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Abstract

As macroeconomic data are released with different delays, one has to handle

unbalanced panel data sets with missing values at the end of the sample period

when estimating dynamic factor models. We propose an EM algorithm which

copes with such data sets while accounting for autoregressive common factors and

allowing for serial correlation in the idiosyncratic components. Based on Monte

Carlo simulations, we find that taking on board the dynamics of the idiosyncratic

components improves significantly the accuracy of the estimation of both the

missing values and the common factors at the end of the sample period.
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1 Introduction

The literature on dynamic factor models in economics and finance goes back to Geweke

(1977), Sargent and Sims (1977), Geweke and Singleton (1981) and Watson and Engle

(1983). In a factor model, the data generating process of each variable is the sum of

a common component, driven by a small number of latent common factors, and an

idiosyncratic component. In the classical formulation, the idiosyncratic components

are cross-sectionally and serially independent and also uncorrelated with the common

factors. In addition, the common factors are generated by a finite order vector autore-

gression. For a fixed cross-sectional dimension, the model can be consistently estimated

by Gaussian maximum likelihood. In the early literature, the analysis was limited to

panels with a small number of variables and the model was estimated by maximum

likelihood using either frequency or time domain approaches.

In the context of growing data availability, the existence of large panel data sets led

to the development of a non-parametric estimation approach based on least squares.

The resulting principal components estimator avoided the feasibility issues and the

increased technical complexity of the maximum likelihood estimator when dealing with

large cross-sections. Connor and Korajczyk (1986, 1988, 1993) discussed the consistency

of the principal components estimator when the number of variables tends to infinity

and the time dimension remains fixed. When both panel dimensions tend to infinity,

Stock and Watson (1998, 2002b), Bai and Ng (2002), Bai (2003) and Amengual and

Watson (2007) have shown that, under slightly different sets of assumptions regarding

the data generating processes of the factors and of the idiosyncratic components, the

first principal components span the factor space, even if there is some heteroskedasticity

and limited dependence of the idiosyncratic components in both dimensions, as well as

moderate correlation between the latter and the factors. Related work includes Forni

and Reichlin (1998), Forni and Lippi (2001), Forni et al. (2000, 2004, 2005), using

frequency domain methods.

Doz et al. (2012) reconciled the classical factor model estimated by Gaussian max-

imum likelihood with the strand of literature on factor models for large cross-sections.

In a quasi-maximum likelihood approach (in the sense of White, 1982), they treat the

classical model as a possibly misspecified model which is used for estimation purposes,

henceforth the "estimation model". By imposing the classical assumptions on the es-
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timation model makes the Gaussian maximum likelihood estimation feasible for large

cross-sections. They show that the factor space is estimated consistently when both

panel dimensions tend to infinity even if the underlying data set is generated by a model

with heteroskedastic and serially correlated idiosyncratic components. More recently,

the estimation model has been generalized to allow for serially correlated idiosyncratic

components (Jungbacker and Koopman, 2008; Reis and Watson, 2010; Banbura and

Modugno, 2010; among others).

In practice, macroeconomic data become available with different delays, i.e. one has

to handle unsynchronized data releases for a large number of variables. In fact, if one

had to wait until all data were available it would be necessary to wait a few months to

estimate the factors for the current period. The staggered release of information results

in an unbalanced panel data with missing values located at the end of the sample

period. The presence of missing values at the end of the sample is by and large the

more practically relevant issue for macroeconomic forecasting, nowcasting and policy

analysis. Typically, for data of the same frequency, there are no missing values at the

middle of the sample whereas if they are located at the beginning one can always shorten

the sample and still have long time series in most cases. In light of this, the jagged edge

panel data feature is clearly the most challenging feature that one has to deal with.

Giannone et al.(2008) address this issue in the framework of a dynamic factor model

and a large cross-section. They refer to panels with this specific unbalanced feature as

having a jagged edge across the most recent periods of the sample. Other authors refer

to this problem as ragged edge data (see, for example, Wallis ,1986, and more recently

Schumacher and Breitung, 2008, Marcellino and Schumacher, 2010, and Kuzin et al.,

2011).

The estimation model considered by Giannone et al. (2008) is a dynamic factor

model with idiosyncratic components cross-sectionally orthogonal and white noise.1 As

mentioned above, the misspecification of the idiosyncratic components autocorrelation

does not jeopardize the consistent estimation of the factor space, but consistency is not

the only issue at stake. A more accurate estimation of factors at the end of the sample

is key to produce superior forecasts when the panel presents the jagged edge feature. A

precise estimation of the factors in the most recent periods may also be important, for

1They do not estimate the model by maximum likelihood. Instead, they use the two-step estimator

based on Kalman filtering suggested by Doz et al. (2007).
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example, in real time disaggregation of time series based on factor models estimated

with higher frequency panel data sets (see Angelini et al., 2006).

Assuming serially uncorrelated idiosyncratic components can be a strong assump-

tion. In Figure 1 we present the histogram of the first order autocorrelation coefficients

of the idiosyncratic components estimated from the well-known US monthly data set

of Stock and Watson (2005), using the principal components estimator and setting

the number of factors to seven as found by Stock and Watson.2 We can see that a

large fraction of the variables shows clear signs of autocorrelation in the idiosyncratic

component.

Classical dynamic factor model and its extension with serially correlated idiosyn-

cratic components can be written in state-space form. The EM algorithm is a well

known approach to maximize the Gaussian log-likelihood function of models in state-

space form (Shumway and Stoffer, 1982, and Watson and Engle, 1983). Moreover, the

EM algorithm is convenient to deal with missing values in the panel data set. For an

arbitrary pattern of missing values, Shumway and Stoffer (1982) provided the modi-

fications required to the algorithm in the case of known loadings. Stock and Watson

(2002a) suggest an EM algorithm to estimate several types of missing values in the case

of a classical model with unknown loadings, fixed factors and white noise idiosyncratic

components.

Banbura and Modugno (2010) try to circumvent the difficulties in the general case of

unknown loadings and autoregressive factors and idiosyncratic components by adding

the latter to the state-vector. Their solution consists of modelling the idiosyncratic

component as a sum of a first order autoregressive process ((1)), which is included

in the state vector, and an independent white noise process. By making the variance

of the white noise arbitrarily small, they obtain an approximation to the likelihood

estimators for the model with (1) idiosyncratic components. However, for large

cross-sections, as pointed out by Jungbacker et al. (2011), the dimension of the aug-

mented state vector becomes very large, which leads to computational inefficiency. To

2The panel covers the period from January 1959 up to December 2003 and comprises 132 time

series. The data can be downloaded at http://www.princeton.edu/~mwatson and are transformed as

suggested by Stock and Watson (2005). Similar results for the autocorrelation coefficients are obtained

if the model is estimated by maximum likelihood either with seven or, alternatively, with four dynamic

factors, in the latter case also including their first lags in the measurement equation (in line with the

results of Bai and Ng, 2007).
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overcome the problem, Jungbacker et al. (2011) propose a computationally more effi-

cient state-space representation with time-varying state dimensions (and autoregressive

idiosyncratic components), augmenting only moderately the size of the state-vector in

each period.

