T consistent against H01 : �r ! �1; as T !1; under H01 (global).

�

Proof of Corolary 2.2

Let bdT � bd be any pT� consistent estimator of d for a FI (d) model: pT �bd� d� = Op (1)

(Geweke and Porter-Hudak (1983), among several others) and de�ne the estimated processbxt = (1� L)bd yt to be used in the testing regression, where bd follows from using the entire

sample, t = 1; :::; T: Then in this case the null limit distributions are as previously presented in

Theorems 2.1 and 2.2, under assumptions A.1 or A.2 for "t; if, for any �xed � ; 1
b�T c

Pb�T c
t=2 b"�2t�1 =

1
b�T c

Pb�T c
t=2 "�2t�1+ op (1) and

1p
b�T c

Pb�T c
t=2 b"tb"�t�1 = 1p

b�T c

Pb�T c
t=2 "t"

�
t�1+ op (1) : A sketch of the

proof goes as follows (a more detailed argument can be made along the lines of the proof of Propo-

sition 3 in Breitung and Hassler, 2006, p.1108). Under the null hypothesis, bxt = (1� L)bd yt � b"t;
for all t; where bd p! d0; as T ! 1: For a particular consistent estimator of d; let bd = d0 + �T ;

where �T = op (1) ; as T ! 1; for some process �T : Then, under the null hypothesis it follows

that,

bxt � b"t = 1X
j=0

�j

�bd�Ljyt = 1X
j=0

(�1)j
bd�bd� 1��bd� 2� :::�bd� j + 1�

j!
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=
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Due to stationarity and ergodicity of yt; 1
b�T c
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t=2 y�2t�1

p! V ar
�
y��t�1

�
= �2y�� < 1; see DKH
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(p.208) and Hassler and Breitung (2006, p.1106). By the same token,

1

b�T c

b�T cX
t=2

"�t�1y
�
t�1 =

1

b�T c

b�T cX
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With respect to the second result,
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1A = Op (1) ;

see also Hassler and Breitung (2006, p.1105). Similarly,
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Therefore, 1p
b�T c

Pb�T c
t=2 b"tb"�t�1 = 1p

b�T c

Pb�T c
t=2 "t"

�
t�1 + op (1) :

Table 3.1: Finite sample critical values
T 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990
100 �f -2.709 -2.481 -2.289 -2.023 0.251 0.621 0.949 1.313

�2f 0.288 0.402 0.525 0.693 5.081 6.155 7.140 8.396
�r -2.821 -2.499 -2.302 -2.043 0.320 0.639 0.976 1.322
�2r 0.284 0.395 0.515 0.691 5.055 6.150 7.224 8.733

min(�f ; �r) -2.922 -2.684 -2.480 -2.276 -0.446 -0.204 0.067 0.364
max(�2f ; �

2
r) 0.615 0.787 0.977 1.266 6.056 7.087 8.200 9.431

250 �f -2.956 -2.601 -2.336 -2.029 0.265 0.611 0.892 1.252
�2f 0.344 0.437 0.547 0.731 5.242 6.571 8.073 9.440
�r -2.878 -2.567 -2.344 -2.055 0.288 0.639 0.934 1.303
�2r 0.311 0.420 0.551 0.738 5.393 6.570 7.814 9.394

min(�f ; �r) -3.074 -2.841 -2.562 -2.319 -0.425 -0.153 0.096 0.345
max(�2f ; �

2
r) 0.606 0.793 1.022 1.312 6.409 7.814 9.035 10.439

500 �f -2.994 -2.682 -2.416 -2.068 0.296 0.628 0.957 1.316
�2f 0.358 0.465 0.602 0.791 5.450 6.875 8.276 10.075
�r -3.014 -2.680 -2.407 -2.063 0.325 0.707 0.990 1.314
�2r 0.360 0.453 0.573 0.759 5.521 6.943 8.360 10.042

min(�f ; �r) -3.268 -2.920 -2.655 -2.369 -0.386 -0.117 0.112 0.448
max(�2f ; �

2
r) 0.647 0.825 1.006 1.298 6.781 8.250 9.560 11.536

1000 �f -3.000 -2.712 -2.388 -2.045 0.305 0.617 0.885 1.256
�2f 0.372 0.479 0.595 0.780 5.508 6.963 8.374 10.177
�r -2.982 -2.678 -2.390 -2.076 0.321 0.638 0.905 1.286
�2r 0.368 0.467 0.586 0.778 5.610 7.006 8.305 10.007

min(�f ; �r) -3.223 -2.927 -2.671 -2.368 -0.394 -0.115 0.149 0.447
max(�2f ; �

2
r) 0.637 0.805 0.999 1.319 6.825 8.254 9.466 11.607
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