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Abstract

In two recent papers Enders and Lee (2008) and Becker et al. (2006) provide Lagrange
multiplier and OLS de-trended unit root tests, and stationarity tests, respectively, which
incorporate a Fourier approximation element in the deterministic component. Such an
approach can prove useful in providing robustness against a variety of breaks in the de-
terministic trend function of unknown form and number. In this paper, we generalise the
unit root testing procedure based on local GLS de-trending proposed by Elliott, Rothen-
berg and Stock (1996) to allow for a Fourier approximation to the unknown deterministic
component in the same way. We show that although the resulting unit root tests possess
good �nite sample size and power properties, their limit null distributions are unde�ned.
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1 Introduction

The di¢ culties inherent in testing for a unit root in a time series which is subject to structural
breaks in its deterministic trend function are well documented in the econometric time series
literature. Since the seminal work of Perron (1989), a large literature has developed around
providing unit root test procedures which account for such breaks; see Perron (2006) for
a recent review. Initial research considered the presence of at most one break in the data
generation process [DGP] while more recent research has focused on the possibility of multiple
possible breaks in the level and/or the trend; see, in particular, the local generalised least
squares [GLS] de-trended unit root tests of Carrion-i-Silvestre, Kim and Perron (2009). The
performance of extant unit root tests depends crucially on the estimated break location(s)
and on the assumed maximum number of breaks; see, inter alia, Enders and Lee (2008),
Becker, Enders and Hurn (2004) and Becker, Enders and Lee (2006).

It has been observed by, among others, Gallant (1981), Davies (1987), Becker, Enders
and Hurn (2004) and Harvey, Leybourne and Xiao (2008) that a Fourier approximation can,
to any desired degree of accuracy, capture the behaviour of a deterministic trend function of
unknown form, even if the function itself is aperiodic. This result has been recently employed
by Enders and Lee (2008) who generalise the Schmidt and Phillips (1992) and Schmidt and
Lee (1991) Lagrange multiplier [LM] type unit root test (which employ �rst di¤erence [FD]
de-trending) together with the ordinary least squares [OLS] de-trended Dickey-Fuller [DF]
(1979) unit root tests through the introduction of a Fourier approximation to the deterministic
trend component. They show the resulting tests to be robust against a large variety of
possible break mechanisms in the deterministic trend function. Becker, Enders and Lee (2006)
provide stationarity tests using the same framework and show that the resulting Kwiatkowski,
Phillips, Schmidt and Shin (1992) [KPSS] type tests display good size and power properties
in the presence of a variety of structural break designs. An empirically attractive feature of
these procedures is that there is no need to assume either that the potential break dates or
the number of breaks are known to the practitioner, a priori. The simplicity with which this
approximation can be implemented is also an important advantage of this approach relative
to existing methods which require numerically involved searching procedures and are in any
case operationally infeasible if the practitioner wishes to allow for more than two putative
breaks; see Carrion-i-Silvestre, Kim and Perron (2009).

Our objective in this paper is to apply the �exible Fourier form to the local GLS unit root
testing procedure of Elliott, Rothenberg and Stock [ERS] (1996) and to compare this with
the corresponding DF and LM based unit root tests of Enders and Lee (2008). It is known
that local GLS de-trending can yield unit root tests which are considerably more powerful
than their OLS and FD de-trended counterparts; see, in particular, ERS for the constant and
linear trend cases, Perron and Rodríguez (2003) for the case of a single break in level/trend,
and Carrion-i-Silvestre, Kim and Perron (2009) for the case of multiple level/trend breaks.
In this paper we demonstrate that these power gains carry over, at least in �nite samples,
when using local GLS de-trended unit roots based around the �exible Fourier form.

The paper is organised as follows. Section 2 introduces the local GLS de-trended unit
root tests which incorporate the �exible Fourier form and brie�y outlines the corresponding
LM and OLS tests of Enders and Lee (2008). In section 3 we provide �nite sample critical
values for the GLS de-trended tests and compare the �nite sample size and power properties
of these tests with the corresponding OLS de-trended and LM tests. Large sample properties
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of the local GLS de-trended tests are discussed in section 4. Section 5 concludes. Proofs are
contained in a mathematical appendix. In what follows we use the notation �x := y�(�x =: y�)
to indicate that x is de�ned by y (y is de�ned by x), and �)�to denote weak convergence.

2 The Model and Unit Roots Tests

2.1 The Flexible Fourier Model

Consider data generated according to following DGP:

yt = �0 + �1t+ �2 sin

�
2��t

T

�
+ �3 cos

�
2��t

T

�
+ xt; t = 1; :::; T (1)

xt = �xt�1 + ut (2)

where it is assumed, for the present, that ut � iid(0; �2) and that the starting value, x0; is an
Op(1) random variable. The Fourier frequency, �, is taken to be a �xed value. Our interest
in this paper lies in testing the unit null hypothesis, H0 : � = 1, against the stationary
alternative, H1 : j�j < 1, in (1).

Remark 2.1: The deterministic kernel considered in (1) includes a linear time trend, but we
may also consider the case where only a constant and the two Fourier terms are considered;
i.e., the case where �1 = 0 in (1). This will be referred to as the constant case in what follows,
while the more general case where �1 6= 0 will be termed the linear trend case.

Remark 2.2: The model in (1)-(2) contains a single Fourier frequency. We focus our
attention on this model, based on the observations made in Enders and Lee (2008) and Becker,
Enders and Lee (2006) that a single Fourier frequency can mimic a large variety of breaks in
the deterministic trend function. Enders and Lee (2008) note that, for any desired level of
accuracy, a more general Fourier expansion of the form ft;n(�) := �0 +

P`
i=1 �i sin

�
2��it
T

�
+P`

i=1 �i cos
�
2��it
T

�
, where 1 � ` < T=2, and with �1 < �2 < � � � < �`, could be considered.

However, Enders and Lee (2008) argue against the use of many Fourier frequency components
because it can lead to problems of over-�tting.

Remark 2.3: Equation (1) can be re-written as,

yt = z0t�+ft(�)
0'+ xt;

where zt := (1; t)
0 and � := (�0; �1)0 (or, in the constant case zt := 1 and � :=�0), ft(�) :=

(sin
�
2��t
T

�
; cos

�
2��t
T

�
)0; and ' := ('1; '2)

0, or in vector notation as

y = Z�+ f(�)'+ x

where Z := (z01; :::; z
0
T )
0 and f(�) := (f1(�)0; :::; fT (�)0)0 are T �2 matrices (Z is a T �1 vector

in the constant case) and y and x are T � 1 vectors.
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2.2 GLS De-trended Unit Root Tests

In this section, we extend the local GLS de-trending approach of ERS to the problem of
testing for a unit root within the context of (1)-(2). This is achieved through a two-step
procedure.

In the �rst step we estimate the OLS regression of

yc :=

�
y1; y2 � (1 +

c

T
)y1; :::; yT � (1 +

c

T
)yT�1

�0
(3)

onto

Vc :=

�
v1; v2 � (1 +

c

T
)v1; :::; vT � (1 +

c

T
)vT�1

�0
(4)

where vt := (z0t; ft(�)
0)0, to obtain an estimate of the parameter vector � := (�0;'0)0. Denote

this estimate by b�c := (b�0c; b'0c)0. The value of the local GLS de-trending parameter, �c,
depends on the form of the deterministic component in (1); ERS suggest using c = �7 for
the constant case and c = �13:5 for the linear trend case.

In the second step we run the DF-type unit root test regression on the local GLS de-
trended series, yct := yt � z0tb�c � ft(�)

0b'c, t = 1; :::; T ; that is, compute the t-statistic for
� = 0 in the regression equation

�yct = �yct�1 + ut: (5)

We denote the resulting statistic as t
ERS�f
� , � = �; � ; where � indicates that the statistic is

computed for the constant case, zt = 1, and � that the statistic is computed for the linear
trend case, zt = (1; t)0. In what follows, where generic statements are being made which
apply in both the constant and linear trend cases, we will omit the superscript �.

Remark 2.4: Enders and Lee (2008) extend the LM type unit root tests of Schmidt and
Phillips (1992) and Schmidt and Lee (1991) to this context. In the �rst step of this testing
procedure, the parameters of the deterministic variables (constant, time trend and Fourier
terms) are estimated under the null hypothesis, i.e.,

�yt = �zt�1 +�ft(�)
0� +�xt

where �zt := 1; � := (�2; �3)
0 and �ft(�) :=

�
�sin

�
2��t
T

�
;�cos

�
2��t
T

��0
. The estimated

coe¢ cients, ~�j , j = 1; :::; 3, from this regression are then used to construct the FD de-trended
series:

yLMt := yt � z0te�� ft(�)0e�; t = 2; :::; T

where e� := (e ;e�1); e := y1 � e�1 � e�2 sin �2��T �� e�3 cos �2��T �, and e� := (~�2; ~�3)0. The second
step then involves estimating the auxiliary regression

�yt = �zt#1 +�ft(�)
0#+ �yLMt�1 + ut (6)

to obtain the regression t-statistic for � = 0 in (6), t
LMf

� say.

