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Abstract

This paper discusses the asymptotic and �nite-sample properties of CUSUM-based
tests for detecting structural breaks in volatility in the presence of stochastic conta-
mination, such as additive outliers or measurement errors. This analysis is particu-
larly relevant for �nancial data, on which these tests are commonly used to detect
variance breaks. In particular, we focus on the tests by Inclán and Tiao [IT] (1994)
and Kokoszka and Leipus [KL] (1998, 2000), which have been intensively used in the
applied literature. Our results are extensible to related procedures. We show that
the asymptotic distribution of the IT test can largely be a¤ected by sample conta-
mination, whereas the distribution of the KL test remains invariant. Furthermore,
the break-point estimator of the KL test renders consistent estimates. In spite of
the good large-sample properties of this test, large additive outliers tend to generate
power distortions or wrong break-date estimates in small samples.
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1 Introduction

There is much evidence that economic time-series are non-stationary when observed over
long periods of time. Policy-regime shifts and exogenous factors may generate parame-
ter instability in the underlying generating process, often leading to abrupt changes in
time series dynamics. Recent literature in Financial Economics has addressed variance
homogeneity, �nding strong evidence of instability; see, e.g., McConnell and Perez-Quirós
(2000), Sensier and van Dijk (2004) and references therein. This topic is particularly
important in �nancial markets because the second-order moment is central to Financial
theory and its empirical applications.
The most popular statistical methods speci�cally designed to detect breaks in volatil-

ity are CUSUM-type tests. Into this category fall, among others, the tests by Pagan and
Schwertz (1990), Inclán and Tiao (1994), Kokoszka and Leipus (2000), Chen, Choi and
Zhou (2005), and Deng and Perron (2008a, 2008b). The ability of the CUSUM tests to
identify structural changes depends critically on the empirical realism of the underlying
assumptions. The most remarkable features of �nancial data include the existence of time-
varying volatility patterns, and a tendency to generate abnormally large observations that
cause similar e¤ects as additive outliers.1 Andreou and Ghysels (2002) illustrate the per-
vasive e¤ect of persistent volatility on CUSUM tests experimentally. However, distortions
that may arise from extreme observations, or other forms of stochastic contamination,
have, to the best of our knowledge, not been addressed yet in the literature.
In this paper, we formally discuss the e¤ects that sample contamination has on the

asymptotic properties of CUSUM-type tests for detecting change points in variance and
characterize the �nite sample behavior by means of Monte Carlo simulations. Our theo-
retical discussion follows in a general framework in which additive outliers and/or mea-
surement errors are treated as particular cases aiming to analyze the e¤ects on i) the
asymptotic distribution, ii) the consistency of the turning point estimator, and iii) the
small-sample performance of CUSUM tests. Owing to their empirical relevance, special
focus is placed on two well-known tests, but it should be stressed that the main conclusions
are directly extensible to most testing procedures which are based on this framework. In
particular, we study the parametric test suggested by Inclán and Tiao [IT] (1994), and
the non-parametric generalization proposed by Kokoszka and Leipus [KL] (2000). These
tests have been extensively applied on �nancial data; see, among others, Aggarwal, Inclán
and Leal (1999), Andreou and Ghysels (2002, 2004), and Cuñado, Gómez-Biscarri and
Pérez de Gracia (2006).
The results of our analysis can be summarized as follows. First, the IT test is not

asymptotically invariant under stochastic contamination. It is biased towards serious
overrejection �even in large samples �owing to the use of conservative critical values.
In contrast, the non-parametric correction of the KL test ensures invariance and renders
consistent estimates of the break-date. Our analysis reveals patterns which would be hard
to explain in the absence of a formal theoretical analysis. For instance, the distribution
of the IT test is more sensitive to a small likelihood of outliers than to a large probability
of them, which is exactly the relevant case for empirical applications. Similarly, the
asymptotic robustness of the KL test is not obvious a priori, since additive outliers may

1Outliers are discordant observations that seem to be far beyond the process that rules most obser-
vations. In �nancial markets, outliers are linked to rare shocks not related to the trading process, or
abnormal �ows of information arrivals. A well-known example is the market crash in October 19, 1987.
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introduce asymptotic bias in least-squares based methods. In spite of the correct large-
sample properties, using Monte Carlo analysis we observe that the KL test may su¤er
important power distortions in �nite-samples when extreme outliers are present, which
provide simple and straightforward reasons to explain the contradictory �ndings whenever
the IT and KL tests are simultaneously applied (see, for instance, the analysis in Cuñado
et al., 2006, on data from emerging markets). Neglected outliers tend to bias the IT test
towards �nding a large number of breaks, whereas the KL test exhibits low power and
tends to �nd few or no breaks at all.
The rest of the paper is organized as follows. Section 2 brie�y outlines the test statistics

which are analyzed in this paper. Section 3 derives the asymptotic properties under sample
contamination, and provides a set of su¢ cient conditions to justify the results. Section
4 reports Monte Carlo results, which illustrate the small-sample behaviour of these tests
and discusses the performance of the procedures in addressing variance homogeneity for
US monthly stock returns. Section 5 summarizes and concludes. Finally, a technical
appendix collects the proofs of the theoretical results presented in the paper.

2 Testing for structural breaks in variance

Assume that frtgTt=1 is the realization of a (zero-mean) stochastic process that veri�es
some restrictions which will be discussed later. The null hypothesis, H0 : V ar (rt) = �2

with �2 constant over the entire sample, is tested against the alternative of single or
multiple breaks of unknown location. The usual testing procedure infers the most likely
break-position endogenously through cumulative sums of squared observations; r2t ; as they
provide an unbiased estimate of the unconditional variance. The key statistic is

DT (k) =

" 
kX
t=1

r2t =
TX
t=1

r2t

!
� k=T

#
; k = 1; :::; T; (1)

which can be viewed as an approximate likelihood ratio under some conditions. Under
the alternative of a single break, the estimator of the break-date, say bk; is determined as
argmaxk jDT (k)j. Whether this estimate is signi�cant or not is then addressed through a
test statistic based on DT (k) whose asymptotic distribution can be characterized as the
supremum of a standard Brownian Bridge (SSBB henceforth) under suitable restrictions.

