

Banco de Portugal EUROSISTEMA

Estudos e Documentos de Trabalho

Working Papers

7 | 2009

LOCAL IDENTIFICATION IN DSGE MODELS

Nikolay Iskrev

April 2009

The analyses, opinions and findings of these papers represent the views of the authors, they are not necessarily those of the Banco de Portugal or the Eurosystem.

Please address correspondence to Nikolay Iskrev Economics and Research Department Banco de Portugal, Av. Almirante Reis no. 71, 1150-012 Lisboa, Portugal; Tel.: 351 21 313 0006, Email: Nikolay.Iskrev@bportugal.pt

BANCO DE PORTUGAL

Edition

Economics and Research Department Av. Almirante Reis, 71-6th 1150-012 Lisboa www.bportugal.pt

Pre-press and Distribution

Administrative Services Department Documentation, Editing and Museum Division Editing and Publishing Unit Av. Almirante Reis, 71-2nd 1150-012 Lisboa

Printing

Administrative Services Department Logistics Division

Lisbon, April 2009

Number of copies

170

ISBN 978-989-8061-74-4 ISSN 0870-0117 Legal Deposit No 3664/83

Local Identification in DSGE Models

Nikolay Iskrev Banco de Portugal

April, 2009

Abstract

The issue of parameter identification arises whenever structural models are estimated. This paper develops a simple condition for local identification in linearized DSGE models. The condition is necessary and sufficient for identification with likelihood-based methods under normality, or with limited information methods that utilize only second moments of the data. Using the methodology developed in the paper researchers can answer, prior to estimation, the following questions: which parameters are locally identified and which are not; is the identification failure due to data limitations, such as a lack of observations for some variables, or is it intrinsic to the structure of the model.

Keywords: DSGE models, Identification JEL classification: C32, C51, C52, E32

Contact Information: Banco de Portugal, Av. Almirante Reis 71, 1150-012, Lisboa, Portugal e-mail: Nikolay.Iskrev@bportugal.pt; phone:+351 213130006

1 Introduction

Structural macroeconomic models are one of the important tools available to economic policy-makers. However, insofar as the quantitative implications of the models are of interest, it is crucial that the inputs to the models - their parameter values, have empirical credibility. This has prompted a very active research effort aimed at the estimation and empirical evaluation of dynamic stochastic general equilibrium (DSGE) models.

The empirical implications of DSGE models come from the restrictions they impose on the joint probability distribution of observed macroeconomic variables. Both full information methods, which use all of the restrictions, and limited information methods, which use only some of them, are applied in the literature to estimate the parameters of DSGE models. Whether estimation is possible in the first place is typically assumed and not verified formally. Examples of unidentified DSGE models can be found in Kim (2003), Beyer and Farmer (2004) and Cochrane (2007). While it has been recognized that the lack of identification is potentially a serious problem, the issue is rarely addressed in the empirical literature. This is partly due to the widespread use of Bayesian methods, which, as Canova and Sala (2009) point out, may serve to conceal identification problems when they exist. Another reason is that few models allow for direct verification of identifiability, as in the studies cited above. Larger models can only be solved numerically, thus making it impossible to derive explicitly the relationship between the deep parameters and the statistical model used to estimate them. As a result it appears that parameter identification can only be assessed indirectly and with the heavy use of numerical methods.

This paper presents a rank condition for local identification of the parameters in DSGE models. It is based on the observation that for local identification we only need the Jacobian matrix of the mapping from deep parameters to the parameters of the statistical model. Taking the latter to be the second moments of the observed data, I show that the Jacobian matrix can be derived analytically. The matrix having full rank is a necessary and sufficient condition for local identification when estimation is based on the second moments. Thus, the condition applies to likelihood-based estimation under normality, where information from all available second moments is used, as well as to limited information methods that utilize only some of the second moments. Examples of the latter approach include minimum distance estimation matching vector autoregression (VAR) parameters or impulse response coefficients.