Remark 2.5: Enders and Lee (2008) also consider OLS de-trended DF-type statistics for
testing H0 again H1 in (1)-(2). In this case, the appropriate DF-type regression is given by

�yt = v0t! + �yt�1 + vt (7)
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where vt := (z0t; f
0
t(�))

0. The OLS de-trended DF-type statistic is then given by the regression

t-statistic for � = 0 in (7), say t
DF �f
� ; where the nomenclature � = �; � has the same meaning

as outlined for t
ERS�f
� above. Notice that this procedure is asymptotically equivalent to the

two-step procedure where H0 is tested using the regression t-statistic for � = 0 in

��yt = ��yt�1 + �vt (8)

where �yt := yt � z0t �� � ft(�)
0 �', are the OLS de-trended data from regressing yt onto vt (��

and �' being the resulting OLS estimates of � and ' respectively), t = 1; :::; T .

Remark 2.6: It is straightforward to show that all of the three unit root statistics discussed
above, namely t

ERSf
� , t

LMf

� and t
DFf
� are exact invariant with respect to the parameters

characterising the deterministic trend function in (1)-(2). The three statistics di¤er purely
in the manner in which this invariance is achieved; i.e., through the de-trending method they
employ.

Remark 2.7: We have assumed thus far that ut in (2) is serially uncorrelated. Short run
dynamics in the ut process can be handled in the usual way by augmenting test regressions (5),
(6) and (7), with su¢ cient lags of the dependent variable to correct for the serial correlation
present; see, inter alia, ERS, Chang and Park (2002) and Ng and Perron (2001).

3 Finite Sample Simulations

In this section we provide �nite sample critical values for the unit root tests outlined in the
previous section, together with an investigation of their relative �nite sample size and power
properties.

3.1 Finite Sample Critical Values

Table 1 below, presents a selection of �nite sample critical values for the t
ERSf
� , t

DFf
� and

t
LMf

� unit root tests from section 2. The critical values provided are valid for the constant
(�) and linear trend (�) cases. For the ERS type test statistics we followed Elliott et al.�s
(1996) suggestion and set the local GLS de-trending parameter to �c = �7 in the constant
case and �c = �13:5 in the linear trend case. The reported critical values were computed by
Monte Carlo from the random walk process xt = xt�1 + ut; with ut � NIID(0; 1). Without
loss of generality, we set x0 = 0, the three tests all being exact similar with respect to x0.
The test regressions used for each procedure were those described in the previous section;
i.e., (5), (6) and (7) for t

ERSf
� , t

LMf

� and t
DFf
� , respectively. Critical values are reported for

� 2 (1; 2; 3; 4; 5) and T 2 (100; 200; 1000). All of the simulations reported in this paper were
programmed in Gauss 9.0 using 10000 Monte Carlo replications.

Table 1 about here

Although these critical values are generated assuming a known value of the Fourier fre-
quency parameter, �, they can also be used as an approximation to the �nite sample critical
values in cases where the value of � is unknown but has been estimated. As Becker et al.
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(2006,p.390) argue1 �In most instances with highly persistent macroeconomic data, using the
value k = 1 or k = 2 should be su¢ cient to capture the important breaks in the data. How-
ever, there are circumstances where the researcher may want to select some frequency other
than k = 1 or k = 2. Hence ... we consider is to select k for using a completely data-driven
method.� To that end, Davies (1987) shows that a consistent estimate of � can be obtained
by minimising the residual sum of squares resulting from estimating a sequence of regressions
of the form given in (1) over a suitable grid of values of �.

An interesting feature that can be observed in the results in Table 1 is that as the Fourier
frequency parameter � increases, so the critical values of the unit root tests which include the
Fourier regressors appear to converge, other things being equal, towards the critical values
for the unit roots tests that omit the Fourier terms (i.e., the unit root tests of DF, ERS and
Schmidt and Phillips, 1992). This result can be attributed to the asymptotic orthogonality
that exists between the elements of the frequency zero deterministic regressors in zt and the
Fourier terms in ft(�) in cases where � = �T , 0 < � < 0:5, such that the Fourier terms are
located at the harmonic frequency pair (2��; 2� � 2��) which is bounded away from zero
and therefore have no impact on the distribution of the unit root tests in the limit2. This is,
of course, a purely �nite sample e¤ect because �

T ! 0 in (1), as T !1.

3.2 Finite Sample Size and Power of the Tests

3.2.1 Conventional Unit Roots Tests

Before looking at the �nite sample size and power properties of the t
ERSf
� , t

LMf

� and t
DFf
�

unit root tests from section 2, we �rst investigate the implications for the corresponding
conventional unit root tests of ERS, Schmidt and Phillips (1992) and DF, computed using
a deterministic kernel which includes a constant only or a constant and a time trend, but
which do not take account of the Fourier terms in (1). With an obvious notation we denote
these tests by tERS� , tLM� and tDF� , respectively. To that end, we generate data from the DGP

yt = �1 sin

�
2��t

T

�
+ �2 cos

�
2��t

T

�
+ xt (9)

xt = �xt�1 + ut; ut � NIID(0; 1); t = 1; :::; T (10)

with x0 � N(0; 1), independent of ut. The autoregressive parameter is de�ned as � := 1+ c
T :

Table 2 reports results for c = 0 which corresponds to the null hypothesis, H0, while Table
3 reports corresponding results for c = �15 which corresponds to the alternative hypothesis,
H1. The other parameters are varied according to � 2 (1; 2; 3; 4; 5); �1 2 (0; 3) and �2 2 (0; 5).
This corresponds to the simulation design used in Enders and Lee (2008). We report results
for samples of length T = 100 and T = 200

Tables 2� 3 about here
The results in Table 2 demonstrate that under the unit root null hypothesis all of the

conventional tests become under-sized, in many cases very severely so, in the presence of
1k in the notation of Becker et al. (2006) is equivalent to � in our notation.
2This does not, however, imply that the inclusion of the Fourier terms in the test regression is unnecessary

in these cases. As will be seen in the next section, where conventional unit root tests are evaluated in this
context the omission of these Fourier terms has severe implications for the �nite sample properties of the tests.
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neglected Fourier terms3. In general the under-sizing is marginally worse, other things being
equal, for tERS� and tLM� than for tDF� , with the degree of under-sizing seen in all three tests
becoming increasingly severe as �1 and/or �2 become larger. Other things being equal, the
size distortions are worse the greater is � and the smaller is the sample size. Notice that
in small samples as � increases so the Fourier terms present in the DGP move further away
from the zero frequency and, hence, the impact of these neglected deterministic terms (i.e.
the lack of similarity of the test statistics) becomes increasingly pronounced.

Regarding the empirical power of the procedures, we observe that when no Fourier terms
are present in the DGP the ERS test presents the best power performance followed by the
LM type test. The DF is the test with the lowest power of the three. Where (neglected)
Fourier terms are present in the DGP we see from the results in Table 3 that all of the
conventional tests show catastrophic losses in power relative to the case where no Fourier
terms are present. Indeed in the majority of reported cases all three tests display rejection
frequencies below the nominal 5% level.

3.2.2 Tests with � Known

In order to evaluate the �nite sample power properties of the t
ERSf
� , t

DFf
� and t

LMf

� unit
root tests we generate data from (9)-(10), again with x0 � N(0; 1), independent of ut, and
the autoregressive parameter set as � := 1 + c

T but now for c 2 (�5;�10;�15;�20): Given
the exact invariance of t

ERSf
� , t

DFf
� and t

LMf

� to �1 and �2 when � is known we may set
�1 = �2 = 0, without loss of generality.

Table 4 about here

Table 4 presents the �nite sample power results for the three tests. It is clear from the

results in Table 4 that the local GLS de-trended unit root test, t
ERS�f
� , proposed in this paper

enjoys signi�cant power gains over both the OLS and FD de-trended tests, t
DF �f
� and t

LMf

�

respectively. It is clear that the OLS de-trended test consistently displays the lowest power
among the three tests while the local GLS de-trended test consistently displays the highest
power among the three tests.

3.2.3 Tests with � Unknown

Following the discussion in section 3.2.1, we now turn to an evaluation of the �nite sample

size and power properties of the t
ERS�f
� , t

DF �f
� and t

LMf

� tests in the case where � is taken
to be unknown and is estimated from the data. Data are again generated from (9)-(10)
for � := 1 + c

T with c 2 (�5;�10;�15;�20). Because the tests which are based on an
estimate of � are no longer exact invariant to parameters of the Fourier terms (they are,
however, asymptotically invariant to these parameters) we generated the Fourier terms for
� 2 (1; 2; 3; 4; 5) with, in each case, �1 2 (0; 3) and �2 2 (0; 5).