In this paper, while allowing for serially correlated idiosyncratic components, we

focus on the special case of jagged edge panel data sets. As regards nowcasting, the

existence of missing values at the end of the sample period is by large the more prac-

tically important feature of the data sets. Our focus on jagged edge data is similar to

that of Giannone, Reichlin and Small (2008), but they do not take into account the

idiosyncratic serial correlation, which reduces the realism of their model and leads to

a poorer estimation and forecasting performance. Our algorithm deals efficiently with

the presence of missing values at the end of the data set and is analytical and computa-

tionally simpler in this special case than the algorithm for the general case proposed by

Jungbacker et al. (2011). Using our algorithm, and through Monte Carlo simulations,

we assess the performance of the maximum likelihood estimator for different estimated

model specifications and data generating processes. We evaluate the accuracy of the

estimation of both the common factors at the end of the sample and the missing data.

We find that, when the idiosyncratic components are autocorrelated in the data gener-

ating process, admitting (1) idiosyncratic components (as compared to white noise

ones) in the estimation model substantially improves the accuracy.

The paper is organized as follows. In section 2, we present the dynamic factor

model with autoregressive factors and(1) cross-sectionally independent idiosyncratic

components. An EM algorithm for such model and for jagged edge panel data is

proposed in section 3. In section 4, we present the Monte Carlo simulation design and

discuss the results. Finally, section 5 concludes.

2 The dynamic factor model

Consider a vector of  stationary time series ̊ =
h
̊1 · · · ̊ · · · ̊

i0
with

data generating process given by the dynamic factor model, for  = 1 · · ·   :

̊ = + Λ() + ̊ (1)
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() =  (2)

()̊ = ̊ (3)"
̊



#
∼ 

Ã"
0

0

#
;

"
Ψ 0

0 Φ

#!
(4)

h
 01  00 · · ·  02−

i0
∼ (;Ω) (5)

where  =
h
1 · · ·  · · · 

i0
is a vector of  latent common dynamic factors,

̊ =
h̊
1 · · · ̊ · · · ̊

i0
is a vector of latent idiosyncratic components,  and

̊ are Gaussian white noise innovations to the vector autoregressive ( ) processes

of  and ̊, respectively. The vector of (unknown) constants  is -dimensional and

Λ() is the polynomial matrix in the lag operator 

Λ() = Λ0 + Λ1+ · · ·+ Λ
 ( ×)

Λ ( × ) being the matrix of (also unknown) factor loadings associated with −

( = 0 1 · · ·  ). Similarly,

() =  −1− · · ·−
 (×)

and

() =  − ( ×)

where  ( = 1 · · ·   ) and  are the (unknown) matrices of coefficients in the  

processes of  and ̊, respectively.
3 Equation (5) states the initial conditions for the

dynamic factors, with  = max( ;+2). Vector  (×1) and the symmetric matrix
Ω (×) are also unknown parameters.

We assume that  and Ψ are diagonal, thereby reducing the number of parameters

3Only the case of first order autoregressive idiosyncratic components is pursued in the paper, but the

extension to allow for autoregressive processes of order larger than one is straightforward (although

more cumbersome in terms of notation). The main difference would be that, for each observable

variable, the maximization of the concentrated expected log likelihood in subsection 3.1 would not be

univariate anymore, and we would need to resort to some quasi-Newton scheme. We are convinced

that, in practice, this extension is not very relevant. The results of the simulations reported in Section

4 show that the specification with (1) idiosyncratic components continue to perform well when

these components are generated according to (2) or (1) processes instead of (1).

6



to a manageable size and avoiding to blur the separate identification of the common

and idiosyncratic components. The resulting specification still encompasses most of

the specifications found in the recent literature on dynamic factor models for large

cross-sections. Reis and Watson (2010) specify a model equivalent to (1)-(5) in order

to breakdown consumption goods’ inflation into three components. Jungbacker and

Koopman (2008) suggest a likelihood-based analysis of a general dynamic factor model

which allows for dynamic factors generated according to a vector autoregressive moving

average ( ) process and for idiosyncratic components generated by a   of

order possibly larger than one.4 However, in their empirical illustration, they simplify

the specification to the formulation above using  = 0. The "approximating factor

model" considered by Doz et al. (2007,2012), as well as the model considered by

Giannone et al. (2008), are also particular cases of our model with  = 0.5 Finally,

the case  =  = 0 and  = 0 was considered by Stock and Watson (2002a, Appendix

A) to motivate an EM algorithm for dealing with several types of data irregularities.

Model (1)-(5) can be written in a state-space form

̊ =  +Πf
()
 + ̊ (6)

f
()
 = Θf

()
−1 + (7)

f
()
1 ∼ (;Ω) (8)

where f
()
 =

h
 0  0−1 · · ·  0−+1

i0
is the (× 1) vector of state variables, with 

defined as above,  = ( −)+̊−1 is a ( × 1) vector of predetermined variables
in the measurement equation,

Π
(×)

=

⎧⎨⎩ Υ if  ≤  + 2h
Υ 0 · · · 0

i
otherwise

Υ
(×(+2))

=
h
Λ0 (Λ1 −Λ0) · · · (Λ −Λ−1) −Λ

i
4In addition, they admit exogenous explanatory variables in equation (1).
5Doz et al. (2012) mention in a footnote that the restriction of serially uncorrelated idiosyncratic

components is only made for expositional simplicity. Doz et al. (2007, 2012) also admit that  = 0,

while the factor model in Giannone et al. (2008) is equivalent to a formulation with  ≥ 0.
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Θ
(×)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 · · · −1 

 0 · · · 0 0

0  · · · 0 0
...

...
. . .

...
...

0 0 · · ·  0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
if  ≥  + 2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 · · · −1  0 · · · 0 0

 0 · · · 0 0 0 · · · 0 0

0  · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0 0 · · ·  0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
otherwise


(×)

=

"


0

#
where  stands for the identity matrix of order .

In order to allow for a jagged edge feature of the data, we admit that the -th

variable of the panel is observed for any  from 1 to T (1  T ≤  ). Let the N-

dimensional column vector  (with N ≤ ) denote the sub-vector of ̊ comprising

the variables with non-missing realizations. One may write  = ̊, with  the

(N ×) selection matrix of zeros and ones such that its () element is 1 if both

the realization of ̊ is not missing and if  = ̊.
6 Note that if T =  for all 

(or, equivalently, if N =  for all ), the panel data set is balanced. Also note that the

only missing values that we are admitting are associated with the latest time periods

of the sample: if ̊0 is missing for  and 0 than ̊ is also missing for all   0.