Local identification by itself does not guarantee that a model is globally identified. Thus, even if the rank condition holds and the model is locally identified, there may exist multiple observationally equivalent model structures that cannot be distinguished with any amount of data. Unfortunately, it is generally impossible to establish global identification in non-linear models. Nevertheless, it is important to know if a model is locally identified for the following two reasons. First, local identification is sufficient for the asymptotic properties of classical estimators to hold (see Florens, Marimoutou, and Péguin-Feissolle (2008)). Second, parameters that are globally unidentifiable everywhere in the parameter space, either because they do not appear in the likelihood function at all, or are indistinguishable from other parameters, are also locally unidentifiable. Problems of this nature are the most common cause for identification failures in DSGE models, including all of the examples mentioned above, and can be detected using the conditions developed in this paper.

An alternative approach for checking local identification in DSGE models, using the Fisher information matrix, was suggested in Iskrev (2008a). One advantage of the method proposed in this paper is that it is much easier to implement in practice. Furthermore, it applies to identification with limited as well as full information methods, unlike the information matrix approach which provides only a necessary condition for identification when limited information methods are used.

The remainder of the paper is organized as follows. In Section 2, I introduce the class of linearized DSGE models and the notation used throughout the paper. I also explain the relationship between the deep parameters and the statistical model used to identify them. The main result of the paper is in Section 3, where I present the rank condition for local identification and show that it can be evaluated analytically. I also discuss limitations of the data vs. purely model-related reasons for identification failures, and show how to distinguish between the two. In Section 4, I extend the rank condition to a limited information setting, and to estimation methods based on transformations of the second moments. The methodology is illustrated, in Section 5, with the help of a medium-scale DSGE model estimated by Smets and Wouters (2007). Concluding comments are given in Section 6.

2 DSGE Models

2.1 Structural model and reduced form

A DSGE model is summarized by a system of non-linear equations. Currently, most studies involving either simulation or estimation of DSGE models use linear approximations of the original models. That is, the model is first expressed in terms of stationary variables, and then linearized around the steady-state values of these variables. Once linearized, most DSGE models can be written in the following form:

$$\boldsymbol{\Gamma}_{0}(\boldsymbol{\theta})\boldsymbol{z}_{t} = \boldsymbol{\Gamma}_{1}(\boldsymbol{\theta}) \operatorname{E}_{t} \boldsymbol{z}_{t+1} + \boldsymbol{\Gamma}_{2}(\boldsymbol{\theta})\boldsymbol{z}_{t-1} + \boldsymbol{\Gamma}_{3}(\boldsymbol{\theta})\boldsymbol{u}_{t}$$
(2.1)

where \boldsymbol{z}_t is a *m*-dimensional vector of endogenous variables, and the structural shocks \boldsymbol{u}_t are independent and identically distributed *n*-dimensional random vectors with $\mathbf{E} \, \boldsymbol{u}_t = \boldsymbol{0}, \quad \mathbf{E} \, \boldsymbol{u}_t \boldsymbol{u}_t' = I_n$. The elements of the matrices $\boldsymbol{\Gamma}_0, \quad \boldsymbol{\Gamma}_1, \quad \boldsymbol{\Gamma}_2$ and $\boldsymbol{\Gamma}_3$ are functions of a *k*-dimensional vector of deep parameters $\boldsymbol{\theta}$, where $\boldsymbol{\theta}$ is a point in $\boldsymbol{\Theta} \subset \mathbb{R}^k$. The parameter space $\boldsymbol{\Theta}$ is defined as the set of all theoretically admissible values of $\boldsymbol{\theta}$.

There are several algorithms for solving linear rational expectations models (see

for instance Blanchard and Kahn (1980), Anderson and Moore (1985), Klein (2000), Christiano (2002), Sims (2002)). Depending on the value of $\boldsymbol{\theta}$, there may exist zero, one, or many stable solutions. Assuming that a unique solution exists, it can be cast in the following form

$$\boldsymbol{z}_t = \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{z}_{t-1} + \boldsymbol{B}(\boldsymbol{\theta})\boldsymbol{u}_t \tag{2.2}$$

where the $m \times m$ matrix **A** and the $m \times n$ matrix **B** are unique for each value of θ .

The model in (2.2) cannot be taken to the data directly since some of the variables in z_t are not observed. Instead, the solution of the model is expressed in a state space form, with transition equation given by (2.2), and a measurement equation

$$\boldsymbol{x}_t = \boldsymbol{C}(\boldsymbol{\theta}) \boldsymbol{z}_t \tag{2.3}$$

where \boldsymbol{x}_t is a *l*-dimensional vector of observed variables, and \boldsymbol{C} is a $l \times m$ matrix, that may depend on $\boldsymbol{\theta}$.