2.1 The Inclán and Tiao [IT] test

The IT test is a natural extension of CUSUM-type tests in regression models for the
detection of shifts in variance, de�ned as

IT =
p
T=2argmax

1�k�T
jDT (k)j : (2)

Inclán and Tiao (1994) show that if, rt � iidN (0; 1) ; then IT converges weakly to SSBB
as T !1. The IT test is initially intended to estimate the location of a single break asbk = argmax1�k�T jDT (k)j : However, a more general procedure based on the successive
computation of (2) and the corresponding break-date estimation to gain power against the
alternative hypothesis of multiple breaks can be considered. In particular, Inclán and Tiao
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(1994) suggest the so-called Iterative Cumulative Sum of Squares (ICSS) method, which
embeds the basic algorithm into an iterative scheme based on successive computations of
(2) on di¤erent segments of the series, which are consecutively determined after a possible
change point is detected.

2.2 The Kokoszka and Leipus [KL] test

The KL test statistic is de�ned as a suitably re-normalized version of DT (k) ; namely,

KL = T�1=2cM�1=2
4;T argmax

1�k�T
jGT (k) j (3)

with GT (k) �
Pk

t=1 r
2
t �

�
k
T

�PT
t=1 r

2
t and cM4;T being a consistent estimator of the long-

run variance of r2t � E (r2t ) ; i.e., the limit of
1
T
E
hP1

t=1 (r
2
t � E (r2t ))

2
i
; say M4 < 1:

Since GT (k) = DT (k)
PT

t=1 r
2
t ; and noting that b�2 � T�1

PT
t=1 r

2
t ; it follows that

KL =

s
2b�4cM4;T

IT: (4)

The main purpose of the KL test is to weaken the Gaussian iid restriction of the IT
test by using a model-free setting. Under fairly general conditions which do not hinge
upon the particular distribution of the data, M4 can be estimated consistently using
non-parametric techniques. Thus, the asymptotic distribution of the KL test is SSBB.
The break-point estimator is de�ned as bk = argmax1�k�T jGT (k)j ; which is equivalent
to argmax1�k�T jDT (k)j : Therefore, as in the IT test, the KL test can also be embedded
into the same ICSS algorithm to gain power against multiple breaks.

3 Asymptotic theory

Consider �rst a data generating process [DGP] in which the main signal is perturbed with
a stochastic contamination process that generates additive outliers and/or measurement
errors, characterized under suitable restrictions. The objective is to de�ne a process with
similar statistical properties as those commonly found in �nancial and other economic
time-series and to keep the assumptions to a minimum possible.

Assumption A1. The observable data, frt; t � 1g ; is generated from

rt = �+ "t + �t + Bt [�+ �vt] (5)

where � is some �nite constant, "t is the regular component and �t and Zt � Bt [�+ �vt] ;
are di¤erent sources of stochastic contamination.

Assumption A2. The stochastic contamination components f�t; Ztg observe the follow-
ing properties:
i) The measurement-error generator f�t; t � 1g is independent of "t and Zt, and �t �
iid
�
0; �2�

�
for some �nite �� � 0: Also, E (j�tj4+) <1 for some  > 0:

ii) The additive-outlier generator fZt; t � 1g ; is independent of "t and �t; with Bt being a
discrete variable with support (�1; 1; 0) and probabilities fp=2; p=2; 1� pg. Furthermore,
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vt � iid (0; 1) such that E (jvtj4+) < 1 for some  > 0; 0 � p < 1, 0 < � < 1; and
0 < � <1:

Assumption A3. The regular component f"t; t � 1g observes the following properties:
i) E ("t) = 0; E ("

2
t ) = �2" <1.

ii) suptE (j"tj4+) <1 for some  � 0:
iii) "t is strong mixing with mixing numbers mj satisfying

P1
j=1m

s=(s�2)
j < 1 for some

s > 4; and limT!1 E
h
T�1 (

P
["2t � �2"])

2
i
�M"

4, with 0 <M"
4 <1:

Assumption A3�. Let Ft be the �-�eld generated by f"t; Zt; �t; "t�1; Zt�1; :::g : Then
f"t;Ftg1t=1 is a strictly stationary and ergodic martingale di¤erence process and E (j"tj4+) <
1 for some  � 0:
Assumption A4. "t is independent of f�t; Ztg :

Some comments follow. Assumption A1 sets the basic DGP, in which measurement
errors (ME) and/or additive outliers (AO) lead to the impossibility of observing the true
signal "t.2 In the �nancial literature, Zt is usually referred to as a (discrete-time) stochas-
tic jump process. In the econometric literature, a number of papers have focused on the
e¤ects of AOs through restricted forms of this general speci�cation; see, e.g., Franses and
Haldrup (1994), van Dijk, Franses and Lucas (1999) and Vogelsang (1999). Assumption
A2 assumes that AOs are generated independently of the regular component, which seems
accurate for �nancial returns, as it captures extreme events which are unrelated to the
normal trading process but which nevertheless are able to in�uence the observable series.
Similarly, the ME component is assumed to be exogenous, which does not seem a particu-
larly restrictive condition in practice. Since �t and Zt are bounded in probability, "t is not
perturbed by arbitrarily large values.3 Condition A3 is fairly general and standard in the
literature. It allows for �nite-order ARMA structures and/or several time-varying volatil-
ity processes, such as stationary GARCH-type and stochastic volatility models. Condition
A3�may be su¢ cient when the series are uncorrelated but not independent, as is mostly
the case in �nancial time-series. Finally, A4 is a maintained assumption in related studies,
such as Franses and Haldrup (1994) and van Dijk et al. (1999). Its practical purpose is
to allow us to analyze the e¤ects of stochastic contamination in a model-free framework.
We shall comment on the e¤ects of weakening this assumption later on.