3 An EM algorithm for the case of panel data sets

with jagged edge

The EMalgorithm for maximizing the log-likelihood consists of iterating an "expectation-

step" (or "E-step") and a "maximization-step" (or "M-step") until convergence, i.e. un-

6If all variables are observed for period ,  is the identity matrix of order  .
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til the improvement in the value of the log-likelihood function is smaller than some tol-

erance level. Given a set of values for the model parameters, the E-step corresponds to

computing the first and second order moments of the dynamic factors conditional on the

realizations of {1 · · ·   · · ·  }. The Kalman smoother is used to perform this com-
putation. Having obtained the estimated factor moments, the "M-step" corresponds

to maximizing the expected value of the joint likelihood of "observables and factors"

{(̊ )}=1···  with respect to the model parameters and conditional on {}=1···  .
In this section, we describe an EM algorithm to estimate our model in the case of

a panel data set with jagged edge.7 Owing to the diagonality of  and Ψ, in order

to determine the solution for the diagonal elements of , the suggested M-step only

requires  univariate estimations in the range ] − 1; 1[. Given , the solutions for

the remaining parameters are computed resorting to analytical expressions. As usual,

the EM algorithm may be initialized with parameter estimates based on the principal

component estimator and linear regression methods.

The presence of missing values in the panel data set creates difficulties to the imple-

mentation of the EM algorithm. In particular, the expected value of the joint likelihood

of observables and factors, conditional on a realization of the observables becomes more

complex if there are missing values in the sample. The procedure suggested by Jung-

backer et al. (2011) consists of developing a state space model with time-varying state

dimensions. However, that comes at an analytical and a computational cost.

In their paper, Jungbacker et al. (2011) report an assessment of the computational

cost incurred by the presence of randomly chosen missing entries, for different dimen-

sions of the panel and different "intensities" of missing observations. For the case of

 = 100 and 1% and 10% of missing observations, the computation time increases about

20% and 300% relative to the case of a balanced panel, respectively. The algorithm

that we suggest in the following subsections, besides being more simple analitically, also

deals more efficiently with the missing data. Indeed, for  =  = 100 and 1000 panels

with 1% and 10% of missing values generated according to the procedure described in

subsection 4.1, the average computation time increased only by around 10% and 20%

relative to the case of a balanced panel, respectively.

7Obviously, the suggested procedure is also valid for the particular case of a balanced panel data

set.
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3.1 The M-step

Let  (·) denote the joint probability density function of the complete data (observables
and factors) and define

 (Λ Ψ Φ Ω|1 · · ·   ) =

= 
h
ln 

³
̊1 · · ·  ̊  f ()1  2 · · ·   ;Λ Ψ Φ Ω

´
|1 · · ·  

i
where Λ =

h
Λ0 Λ1 · · · Λ

i
( × ( + 1)) and  =

h
1 · · · 

i
( × ).

After somewhat lengthy but straightforward calculations (see Appendix 1), we get:

 (Λ Ψ Φ Ω|1 · · ·   ) $ −1
2
ln [det (Ω)] +

−1
2


½∙
P
()

11| +
³
f
()

1| − 
´³
f
()

1| − 
´0¸

Ω−1
¾
−  − 1

2
ln [det (Φ)] +

−1
2


("
X
=2

| +

Ã
−1X
=1

M
( )

|

!
0 − 2

X
=2

H
( )0
−1|

#
Φ−1

)
+
1

2

X
=1

n
ln
¡
1− 2

¢
+

− ln ()−
T


h
̄ ( T)− 2̄ ( T) + ̄ ( T)2 +

− 2̄ ( T)0  + 2f̄ ( T)0  + 0M̄ (T)
io

(9)

where ’$’ stands for ’identity up to a term that does not depend on the parameters’, 
is the transposed -th row of Λ, the -th diagonal elements of  and Ψ are denoted by

 and , respectively, the conditional first and second order moments of the factors

are represented by (with ,  and  non-negative integers and  a positive integer):

|
(×1)

= (|1 · · ·   )

f
( )

|
(×1)

=
h
 0| · · ·  0−+1|

i0
−−|
(×)

= 
£
(− − −|)(− − −| )

0|1 · · ·  
¤

−−|
(×)

= 
¡
−

0
−|1 · · ·  

¢
= −−| + −|

0
−|
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P
( )

−−|
(×)

= 

∙³
f
( )
− − f ( )

−|

´³
f
( )
− − f ( )

−|

´0
|1 · · ·  

¸
=

=

⎡⎢⎢⎣
−−| · · · −−−+1|

...
...

−−+1−| · · · −−+1−−+1|

⎤⎥⎥⎦
M

( )

−−|
(×)

= 
³
f
( )
− f

( )0
− |1 · · ·  

´
= P

( )

−−| + f
( )

−| f
( )0
−| =

=

⎡⎢⎢⎣
−−| · · · −−−+1|

...
...

−−+1−| · · · −−+1−−+1|

⎤⎥⎥⎦
H
( )

−−|
(×)

=
h
−−| · · · −−−+1|

i
and, furthermore, we used the following aditional notation in order to be able to write

(6) more compactly:

M̄ (T) =
1

T

" TX
=1

M
(+1)

| + 2

T−1X
=2

M
(+1)

| − 

TX
=2

³
M

(+1)

−1| +M
(+1)0
−1|

´#

f̄ (T) =
1

T

" TX
=1

f
(+1)

| + 2

T−1X
=2

f
(+1)

| − 

TX
=2

³
f
(+1)

| + f
(+1)

−1|

´#

̄ (T) =
1

T
£T − 2(T − 1) + (T − 2)2¤

̄ ( T) =
1

T

" TX
=1

2 + 2

T−1X
=2

2 − 2
TX
=2

−1

#

̄ ( T) =
1

T

" TX
=1

f
(+1)

| + 2

T−1X
=2

f
(+1)

| − 

TX
=2

³
f

(+1)

−1| + −1f
(+1)

|

´#

̄ (T) =
1

T

" TX
=1

 + 2

T−1X
=2

 − 

TX
=2

( + −1)

#
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From the first order conditions of the problem of maximization of the expected log

likelihood with respect to the model parameters, we can derive analytical expressions

for the solutions of , Ω,  and Φ as functions of sufficient statistics based on the first

and second order moments of the common factors (see Appendix 2):

̂ = f
()

1| (10)

Ω̂ = P
()

11| (11)

̂ =

Ã
X
=2

H
( )

−1|

!Ã
−1X
=1

M
( )

|

!−1
(12)

Φ̂ =
1

 − 1

⎡⎣ X
=2

| −
Ã

X
=2

H
( )

−1|

!Ã
−1X
=1

M
( )

|

!−1Ã X
=2

H
( )