In order to make the tests operational we must �rst estimate the true but unknown Fourier
frequency parameter, �. This is done using the approach of Davies (1987). Following Becker

3Corresponding experiments with a constant only were also computed but gave qualitatively similar results
to those presented for the constant and linear trend case in Table 2 and are therefore omitted. These results
can be obtained from the authors on request.
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et at. (2006, p.390) we estimate the regression equation

yt = �0 + �1t+ �2 sin

�
2�kt

T

�
+ �3 cos

�
2�kt

T

�
+ xt: (11)

for each integer value of k in the interval 1 � k � kmax. The estimated value, b�, is then
given by the value of k which minimises the residual sum of squares across these estimated
regression equations. Following the arguments given in Becker et al. (2006, p. 390) we set the
maximum frequency at kmax = 5. The small sample behaviour of this estimator is explored
in detail in section 3 of Becker et al. (2006) and is shown to perform well in practice. The

t
ERS�f
� , t

DF �f
� and t

LMf

� tests are then calculated as before taking b� as if it were the true value
of �.

Tables 5� 6 about here
Tables 5 (T = 100) and Table 6 (T = 200) present the empirical rejection frequencies

of the resulting t
ERS�f
� , t

DF �f
� and t

LMf

� tests for the unknown � case. Although some small
size distortions are observed, when �1 6= 0 and/or �2 6= 0, the results are qualitatively very
similar to those reported in Table 3 for the known � case, suggesting that the estimation
procedure for � works well in practice, at least from the perspective of maintaining the size
and power properties of the resulting unit root tests relative to the known � case.

4 Asymptotic Results

In this section, we show that the local GLS de-trended unit root test statistic, t
ERSf
� , from

(5) is asymptotically infeasible. This is established by showing in Theorem 1 that the �rst
stage local GLS de-trending regression of yc onto Vc is unde�ned in the limit due to the
asymptotic singularity of the associated (scaled) Gram matrix, 1TV

0
cVc.

Theorem 1 Let fytg be generated according to (1)-(2) under the conditions stated in section
2. Then under H0 : � = 1, and as T !1

p
T
�b�c � �� =

�
1

T
V0
cVc

��1 1

T 1=2
V0
cxc

) �

2664
1 0 1 0
0 0 0 0
1 0 1 0

0 0 0 1 + c+ c2

3

3775
�1 2664

x1
0
x1
W

3775 (12)

where xc :=
�
x1; x2 � (1 + c

T )x1; :::; xT � (1 +
c
T )xT�1

�0
, W :=(1� c)W (1)� 2c

R 1
0 W (r)dr�

c2
R 1
0 rW (r)dr, with W (r) a standard Brownian motion, and where c is the value of the local

GLS de-trending parameter used.

Remark 4.1: Note that (12) corresponds to the limit when zt = (1; t)0 is used in de-trending
the data. For the constant only case, zt = 1, it is straightforward to show, using results from

the proof of Theorem 1, that for this case the limit reduces to �

24 1 0 1
0 0 0
1 0 1

35�1 24 x1
0
x1

35.
8



Remark 4.2: It is immediately seen from (12) that 1
TV

0
cVc is asymptotically rank de�cient,

converging to a (non-random) matrix with rank two (for the constant only case of Remark 4.1
the Gram matrix is asymptotically rank de�cient with rank one). Consequently, the statistic

t
ERS�f
� ; � = �; � , of (5) is asymptotically unde�ned under the unit root null hypothesis.

Remark 4.3: If, instead of using local GLS de-trending, the parameters of the deterministics
are estimated by OLS de-trending from regressing yt onto vt, where vt is as de�ned in section
2 (as is done in the DF-type test of Enders and Lee, 2008, or with the KPSS test of Becker
et al. 2006 - see Remark 2.5), the asymptotic singularity problem observed in Theorem 4.1 is
not encountered, since here the corresponding quantity 1

TV
0V, where V := [v1; v2; :::; vT ]

0 is
non-singular in the limit in both the constant and linear trend cases; see Becker et al. (2006)
for further details.

Remark 4.4: The results in Theorem 1 show that the Fourier regressors sin
�
2��t
T

�
and

cos
�
2��t
T

�
are asymptotically collinear with the constant term when subjected to the local

GLS transformation in (4). An alternative to the full local GLS de-trending approach outlined
in section 2 might then be to apply the local GLS de-trending stage in the �rst step only to
the elements of zt, and to then include the Fourier terms directly in the second step regression.
That is, to compute the t-statistic for � = 0, tHY BRID� say, in the regression equation

��yt = v0t! + ��yt�1 + �vt

where �yt := yt � z0t �� with �� the estimated parameter vector from regressing yc onto zc :=�
z1; z2 � (1 + c

T )z1; :::; zT � (1 +
c
T )zT�1

�0
. Although tHY BRID� can be shown (available from

the authors on request) to have a pivotal and well-de�ned limiting null distribution its exact

distribution, unlike the t
ERS�f
� , t

DF �f
� and t

LMf

� tests, depends on the nuisance parameters
characterising the Fourier terms (arising from the fact that the �rst stage local GLS regression
is mis-speci�ed). In unreported Monte Carlo simulations we found tHY BRID� to behave very
poorly, both in terms of size and power in small samples.

5 Conclusions

In this paper, we generalise the Dickey-Fuller-type unit root testing procedure based on local
GLS de-trending proposed by Elliott, Rothenberg and Stock (1996) to incorporate a Fourier
approximation to the unknown deterministic component in the same was as is done for the
corresponding OLS and FD de-trended Dickey-Fuller-type unit root tests of Enders and Lee
(2008). We show that although the resulting unit root tests possess good �nite sample size
and power properties when compared to the OLS and FD de-trended tests of Enders and Lee
(2008), their limit null distributions are unde�ned.
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Appendix

Proof of Theorem 1

The scaled local GLS estimator of � can be written as:
p
T
�b�c � �� = � 1

T
V0
cVc

��1 1

T 1=2
V0
cxc: (A.1)

The columns of Vc := (V1;c;V2;c;V3;cV4;c) are given by:

V1;c := (1 + cT�1)e1 �
c

T
1;

V2;c := � sin� c

T
sin�1;

V3;c := �cos� c

T
cos�1+(1 +

c

T
)e1;

V4;c := 1+
c

T
� ;

where 1 is a T � 1 vector of ones, e1 is a T � 1 vector with �rst element equal to one and all
others equal to zero and � is a T � 1 vector such that � := (0; 1; :::; T � 1)0, and

�sin :=

�
�sin

�
2�� � 1
T

�
;�sin

�
2�� � 2
T

�
; :::;�sin

�
2�� � T
T

��0
sin�1 :=

�
sin

�
2�� � 0
T

�
; sin

�
2�� � 1
T

�
; :::; sin

�
2�� � T � 1

T

��0
�cos :=

�
�cos

�
2�� � 1
T

�
;�cos

�
2�� � 2
T

�
; :::;�cos

�
2�� � T
T

��0
cos�1 :=

�
cos

�
2�� � 0
T

�
; cos

�
2�� � 1
T

�
; :::; cos

�
2�� � T � 1

T

��0
:

The following Lemma details the large sample behaviour of the scaled products involved in
(A.1). The joint convergence results in (A.2)-(A.6) of Lemma A.1, together with applications
of the continuous mapping theorem, are su¢ cient to establish the stated result in (12).

Lemma A.1 Let the conditions of Theorem 1 hold. Then, as T !1,
1

T
V
0
1;cV1;c ! 1;

1

T
V
0
2;cV2;c ! 0;

1

T
V
0
3;cV3;c ! 1; (A.2)

1

T
V
0
4;cV4;c ! 1 + c+

c2

3
;
1

T
V
0
1;cV2;c ! 0;

1

T
V
0
1;cV3;c ! 1; (A.3)

1

T
V
0
1;cV4;c ! 0;

1

T
V
0
4;cV2;c ! 0;

1

T
V
0
4;cV3;c ! 0 (A.4)

and
1

T 1=2
V
0
1;cxc ) �x1;

1

T 1=2
V
0
2;cxc ) 0;

1

T 1=2
V
0
3;cxc ) �x1; (A.5)

1

T 1=2
V
0
4;cxc ) �

�
(1� c)W (1)� 2c

Z 1

0
W (r)dr � c2

Z 1

0
rW (r)dr

�
(A.6)

whereVc := (V1;c;V2;c;V3;cV4;c), is such thatVc := NTVc with NT = diag(T 1=2; T 1=2; T 1=2; 1):
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Proof of Lemma A.1

Using the scaling matrix � := diag
�
T�1=2; T�1=2; T�1=2; T�1=2

	
we obtain the following limit

results for the main diagonal elements of �V
0
cVc�.