3.1 Asymptotic distribution of the test statistics

In this section, the asymptotic distributions of the IT and KL test statistics under additive
outliers and/or measurement errors are formally derived. We denote �)�as the weak
convergence of probability measures in D [0; 1], �

p!�as convergence in probability, W (�)
represents a standard Wiener process on � 2 [0; 1] ; W � (�) =W (�)�rW (1) is a standard
Brownian Bridge, [�] is the integer function, and tr (�) denotes the trace of a matrix.

2It is widely accepted that AOs are part of the return�s generating process. Non-synchronous and
thin-trading may generate measurement errors, particularly, in data recorded from emerging markets.

3Alternatively, a more extreme (but somewhat less general) form of contamination in which outliers
are allowed to be arbitrarily large could be considered as well. The analysis of the performance of the
CUSUM tests, and the formalization of robusti�ed alternatives, constitute interesting topics for future
research. We thank an anonymous referee for bringing this issue to our attention.
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Lemma 3.1. De�ne the random vector �t =
�
"2t ; Z

2
t ; �

2
t ; 2"tZt; 2"t�t; 2�tZt

�0
and assume

A1-A4 hold true. Then, as T !1, 1p
T

P[T� ]
t=1 (�t � E (�t))) 
1=2W (�) in D [0; 1]6 and

uniformly in � 2 [0; 1] ; where W (�) is a multivariate standard Wiener process with co-
variance matrix 
 = f!iig ; !11 =M"

4; !22 = p
�
�4 � �2 + �4�v4 + 2��

2 (3�+ ��v3)� �2
�
;

!33 = ��4 � �2� ; !44 = 4�
2
"p
�
�2 + �2

�
; !55 = 4�

2
"�
2
� ; !66 = 4�

2
"�
2
� ; and !ij = 0 for i 6= j;

where E ("2t ) = �2"; �
v
j = E

�
vjt
�
, ��j = E

�
vjt
�
:

Lemma 3.2. Denote ~rt = rt�b�T , where b�T is a pT -consistent estimator of �. Under the
conditions of Lemma 3.1, as T !1; it can be established that (i) 1p

T

P[T� ]
t=1 [~r

2
t � E (r2t )])

M1=2
4 W (�) ; (ii) 1p

T

PT
t=1 [~r

2
t � E (r2t )])M1=2

4 W (1) and (iii) 1
T

PT
t=1 ~r

2
t

p! �2"+p
�
�2 + �2

�
+

�2� ; for any r 2 [0; 1] ; where M4 � V ar (r2t � E (r2t )) = tr (
) :

Lemmas 3.1 and 3.2 state the convergence of the functionals involved in the IT and
KL tests and clarify the dependence on the main driving parameter (see the technical
appendix for details). The following theorem presents the asymptotic distribution of the
tests.

Theorem 3.1. Let the IT and KL test statistics be de�ned as in (2) and (3), respectively,
and let cM4;T be a consistent estimator of the long-run variance M4. Then, under the
conditions of Lemma 3.1 and as T !1;

IT ) M1=2
4p

2
�
�2" + p�2 + p�2 + �2�

� sup
�2[0;1]

jW � (�) j (6)

KL ) sup
�2[0;1]

jW � (�) j:

Corollary 3.1. If only additive outliers contaminate the sample, then Theorem 3.1 triv-
ially holds with �� = ��4 = 0; whereas if only measurement errors are present, i.e., p = 0 ,
then Theorem 3.1 trivially holds by setting all parameters related to the AOs equal to zero.

The proofs of Theorem 3.1 and its corollary follow directly from Lemmas 3.1 and 3.2
and the continuous mapping theorem (see the appendix). Theorem 3.1 states formally
one of the theoretical results of this paper, and has important implications for empirical
purposes. The asymptotic distribution of the IT test is not invariant and it turns out
to be heavily in�uenced by the characteristics of the contamination process, since this
introduces non-Gaussian features, such as excess kurtosis. The critical values from the
correct asymptotic distribution will be larger whenever tr (
) > 2E (r2t )

2, and smaller
otherwise. Since, the characteristics of the contaminating process are not observable,
the IT test becomes infeasible under outlying observations and/or measurement errors.
In sharp contrast, the KL test is scaled with a non-parametric HAC-type estimator of
the long-run variance that succeeds in making the procedure robust to contamination,
ensuring its convergence to the SSBB. Vogelsang (1999) �nds similar results in the di¤erent
context of unit root testing, suggesting the use of the Phillips-Perron test procedure
(which builds on the autoregressive spectral density estimation of the long-run variance
parameter) to deal with AOs.

Remark 3.1: The diagonality of the asymptotic covariance matrix 
 which characterizes
M4 follows directly from Assumption A4. We may allow for dependence between some
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measurable function of "t, say V1 ("t) ; and lagged values of a function V2 (Zt; �t), provided
conditions A3 or A3�are still ful�lled. Relevant examples of V1 and V2 in this context are
quadratic and absolute-value functions, given that the volatility process may be a¤ected by
lagged outliers. De�ne ��t = �t�E (�t) and let
� = limT!1

1
T
E
��PT

t=1
��t

��PT
t=1
��0t

��
:

If A4 is replaced by the assumption that 
� is a �nite positive de�nite matrix such that

� = ��0, then it follows as T ! 1 that 1p

T

P[T� ]
t=1

��t ) �W (�) ; with this result
generalizing Lemma 3.1 in an obvious way. The diagonal elements of 
� are those
of 
; whereas the (non-zero) o¤-diagonal elements of this matrix depend speci�cally
on the covariance structure related to V1 and V2, and hence are model-dependent. It
also follows that 1p

T

P[T� ]
t=1 [~r

2
t � E (r2t )] ) 10�W (�) ; and 1

T

PT
t=1 ~r

2
t

p! 10E (�t�
0
t)1;

with 1 being a conformable vector of ones. As in Theorem 3.1, it can be shown that
IT ) �V1;V2 sup�2[0;1] jW � (�) j; with �V1;V2 =

p
10
�1

�p
2 (10E (�t�

0
t)1)

��1
; and again

KL ) sup�2[0;1] jW � (�)j : This issue will be analyzed more carefully in the Monte Carlo
section.