−1|

!0⎤⎦ (13)

Additionally, from the first order conditions with respect to ,  and  ( =

1 · · ·  ), we get (see also Appendix 2):

̂ () =
1

̄ ( T)
n
̄ ( T)− f̄ (T)0 



∙
M̄ ( T)−

1

̄ (T)
f̄ (T) f̄ (T)0

¸−1




∙
̄ (T)−

1

̄ (T)
̄ ( T) f̄ ( T)

¸¾
(14)

̂ () =

∙
M̄ (T)−

1

̄ ( T)
f̄ ( T) f̄ ( T)0

¸−1




∙
̄ ( T)−

1

̄ ( T)
̄ (T) f̄ (T)

¸
(15)

̂ () =
T


½∙
̄ ( T)−

1

̄ ( T)
(̄ (T))2

¸
+

−
∙
̄ (T)−

1

̄ (T)
̄ ( T) f̄ ( T)

¸0




∙
M̄ ( T)−

1

̄ (T)
f̄ (T) f̄ (T)0

¸−1

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

∙
̄ (T)−

1

̄ (T)
̄ ( T) f̄ ( T)

¸¾
(16)

Concentrating  (·), we obtain:

() (|1 · · ·   ) $ 1

2

X
=1

() (|1 · · ·  T)

with

() (|1 · · ·  T) = − ln
̂ ()¡
1− 2

¢1
For each , the solution ̂ which maximizes 

()
 (|1 · · ·  T) can be found by

grid search in the range ]−1; 1[. Having obtained ̂ ( = 1 · · ·  ), the corresponding
solutions for ̂, ̂ and ̂ follow from (14)-(16). Note that the computation time of

the estimates does not depend significantly on the number of missing values. Indeed,

the single difference relative to the case of a balanced panel is that T replaces  in

some of the expressions.

3.2 The E-step

The sufficient statistics based on the first and second order moments of the dynamic fac-

tors can be computed applying the Kalman smoother to the state-space representation

of the model, for given estimates of the model parameters. Expressions for the Kalman

filter and smoother for a model such as (6)-(8) and balanced panel data sets can be

found e.g. in Harvey (1989), Durbin and Koopman (2001) and Shumway and Stoffer

(1982, 2006). In the case of missing values, if the idiosyncratic components of observed

and unobserved variables are uncorrelated (as in our model), as noted by Shumway and

Stoffer (1982, 2006), the filtered and smoothed state vectors can be calculated from the

usual equations by plugging zeros in the observation vector where data is missing and

by zeroing out the corresponding rows of the design matrix.

Using our notation and the selection matrices  ( = 1 · · ·   ), the Kalman filter
and smoother recursions for state-space representation (6)-(8) with missing data can

be written as follows:

13



(i) Filter forward recursions (for  = 2 · · ·   )8

f
()

|−1 = Θ̂f
()

−1|−1

P
()

|−1 = Θ̂P
()

−1−1|−1Θ̂
0 +Φ̂0

P
()

−1|−1 = Θ̂P
()

−1−1|−1

K = P
()

|−1Π̂
0 0



½³
Ψ̂

0


´−1
+

−
³
Ψ̂

0


´−1
Π̂

∙
 +P

()

|−1Π̂
0 0



³
Ψ̂

0


´−1
Π̂

¸−1
P
()

|−1Π̂
0 0



³
Ψ̂

0


´−1)

f
()

| = f
()

|−1 +K

³
 − ( − ̂)̂− ̂

0
−1−1 − Π̂f

()

|−1

´
P
()

| = P
()

|−1 −KΠ̂P
()

|−1

(ii) Smoother backward recursions (for  =  − 1  − 2 · · ·  1)

J = P
()

|Θ̂
0
³
P
()

+1+1|

´−1
f
()

| = f
()

| + J
³
f
()

+1| − f ()+1|

´
P
()

| = P
()

| + J
³
P
()

+1+1| −P()+1+1|

´
J0

P
()

−1| = P
()

|J
0
−1 + J

³
P
()

+1| −P()+1|

´
J0−1

with

P
()

−1| =
³
 −K Π̂

´
P
()

−1|−1

We adopt the normalization restriction

1



X
=1

|
0
| =  (17)

Even with these ( + 1)2 identifying restrictions, any rotation of the dynamic fac-

tors (with the offsetting transformation of the associated parameters) will generate an

8Note that Ψ̂
0
 is diagonal.
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observationally equivalent model. However, it should be mentioned that, conditional

on the moments of the common factors, if
P−1

=1 M
( )

| is non-singular and T  2 for

all  the solution of the M-step is unique.

After running the smoother backward recursions of the E-step, and before moving

to a new iteration of the M-step, the factor moments are normalized so as to comply

with condition (17). Let L be the lower triangular (×) matrix resulting from the

Cholesky decomposition

L

Ã
1



X
=1

|
0
|

!
L0 = 

where | ( = 1 · · ·   ) are calculated from the recursions, before normalization. Also

let

L = ( ⊗ L)

where ⊗ denotes the Kronecker product. For any , the normalization corresponds to:
(i) premultiplying by L all the first order moments f ()

|−1, f
()

|−1 and f
()

| ;

(ii) premultiplying by L and post-multiplying by L0 all the second order moments

P
()

|−1, P
()

−1|−1, P
()

|, P
()

| and P
()

−1| .

3.3 Log-likelihood evaluation

For a set of realizations {1 · · ·   · · ·  } and for a given set of estimates of the model
parameters Ξ̂ =

³
̂ Λ̂ ̂ Ψ̂ ̂ Φ̂ ̂ Ω̂

´
, we may use the prediction error decomposition

to evaluate the log-likelihood function:9

L
³
1 · · ·   · · ·   ; Ξ̂

´
= L

³
1; Ξ̂

´
+

X
=2

L
³
|1 · · ·  −1; Ξ̂

´
=

= −1
2

½
 ln(2) + ln

h
det

³
̂ (1)

´i
+
h
1 − ̂ (1)

i0 h
̂ (1)

i−1 h
1 − ̂ (1)

i¾
+

−1
2

X
=2

n
N ln(2) + ln

h
det

³
̂ (̊|1 · · ·  −1)

´i
+

9Note that, by construction, N1 =  and 1 = .