Let $\Omega(\theta) = B(\theta)B(\theta)'$, and $\tau = [\operatorname{vec}(A)', \operatorname{vec}(C)', \operatorname{vech}(\Omega)']'$. To solve the linearized DSGE model in (2.1) means to find τ given a value of θ .

2.2 Covariance structure

From (2.2)-(2.3) it follows that the unconditional first and second moments of \boldsymbol{x}_t are given by

$$\mathbf{E} \boldsymbol{x}_t = \boldsymbol{0} \tag{2.4}$$

$$\mathbf{E} \boldsymbol{x}_{t+i} \boldsymbol{x}_t' = \Sigma_{\boldsymbol{x}}(i) \tag{2.5}$$

where¹

$$\Sigma_{\boldsymbol{x}}(i) = \begin{cases} \boldsymbol{C}\Sigma_{\boldsymbol{z}}(0)\boldsymbol{C}' & \text{if } i = 0\\ \boldsymbol{C}\boldsymbol{A}^{i}\Sigma_{\boldsymbol{z}}(0)\boldsymbol{C}' & \text{if } i > 0 \end{cases}$$
(2.6)

and $\Sigma_{\boldsymbol{z}}(0) = \mathbf{E} \, \boldsymbol{z}_t \boldsymbol{z}_t'$ solves the matrix equation

$$\Sigma_{\boldsymbol{z}}(0) = \boldsymbol{A}\Sigma_{\boldsymbol{z}}(0)\boldsymbol{A}' + \boldsymbol{\Omega}$$
(2.7)

¹Notice that $\Sigma_{\boldsymbol{x}}(-i) = \Sigma_{\boldsymbol{x}}(i)'$.

Denote the observed data with $X_T = [x'_1, \ldots, x'_T]'$, and let Σ_T be its covariance matrix, i.e.

$$\Sigma_{T} = E X_{T} X_{T}'$$

$$= \begin{pmatrix} \Sigma_{\boldsymbol{x}}(0), & \Sigma_{\boldsymbol{x}}(1)', & \dots, & \Sigma_{\boldsymbol{x}}(T-1)' \\ \Sigma_{\boldsymbol{x}}(1), & \Sigma_{\boldsymbol{x}}(0), & \dots, & \Sigma_{\boldsymbol{x}}(T-2)' \\ \dots & \dots & \dots & \dots \\ \Sigma_{\boldsymbol{x}}(T-1), & \Sigma_{\boldsymbol{x}}(T-2), & \dots, & \Sigma_{\boldsymbol{x}}(0) \end{pmatrix}$$
(2.8)

Assuming that the linearized DSGE model is determined everywhere in $\boldsymbol{\Theta}$, i.e. $\boldsymbol{\tau}$ is unique for each admissible value of $\boldsymbol{\theta}$, it follows that there exists a one-to-one relationship between the structural parameters $\boldsymbol{\theta}$ and the second moments of the data $\boldsymbol{\Sigma}_T$. In particular, if $\boldsymbol{\sigma}_T = [\operatorname{vech}(\boldsymbol{\Sigma}_{\boldsymbol{x}}(0))', \operatorname{vec}(\boldsymbol{\Sigma}_{\boldsymbol{x}}(1))', \dots, \operatorname{vec}(\boldsymbol{\Sigma}_{\boldsymbol{x}}(T-1))']'$ is a $(T-1)l^2 + l(l-1)/2$ -dimensional vector collecting the unique elements of $\boldsymbol{\Sigma}_T$, then $\boldsymbol{\sigma}_T$ is a function of $\boldsymbol{\theta}$. If either \boldsymbol{u}_t are Gaussian, or there are no distributional assumptions about the structural shocks, the model-implied restrictions on $\boldsymbol{\sigma}_T$ contain all information that can be used for the estimation of $\boldsymbol{\theta}$. The identifiability of $\boldsymbol{\theta}$ depends on whether the information is sufficient or not. This is the subject of the next section.