3.2 Consistency of the change-point estimator

We now discuss the ability of the tests to consistently estimate the location of an unknown
turning point under the alternative hypothesis. We initially assume that only a single
break a¤ects the dynamics of the regular component "t, as there is no practical sense in
considering breaks in the contaminating structure. It is also necessary to make additional
assumptions to characterize the nature of the structural break and introduce further
notation. Denote ��; 0 < �� < 1; as the break fraction, such that a shift occurs at time
k� + 1; k� = [T��] ; and let "1t = f"tgk

�

t=1 and "2t = f"tg
T
t=k�+1 be the pre- and post-break

sub-samples such that E ("21t) = �21" and E ("
2
2t) = �21" + � > 0: The break is of (�nite)

magnitude � and may be originated in the conditional or unconditional variance of the
regular series. In both cases, the shift in the variance of "t leads to a shift of the same
magnitude in the variance of rt, i.e., � =Var

�
rt;t�[T��]

�
�Var

�
rt;t>[T��]

�
: This property

allows testing for changes in the unobservable component "t using the observed series
rt instead, but introduces ine¢ ciency. Note that both the IT and KL test procedures
yield the same break-fraction estimation, namely b� = T�1 argmax1�k�T jDT (k)j. Our
interest is to analyze if b� p! �� under the set of assumptions considered and the following
additional condition.

Assumption A5. The sequence f"tg1t=1 veri�es i) suptE ("4t ) < 1 for all t, and ii)
Cov

�
"2t ; "

2
j

�
= O

�
�jt�jj

�
for all 1 � t; j � T and some 0 � � < 1:

Condition A5 is embedded in A3 or A3�when there are no breaks. With i) we rule
out shifts which dramatically change the statistical properties of the process as considered
under the null, such as parameter instability leading to diverging moments up to the fourth
order. Condition ii) restricts the covariance structure of the time-series. Although "t is
not stationary under parameter instability, we still require that the covariance between
distant observations decays towards zero at a suitable rate. Note that ii) holds trivially
for independent series, as well as for short-memory series. More importantly, ii) may be
weakened considerably, as consistency can be proven under the more general condition
limT!1 T

�2PT
t=1

Pt
j Cov

�
"2t ; "

2
j

�
= 0; which may follow under suitable mixing conditions
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and allows for di¤erent rates of decay in the covariances. Convergence in probability for
the estimator b� is provided as a theorem below.

Theorem 3.2. Consider frtgTt=1 as de�ned in A1 such that A2 and A4 hold true. Assume
that the unconditional variance of the regular component shifts from �2" to �

2
" + � > 0;

0 < j�j < 1; at some time k� = [T��] for some �� 2 (0; 1) such that A5 holds true.
Let b� = T�1 argmax1�k�T jDT (k)j. Then, for an arbitrary � > 0 and some constant C
it follows that

Pr (jb�� ��j > �) � C

�2�2
p
T

(7)

and, therefore, b� p! �� as the sample size is allowed to diverge.

Remark 3.2: Consistency holds for any estimator based on argmax1�k�T jDT (k)j : If we
allow for cross-dependences, as in Remark 3.1, then b� p! �� holds generally if suptE ("4t ) <
1 and limT!1 T

�2PT
t=1

Pt
j Cov

�
r2t ; r

2
j

�
= 0.

The proof of consistency uses the Hájek-Rénji inequality in Kokoszka and Leipus,
(2000), see the appendix for details. For a �xed shift �; the bias jb� � ��j can be shown
to be Op (T�1) and, therefore, b� is super-consistent, a standard result in this literature.
Consistency guarantees that the KL test not only uses the correct critical values, but
also that these are applied on the correct location when the sample grows unbounded.
Furthermore, Theorem 3.2 provides insight on how the representative characteristics of the
DGP a¤ect the bias. In particular, the degree of serial dependence, the time of the break,
and the excess of variability generated by the contaminating process increase the size of
C and will make it more di¢ cult to locate the break-position correctly in �nite samples
(see appendix for further details). On the other hand, the sample size and the magnitude
of the shift help to reduce the bias. This statistical tension completely disappears when
T !1; but (7) indicates the sources of small sample distortions for �nite T . This issue
will be studied in greater detail in the Monte Carlo section below.

The extension of the single-break analysis towards the detection of multiple changes
in variance is usually done through the ICSS algorithm suggested by IT; see Chen et al.
(2005). The procedure starts by applying the single break-point detection over the entire
sample. If a break is detected, the whole sample is divided into two subsamples, and the
testing procedure is applied again in each subsample. The process is repeated until no
changes are detected, yielding an estimate of the number of breaks, say bm. Since, from
Theorems 3.1 and 3.2 the KL test consistently estimates and identi�es a single break-
point, the ICSS algorithm based on this test will also consistently estimate the unknown
number of breaks, say m; in the multiple break context. We provide this result as a
proposition below (the proof follows along the lines in Bai, 1998, and is therefore omitted
to save space).

