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Abstract 

Marginal probability density and cumulative distribution functions are presented for 

multidimensional variables defined by non-singular affine transformations of vectors of 

independent two-piece normal variables, the most important subclass of Ferreira and Steel's 

general multivariate skewed distributions. The marginal functions are obtained by first 

expressing the joint density as a mixture of Arellano-Valle and Azzalini's unified 

skew-normal densities and then using the property of closure under marginalization of the 

latter class. 
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1. Introduction 

In the literature on probability distributions there are several approaches for extending 

the multivariate normal distribution with the introduction of some sort of skewness. 

Arellano-Valle, Branco and Genton (2006) provide a unified view of this literature. The 

largest group of contributions was initiated by Azzalini and Dalla Valle (1996) and Azzalini 

and Capitanio (1999) and generalizes the univariate skew-normal (SN) distribution studied 

by Azzalini (1985, 1986). These "multivariate skew-normal distributions" are generated 

from a normal distribution either by conditioning on a truncated variable or by a convolution 

mechanism. 

An alternative approach was proposed by Ferreira and Steel (2004, 2007a, 2007b) and is 

based on non-singular affine transformations of random vectors with independent 

components, each having a skewed distribution with probability density function (pdf) 

constructed from a symmetric distribution using the inverse scaling factor method introduced 

by Fernández and Steel (1998)1. If the univariate symmetric distribution is the standard 

normal, then the corresponding univariate skewed distribution becomes (with a different 

parameterization) the two-piece normal (tpn) analyzed by John (1982)2. To overcome an 

issue of over-parameterization, Ferreira and Steel (2007a, 2007b) pay particular attention to 

the subclass associated with transformation matrices which can be factorized as the product 

of an orthogonal matrix and a diagonal positive definite matrix. Villani and Larsson (2006) 

studied this subclass when the basic univariate skewed distribution is the tpn and named 

these distributions "multivariate split normal". 

Under the acronym SUN (standing for "unified skew-normal"), Arellano-Valle and 

Azzalini (2006) suggested a formulation for the first approach that encompasses the most 

relevant coexisting variants of multivariate skew-normal distributions. Like the multivariate 

normal and SN distributions, the class of SUN distributions is closed under affine 

transformations, marginalization and conditioning to given values of some components. 

Besides these important properties, the SUN class is also closed under sums of independent 

components. However, one limitation of the SUN distributions is that the vector of location 

                                                            
1  Arellano‐Valle, Gómez and Quintana (2005) consider a general class of asymmetric univariate distributions 
which includes the distributions generated according to the procedure proposed by Fernández and Steel 
(1998) as a special case.     
2  See also Johnson, Kotz and Balakrishnan (1994).   
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parameters does not have a direct interpretation as the mean or the mode of the distribution, 

which are rather complicated functions of all the parameters. Even in the simplest case of the 

basic SN, both the mean and the mode (for which there is no closed expression) depend on the 

parameters regulating dispersion and skewness. 

The Ferreira and Steel's independent components approach to the construction of 

multivariate skewed normal distributions (henceforth FS-SN) provides an alternative to the 

SUN class in applications for which it is important to have some location measure that does 

not depend on the dispersion and skewness parameters. Indeed, the FS-SN distributions have 

the convenient feature that the mode is part of the distribution parameters and therefore is 

invariant to dispersion and skewness. In addition, the FS-SN distributions are closed under 

non-singular affine transformations. However, unlike the SUN class, the FS-SN distributions 

are not closed under marginalization (neither under conditioning) and, to my knowledge, 

general closed expressions of their marginal pdf and cumulative distribution function (cdf) 

are not available in the literature. 

This note aims at filling the gap and proposing expressions for the marginal density and 

cumulative distribution functions of a FS-SN distribution. Obviously, the expressions will 

also apply to the subclass of multivariate split normal distributions studied by Villani and 

Larsson (2006). The technique used to derive the marginal distributions is simple and 

consists of expressing the joint FS-SN distribution as a finite mixture of singular SUN 

distributions and then making use of their property of closure under marginalization. 