1

T
V
0
1;cV1;c =

�
(1 + cT�1)e1 �

c

T
1
�0 �

(1 + cT�1)e1 �
c

T
1
�

= (1 + cT�1)2e01e1 �
2c

T
(1 + cT�1)10e1 +

� c
T

�2
101

= 1�
� c
T

�2
+
c2

T
= 1 + o(1):

1

T
V
0
2;cV2;c =

�
�sin� c

T
sin�1

�0 �
�sin� c

T
sin�1

�
=

TX
t=1

�sin2
�
2�kt

T

�
� 2c
T

TX
t=1

�
�sin

�
2�kt

T

���
sin

�
2�k (t� 1)

T

��

+
� c
T

�2 TX
t=1

sin2
�
2�k (t� 1)

T

�
= o(1);

where we have used the result from Enders and Lee (2008) that�sin
�
2�kt
T

�
�
�
2�k
T

�
cos
�
2�kt
T

�
:

1

T
V
0
3;cV3;c =

�
�cos� c

T
cos�1+(1 +

c

T
)e1

�0 �
�cos� c

T
cos�1+(1 +

c

T
)e1

�
=

TX
t=1

�cos2
�
2�kt

T

�
� 2c
T

TX
t=1

�
�cos

�
2�kt

T

���
cos

�
2�k (t� 1)

T

��

+
� c
T

�2 TX
t=1

cos2
�
2�k (t� 1)

T

�
+ 2(1 +

c

T
)e1�cos�

2c

T
(1 +

c

T
)e1 cos�1

+(1 +
c

T
)2 = 1 + o(1);

using the result from Enders and Lee (2008) that �cos
�
2�kt
T

�
� �

�
2�k
T

�
sin
�
2�kt
T

�
.

1

T
V
0
4;cV4;c =

1

T

�
1+

c

T
�
�0 �

1+
c

T
�
�

=
1

T

�
101+ 2

c

T
� 01+

� c
T

�2
� 0�

�
= 1 + c+

c2

3
+ o(1):

Turning to the o¤ diagonal elements of the symmetric matrix �V
0
cVc�, we have that:
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1

T
V
0
1;cV2;c =

�
(1 + cT�1)e1 �

c

T
1
�0 �

�sin� c

T
sin�1

�
= (1 + cT�1)� sin

�
2�k

T

�
� c

T

TX
t=1

�sin

�
2�kt

T

�

�(1 + cT�1) sin
�
2�k0

T

�
+
� c
T

�2 TX
t=1

sin

�
2�k (t� 1)

T

�
= sin

�
2�k

T

�
+ o(1) = o(1)

where we have used the identity �sin
�
2�k
T

�
� sin

�
2�k
T

�
� sin

�
2�k0
T

�
:

1

T
V
0
1;cV3;c =

�
(1 + cT�1)e1 �

c

T
1
�0 �

�cos� c

T
cos�1+(1 + cT

�1)e1
�

= (1 + cT�1)� cos

�
2�k

T

�
� c

T

TX
t=1

�cos

�
2�kt

T

�
� (1 + cT�1) c

T
cos

�
2�k0

T

�

+
� c
T

�2 TX
t=1

cos

�
2�k (t� 1)

T

�
+ (1 + cT�1)2 � c

T
(1 + cT�1)

= (1 + cT�1)

�
cos

�
2�k

T

�
� 1
�
+
2c�k

T 2

TX
t=1

sin

�
2�kt

T

�

�2(1 + cT�1) c
T
+
� c
T

�2 TX
t=1

cos

�
2�k (t� 1)

T

�
+ (1 + cT�1)2

= cos

�
2�k

T

�
+ o(1) = 1 + o(1)

where we have used the identity �cos
�
2�k
T

�
� cos

�
2�k
T

�
� cos

�
2�k0
T

�
:

1

T
V
0
1;cV4;c =

1

T 1=2

�
(1 + cT�1)e1 �

c

T
1
�0 �

1+
c

T
�
�

=
1

T 1=2
(1 + cT�1)� c

T 1=2
� c2

2T 1=2
= o(1):
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1

T
V
0
2;cV3;c =

�
�sin� c

T
sin�1

�0 �
�cos� c

T
cos�1+(1 + cT

�1)e1
�

= �sin0�cos� c

T
sin0�1�cos�

c

T
�sin0 cos�1+

� c
T

�2
sin0�1 cos�1

+�sin0(1 + cT�1)e1 �
c

T
sin0�1(1 + cT

�1)e1

= 0� c

T
sin0�1�cos�

c

T
�sin0 cos�1+0 + sin

�
2�k

T

�
(1 + cT�1)� 0

= � c

T

TX
t=1

sin

�
2�k (t)

T
+
2�k (t� 1)

T

�
+ sin

�
2�k

T

�
(1 + cT�1)

= sin

�
2�k

T

�
+ o(1) = o(1):

1

T
V
0
2;cV4;c =

1

T 1=2

�
�sin� c

T
sin�1

�0 �
1+

c

T
�
�

=
1

T 1=2

�
�sin0 1� c

T
sin0�1 1+�sin

0 c

T
� � c

T
sin0�1

c

T
�
�

=
1

T 1=2

�
0� 0 + c

T
�sin0 � �

� c
T

�2
sin0�1 �

�
=

1

T 1=2

 
c

T

TX
t=1

(t� 1)� sin
�
2�k (t)

T

�
�
� c
T

�2 TX
t=1

(t� 1) sin
�
2�k (t� 1)

T

�!

=
2c�k

T 5=2

TX
t=1

(t� 1) cos
�
2�kt

T

�
� c2

T 5=2

TX
t=1

(t� 1) sin
�
2�k (t� 1)

T

�
= o(1):

1

T
V
0
3;cV4;c =

1

T 1=2

�
�cos� c

T
cos�1+(1 + cT

�1)e1
�0 �

1+
c

T
�
�

=
1

T 1=2

 
(1 + cT�1) +

c

T

TX
t=1

(t� 1)� cos
�
2�kt

T

�
�
� c
T

�2 TX
t=1

(t� 1) cos
�
2�k (t� 1)

T

�!

=
1

T 1=2
(1 + cT�1)� 2c�k

T 5=2

TX
t=1

(t� 1) sin
�
2�kt

T

�
� c2

T 5=2

TX
t=1

(t� 1) cos
�
2�k (t� 1)

T

�
= o(1):

Turning �nally to the numerator,V0
cxc; in (A.1), noting that xc =

�
x1;�x2 � c

T x1; :::;�xT �
c
T xT�1

�
;

we observe that:

1p
T
V
0
1;cxc =

�
(1 + cT�1)e1 �

c

T
1

�0
xc

= (1 + cT�1)x1 �
c

T
x1 �

c

T

TX
t=2

�xt +

�
c

T

�2 TX
t=2

xt�1

= x1 + op(1): (A.7)
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1p
T
V
0
2;cxc =

�
�sin� c

T
sin�1

�0
xc

= �sin

�
2�k

T

�
x1 +

TX
t=2

�sin

�
2�kt

T

��
�xt �

c

T
xt�1

�

� c

T

TX
t=2

sin

�
2�k (t� 1)

T

��
�xt �

c

T
xt�1

�

= �sin

�
2�k

T

�
x1 +

2�k

T

TX
t=2

cos

�
2�kt

T

�
ut �

�
c

T

�2 2�k
T

TX
t=2

cos

�
2�kt

T

�
xt�1

� c

T

TX
t=2

sin

�
2�k (t� 1)

T

�
ut +

�
c

T

�2 TX
t=2

sin

�
2�k (t� 1)

T

�
xt�1

= sin

�
2�k

T

�
x1 + op (1) = op (1) : (A.8)

and

1p
T
V
0
3;cxc =

�
�cos� c

T
cos�1+(1 + cT

�1)e1
�0
xc

= �cos

�
2�k

T

�
x1 +

TX
t=2

�cos

�
2�kt

T

��
�xt �

c

T
xt�1

�

� c

T

TX
t=2

cos

�
2�k (t� 1)

T

��
�xt �

c

T
xt�1

�
+ (1 + cT�1)x1

= x1 + op(1): (A.9)

Remark A.1: We have used results from Bierens (1994, Lemma 9.6.3) in establishing (A.8)
and (A.9). These results state that,

TX
t=2

F

�
t

T

�
ut = F (1)S(1)�

Z 1

0
f(r)ST (r)dr

where f(r) = F 0(r). Consequently, for F
�
t
T

�
= sin

�
2�kt
T

�
it follows that f( tT ) = (2�k) cos

�
2�kt
T

�
and if F

�
t
T

�
= cos

�
2�kt
T

�
then f( tT ) = � (2�k) sin

�
2�kt
T

�
: As a result,

1p
T

TX
t=2

cos

�
2�kt

T

�
ut = �

�
W (1) + 2�k

Z 1

0
sin (2�kr)W (r)dr

�
and

1p
T

TX
t=2

sin

�
2�kt

T

�
ut = �

�
sin (2�k)W (1)� 2�k

Z 1

0
cos (2�kr)W (r)dr

�
: �
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Finally, to establish the result in (A.6) observe that

1p
T
V
0
4;cxc =

1p
T

�
1+

c

T
�
�0
xc

=
1p
T

 
x1 +

TX
t=2

�xt �
c

T

TX
t=2

xt�1 +
c

T

TX
t=2

(t� 1)�xt �
c2

T 2

TX
t=2

(t� 1)xt�1

!

and, hence,

1p
T
V
0
4;cxc =

1

T 1=2

TX
t=2

�xt �
c

T 3=2

TX
t=2

xt�1 +
c

T 3=2

TX
t=2

(t� 1)�xt �
c2

T 5=2

TX
t=2

(t� 1)xt�1 + op(1)

) �

�
W (1)� c

Z 1

0
W (r)dr + c

Z 1

0
rdW (r)� c2

Z 1

0
rW (r)dr

�
=: �W:
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Theorem 2 Considering the DGP in (1)-(2), under the null hypothesis, H0 : � = 1; and
assuming that � is �xed, it follows as T !1 that,

p
T (b�c ��) =

�
1

T
Z0cZc

��1 1

T 1=2
Z0c (fc(�)'+ xc) (A.10)

)
�
1 0

0 1 + c+ c2

3

��1 �
� (x1 + '2)

�W

�
� �

�
�1
�2

�
(A.11)

where W =(1� c)W (1)� 2c
R 1
0 W (r)dr � c

2
R 1
0 rW (r)dr; �1 = x1 + '2 and �2 =

W

1+c+ c2

3

:

Note that if '2 = 0; (12) corresponds to the results obtained by Elliott et al. (1996).