Proposition 3.1: Suppose that the conditions in Theorem 3.2 hold true and that there
is a number m < T of shifts in the unconditional variance of the regular process. In
particular, assume that for any j = 1; :::;m, the variance shifts from �2" to �

2
" +�j > 0;

j�jj < 1; at time k�j =
�
T��j

�
; ��j 2 (0; 1) ; such that k�j � k�j�1 (k

�
0 � 0) includes a

non-trivial set of observations, and A5 holds true. Let bm be the number of breaks inferred
from a sequential procedure such as the ICSS approach, then bm p! m:
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4 Finite-sample analysis

4.1 Monte Carlo analysis

Given its relevance, and in order to save space, in this analysis we center our attention
on additive outlier e¤ects and focus only on the single-break case. Several experiments
are considered to study possible small-sample size departures related to outliers when the
regular component is A) an iid process, and B) exhibits time-varying volatility patterns.
In addition, C) we also address the consistency of turning point estimation in small-
samples.

A) Empirical size: additive outliers and independent observations.
We �rst assume that the regular component "t is iid to isolate the e¤ects of outliers. We

generate simulated paths for rt = "t+Bt [�+ �vt] ; "t = ��t; with �t and vt � iidN (0; 1) :
The discrete variable Bt = (�1; 1; 0) with the grid of probabilities p = f0; 0:01; :::; 0:50g ;
and increments of 0:01 is used. We set � 2 f0:5; 1; :::; 5g ; and increments of 0:5; covering
a wide set of values including many relevant ones for empirical purposes. We initially set
� = � = 1: The sample size is T = 1000 and we repeat the simulation process 25000 times
for any combination of the analyzed values. The IT and the KL tests are computed using
the simulated series, and the corresponding statistics compared to the 95% percentile from
the SSBB (i.e., 1.36). The rejection rates of the null hypothesis are depicted in Figures 1
and 2.

[Insert Figures 1, 2 about here]

As discussed in the theoretical section, the distribution of the IT test is strongly
a¤ected by the parameters that characterize the dynamics of the outlier process. We
observe that extreme values lead to large size departures, specially for large, infrequent
values (small p and large �), which is precisely the type of process that is to be expected
in real �nancial data. These values generate large excess kurtosis and lead the IT test
to over-reject.4 Although not reported here, in order to save space, the distortion in
size ampli�es as � increases (given that kurtosis depends on this parameter as well). In
contrast, the KL test shows a �at, uniform distribution for the empirical rate of rejection
which does not depend on nuisance parameters.

B) Empirical size: additive outliers and time-varying volatility.
We now turn our attention to the case in which the regular component exhibits time-

varying volatility patterns. Owing to its empirical relevance, we assume that "t follows a
GARCH(1,1) model, such as

rt = �t�t + Zt; �t � iidN (0; 1) (8)

�2t = ! + � 2t�1 + ��2t�1;

as a function of the variable  t: In the context of outliers, there are two possible speci�-
cations, depending on whether they a¤ect the level of the series (level outliers), or a¤ect
both the level and the variance (volatility outliers). In the �rst case, �2t is independent of

4Relatively large values of p lead to undersized tests. This may seem surprising, but from the analysis
of Theorem 3.1 we note that large values of p lead to tr (
) < 2E

�
r2t
�2
, hence undersizing the test. Such

a degree of heterogeneity, however, is unlikely observed in practice.
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Zt; and therefore we set  t = �t�t � "t. Thus, observed returns result from the convolu-
tion of a jump-process and a standard GARCH model. This is the case explicitly studied
in the theoretical section, and the DGP considered in most empirical applications. Alter-
natively, if �2t is also perturbed by AOs, then  t = rt and the GARCH model includes
jumps, a far more complex type of non-linear volatility process. We shall analyze both
possibilities in our simulations.
First, consider the level-outlier case with AOs a¤ecting only the conditional mean.

We normalize the unconditional variance to unity by setting ! = (1� �� �) ; and set
di¤erent values for (�; �). In particular, we consider the same DGPs as in Andreou
and Ghysels (2002) - a low persistent (� = 0:10; � = 0:50) [GARCH1] and a high-
persistent GARCH model (� = 0:10; � = 0:80) [GARCH2] - to make comparisons with
their results. Simulations are performed as in experiment A), with the long-run variance
being computed, for the KL test using a Newey-West estimator with Bartlett kernel and
a deterministic bandwidth selection procedure. The empirical rates of rejection are shown
in Figures 3, 4 and 5.

[Insert Figure 3;4;5 about here]

Figure 3 con�rms the theoretical results for the IT test presented in the previous sec-
tion.5 Since GARCH-type dependence originates excess kurtosis, time-varying volatility
su¢ ces to bias the IT test even if p = 0. When p > 0, rare extreme events (low p and
large �) considerably increase total kurtosis, leading to even larger size distortions.
Figures 4 and 5 show the empirical size of the KL test given GARCH1 and GARCH2

errors, respectively. The most striking feature is related to the e¤ect generated by di¤erent
degrees of persistence in volatility, and not by the presence of outliers. Remarkably, in the
absence of outliers, the KL test su¤ers from important small-sample size distortions for
large values of �+�: This feature was already reported in the simulations in Andreou and
Ghysels (2002) and, therefore, cannot be attributed solely to outliers. This is actually
a �nite-sample distortion related to the fact that the HAC estimator of the long-run
variance su¤ers large small-sample bias in strongly persistent data. Further simulations
(not reported here) show that this bias worsens for smaller samples. The existence of
AOs does not worsen the behavior of the KL test with respect to the case p = 0 and,
therefore, the major distortions observed are solely attributable to dependence patterns
in volatility.
When outliers a¤ect both the conditional mean and variance, i.e., setting �2t = ! +

�r2t�1 + ��2t�1 in (8) ; the departures from the nominal size of the IT test are even larger
than before. For instance, in the case of the GARCH2 model we do not observe empirical
sizes inferior to 50% (results are available upon request). Excess kurtosis in rt is now even
greater as a result of the positive correlation between "2t and the lagged values of Z

2
t . In

the case of the KL test, the existence of outliers does not have negative e¤ects on the
empirical size.