An area of application of the results presented in this paper is macroeconomic density 

forecasting. Many institutions which publish macroeconomic forecasts complement their 

point forecasts with information on the dispersion and skewness of the probability 

distributions of the forecasting errors. Fan charts are one of the most popular tools to convey 

the predictive densities, and they gained prominence through their use in inflation reports 

released by many central banks, with the Bank of England and the Sveriges Riksbank (the 

Swedish central bank) featuring as pioneers in this respect (Britton, Fisher and Whitley, 

1998, and Blix and Sellin, 1998)3. The characterization of the forecast densities is 

complicated by the fact that typically institutional forecasts are not based on a single model, 

but stem from different competing models combined with judgements by experts (the latter 

                                                            
3  See also Wallis (1999, 2004) and Tay and Wallis (2000). 
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regarding, in particular, the skewness, i.e. the balance of upward and downward risks to the 

forecasts). Most of the procedures used to generate the fan charts take the point baseline 

forecasts as given and assume that the sources of uncertainty and asymmetry have univariate 

tpn distributions. These sources of forecasting error are then aggregated according to a linear 

mapping, envisaged as an approximation around the baseline to the underlying unknown data 

generating process. In the absence of closed expressions for the exact distribution of a linear 

combination of tpn variables, some aggregation procedures resort to informal 

approximations based on the first moments, while other procedures are based on numerical 

simulation. Examples of the first approach are Blix and Sellin (1998, 1999, 2000) and 

Elekdag and Kannan (2009), while Pinheiro and Esteves (2010) opted to simulate the 

distribution. The results presented in section 3 allow to overcome this aggregation difficulty.  

 

2. The SUN and the FS-SN distributions 

If the M-dimensional random vector , ( , , , )M NSUN Y     , then its pdf and cdf are, 

respectively, for any point RMy : 
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where  |M y    and  |M y    denote, respectively, the pdf and the cdf at point y 

of a normal distribution  ,MN   ,   ( 1)M   and   ( 1)N   are vectors of parameters, 

  ( )M M  is a positive definite covariance matrix,   ( )M M  is the diagonal matrix 

formed by the standard deviations of  ,   ( )M M  is the correlation matrix associated 

with   (hence   ), N   with  1 1N

    1N  ),   ( )N N  is a 

positive definite correlation matrix, and   ( )M N  is such that 

 
'

( ) ( )N M N M  
    
 

 


 
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is also a (semi-definite positive) correlation matrix4. The SUN distribution collapses to the 

multivariate normal when  0 ,   being the matrix of parameters which regulate 

skewness. It collapses to the basic multivariate SN distribution suggested by Azzalini and 

Dalla Valle (1996) when 1N   and  0  (implying that 1 ). 

Now let the scalar random variable nU  be tpn distributed with zero mode. Its pdf 

may be parameterized as follows: 

     

     

11 1 1

11 1 1 1

2 0
( | , )

2 0
n

n n n n n n n

U n n n

n n n n n n n

u u
f u

u u

     
 

     

  

   

   
  

  (3) 

where    denotes the  0,1N  pdf,  0n   is a scale parameter and  0n   is a 

shape parameter. When 1n  , the density becomes the normal pdf with zero mean and 

standard deviation n  (so that when the latter parameter is 1 the pdf collapses to  nu ). 

Values of n  above (below) unity correspond to densities skewed to the right (left). Let U be 

a N-dimensional random vector of independent tpn components nu  with zero mode and 

unitary scale 1n  . Its pdf is: 

1
( | ) ( |1, )

n

N

U n nn
f f u 


U u       (4) 

where  
nUf  is as in (3) (with 1n  ) and  1 'N   . A N-dimensional random 

vector X is said to be  , ,NFS SN A 
 
distributed if there is a random vector U with 

density (4) and two vectors   (the joint mode) and   (the "shape vector"), and a 

non-singular matrix A (the "scale matrix") such that  X AU . Vector X has pdf 

      1 1| , , | det | |f f  X Ux A A A x     

It is straightforward to confirm that: (i) when 0   this density collapses to the pdf of a  

 , 'NN AA  distribution; (ii) the  , ,NFS SN A   distribution is unimodal with mode 

 , invariant with respect to A and  ; and (iii) by construction, the FS-SN class is closed 

under non-singular affine transformations. 