Theorem 3 Considering the DGP in (1)-(2), under the null hypothesis, H0 : � = 1; and
assuming that � is �xed, it follows as T !1 that the limits of the scalled parameter estimates,b� = (b'1; b'2; b�); obtained from test regression (5) i.e.,

��1b� = ��V 0t Vt���1 �V 0t�yct
where Vt = (ft(�)0; yct�1)

0 and � = diag
n

1p
T
; 1p

T
; 1T

o
; will be the following,

��1
�b� � ��)

24 R 10 sin2 (2��r) dr 0 w13

0
R 1
0 cos

2 (2��r) dr w23
w31 w32 w33

35�1 24 D1D2
D3

35
where w13 = �

R 1
0 sin (2��r)W (r)dr���2

R 1
0 r sin (2��r) dr; w23 = �

R 1
0 cos (2��r)W (r)dr�

��2
R 1
0 r cos (2��r) dr; w33 = �2

R 1
0 W (r)

2dr�2�2�2
R 1
0 rW (r)dr+

�2

3 �
2
2; D1 = �

�
sin (2��)W (1)� 2��

R 1
0 cos (2��r)W (r)dr

�
;

D2 = �
�
W (1) + 2��

R 1
0 sin (2��r)W (r)dr

�
and D3 = �2

h�R 1
0 W (r)dW (r)��2

R 1
0 rdW (r)

�
��2

�R 1
0 W (r)dr ��2

1
2

�i
:

As can be observed from Theorem 4.2, the limit distributions of the test statistics will
only depend on k, the frequency used in the Fourier approximation. Note that although in
the �rst step the limit of b�1c is a function of x1 and the unknown coe¢ cient '2 the limit
distribution of the estimators computed in the second step are free of this nuisance parameter.
Proof of Theorem 2

The proof of theroem 3.2 follows along similar lines as the proof of Theorem 3.1. Hence,
consider �rst the limit results for the parameter estimates of the deterministic component
(just a constant or a constant and a time trend) estimated in the �rst step. We consider
the more general quasi-di¤erenced (QD) deterministic kernel which includes a constant and
a time trend,

Zc = (Z1;c;Z2;c) (A.12)

where

Z1;c = (1 +
c

T
)e1 �

c

T
1;

Z2;c = 1+
c

T
� ;
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1 is a T � 1 vector of ones, e1 is a T � 1 vector with �rst element equal to one and all others
equal to zero and � is a T � 1 vector such that � =(0; 1; :::; T � 1)0: Similarly as in the proof
of Theorem 3.1, de�ne the diagonal matrix NT = diag

�
T 1=2; 1

	
and consider Zc = ZcNT :

Consequently, the following Lemma can be stated.

Lemma A.2 Considering the DGP (1)-(2) under the null hypothesis, H0 : � = 1; and
assumption A (k �xed), it follows as T !1 that,

1

T
Z
0
1;cZ1;c ! 1 (A.13)

1

T
Z
0
2;cZ2;c ! 1 + c+

c2

3
(A.14)

1

T
Z
0
1;cZ2;c ! 0 (A.15)

and

1

T 1=2
Z
0
1;cxc ) x1 (A.16)

1

T 1=2
Z
0
2;cxc ) �

�
(1� c)W (1)� 2c

Z 1

0
W (r)dr � c2

Z 1

0
rW (r)dr

�
(A.17)

1

T 1=2
Z
0
1;cZsin;c ! 0;

1

T 1=2
Z
0
1;cZcos;c ! 1;

1

T 1=2
Z
0
2;cZsin;c ! 0 (A.18)

1

T 1=2
Z
0
2;cZcos;c ! 0: (A.19)

As in the case of Lemma A.1, also these results are useful to characterize the limit results
when only a constant is considered in (A.12). Thus, under joint convergence, the results in
(A.13) - (A.19) provide the necessary limits to obtain the asymptotic results for the �rst step
estimators.

Proof of Lemma A.2.
Consider �rst the limit results for the denominator of (A.10) i.e., the results in (A.13) -

(A.15). Scaling the elements of Z
0
cZc by � = diag

�
T�1=2; T�1=2

	
we observe that the limits

of 1T Z
0
1;cZ1;c;

1
T Z

0
2;cZ2;c; and

1
T Z

0
1;cZ2;c are equivalent to those of

1
TV

0
1;cV1;c;

1
TV

0
4;cV4;c and

1
TV

0
1;cV4;c provided in (A.7), (A.7) and (A.7), respectively.

Regarding the numerator, i.e. the results in (A.16)-(A.19), consider 1
T 1=2

Z
0
c (fc(�)'+ xc) =

1
T 1=2

Z
0
cfc(�)'+

1
T 1=2

Z
0
cxc: For proof of the results we analyse these two terms separately.

Consider �rst 1
T 1=2

Z
0
cxc. Since xc =

�
x1;�x2 � c

T x1; :::;�xT �
c
T xT�1

�
= (1 + c

T )x0e1 +

�x� c
T x�1; it follows that the results for

1p
T
Z
0
1;cxc; and

1p
T
Z
0
2;cxc correspond to those of

1p
T
V
0
1;cxc and

1p
T
V
0
4;cxc presented in (A.7) and (??).

Regarding 1
T 1=2

Z
0
cfc(�)', note that

1

T 1=2
Z
0
cfc(�)' =

1

T 1=2

"
Z
0
1;cZsin;c Z

0
1;cZcos;c

Z
0
2;cZsin;c Z

0
2;cZcos;c

# �
'1
'2

�
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where fc(�) = (Zsin;c;Zcos;c) ;

Zsin;c = �sin� c

T
sin�1;

Zcos;c = �cos� c

T
cos�1+(1 +

c

T
)e1;

and the vectors � sin; sin�1; �cos and cos�1 are as previously de�ned in (A.2) - (A.2),
respectively.

Hence, the elements of 1
T 1=2

Z
0
cfc(�)' will have the following limit results:

1

T 1=2
Z
0
1;cZsin;c =

�
(1 +

c

T
)e1 �

c

T
1

�0�
�sin� c

T
sin�1

�
= (1 +

c

T
) sin

�
2��

T

�
� 2c��

T 2

TX
t=1

cos

�
2��t

T

�
+

�
c

T

�2 TX
t=1

sin

�
2�� (t� 1)

T

�
= sin

�
2��

T

�
+ o(1) = o(1): (A.20)

Note that sin
�
2��
T

�
! 2��

T ! 0 as T !1: Thus, for �xed � we observe that as T !1;
1

T 1=2
Z
0
1;cZsin;c ! 0:

Furthermore,

1

T 1=2
Z
0
1;cZcos;c =

�
(1 +

c

T
)e1 �

c

T
1

�0�
�cos� c

T
cos�1+(1 +

c

T
)e1

�
= (1 +

c

T
)� cos

�
2��

T

�
� c

T

TX
t=1

�cos

�
2��t

T

�
� (1 + c

T
)
c

T
cos

�
2��0

T

�

+

�
c

T

�2 TX
t=1

cos

�
2�� (t� 1)

T

�
+ (1 +

c

T
)2 � c

T
(1 +

c

T
)

= (1 +
c

T
)

�
cos

�
2��

T

�
� cos

�
2��0

T

��
+
c

T

TX
t=1

2��

T
sin

�
2��t

T

�

�2(1 + c

T
)
c

T
+

�
c

T

�2 TX
t=1

cos

�
2�� (t� 1)

T

�
+ (1 +

c

T
)2

= cos

�
2��

T

�
+ o(1) = 1 + o(1): (A.21)

Thus, for �xed � we observe that as T !1; 1
T 1=2

Z
0
1;cZcos;c ! 1:

Moreover,
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1

T 1=2
Z
0
2;cZsin;c =

1

T 1=2

�
�sin� c

T
sin�1

�0�
1+

c

T
�

�
=

1

T 1=2

 
c

T

TX
t=1

(t� 1)� sin
�
2�� (t)

T

�
�
�
c

T

�2 TX
t=1

(t� 1) sin
�
2�� (t� 1)

T

�!