15



+
h
 − ̂ (|1 · · ·  −1)

i0 h
̂ (|1 · · ·  −1)

i−1 h
 − ̂ (|1 · · ·  −1)

i¾
where ̂ (·) and ̂ (·) denote, respectively, the estimated expected values and variances:

̂ (1) = ̂+ Λ̂̂

̂ (1) =
³
 − ̂2

´−1
Ψ̂+ Λ̂Ω̂Λ̂0

and, for  = 2 · · ·   :

̂ (|1 · · ·  −1) = 

h³
 − ̂

´
̂+ ̂ 0

−1−1 + Λ̂f
(+1)

|−1 − ̂Λ̂f
(+1)

−1|−1

i
̂ (|1 · · ·  −1) =

= 

h
Ψ̂+ Λ̂P

(+1)

|−1Λ̂
0 + ̂Λ̂P

(+1)

−1−1|−1Λ̂
0̂ − Λ̂P

(+1)

−1|−1Λ̂
0̂ − ̂Λ̂P

(+1)0
−1|−1Λ̂

0
i
 0


4 A Monte Carlo analysis

In this section, a Monte Carlo study is conducted to evaluate the performance of al-

ternative model specifications in the presence of panel data with jagged edge. First,

we define the data generating process which will be our base case and discuss the re-

sults. Then, we perform a sensitivity analysis to assess the robustness of the findings

to different simulation settings.

4.1 The base case

Take the model (1) to (5). We consider a data generating process similar to the one of

Stock andWatson (2002b) and Doz et al. (2012) and admit the following assumptions:10

Λ ∼  (0 1) ( = 0 · · ·  ; = 1 · · ·   ;  = 1 · · ·  )

Λ independent of Λ for any  6= 

10For simplicity, we set  to zero although the model is estimated allowing for b different from zero.
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() =  −1

1 =

(
∼  ([03 07]) if  = 

0 otherwise

 = () with  ∼  ([−09 09])

(1− )  =

r


³
1− 

2



´
 ( = 1 · · ·   ;  = 1 · · ·   ) with  ∼ 

(0 ())

 =
1−


∙
1


P

=1

³P

=0

P

=1Λ

´2¸−1
with  ∼  ([01 09])

( = 1 · · ·  )

 () = [ ()] with  () = |−| ( = 1 · · ·  )

In the base case, as regards the dynamics of the factors when generating the data,

we set  = 1 and allow the autoregressive coefficient of the common factors to be drawn

from a uniform distribution on [03 07]. Concerning the number of dynamic factors,

we consider four common factors,  = 4. The number of static factors is set to be equal

to the number of dynamic factors, i.e.  = 0. The autoregressive coefficients of the

idiosyncratic components are drawn from a uniform distribution on [−09 09]. Another
parameter of interest is , which can be interpreted as the ratio between the variance

of the common component and the total variance of variable . The variance of ,

denoted , depends on . We allow  to be drawn from a uniform distribution on

[01 09]. It is worth mentioning that from the results of Stock and Watson (2005), with

the model estimated by principal components and the number of common factors set

to seven, we roughly get a uniform pattern for the empirical distribution of the ratios

between the estimated variances of the common components and the total variances.

The parameter  controls for the amount of contemporaneous cross-correlation between

the idiosyncratic components. When  = 0,  () reduces to the identity matrix, which

corresponds to the base case.

Regarding the size of the panel data, we consider one hundred series and twenty

years of monthly data, i.e.  = 100 and  = 240, which can be seen as the size of a

typical large data set. Monthly indicators are usually available at most with a lag of

two months (see, for example, Giannone et al., 2008, for the US), so in the base case
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we assume, as in a stylized calendar, that half of the series have no release lag, one

fourth of the series have a lag of one month and the remaining fourth have a lag of two

months.

Concerning the estimation model, we consider three alternative specifications. The

first is ( = 0  = 0), which assumes white noise factors and idiosyncratic components

(as in Stock and Watson, 2002a). The second specification, ( = 0  = 1), takes into

account only the dynamics of the common factors. Finally, the third specification is

( 6= 0  = 1), which takes into account the dynamics of both the common factors

and the idiosyncratic components.

Several measures are computed for the comparison of the different estimation models

and the results are based on 1 000 sample draws. To evaluate the accuracy in the

estimation of the missing values and the factors at the end of the sample in the presence

of unbalanced data we resort to the Mean Squared Error (MSE) for the last observation

of the sample (observation  ) and for the second last observation (observation  − 1).
For ease of comparison, we present the relative MSE (RMSE) for each specification

vis-à-vis the specification ( = 0  = 0). Following Stock and Watson (2002b) and

Doz et al. (2012), we also compute the trace 2

2
  =

b ∙µ 0 b ³ b 0 b´−1 b 0

¶¸
b [ ( 0 )]

where


(×)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

 01
...

 0
...

 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
b

(×)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

 01|
...

 0|
...

 0 |

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where b [] denotes the expectation estimated by averaging the relevant statistic over
the 1 000 draws. This statistic is a measure of fit of the multivariate regression of the

true factors on the estimated factors, and is commonly used because the common factors

are identified only up to a rotation. A value close to one denotes a good approximation

of the space spanned by the true common factors.
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The simulation results for the base case are presented in Table 1. One can see

that the specification ( = 0  = 1) leads to quite similar results to those obtained

with ( = 0  = 0). However, for the specification ( 6= 0  = 1), besides the slight
increase in 2

  , there is a substantial improvement in the accuracy of the estimation of
both the factors and the missing values. In particular, the gain in the estimation of the

factors for observation  is around 26 percentage points (pp) and for observation  −1
the improvement is almost 30 pp. For the missing values, the gain is more than 20 pp

for observation  and around 27 pp for observation  − 1. Hence, taking into account
the dynamics of the factors seems to have only a limited gain in the estimation of the

factors and missing values, while taking on board the dynamics of the idiosyncratic

components proves to be quite valuable.

In Table 1 we also report the average running time (in seconds) for our algorithm

and for the EM version of the algorithm proposed by Jungbacker et al. (2011). For

the specification with autoregressive idiosyncratic components our algorithm takes on

average about four seconds whereas the general purpose algorithm takes almost seven

seconds (i.e. a computational gain of 70%). For the other cases, the running time is

reduced from more than four seconds to around one second.11

4.2 Sensitivity analysis

Due to the high dimensionality of the problem and the existence of infinite possible

combinations, the sensitivity analysis was carried out by changing one setting of the

simulation design at a time while maintaining all the others constant vis-à-vis the base

case. In this way, it is possible to identify the settings of the base case that are more

critical for the results (see Table 2).

First, to assess the importance of the amount of serial correlation of the idiosyn-

cratic components, several fixed values for  were considered instead of  ∼ 

([−09 09]) as in the base case. In particular, we fixed  at −09, at −08, and
so on up to 09. A noteworthy finding is the fact that when  = 0, that is, when

the idiosyncratic components are serially uncorrelated in the data generating process,

allowing for the dynamics of idiosyncratic components in the estimation model does not

11We only report the average running time for the Junbacker et al. (2011) algorithm because the

other results are virtually identical to those obtained with our algorithm, as expected. The Matlab

codes are available from the authors upon request.
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involve any cost in terms of relative performance. Another finding is that the larger (in

absolute value) is the serial correlation, the larger are the gains in considering (1)

idiosyncratic components when estimating both the factors and the missing values. In-

deed, specification ( 6= 0  = 1) ranks always first, with gains that can be quite large
in the presence of moderate to strong serial correlation of the idiosyncratic components.