                                                            
4  Arellano‐Valle and Azzalini (2006, Appendix C) consider three cases of singular SUN distributions: (i)    

singular; (ii)     singular; (iii) 
*   singular with non‐singular     and   . For our purposes, only the latter 

case is relevant. 
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3. The marginal FS-SN distributions 

To establish additional notation, let NI  denote the identity matrix of order N,   z  be 

the number of zero elements in vector z,   z  be one if all elements of vector z are 

non-negative and zero otherwise,         1 , , , ,n Ni k i k i k ik    be the generic element 

of the N-th Cartesian power of  1;1  (with cardinal 2N ),   ( ) n ni diag k iK   N N , 

 ( )( ) nk i
n ni diag    N N ,    2( ) ( ) ( ) ( ) ( ) ' ( ) 'i i i i i i A K A K A A    , ( )i 

  1/2
( )diag i    , ( ) ( ) Ni i   , 1( ) ( ) ( ) ( )i i i i A K    and 1 1( ) ( ) ( ) ( )i i i i     

( ) ( ) 'i i   . 

 

Proposition 1: The pdf and the cdf of the N-dimensional random vector 

 , ,NFS SN X A   

with non-singular scale matrix A, can be expressed, respectively, as: 

     
12 2 ( )

1 1
| , , 1 | , , ( ), ( )

N
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ni n

f g i i
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 
 
    X Xx A x 0      

     
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1 1
| , , 1 | , , ( ), ( )

N
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N k i
ni n

F G i i


 
 
    X Xx A x 0      

where  gX  and  GX  are pdfs and cdfs of singular  , , , ( ), ( )N NSUN i i0    

distributions, with  ( )
( ) ( )

( ) ( ) ( )
N N

N

i
i i

i i i
         

   

I I
I


 

  
. The latter functions may be 

written as: 
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  
  and ( ) ( )

2 |N
N Ni i


  

  z|z 0 A K z x
z I dz

 
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Note that 
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   
1 12 22 ( ) ( )1

1 11 1 1
1 1

N N
n n

N N Nk i k i
n n n ni in n n
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 

 
   
                  

Hence, the distribution NFS SN  can be envisaged as a finite mixture of singular ,N NSUN  

distributions. 

As pointed out by Arellano-Valle and Azzalini (2006, Appendix C), the rank 

deficiency of ( )i does not affect the properties of the SUN distributions and its only 

impact is of a computational nature. In our case, it actually simplifies the computation of the 

pdf values because the evaluation of a normal cdf is not required anymore, unlike when 

computing (1), the general expression of a SUN pdf.    

In order to derive the marginal pdfs and cdfs of X, one needs to consider its partition 

 1 2' ' 'X X X  with 1X  and 2X  of dimensions 1N  and 2N , respectively, and the 

corresponding partitions 

1 1 1 11 12

2 2 2 12 22

( ) ( ) ( )
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( ) ( ) ' ( )

i i i
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with 1A  1N N , 1
1 1 1( ) ( ) ( ) ( )i i i i A K    1N N , 2

11 1 1( ) ( ) 'i i A A    1 1N N , 

  1/2

1 11( ) ( )i diag i     , 1 1
11 1 11 1 1 1( ) ( ) ( ) ( ) ( ) ( ) 'i i i i i i         and 

11 1( ) ( ) Ni i   . 

Proposition 2 follows directly from Proposition 1 and from the result of Arellano-Valle and 

Azzalini (2006, Appendix A) on the marginal distributions of members of the SUN class. 

 

Proposition 2: Let    1 2' ' ' , ,NFS SN  X X X A  . Then the marginal pdf and the cdf 

of the N1-dimensional sub-vector 1X  are, respectively: 
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where  
1

gX  and  
1

GX  are pdfs and cdfs of singular  
1

*
, 1 1 11, , ( ), ( )N NSUN i i0    
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distributions, with  1
11 1

1 11 1

( ) '
( ) ( ) '
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be written as: 
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        =  
 1 1 1 and ( ) ( )

2 |N
N Ni i


   z|z 0 A K z x

z I dz
 

.  