=
2c��

T 5=2

TX
t=1

(t� 1) cos
�
2��t

T

�
� c2

T 5=2

TX
t=1

(t� 1) sin
�
2�� (t� 1)

T

�
= o(1); (A.22)

Therefore, 1
T 1=2

Z
0
2;cZsin;c ! 0. Finally,

1

T 1=2
Z
0
2;cZcos;c =

1

T 1=2

�
�cos� c

T
cos�1+(1 +

c

T
)e1

�0�
1+

c

T
�

�
=

1

T 1=2

 
(1 +

c

T
) +

c

T

TX
t=1

(t� 1)� cos
�
2��t

T

�

�
�
c

T

�2 TX
t=1

(t� 1) cos
�
2�� (t� 1)

T

�!

=
1

T 1=2
(1 +

c

T
)� 2c��

T 5=2

TX
t=1

(t� 1) sin
�
2��t

T

�

� c2

T 5=2

TX
t=1

(t� 1) cos
�
2�� (t� 1)

T

�
= o(1) (A.23)

and 1
T 1=2

Z
0
2;cZcos;c ! 0: Hence, the results in (A.20) - (A.23) complete the proof of Lemma

A.2.

Proof of Theorem 3
In order to derive the limit results of the second step estimators the following test regres-

sion with no augmentation is used,

�yct = ft(�)
0'+ �yct�1 + ut:

Considering � = ('1; '2; �) and Vt = (ft(�)
0; yct�1)

0; we look at the limit results of the scalled
estimators,

��1b� =  TX
t=1

�V 0t Vt�

!�1 TX
t=1

�V 0t�y
c
t

where � = diag
n

1p
T
; 1p

T
; 1T

o
.
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Thus, consider �rst the denominator,

TX
t=1

�V 0t Vt� =

266664
1
T

TX
t=1

ft(�)
0ft(�)

1
T 3=2

TX
t=1

ft(�)y
c
t�1

1
T 3=2

TX
t=1

yct�1f
0
t(�)

1
T 2

TX
t=1

�
yct�1

�2
377775

=

26666666664

1
T

TX
t=1

sin2
�
2��t
T

�
1
T

TX
t=1

sin
�
2��t
T

�
cos
�
2��t
T

�
1

T 3=2

TX
t=1

sin
�
2��t
T

�
yct�1

1
T

TX
t=1

sin
�
2��t
T

�
cos
�
2��t
T

�
1
T

TX
t=1

cos2
�
2��t
T

�
1

T 3=2

TX
t=1

cos
�
2��t
T

�
yct�1

1
T 3=2

TX
t=1

sin
�
2��t
T

�
yct�1

1
T 3=2

TX
t=1

cos
�
2��t
T

�
yct�1

1
T 2

TX
t=1

�
yct�1

�2

37777777775
the following Lemma with the necessary limit results can be stated.

Lemma A.3 Considering the DGP (1)-(2) under the null hypothesis, H0 : � = 1; and
assumption A (k �xed), it follows as T !1 that,

i)
1

T

TX
t=1

sin2
�
2��t

T

�
!

Z 1

0
sin2 (2��r) dr

ii)
1

T

TX
t=1

sin

�
2��t

T

�
cos

�
2��t

T

�
! 0

iii)
1

T

TX
t=1

cos2
�
2��t

T

�
!

Z 1

0
cos2 (2��r) dr

iv)
1

T 3=2

TX
t=1

sin

�
2��t

T

�
yct�1 ) �

Z 1

0
sin (2��r)W (r)dr � ��2

Z 1

0
r sin (2��r) dr

v)
1

T 3=2

TX
t=1

cos

�
2��t

T

�
yct�1 ) �

Z 1

0
cos (2��r)W (r)dr � ��2

Z 1

0
r cos (2��r) dr

vi)
1

T 2

TX
t=1

�
yct�1

�2 ) �2
Z 1

0
W (r)2dr � 2�2�2

Z 1

0
rW (r)dr +

�2

3
�22:

where �2 = W

1+c+ c2

3

and W =(1� c)W (1)� 2c
R 1
0 W (r)dr � c

2
R 1
0 rW (r)dr:

Proof of Lemma A.3
Noting that �yct = �yt��Ztb�c; where �yt = �1+�2�sin

�
2��t
T

�
+�3�cos

�
2��t
T

�
+�xt

and �Zt = (0; 1)0: Consequently, �yct = �yt ��Ztb�c = �2�sin
�
2��t
T

�
+ �3�cos

�
2��t
T

�
+

�xt � (b�1;c � �1) : Moreover,
22



yct = yt � Ztb�c
= �2 sin

�
2��t

T

�
+ �3 cos

�
2��t

T

�
+ xt � Zt (b�c ��) :

Thus, regarding the result in iv) it follows that,

1

T 3=2

X
sin

�
2��t

T

�
yct�1

=
1

T 3=2

X
sin

�
2��t

T

��
�2 sin

�
2�� (t� 1)

T

�
+ �3 cos

�
2�� (t� 1)

T

�
+ xt�1 � Zt�1 (b�c ��)�

=
1

T 3=2

X
sin

�
2��t

T

�
xt�1 �

1

T 3=2

X
sin

�
2��t

T

�
Zt�1 (b�c ��) + o(1)

=
1

T 3=2

X
sin

�
2��t

T

�
xt�1 �

1

T 2

X
sin

�
2��t

T

�
Zt�1

p
T (b�c ��) + o(1)

) �

Z 1

0
sin (2��r)W (r)dr � ��2

Z 1

0
r sin (2��r) dr (A.24)

Note that the result 1
T 3=2

P
sin
�
2��t
T

�
xt�1 ) �

R 1
0 sin (2��r)W (r)dr follows from Bierens

(1997, Lemma A.5). Similarly, for v), we observe that,

1

T 3=2

X
cos

�
2��t

T

�
yct�1

=
1

T 3=2

X
cos

�
2��t

T

��
�2 sin

�
2�� (t� 1)

T

�
+ �3 cos

�
2�� (t� 1)

T

�
+ xt�1 � Zt�1 (b�c ��)�

) �

Z 1

0
cos (2��r)W (r)dr � ��2

Z 1

0
r cos (2��r) dr: (A.25)

Note that in order to prove (A.24) and (A.25) the following results proved quite useful.

1

T

TX
t=1

sin

�
2��t

T

�
sin

�
2��(t� 1)

T

�

=
1

T

TX
t=1

1

2

�
cos

�
2��t

T
� 2��(t� 1)

T

�
� cos

�
2��t

T
+
2��(t� 1)

T

��

=
1

T

TX
t=1

1

2

�
cos

�
2��

T

�
� cos

�
4��t

T
� 2��

T

��

=
1

T

TX
t=1

1

2

�
cos

�
2��

T

�
� cos

�
4��t

T

�
cos

�
2��

T

�
� sin

�
4��t

T

�
sin

�
2��

T

��

=
cos
�
2��
T

�
T

TX
t=1

1

2

�
1� cos

�
4��t

T

��
�
sin
�
2��
T

�
T

TX
t=1

1

2
sin

�
4��t

T

�
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Since,

cos
�
2��
T

�
T

TX
t=1

1

2

�
1� cos

�
4��t

T

��
! 1

2

and
sin
�
2��
T

�
T

TX
t=1

1

2
sin

�
4��t

T

�
! 0;

thus,

1

T

TX
t=1

sin

�
2��t

T

�
sin

�
2��(t� 1)

T

�
! 1

2
:

Furthermore,

1

T

TX
t=1

sin

�
2��t

T

�
cos

�
2��(t� 1)

T

�

=
1

T

TX
t=1

1

2

�
sin

�
4��t

T
� 2��

T

�
+ sin

�
2��

T

��

=
1

T

TX
t=1

1

2

�
sin
�
4
�

T
�t
�
cos
�
2
�

T
�
�
+ (1� cos

�
4
�

T
�t
�
) sin

�
2
�

T
�
��

:

Since,

1

T

TX
t=1

1

2

�
sin
�
4
�

T
�t
�
cos
�
2
�

T
�
��
! 0

and

1

T

TX
t=1

1

2
(1� cos

�
4
�

T
�t
�
) sin

�
2
�

T
�
�
=
1

2

2��

T
=
��

T
! 0

it follows that
1

T

TX
t=1

sin

�
2��t

T

�
cos

�
2��(t� 1)

T

�
! 0:

Finally, with respect to vi),

1

T 2

X�
yct�1

�2
=

1

T 2

X�
�2 sin

�
2�� (t� 1)

T

�
+ �3 cos

�
2�� (t� 1)

T

�
+ xt�1 � Zt�1 (b�c ��)�2

=
1

T 2

X
(xt�1 � Zt�1 (b�c ��))2 + o(1)

=
1

T 2

X
x2t�1 �

2 (b�c ��)
T 2

X
xt�1Zt�1 +

(b�c ��)2
T 2

X
Z0t�1Z

0
t�1 + o(1)

) �2
Z 1

0
W (r)2dr � 2�2�2

Z 1

0
rW (r)dr +

�2

3
�22:
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This last result follows since the squares and cross products of the sine and cosine terms
are all of at most order O(T ):�

Regarding the limits of �V 0t�y
c
t note that,

�V 0t�y
c
t =

264
1p
T

PT
t=1 sin

�
2��t
T

�
�yct

1p
T

PT
t=1 cos

�
2��t
T

�
�yct

1
T

PT
t=1 y

c
t�1�y

c
t

375

=

264
1p
T

PT
t=1 sin

�
2��t
T

� �
�2�sin

�
2��t
T

�
+ �3�cos

�
2��t
T

�
+�xt � (b�1;c � �1)�

1p
T

PT
t=1 cos

�
2��t
T

� �
�2�sin

�
2��t
T

�
+ �3�cos

�
2��t
T

�
+�xt � (b�1;c � �1)�

1
T

PT
t=1 y

c
t�1
�
�2�sin

�
2��t
T

�
+ �3�cos

�
2��t
T

�
+�xt � (b�1;c � �1)�

375 :

Lemma A.4 Considering the DGP (1)-(2) under the null hypothesis, H0 : � = 1; and k
�xed, it follows as T !1 that,

1p
T

TX
t=1

sin

�
2��t

T

�
�yct ) �

�
sin (2��)W (1)� 2��

Z 1

0
cos (2��r)W (r)dr

�
1p
T

TX
t=1

cos

�
2��t

T

�
�yct ) �

�
W (1) + 2��

Z 1

0
sin (2��r)W (r)dr

�
1

T

TX
t=1

yct�1�y
c
t ) �2

�Z 1

0
W (r)dW (r)��2

Z 1

0
rdW (r)

�
Proof of Lemma A.4

Following Enders and Lee (2004), we can establish that

�sin

�
2��t

T

�
=
2��

T
cos

�
2��t

T

�
and

�cos

�
2��t

T

�
= �2��

T
sin

�
2��t

T

�
from which it follows that,

�V 0t�y
c
t =

264
1p
T

PT
t=1 sin

�
2��t
T

�
(�xt � (b�1;c � �1)) + o(1)

1p
T

PT
t=1 cos

�
2��t
T

�
(�xt � (b�1;c � �1)) + o(1)

1
T

PT
t=1 y

c
t�1
�
�2�sin

�
2��t
T

�
+ �3�cos

�
2��t
T

�
+�xt � (b�1;c � �1)�

375 :
Furthermore, since

PT
t=1 sin

�
2��t
T

�
=
PT
t=1 cos

�
2��t
T

�
= 0 when � is an intenger, this still

simpli�es to

�V 0t�y
c
t =

264
1p
T

PT
t=1 sin

�
2��t
T

�
�xt + o(1)

1p
T

PT
t=1 cos

�
2��t
T

�
�xt + o(1)

1
T

PT
t=1 y

c
t�1�xt �

p
T (b�1;c � �1) 1

T 3=2

PT
t=1 y

c
t�1 + op(1)

375 : (A.26)
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Making use of the result in Bierens (1994, Lemma 9.6.3) - refered to earlier in the proof of
theorem 3.1 - we obtain,

1p
T

TX
t=2

cos

�
2��t

T

�
ut ) �

�
W (1) + 2��

Z 1

0
sin (2��r)W (r)dr

�
and

1p
T

TX
t=2

sin

�
2��t

T

�
ut ) �

�
sin (2��)W (1)� 2��

Z 1

0
cos (2��r)W (r)dr

�
:

Regarding the last element of the vector (A.26), recall that

yct�1 =

�
�2 sin

�
2�� (t� 1)

T

�
+ �3 cos

�
2�� (t� 1)

T

�
+ xt�1 � Zt�1 (b�c ��)� ;

from which we observe that

1

T 3=2

TX
t=1

yct�1 =
1

T 3=2

TX
t=1

(xt�1 � Zt�1 (b�c ��))
) �

�Z 1

0
W (r)dr ��2

1

2

�
Thus,

p
T (b�1;c � �1) 1

T 3=2

TX
t=1

yct�1 ) �2�2

�Z 1

0
W (r)dr ��2

1

2

�
:

Similarly,

1

T

TX
t=1

yct�1�xt =
1

T

TX
t=1

(xt�1 � Zt�1 (b�c ��))�xt
) �2

�Z 1

0
W (r)dW (r)��2

Z 1

0
rdW (r)

�
:

�
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Table 1: Critical Values for tERSf� ; t
DFf
� and tLMf

� Unit Root Tests

t
ERS

�
f

� t
ERS�f
� t

DF
�
f

� t
DF�f
� t

LMf

�

T � 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
1 -3.778 -3.128 -2.755 -4.681 -4.090 -3.792 -4.470 -3.862 -3.531 -4.988 -4.377 -4.073 -4.689 -4.137 -3.830
2 -3.249 -2.535 -2.137 -4.231 -3.599 -3.273 -3.914 -3.267 -2.907 -4.662 -3.994 -3.688 -4.184 -3.545 -3.218

100 3 -3.087 -2.319 -1.963 -4.014 -3.347 -3.014 -3.725 -3.068 -2.718 -4.413 -3.775 -3.449 -4.024 -3.304 -2.976
4 -2.905 -2.236 -1.891 -3.898 -3.210 -2.889 -3.632 -2.965 -2.637 -4.281 -3.638 -3.283 -3.846 -3.185 -2.880
5 -2.870 -2.185 -1.868 -3.789 -3.136 -2.819 -3.546 -2.926 -2.611 -4.205 -3.535 -3.229 -3.762 -3.122 -2.815

-3.58 -3.03 -2.74 -3.51 -2.89 -2.58 -4.05 -3.45 -3.15 -3.63 -3.06 -2.77
1 -3.710 -3.081 -2.712 -4.526 -3.982 -3.690 -4.381 -3.811 -3.495 -4.863 -4.318 -4.016 -4.618 -4.077 -3.800

200 2 -3.248 -2.432 -2.055 -4.164 -3.540 -3.195 -3.956 -3.265 -2.902 -4.639 -4.055 -3.694 -4.228 -3.577 -3.234
3 -2.961 -2.197 -1.868 -3.980 -3.284 -2.935 -3.745 -3.054 -2.712 -4.437 -3.781 -3.450 -4.012 -3.335 -2.969
4 -2.853 -2.158 -1.813 -3.835 -3.162 -2.828 -3.621 -2.974 -2.650 -4.278 -3.677 -3.333 -3.901 -3.221 -2.884
5 -2.831 -2.113 -1.778 -3.731 -3.068 -2.756 -3.590 -2.932 -2.613 -4.229 -3.586 -3.258 -3.782 -3.146 -2.827

-3.46 -2.93 -2.64 -3.46 -2.88 -2.57 -3.98 -3.42 -3.13 -3.61 -3.04 -2.76
1 -3.585 -2.970 -2.610 -4.432 -3.901 -3.633 -4.367 -3.764 -3.467 -4.844 -4.268 -4.008 -4.559 -4.032 -3.764
2 -3.044 -2.353 -1.957 -4.048 -3.422 -3.093 -3.836 -3.260 -2.912 -4.562 -3.979 -3.666 -4.142 -3.540 -3.200

1000 3 -2.900 -2.159 -1.792 -3.814 -3.212 -2.862 -3.667 -3.064 -2.712 -4.340 -3.757 -3.419 -3.925 -3.298 -2.960
4 -2.769 -2.067 -1.723 -3.691 -3.088 -2.754 -3.608 -2.976 -2.664 -4.219 -3.616 -3.293 -3.817 -3.195 -2.872
5 -2.739 -2.018 -1.691 -3.600 -3.011 -2.685 -3.554 -2.926 -2.611 -4.159 -3.558 -3.244 -3.752 -3.125 -2.822

-3.48 -2.89 -2.57 -3.43 -2.86 -2.57 -3.96 -3.41 -3.13 -3.58 -3.02 -2.75

Note: The results in bold correspond to the critical values of the unit root test procedures as originally proposed, by Elliott, et al. (1996, Table I, p.825),

Fuller (1996, Table 10.A.2, p.642) and Schmidt and Phillips (1992, Table IA, p.264), i.e. with no Fourier terms. The critical values for the test statistics t
ERS�f
�

and t
DF�

f

� were computed from test regressions with Fourier terms and a constant only, whereas the critical values for the test statistics t
ERS�f
� , t

DF �
f

� and t
LMf

�

were computed from test regressions with Fourier terms, a constant and a time trend. 0.01, 0.05 and 0.10 correspond the 1%, 5% and 10% percentiles, respectively



Table 2: Empirical Size of Conventional ERS (tERS
�

� ), DF (tDF
�

� ) and LM
Type (tLM

�

� ) Unit Root Tests
T = 100 T = 200

� �1 �2 tERS
�

� tDF
�

� tLM
�

� tERS
�

� tDF
�

� tLM
�

�

1 0 0 .051 .049 .050 .050 .051 .050
0 5 .005 .007 .005 .011 .016 .016
3 0 .024 .037 .021 .030 .042 .035
3 5 .003 .003 .003 .009 .012 .013

2 0 0 .051 .049 .050 .050 .051 .050
0 5 .000 .001 .000 .001 .004 .002
3 0 .004 .010 .003 .016 .023 .013
3 5 .000 .000 .000 .000 .000 .000

3 0 0 .051 .049 .050 .050 .051 .050
0 5 .000 .001 .000 .000 .002 .000
3 0 .001 .002 .001 .007 .010 .007
3 5 .000 .000 .000 .000 .000 .000

4 0 0 .051 .049 .050 .050 .051 .050
0 5 .000 .000 .000 .000 .002 .000
3 0 .000 .001 .000 .005 .004 .002
3 5 .000 .000 .000 .000 .000 .000

5 0 0 .051 .049 .050 .050 .051 .050
0 5 .000 .000 .000 .000 .002 .000
3 0 .000 .000 .000 .002 .003 .002
3 5 .000 .000 .000 .000 .000 .000

Note: All results are based on a 5% nominal signi�cance level. Critical values
used for the tERS

�

� ; tDF
�

� and tLM
�

� unit root tests were obtained from Elliott, et al.
(1996, Table I, p.825), Fuller (1996, Table 10.A.2, p.642) and Schmidt and Phillips
(1992, p.264).