C) Finite-sample properties: consistency of the break-point estimator
As in related studies (see Chen et al. 2005), the last experiment aims to evaluate the

average size of the estimation bias (b�� ��), and the corresponding standard error of the
break-point estimate (i.e., e¢ ciency) in �nite samples. We set the turning-point fractions

5For the IT test, the results for the GARCH1 model are qualitatively similar to those from GARCH2.
We therefore do not present them, but they are available upon request.
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�� = f0:25; 0:50; 075g and normalize to unity the pre-break unconditional variance para-
meter, �1 = 1: In addition, we consider several values for �; and perform simulations with
a DGP in which the regular component is iid, or follows GARCH1 or GARCH2 errors.
For the sake of conciseness, we summarize the results of this experiment for several values
of (�; p) ; � = 1; a relatively large shift � = 0:50; and for the three forms of dependence
in "t in Table 1, showing the average value of b� and its standard error in a sample of
T = 1000.

[Insert Table 1 about here]

The CUSUM principle consistently detects structural breaks, since increasing T and/or
the magnitude of the shift reduces the estimation bias and the standard error of b�. How-
ever, as expected the properties of b� prove sensitive to the characteristics of outliers in
�nite samples, particularly, the size of �: Large values of this parameter bias b� towards
1/2 (as in the no break case), and considerably increase the standard error of the es-
timates. Extreme additive outliers may generate large biases in �nite samples, even if
they occur with small probability. The reason is that the additional variability generated
by multiple outliers can mask the true position of the variance shift, and bias the least-
squares estimates. As a result, although the IT test will tend to �nd spurious breaks from
using over-conservative critical values, the KL test may be biased towards non-detection
because the correct critical values may be applied on wrongly estimated turning-points,
thereby rejecting the null.
We analyze this e¤ect through further experimentation. We only discuss the main

results without presenting tables in order to save space. Consider the most favorable case
for the KL test in which "t is iid, and assume that a large single shift increases the uncondi-
tional variance from 1 to 1.5 in a sample of 1000 observations, with �� = f0:25; 0:50; 0:75g.
In the absence of outliers, the average value of b� is always in the neighborhood of the true
��, and the probability of rejecting the false null is nearly 100% for a 5% nominal size. In
sharp contrast, if the series is randomly contaminated with large, infrequent AOs (e.g.,
setting � = 5 and p = 0:10) the average value of b� is biased towards the middle of the
sample, E (b�) = f0:41; 0:51; 0:41g and, even more importantly, the probability of rejecting
the false null dramatically collapses to f21:1%; 41:2%; 25:7%g. Even though these biases
are entirely attributable to �nite-sample e¤ects, and will eventually vanish as the sample
size diverges, the experiment highlights the direction and extent of the small sample bias
of the KL test.

4.2 Empirical application: variance stability in the US market

It is interesting to analyze empirical data in the light of our theoretical and experimental
analysis. In particular, we apply the IT and KL statistics to test for variance homogeneity
on monthly returns from the US market fromMarch 1885 to December 2001 available from
William G. Schwert�s website. We have a large number of observations (1398) spanning
a period in which it is widely acknowledged that the US stock market experienced, at
least, a period of abnormally high volatility during the Great Depression (GD), which the
tests should be able to detect. Note that serial dependence in volatility is considerably
weakened at the monthly frequency, so we do not expect large distortions in the size of the
tests due to persistence in conditional variance. Furthermore, monthly returns time-series
exhibit a large degree of leptokurtosis and non-normality owing to extreme values, which
are expected to generate distortions according to our previous analysis. In addition to
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October 1987, the most in�uential observations are related to episodes of international
crisis, World War I and II, and the energy crisis of 1973. Overall, the sample provides us
with a perfect ground to analyze the empirical performance of the tests.
We compute the IT and KL tests on squared- and absolute-valued series. Although

both transformations track the dynamics of the second-order moment, the information
conveyed by those transformations is not necessarily the same, and as a result, the inferred
number of breaks, and even their estimated location, may signi�cantly vary from using
one proxy or the other; see Andreou and Ghysels (2002) and Cuñado et al. (2006).
Since in�uential outliers are expected to have a detrimental impact on the ability of the
tests, we apply a trimming procedure to exclude the largest observations and check the
robustness of any preliminary conclusion. Many papers in applied �nance control for
outliers by �ltering top percentiles, observations that lie beyond some pre-determined
level, or simply by removing speci�c observations, such as October 1987. Along with the
non-trimming fraction (0%), we also apply conservative trimming fractions ranging from
0.5% (thus �ltering only 7 observations) to 2.5% (35 observations) to remove most extreme
observations. If conclusions change dramatically after removing a few observations, then
preliminary conclusions may be spurious and purely driven by outliers.

[Insert Table 2 about here]

The estimated break-locations are reported in Table 2. As expected from our previous
analysis, the IT test tends to identify a relatively large number of breaks when applied
on the original series, whereas the KL test tends to �nd signi�cantly smaller numbers.
Similar evidence is observed, for instance, in Cuñado et al. (2006). More speci�cally, the
IT test on absolute-valued (squared) returns �nds up to 12(9 ) breaks at a 5% nominal
level, whereas the KL test cannot reject the null hypothesis in any of those series.6 Likely
owing to the pervasive e¤ects of outliers, the IT test seems to identify short-lived structural
breaks (e.g., 1940.04-1940.06), and outliers (e.g., the 1987 crash) as structural breaks. The
KL test is unable to detect breaks around the GD.
The spuriousness of these results is evident after controlling for outliers, since the main

conclusions dramatically change after �ltering just a small set of observations. It su¢ ces
to remove the most in�uential 0.5% to dramatically reduce the number of breaks found
by the IT test (the IT test on jrtj only �nds breaks around the beginning and end of the
GD and the end of the 19th century) and to allow the KL test on jrtj to detect the GD
instability. This empirical exercise perfectly illustrates the main conclusions discussed
theoretically and analytically in the previous sections.