 

Appendix – Proof of Proposition 1 

When 1n  , the pdf of the univariate tpn (3) can be written as 

       1 12 1 2( |1, ) 1 | 1 |
nU n n n n n n n nf u h u h u    

        

where 

   
 

1

0 ( 0)
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(2 / ) / ( 0)
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h z z

z z
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  




 




 

Hence, from (4), 

       1 12 1 2

1
( | ) 1 | 1 |

N

n n n n n nn
f h u h u   

  

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   12 2 ( ) ( )
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N k i k i
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 
    

Note that  ( )( ) | 0nk i
n n nh k i u  

 
whenever ( ) 0n nk i u  . Hence, the non-zero terms in the 

latter summation are those associated with N-tuples ( )ik  for which ( ) 0n nk i u   

 1, ,n N  . If 0nu    1, ,n N   there is only one such term. If u includes   u  zero 

elements, there are  2 u   non-zero identical terms in the above summation. In both cases, 

the density of U may be expressed as follows: 

   1 sgn( )1

1
( | ) 2 n

N uN
n n n nn

f u   
 


  U u   
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u u u u


       


  
 

              

  1
1 1 2 2

1 1
lim ( | 0, , ) ( | 0, , )

NN
n n n n n n n n nn

s u s u


       


  
 

             

  1 2 ( ) 2 ( )1
1 1 1

lim ( | 0, , ( ) )
N

n n
N k i k iN

n n n n n n ni n
s u k i


    




  
          

     1 21 1 1
1 1

2 ( ) | lim ( ) ( ) |
N

N N
n n n N N N Ni

i i i


   


  
  

      u I K u I   

where  sgn  is the sign function and  2| 0, ,s v    is the pdf of the univariate SN 

distribution with zero location parameter, scale parameter   and shape parameter  : 

 2 2
| 0, ,

v v
s v

  
  

       
   

 

From the above expression of ( | )fU u  , by considering the change of variable 

 X AU  with A non-singular, one obtains the pdf of X: 

     
1 21

1 1
| , , 2 | ( )

N
N N

n n n Ni
f i  




 
      X x A x     

   ( )1 1

1
lim ( ) ( ) | n

N k i
N N nn

i i


  


   K A x I   

     
12 2 ( )

1 1
1

N
n

N k i
ni n

h



 
     x  

with 

      1 12 | ( ) lim ( ) ( ) |N
N N Nh i i i


   


   x x K A x I      (A) 

In order to show that  h x  is the pdf of a  , , , ( ), ( , )N NSUN i i0   , note that 

     1 1
22

1
2 | ( ) lim ( ) ( ) ( ) |

11

N
N N Nh i i i i






 



 
      

x x x I       

    | ( )N i  x    

 

 

2
1 1 1

22
lim ( ) ( ) ( ) | ( ) ( ) ( )

11
|

N N

N N

i i i i i i


 


  



 
      



x I

0 I

      
 

    lim | , , ( ), ( , )g i i





 X x 0    

where  gX  is the density of a  , , , ( ), ( , )N NSUN i i0    distribution with 
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2

2

( )
1

( , )

( ) ( )
1

N i

i

i i









   
 
 

 

I 


 

 

Thus, as lim ( , ) ( )i i


 


  , 

   lim | , , ( ), ( , ) | , , ( ), ( )g i i g i i


 


X Xx 0 x 0       

The simplified expression for  | , , ( ), ( )g i i
X x 0    presented in Proposition 1 is obtained 

from (A) simply by taking into account that 

       1 1 1 1lim ( ) ( ) | 2 ( ) ( )N Ni i i i


     


   xK A x I K A x    . 

As regards the cdf of X, 

   | , , | , ,
z x

F f


 X Xx A z A dz =     

   
12 2 ( )

1 1
1 | , , ( ), ( )

N
n

N k i
ni n z x

g i i


 
  
      X z 0 dz =    

   
12 2 ( )

1 1
1 | , , ( ), ( )

N
n

N k i
ni n

G i i


 
 
     X x 0    

Moreover, one gets from (1) 

   
   

2 1

2 1

| ( )
( )

| , , ( ), ( ) 2 | ( )
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N

N
N

N N

i
i

G i i i
i




 


  
                  

X

0

x 0
x 0

x0 I


 

   
 

 

     
  and ( ) ( )

2 |N
N Ni i


  

  z|z 0 A K z x
z I dz

 
 

The latter equality follows from the singularity of ( )i , which for given x allows one to 

write the probability of 

 1( )i

 
   

0
r

x 
 

where  ~ , ( )N ir 0  , as the probability of 

   1 |  and ( ) ( )
( )( )

N i i
ii 

  
          

0I
z z z 0 A K z x

x
 

 
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for  ~ , NNz 0 I . 
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