Simulations were also carried out considering different numbers of dynamic factors

(both in the data generating process and in the estimated specifications). In particular,

we set  = 2 and  = 6. Increasing or decreasing the number of common factors does

not seem to make much difference in terms of the relative performance. In fact, the

gains are similar to the ones observed in the base case.

Different dimensions of the panel data set were also addressed. Increasing the num-

ber of variables to  = 200 has a limited effect on the results. Regarding the number

of observations, decreasing the sample size to half, that is setting  = 120, deterio-

rates slightly the relative performance of specification ( 6= 0  = 1) in estimating the
common factors at the end of the sample. Nevertheless, the gain in the estimation of

the factors for observation  is 21 pp and for observation  − 1 the improvement is
more than 24 pp. Increasing the number of observations to  = 480 leads to larger

gains than in the base case. In particular, the estimation of the factors for observation

 is improved almost 30 pp whereas for observation  − 1 the gain is around 38 pp.
Concerning the results for the missing values, whatever the size of the panel the results

are almost unchanged vis-à-vis the base case.

Furthermore, we assessed the sensitivity of the results to the value of , the ratio

of the variance of the common component to the total variance of the -th variable. A

low value for  means that the idiosyncratic component is relatively more important

and therefore allowing for the dynamics of such component may prove to be crucial. In

fact, setting  = 01 results in a noteworthy improvement in the relative performance

of specification ( 6= 0  = 1) both in terms of 2
  and in terms of the estimation of

the factors at the end of the sample period. The gain in the estimation of the factors for

observation  is around 36 pp whereas for the observation  − 1 the gain is more than
47 pp. Naturally, as  increases, the gain reduces. Nevertheless, for  = 05, that is,

when the common component contributes as much as the idiosyncratic component to

the total variance of the series, the gains in the estimation of the factors at the end of

the sample are around 35 pp. For  = 09, that is when the idiosyncratic component
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plays a minor role in the total variance, the gains still turn out to be about 15 pp.

Regarding the estimation of the missing values, the results are similar to those of the

base case.

We also assessed different values for the autoregressive coefficients of the common

factors. In particular, we considered 1 = 00, 03, 05, 07, 09 ( = 1 · · ·  ). The
results suggest that, as the serial correlation of the common factors increases, the gains

in the estimation of the factors by taking into account the dynamics of the idiosyncratic

components decrease. When the factors have no serial correlation, the gain is more than

30 pp for observation  and is close to 37 pp for observation  −1, whereas in the most
unfavorable case, 1 = 09, the improvement is around 14 pp for observation  and

more than 10 pp for observation  −1. As regards the estimation of the missing values,
the results are not influenced by the amount of serial correlation of the common factors.

The jagged edge issue depends on the variables included in the data set as well as

on the release calendar which may differ from country to country. In the base case, we

assumed that 50% of the series have no release lag, 25% of the series have a lag of one

month and the other 25% of the series present a lag of two months. For the sensitivity

analysis, we considered two alternatives. In the first, 80% of the series have no release

lag, 10% have a lag of one month and 10% have a lag of two months, while in the second

case 30% of the series have no release lag, 35% have a lag of one month and 35% have

a lag of two months. One can see that the results are quite similar to those in Table 1.

In the base case, we set  = 0, which implies that there is no distinction between

the dynamic and the static factors. If we consider  = 1 both in the data generating

process and in the estimated specifications, the results are again similar to the base

case.

So far, it has been assumed that there is a match between the specification ( 6=
0  = 1) and the model underlying the data generating process. To assess the perfor-

mance under misspecification, several exercises were conducted.

First, we assumed a mismatch between the true number of dynamic factors and the

number of estimated dynamic factors. When the true number of dynamic factors is two

but the model is estimated assuming that there are four dynamic factors, the results

remain virtually unchanged. In contrast, when the true number of dynamic factors is

six but the model is estimated again assuming that there are only four dynamic factors,

the 2
  worsens significantly and the gains in the estimation of the common factors
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at the end of sample period almost vanish. Hence, the underspecification of the model

in terms of the number of common factors limits substantially the gains of taking into

account the dynamics of the idiosyncratic components. Nevertheless, the specification

( 6= 0  = 1) continues to present a significant improvement in the estimation of the
missing values.

Another robustness exercise relates to the dynamics of the idiosyncratic compo-

nents. Two variants were assessed. First, (2) instead of (1) idiosyncratic compo-

nents were considered in the data generating process while holding the three estimation

model specifications unchanged. The two roots for each autoregressive polynomial

were generated as the inverse of independent draws from a uniform distribution on

[−09 09]. For this variant, the improvement in the relative performance of specifica-
tion ( 6= 0  = 1) is even larger than in the base case. In particular, the gain in

the estimation of the factors for observation  exceeds 42 pp and for observation  − 1
the improvement is around 46 pp. For the missing values, the gain is about 31 pp for

observation  and almost 39 pp for observation  − 1. The second variant corresponds
to admit (1) idiosyncratic components in the data generating process, the coeffi-

cients also being drawn from a uniform distribution on [−09 09]. The specification
( 6= 0  = 1) continues to perform better than the other specifications, but the gains
are lower than in the base case. However, there is still a gain of more than 10 pp for

observation  and 14 pp for observation  −1 in the estimation of the common factors.
Two additional exercises allowed for contemporaneous cross-correlation amongst the

idiosyncratic components in the data generating process and not taken into account in

the estimated specifications. In this respect, we first set  = 05, which corresponds

to a moderate contemporaneous cross-correlation between the generated innovations

of idiosyncratic components. One can see that the relative performance remain almost

unchanged vis-à-vis the base case. Note that in the latter simulation exercise the matrix

of coefficients of the lagged idiosyncratic components is kept diagonal and the cross-

correlation is generated only through the contemporaneous covariance matrix of their

innovations.12 A more general scheme for generating cross-correlation would consider

the non-diagonality of both the contemporaneous covariance matrix of the innovations

and the matrix of coefficients of the lagged idiosyncratic components (i.e. non-zero

12This way of generating cross-correlation between the idiosincratic components closely follows Doz

et al. (2012).
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off-diagonal entries in matrix ). With this in mind, in a second exercise to assess

the effects of cross-correlation on the properties of the estimators, we considered the

alternative specification for generating the idiosyncratic components:

(1− ) ̃ =  ( = 1 · · ·   ;  = 1 · · ·   ) with  ∼ (0 )

 =  () ̃ with  () = 


(
√
) ()

0 ¡
 −2

¢12
where  () is such that  ()

0
 () =  ().13 As in the first specification,  () =

 and the generating process reduces to the base case when  is set to zero. The results

with  = 05, which roughly mimics the cross-sectional correlations of the idiosyncratic

components in the US data set, are also presented in Table 2. One can conclude that

in this more demanding setup there are still noteworthy gains although smaller than in

the base case.