5 Conclusions

In this paper, the size properties of CUSUM-type tests for detecting structural breaks in
variance when the series of interest include some of the most relevant features that charac-
terize �nancial data were analysed. Our special focus has been on additive outliers, which
prove able to generate large size distortions in these tests. The most sensitive procedure is

6When applying the tests on jrtj and r2t with no previous �ltering, the �rst potential break dates found
are 1940:05 and 1940:06, respectively. In the case of the IT test, both dates are identi�ed as break-points,
so that the ICSS algorithm continues. The KL test, on the other hand, fails to reject the null, and
therefore the iterative procedure stops. These results remain valid even when using a 10% nominal level.
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the one by Inclán and Tiao (1994), which should be applied with considerable caution on
�nancial data. On the other hand, the procedure by Kokoszka and Leipus (2000) exhibits
much better behaviour, at least under the conditions considered in this paper. In particu-
lar, the asymptotic distribution of the test statistic is the standard one, and the estimator
of the break point is consistent. However, in �nite-samples large size distortions due to
the presence of outliers may be observed. As in the case of strongly-persistent volatility
patterns, certain characteristics of the empirical data generating process in �nancial time
series may cause major distortions in the small-sample performance of CUSUM-type tests.
Consequently, a question of empirical relevance is what to do with extreme anom-

alous observations. Bai (1998) proposed the use of robust procedures in the context of
regressions with structural changes and additive outliers. In this spirit Fiteni (2004) has
recently proposed the use of bounded-in�uence estimators. These methods may outper-
form least-squares based estimators under possible contaminated distributions, as they
are speci�cally designed to be used even under arbitrarily large outliers. Since the stan-
dard CUSUM test for detecting structural breaks in variance build on least-squares (or
maximum likelihood) estimates , the use of bounded-in�uence estimators may provide fur-
ther improvements of the small-sample performance of this approach. The �ndings and
general discussion in our paper support the empirical pursuit of this interesting question
in future research.

A Appendix

Proof of Lemma 3.1.
We consider � = 0 in A1 for simplicity but without loss of generality. Let IT;� =P[T� ]

t=1 [�t � E (�t)] and denote the j-th entry of this vector as Ij;� . Under A2 and A4,
the covariance matrix of IT;� ; 
; is diagonal because the Ij;� terms are uncorrelated, and
I1;� ; I4;� and I5;� satisfy a functional central limit theorem (FCLT) for mixing sequences
(martingale di¤erences) under A3 (A3�), while I4;� ; I5;� and I6;� verify directly the FCLT
from Donsker�s lemma under A2, c.f. White (2000) and Deng and Perron (2008a). Hence,
1p
T
Ij;� )

p
!jjW (�) ; where !jj is the j-th element of the main diagonal in 
: It follows

from the Gaussian properties of the Wiener process that 1p
T
IT;� ) 
1=2W (r) ; where

W (r) is a 6-dimensional Wiener process. Since r2t = 10�t; with 1 a vector of ones in
R6, and E (r2t ) = 10E (�t) ; then

P[T� ]
t=1 r

2
t � E (r2t ) =

P6
j=1 Ij;� : The Cramer-Rao device

completes the proof. �

Proof of Lemma 3.2.
Since 1p

T

P[T� ]
t=1 [~r

2
t � E (r2t )] =

1p
T

P[T� ]
t=1 1

0 [�t � E (�t)] + op (1) ; it follows that the limit
distribution of the functional converges weakly to the distribution of 10W (�) = W (�),
a standard Wiener process, with scalar variance 10
1 = tr (
) : This yields the required
result. Part (ii) of the lemma is immediate for � = 1, and part (iii) follows, similar to
Lemma 3.1, from applying the weak law of large numbers; see White (2000). �

Proof of Theorem 3.1.
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Observe thatDT (k) can be rewritten asCT (T )
�1 [CT (k)� (k=T )CT (T )] = CT (T )

�1GT (k)+

op (1) where CT (k) =
Pk

t=1 r
2
t . Therefore,

1p
T
DT (k) =

h
CT (T )
T

i�1 h
1p
T
GT (k)

i
+ op (1).

From i) and ii) of Lemma 3.2 it follows that 1p
T

�
CT (k)�

�
k
T

�
CT (T )

�
)
p
M4W

� (�)

where from Lemma 3.2iii), CT (T )
T

p! V ar (rt) = �2"+p
�
�2 + �2

�
+�2� : From this result and

the continuos mapping theorem, it follows that

arg max
1�k�T

r
T

2
jDT (k) j )

M1=2
4p

2
�
�2" + p�2 + p�2 + �2�

� sup
�2[0;1]

jW � (�) j:

For the KL test, assume that cM4;T is a consistent estimator ofM4. Standard HAC-type
estimators render this property under the set of assumptions discussed. From Lemma 3.2
and the continuous mapping theorem it follows straightforwardly that,

argmax1�k�T jGT (k) jp
T cM4;T

=
argmax1�k�T

��CT (k)� � kT �CT (T )��p
T cM4;T

) sup
�2[0;1]

jW � (�) j:

This completes the proof.�

Proof of Theorem 3.2.
Note that we can write bk = argmax1�k�T ����k(T�k)T

�
1
k

Pk
t=1 r

2
t � 1

T�k
PT

t=k+1 r
2
t

���� argmax1�k�T jRk;T j,
whereRk;T is de�ned implicitly. Next, noteE (Rk;T ) = �� (1� ��)1k�k�+��

� (1� �)1k>k� ;
and E (Rk�;T ) = ��� (1� ��), so jE (Rk�;T ) j � jE (Rk) j = j�j (�� � �) (1� �)1k�k� +
j�j�� (�� ��)1k>k� with 1(�) being an indicator function. Hence jE (Rk�;T ) j�jE (Rk) j �
j�j j�� � �jmin f��; 1� ��g : Setting � = b�; it can be shown that j�j j�� � b�jmin f��; 1� ��g �
2 max
1�k�T

jRk;T � E (Rk;T )j or, equivalently,

jb�� ��j � 1

T
argmax
1�k�T

4
Pk

t=1 jr2t � E (r2t )j
j�jmin f��; 1� ��g :