Table 3: Empirical Power of Conventional ERS (tERS
�

� ), DF (tDF
�

� ) and LM
Type (tLM

�

� ) Unit Root Tests
T = 100 T = 200

� �1 �2 tERS
�

� tDF
�

� tLM
�

� tERS
�

� tDF
�

� tLM
�

�

1 0 0 .557 .384 .497 .559 .393 .511
0 5 .000 .000 .000 .000 .002 .002
3 0 .085 .091 .044 .196 .185 .146
3 5 .000 .000 .000 .001 .001 .001

2 0 0 .557 .384 .497 .559 .393 .511
0 5 .000 .000 .000 .000 .001 .001
3 0 .021 .008 .012 .111 .063 .088
3 5 .000 .000 .000 .000 .000 .000

3 0 0 .557 .384 .497 .559 .393 .511
0 5 .000 .000 .000 .000 .000 .000
3 0 .007 .003 .006 .079 .027 .059
3 5 .000 .000 .000 .000 .000 .000

4 0 0 .557 .384 .497 .559 .393 .511
0 5 .000 .000 .000 .000 .000 .000
3 0 .004 .001 .003 .059 .015 .043
3 5 .000 .000 .000 .000 .000 .000

5 0 0 .557 .384 .497 .559 .393 .511
0 5 .000 .000 .000 .000 .000 .000
3 0 .004 .001 .002 .049 .010 .033
3 5 .000 .000 .000 .000 .000 .000

See note under Table 2.



Table 4: Empirical power of Fourier ERS, DF and LM Type Tests (Known �)

t
ERS�f
� t

LM�
f

� t
DF �

f

�

c c c
T � �5 �10 �15 �20 �5 �10 �15 �20 �5 �10 �15 �20
100 1 .069 .122 .231 .401 .065 .112 .210 .370 .063 .099 .182 .327

2 .102 .230 .429 .649 .101 .218 .400 .604 .088 .172 .320 .520
3 .108 .262 .507 .751 .104 .241 .459 .695 .088 .185 .361 .596
4 .109 .275 .533 .784 .104 .252 .481 .721 .083 .187 .379 .627
5 .111 .283 .546 .797 .104 .254 .488 .732 .089 .195 .402 .657

200 1 .069 .126 .232 .402 .067 .116 .215 .372 .062 .103 .181 .313
2 .097 .214 .406 .632 .091 .199 .372 .580 .078 .144 .264 .440
3 .103 .256 .496 .740 .095 .227 .442 .674 .085 .174 .335 .560
4 .104 .270 .523 .772 .097 .239 .464 .707 .080 .169 .346 .574
5 .109 .286 .550 .801 .099 .245 .480 .729 .080 .174 .360 .596



Table 5: Empirical Size and Power of Fourier ERS, DF and LM Type Tests (Estimated �)

t
ERS�f
� t

LM�
f

� t
DF �

f

�

c c c
T �1 �2 � 0 �5 �10 �15 �20 0 �5 �10 �15 �20 0 �5 �10 �15 �20
100 0 0 1 .063 .264 .438 .651 .836 .060 .284 .439 .632 .799 .070 .213 .346 .542 .747

0 5 .051 .070 .122 .231 .401 .051 .065 .112 .210 .370 .052 .064 .099 .182 .327
3 0 .057 .080 .131 .231 .400 .054 .072 .115 .210 .365 .062 .081 .123 .207 .346
3 5 .051 .070 .122 .231 .401 .051 .065 .112 .210 .370 .052 .063 .099 .182 .327
0 0 2 .063 .264 .438 .651 .836 .060 .284 .439 .632 .799 .070 .213 .346 .541 .747
0 5 .050 .102 .230 .429 .649 .050 .101 .218 .400 .604 .050 .088 .172 .320 .520
3 0 .060 .113 .236 .429 .650 .061 .113 .223 .401 .604 .067 .105 .183 .325 .523
3 5 .050 .102 .230 .429 .649 .050 .101 .218 .400 .604 .050 .088 .172 .320 .520
0 0 3 .063 .264 .438 .651 .836 .060 .284 .439 .632 .799 .070 .213 .346 .542 .747
0 5 .050 .108 .262 .507 .751 .050 .104 .241 .459 .695 .050 .088 .185 .361 .596
3 0 .031 .112 .264 .507 .752 .032 .106 .244 .460 .695 .032 .091 .187 .363 .597
3 5 .050 .109 .262 .507 .751 .050 .104 .241 .459 .695 .050 .088 .185 .361 .596
0 0 4 .063 .264 .438 .651 .836 .060 .284 .439 .632 .799 .070 .213 .346 .542 .747
0 5 .050 .109 .275 .533 .784 .050 .104 .252 .481 .721 .050 .084 .187 .379 .627
3 0 .038 .084 .277 .533 .784 .038 .082 .253 .481 .721 .038 .065 .187 .379 .627
3 5 .050 .109 .275 .533 .784 .050 .104 .252 .481 .721 .050 .083 .187 .379 .627
0 0 5 .063 .264 .438 .651 .836 .060 .284 .439 .632 .799 .070 .213 .346 .542 .747
0 5 .050 .111 .283 .546 .797 .050 .104 .254 .488 .732 .050 .089 .195 .402 .657
3 0 .043 .096 .284 .546 .797 .043 .092 .255 .488 .732 .040 .074 .196 .402 .657
3 5 .050 .111 .283 .546 .797 .050 .104 .254 .488 .732 .050 .089 .195 .402 .657



Table 6: Empirical Size and Power of Fourier ERS, DF and LM Type Tests (Estimated �)

t
ERSf
� t

LMf

� t
DFf
�

c c c
T �1 �2 � 0 �5 �10 �15 �20 0 �5 �10 �15 �20 0 �5 �10 �15 �20
200 0 0 1 .068 .255 .413 .633 .816 .065 .262 .410 .609 .787 .073 .184 .302 .473 .678

0 5 .055 .072 .126 .232 .402 .054 .069 .116 .215 .372 .056 .067 .104 .181 .313
3 0 .058 .225 .339 .494 .674 .058 .232 .338 .482 .649 .068 .155 .244 .276 .543
3 5 .054 .070 .127 .232 .402 .053 .068 .116 .215 .372 .054 .064 .103 .181 .313
0 0 2 .068 .255 .413 .633 .816 .065 .262 .410 .609 .787 .073 .184 .302 .473 .678
0 5 .052 .098 .215 .406 .632 .053 .092 .198 .372 .580 .052 .078 .145 .264 .440
3 0 .081 .131 .241 .424 .638 .082 .126 .225 .387 .585 .078 .109 .176 .291 .456
3 5 .050 .097 .214 .406 .632 .050 .091 .199 .372 .580 .050 .078 .144 .264 .440
0 0 3 .068 .255 .413 .633 .816 .065 .262 .410 .609 .787 .073 .184 .302 .473 .678
0 5 .050 .103 .256 .496 .740 .050 .095 .227 .442 .674 .050 .085 .174 .335 .560
3 0 .043 .075 .285 .516 .747 .043 .075 .252 .458 .682 .041 .060 .199 .355 .571
3 5 .050 .103 .256 .496 .740 .050 .095 .227 .442 .674 .050 .085 .174 .335 .560
0 0 4 .068 .255 .413 .633 .816 .065 .262 .410 .609 .787 .073 .184 .302 .473 .678
0 5 .039 .104 .270 .523 .772 .033 .097 .239 .464 .707 .040 .080 .169 .346 .574
3 0 .026 .096 .230 .536 .778 .027 .090 .206 .476 .710 .023 .076 .152 .356 .580
3 5 .050 .104 .270 .523 .772 .050 .097 .239 .464 .707 .050 .080 .169 .346 .574
0 0 5 .068 .255 .413 .633 .816 .065 .262 .410 .609 .787 .073 .184 .302 .473 .678
0 5 .040 .109 .286 .550 .801 .043 .099 .245 .480 .729 .041 .080 .174 .360 .596
3 0 .038 .077 .254 .562 .806 .040 .073 .226 .490 .733 .035 .058 .155 .367 .600
3 5 .050 .109 .286 .550 .801 .050 .099 .245 .480 .729 .050 .080 .174 .360 .596
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