Turning now to the number of factor lags in the measurement equation of the model,

we set  = 1 in the data generating process while continuing to estimate the model

assuming  = 0. Similarly to what happens when the number of dynamic factors

is underspecified, the 2
  is significantly lower for all estimated specifications and

the gains in the estimation of the common factors at the end of sample period using

specification ( 6= 0  = 1) vanish. Nevertheless, the specification ( 6= 0  = 1)

continues to be the best in terms of the estimation of the missing values, with a gain

of 12 pp for observation  and around 18 pp for observation  − 1.
In a final exercise, we investigated simultaneously the impact of the underestimation

of the number of factors and variations in the ratio of the variance of the common

component to the total variance of the -th variable. In particular, we considered the

case where the true number of factors is four but the number of estimated factors is two

and the case where the true number of factors is six but the number of estimated factors

is four. For both cases, we considered several values for the ratio of the variance of the

13More specifically, we set

 () =
¡
1− 2

¢12
⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0 0

0 1 · · · 0 0
...
...

. . .
...

...

0 0 · · · 1 0

0 0 · · · 0
¡
1− 2

¢−12

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0 0

 1 · · · 0 0
...

. . .
...
...

−2 −3 · · · 1 0

−1 −2 · · ·  1

⎤⎥⎥⎥⎥⎥⎦
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common component to the total variance of the -th variable, namely  = 01,05,09.

The 2
  is the highest for specification ( 6= 0  = 1) when  = 01,05. For the

case where  = 09, differences are negligible. In terms of the estimation of the factors,

the specification ( 6= 0  = 1) presents gains vis-à-vis the other specifications when

 = 01,05 whereas when  = 09 differences are again marginal. Regarding the

estimation of the missing values, the specification ( 6= 0  = 1) continues to present
noteworthy gains in all cases.

5 Conclusions

The staggered release of macroeconomic data results in unbalanced panel data sets with

missing values at the end of the sample (the so-called jagged or ragged edge) which raises

difficulties to the estimation of dynamic factor models in a real-time environment.

We propose an EM algorithm which copes with panel data sets with jagged edge

without significantly increasing the computation time relative to the balanced panel

case, while accounting for autoregressive common factors and allowing for serial cor-

relation of the idiosyncratic components. When compared with the general purpose

algorithm proposed by Jungbacker et al. (2011), our algorithm is much simpler analyt-

ically and also significantly faster.

Being able to exploit the dynamics of both the common factors and the idiosyncratic

components proves to be quite useful for the estimation of the factors in a context of

limited data availability at the end of the sample. Based on a Monte Carlo analysis, we

found that taking into account only the dynamics of the factors leads to results similar

to those obtained when assuming serially independent factors, as in Stock and Watson

(2002a). However, when one also takes into account the dynamics of the idiosyncratic

components, besides some increase in the overall fit of the factors, there is a substantial

improvement in the relative MSE of the estimation of both the common factors at the

end of the sample and the missing values. In particular, the gain in the estimation

of the common factors for the last observation is around 26 percentage points and for

the second last observation the improvement is almost 30 percentage points, while for

the missing values the gain exceeds 20 percentage points for the last observation and is

around 27 percentage points for the second last observation.

To assess the robustness of such findings, a thorough sensitivity analysis was per-
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formed. The results reinforce the importance of taking into account the dynamics of

the idiosyncratic components when dealing with jagged edge panel data sets. The

results also show that, in the particular case of underspecification of the number of fac-

tors in the estimation model, the overall fit worsens significantly for all specifications

and the gains in the relative performance of taking into account the dynamics of the

idiosyncratic components decrease.
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Appendix 1 - M-step: The expected log likelihood
function

For any vectors of random variables and , let  (; ) and  (|; )

denote the probability density functions of  and of  conditional on , respectively.

To shorten the length of the expressions, also let any quadratic form 0∆ be written as

0∆ (· · · ). The log joint density of both the variables and factors generated according
to the dynamic factor model (1)-(5) is:
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vector of variables of period  for which the realizations are missing:
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with  = ̊ and ̈ = ̈̊. Because the idiosyncratic components are serially and

26



cross-sectionally independent,
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where we adopted the simplified notation  () instead of  (|1 2 · · ·   ). More-
over,
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The expected values (conditional on 1 2 · · ·   ) of the quadratic forms in the
log density presented above may be expressed as follows:
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Thus, taking into account that  and Ψ are diagonal matrices, the expected log

likelihood may be written as:
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Appendix 2 - M-step: The first order conditions

The partial derivatives of the expected log likelihood with respect to all parameters

but  are the following:
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Equating these partial derivatives to zero and solving the system of first conditions

we obtain (10)-(13) as well as

̂ =
1

̄ (T)
h
̄ (T)− f̄ ( T)0 ̂

i
(18)

M̄ (T) ̂ = ̄ (T)− ̂f̄ ( T) (19)

̂ =
T


£
̄ ( T)− 2̄ (T) ̂ + ̄ ( T) ̂2+
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−2̄ ( T)0 ̂ + 2f̄ (T)0 ̂̂ + ̂
0
M̄ (T) ̂

i
(20)

From (18)-(19) we get (14) and (15). Finally, replacing ̂ and ̂ in (20) by (14)-(15)

we obtain (16).
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Note: The results are for the US monthly data set of Stock and Watson (2005) considering seven factors estimated by principal 
components. 

 Histogram - 1st order autocorrelation coefficients of the estimated idiosyncratic components
FIGURE 1
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(B = 0, P = 0) (B = 0, P = 1) (B ≠ 0, P = 1)

R 2 0.959 0.960 0.975
RMSE for FT-1 1.000 0.999 0.705

RMSE for FT 1.000 0.996 0.739

RMSE for x T-1 1.000 1.000 0.731

RMSE for x T 1.000 1.001 0.793

Running time (seconds)
Average 1.010   [4.513] 1.033   [4.552] 4.055   [6.883]

Monte Carlo simulation results for the base case 

Note: The relative Mean Squared Error (RMSE) is computed vis-à-vis the specification (B = 0, P = 0). The running times were 
obtained using a computer with Intel Core Duo 2.93 Ghz, 64 Bit, 32 Gb RAM. Figures in square brackets refer to the EM version 
of the algorithm proposed by Jungbacker, Koopman and van der Wel (2011). The codes were developed in Matlab.