Next, denote 	k;T = T�1 argmax1�k�T
Pk

t=1 jr2t � E (r2t )j : For some � > 0; and Theorem
4.1 in Kokoszka and Leipus (2000), it follows that

Pr (	k;T > �) � 2

�2T 2

T�1X
t=0

vuutV ar
�
r2t+1

� tX
i;j=1

Cov
�
r2i ; r

2
j

�
+

1

�2T 2

T�1X
t=0

V ar
�
r2t+1

�
:

Under A2 and A4, Cov
�
"2i ; "

2
j

�
= O

�
�jt�jj

�
; so Cov

�
r2i ; r

2
j

�
has �nite upper bounds that

decay exponentially. Also, Cov
�
r2i ; r

2
j

�
= Cov

�
"2i ; "

2
j

�
+ V ar (Zi)1i=j + V ar (�i)1i=j:

For i = j; 0 � Cov
�
r2i ; r

2
j

�
� �; with � � C�1 + V ar (Zi) + V ar (�i) < 1; for some

constant 0 < C�1 � suptE ("
4
t ) ; from Cauchy-Schwartz�s inequality. Note for i 6= j,

Cov
�
r2i ; r

2
j

�
= Cov

�
"2i ; "

2
j

�
and, therefore, 0 � Cov

�
r2i ; r

2
j

�
� C�1�

ji�jj with 0 � � < 1

ruling the correlation pattern as a function of the speci�c model. Since 0 � Cov
�
r2i ; r

2
j

�
�

��ji�jj uniformly for 1 � i; j � T; and denoting �2sup = max1<t<T V ar ("
2
t ) ; we have

Pr (	k;T > �) � K1

�2
p
T
+

�2sup
�2T

� K2

�2
p
T
; where K1 =

4
3

q
�2sup�= (1� �), and some constant
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K2 > K1 > 0: Finally,

Pr (jb�� ��j > �) � Pr

�
	k;T >

�j�jmin f��; 1� ��g
4

�
� 16K2

�2�2 (min f��; 1� ��g)2
p
T

=
C

�2�2
p
T
:

This completes the proof.�
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A Figures

Figure 1. Empirical size of the Inclán-Tiao test (5% nominal size) with
outlier-contaminated data.
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Note: The DGP is rt = ��t+Dt [�+ �vt] ; �t; vt � iidN (0; 1), Dt = f�1; 0g with probabili-
ties fp=2; 1� pg : The results are based on 15,000 simulations for T = 1000 and � = 1. The test
statistic is compared to the critical values from SSBB under the null of variance homogeneity.
The experimental proportion of rejections are displayed on the vertical axis.
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Figure 2. Empirical size of the Kokoszka-Leipus test (5% nominal size) with
outlier-contaminated data.
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Note: The DGP is rt = ��t + Dt [�+ �vt] ; �t; vt � iidN (0; 1), Dt = f�1; 0g with proba-
bilities fp=2; 1� pg : The long-run variance of r2t � E (r2t ) is computed using the Newey-West

estimator with Bartlett kernel and bandwidth h =
h
4 (100=T )2=9

i
: The results are based on

15,000 simulations for T = 1000 and � = 1. The test statistic is compared to the critical values
from SSBB under the null of variance homogeneity. The experimental proportion of rejections
are displayed on the vertical axis.

Figure 3. Empirical size of the Inclán-Tiao test (5% nominal size) with GARCH
[GARCH2] errors and outliers.
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Note: See caption under Figure 1, but considering in this case that the conditional volatility �2t
follows a GARCH(1,1) process with parameters (�;�) = (0:1; 0:8):
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Figure 4. Empirical size of the Kokoszka-Leipus test (5% nominal size) with GARCH
errors [GARCH1] and outliers.
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Note: See caption under Figure 2, but considering in this case that the conditional volatility �2t
follows a GARCH(1,1) process with parameters (�;�) = (0:1; 0:5):

Figure 5. Empirical size of the Kokoszka-Leipus test (5% nominal size) with GARCH
errors [GARCH2] and outliers.
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TABLE 2. Testing for multiple change-points in the volatility of monthly US market
index returns.

Panel A: Absolute values, jrtj
Inclan-Tiao Kokoszca-Leipus

0% 0.5% 1.0% 2.0% 2.5% 0% 0.5% 1.0% 2.0% 2.5%

1893:04 1893:04 1928:10 1901:07 1893:04 1928:10 1928:10 1927:09
1893:12 1893:12 1939:09 1927:06 1904:04 1939:09 1939:09 1939:08
1929:05 1928:10 1973:09 1939:08 1927:09 1973:09 1973:09
1931:08 1933:11 1975:01 1973:09 1939:08
1933:06 1937:08 1987:01
1938:02 1939:09
1938:06 1973:09
1940:04 1975:01
1940:06 1987:09
1973:09
1975:01
1987:09

Panel B: Squared Values, r2t
Inclan-Tiao Kokoszca-Leipus

0% 0.5% 1.0% 2.0% 2.5% 0% 0.5% 1.0% 2.0% 2.5%

1893:06 1885:09 1896:06 1885:09 1885:09 1928:02
1893:08 1885:10 1901:04 1885:10 1885:10 1934:07
1907:02 1891:07 1907:09 1891:07 1893:04
1907:09 1893:06
1928:10
1940:05
1973:09
1973:11
1974:08

Note: The date of the break is estimated under the IT and KL test procedures at the 5% nominal
signi�cance level and given the trimming fractions presented in the columns (0%, 0.5%, 1.0%,
2.0%, 2.5%). For instance, 0.5% indicates that the tests are applied after removal of the 0.5%
most extreme observations in the sample.
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