TABLE 1



(B = 0, P = 0) (B = 0, P = 1) (B ≠ 0, P = 1) (B = 0, P = 1) (B ≠ 0, P = 1) (B = 0, P = 1) (B ≠ 0, P = 1) (B = 0, P = 1) (B ≠ 0, P = 1) (B = 0, P = 1) (B ≠ 0, P = 1)

-0.9 0.950 0.953 0.969 0.945 0.683 0.952 0.582 0.998 0.195 0.998 0.273
-0.8 0.955 0.958 0.966 0.951 0.793 0.955 0.699 0.998 0.366 0.998 0.480
-0.7 0.957 0.959 0.964 0.956 0.849 0.962 0.775 0.998 0.517 0.999 0.638
-0.6 0.957 0.959 0.963 0.962 0.889 0.967 0.833 0.998 0.647 0.999 0.757
-0.5 0.958 0.960 0.962 0.968 0.922 0.972 0.880 0.999 0.757 0.999 0.845
-0.4 0.958 0.960 0.961 0.973 0.948 0.976 0.917 0.999 0.846 0.999 0.909
-0.3 0.958 0.960 0.961 0.979 0.968 0.980 0.946 0.999 0.916 1.000 0.953
-0.2 0.958 0.960 0.960 0.984 0.983 0.984 0.969 0.999 0.966 1.000 0.982
-0.1 0.958 0.960 0.959 0.990 0.994 0.988 0.985 0.999 0.995 1.000 0.998

0 0.959 0.959 0.959 0.996 1.000 0.993 0.995 0.999 1.005 1.000 1.003
0.1 0.959 0.959 0.958 1.002 1.002 0.997 0.998 0.999 0.995 1.001 0.997
0.2 0.959 0.959 0.958 1.008 0.999 1.002 0.994 1.000 0.964 1.001 0.981
0.3 0.959 0.959 0.957 1.015 0.991 1.007 0.982 1.000 0.914 1.001 0.951
0.4 0.959 0.959 0.957 1.022 0.980 1.011 0.961 1.000 0.844 1.001 0.906
0.5 0.959 0.958 0.956 1.030 0.966 1.016 0.932 1.000 0.754 1.001 0.842
0.6 0.959 0.958 0.955 1.039 0.950 1.020 0.893 1.001 0.645 1.001 0.754
0.7 0.958 0.957 0.953 1.048 0.932 1.025 0.846 1.001 0.516 1.001 0.635
0.8 0.957 0.956 0.951 1.059 0.919 1.029 0.792 1.001 0.367 1.001 0.478
0.9 0.953 0.951 0.949 1.073 0.913 1.037 0.740 1.002 0.198 1.001 0.274

2 0.972 0.973 0.982 0.995 0.714 0.995 0.774 1.000 0.732 1.000 0.803
6 0.946 0.947 0.968 0.979 0.652 0.989 0.731 0.999 0.727 0.999 0.793

N 200 0.971 0.972 0.981 1.000 0.737 1.003 0.771 1.000 0.729 1.000 0.801

120 0.943 0.944 0.962 1.007 0.759 0.993 0.790 1.000 0.747 1.000 0.809
480 0.968 0.968 0.982 0.978 0.623 0.988 0.704 1.000 0.738 0.999 0.799

0.1 0.653 0.577 0.841 1.136 0.526 1.099 0.641 1.003 0.724 1.000 0.790
0.5 0.943 0.945 0.968 0.991 0.644 0.991 0.685 0.998 0.726 1.000 0.788
0.9 0.978 0.979 0.984 1.023 0.864 1.014 0.846 1.000 0.724 1.001 0.785

RMSE for FT-1 RMSE for FT RMSE for x T-1 RMSE for x T

TABLE 2

Q

γ n

T

β

Sensitivity analysis

Note: The relative Mean Squared Error (RMSE) is computed vis-à-vis the specification (B = 0, P = 0).

R 2



(B = 0, P = 0) (B = 0, P = 1) (B ≠ 0, P = 1) (B = 0, P = 1) (B ≠ 0, P = 1) (B = 0, P = 1) (B ≠ 0, P = 1) (B = 0, P = 1) (B ≠ 0, P = 1) (B = 0, P = 1) (B ≠ 0, P = 1)

0.0 0.968 0.967 0.984 1.001 0.629 1.002 0.697 1.000 0.730 1.000 0.793
0.3 0.964 0.964 0.980 1.004 0.664 1.004 0.717 1.000 0.731 1.001 0.793
0.5 0.960 0.961 0.976 1.001 0.701 0.998 0.736 1.000 0.731 1.001 0.793
0.7 0.950 0.952 0.965 0.990 0.763 0.980 0.770 0.999 0.731 1.000 0.793
0.9 0.901 0.906 0.916 0.980 0.896 0.950 0.859 0.995 0.730 0.994 0.791

10 & 10 0.959 0.960 0.975 1.000 0.695 0.997 0.779 0.999 0.741 1.001 0.793
35 & 35 0.959 0.959 0.974 0.995 0.722 0.986 0.732 0.999 0.732 1.000 0.815

S 1 0.958 0.958 0.972 1.012 0.756 0.980 0.703 1.000 0.740 0.998 0.802

2 0.971 0.968 0.982 1.077 0.710 1.052 0.777 0.991 0.736 0.990 0.804
6 0.671 0.671 0.678 1.004 0.996 1.000 0.972 1.002 0.790 1.001 0.845

AR(2) 0.959 0.960 0.981 1.003 0.534 0.989 0.574 1.000 0.612 0.999 0.692
MA(1) 0.959 0.959 0.968 0.996 0.857 0.995 0.896 1.000 0.876 1.001 0.943

δ 0.5 0.958 0.959 0.974 0.998 0.696 0.989 0.735 0.999 0.730 1.000 0.796

ρ 0.5 0.957 0.958 0.967 0.996 0.818 0.993 0.852 0.999 0.838 1.000 0.873

S 1 0.674 0.680 0.679 0.993 1.003 1.089 1.086 0.996 0.824 1.000 0.880

γn = 0.1 0.379 0.369 0.461 1.007 0.878 1.006 0.882 1.000 0.748 0.999 0.809

Q = 4 γn = 0.5 0.514 0.514 0.517 1.001 0.986 0.992 0.984 1.001 0.826 0.998 0.877

γn = 0.9 0.527 0.526 0.521 0.994 0.993 0.994 0.995 0.999 0.792 0.997 0.875

γn = 0.1 0.399 0.289 0.565 1.152 0.739 1.103 0.812 1.000 0.740 0.997 0.803

Q = 6 γn = 0.5 0.663 0.664 0.677 0.990 0.966 0.996 0.963 1.000 0.799 1.000 0.855
γn = 0.9 0.691 0.691 0.688 0.994 1.022 1.005 1.008 0.995 0.816 1.002 0.882

TABLE 2 (continued)

Note: The relative Mean Squared Error (RMSE) is computed vis-à-vis the specification (B = 0, P = 0).

Q

v t

A 1

Missing

Sensitivity analysis
R 2

RMSE for FT-1 RMSE for FT RMSE for x T-1 RMSE for x T
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