3 Identification

3.1 The rank condition

In a fully parametric setting a model is identified if different parameter values are associated with different probability distributions of the observed data. If the distribution is unknown and estimation is based on some statistics of the data, the model is identified by the estimation method if different parameter values imply different values of the population counterparts of the utilized statistics. Here I assume that the estimation of $\boldsymbol{\theta}$ is based on the second moments of the data collected in the vector $\boldsymbol{\sigma}_T$. Extending the analysis to functions of $\boldsymbol{\sigma}_T$ is straightforward, and will be discussed later.

Definition. Suppose that the data X_T is generated by the model (2.2)-(2.3) with parameter vector $\boldsymbol{\theta}_0$. Then $\boldsymbol{\theta}_0$ is globally identified by the second moments of X_T if and only if

$$\boldsymbol{\sigma}_T(\boldsymbol{\theta}) = \boldsymbol{\sigma}_T(\boldsymbol{\theta}_0) \Leftrightarrow \boldsymbol{\theta} = \boldsymbol{\theta}_0 \tag{3.1}$$

for any $\theta \in \Theta$. If (3.1) is true only for values θ in an open neighborhood of θ_0 , the identification of θ_0 is only local.

Identifiability of the parameters $\boldsymbol{\theta}$ requires that the mapping from the population moments of the data - $\boldsymbol{\sigma}_T(\boldsymbol{\theta})$, to $\boldsymbol{\theta}$ is unique. If this is not the case, there exist different values of $\boldsymbol{\theta}$ that result in the same value of the population moments, and the true value of $\boldsymbol{\theta}$ cannot be determined even with an infinite number of observations. In general, there are no known global conditions for unique solutions of systems of non-linear equations, and it is therefore difficult to show global identification of θ . Local identification, on the other hand, can be established with the help of the following condition

Theorem. Suppose that σ_T is a continuously differentiable function of $\boldsymbol{\theta}$, and let $\boldsymbol{\theta}_0$ be a regular point of the Jacobian matrix $J(T) \equiv \frac{\partial \sigma_T}{\partial \boldsymbol{\theta}'}$. Then $\boldsymbol{\theta}_0$ is locally identifiable if and only if J(T) has a full column rank at $\boldsymbol{\theta}_0$.

This result follows from Theorem 6 in Rothenberg (1971). A regular point of a matrix is a point around which there exists an open neighborhood where the rank of the matrix remains constant. For Jacobian matrices of analytic functions the set of irregular points has a measure of zero, and thus almost all points are regular (see Bekker and Pollock (1986)). Without this assumption the condition is only sufficient for local identification.

A necessary condition for identification is that the number of deep parameters does not exceed the number of unique parameters in the utilized second moments, i.e. $k \leq (T-1)l^2 + l(l-1)/2$. This is the usual order condition. A stronger necessary condition for identification will be presented in the next section.

The local identifiability of a point θ_0 can be established by verifying that the Jacobian matrix J(T) has full column rank when evaluated at θ_0 . Local identification at one point in $\boldsymbol{\Theta}$, however, does not guarantee that the model is locally identified everywhere in the parameter space. There may be some points where the model is locally identified, and others where it is not. Moreover, local identifiability everywhere in $\boldsymbol{\Theta}$ is necessary but not sufficient to ensure global identification. Nevertheless, as was pointed out already in Section 1, it is important to know whether a model is locally identified or not. Local identification makes possible the consistent estimation of θ , and is sufficient for the estimator to have the usual asymptotic properties. Perhaps more important in the context of DSGE models is that with the help of the Jacobian matrix we can detect problems that are a common cause for identification failures in these models. If, for instance, a deep parameter θ_j does not affect the solution of the model, it will be unidentifiable since its value is irrelevant for the statistical properties of the data generated by the model, and the second moments in particular. Consequently, $\frac{\partial \boldsymbol{\sigma}_T}{\partial \theta_i}$ the column of J(T) corresponding to θ_i , will be a vector of zeros for any T. Not only will the condition for local identification fail, but also it will be immediately clear which parameter is unidentified. Another type of identification failure occurs when two or more parameters enter in the solution in a manner which makes them indistinguishable, e.g. as a product or a ratio. As a result it is impossible to identify the parameters separately, and some of the columns of the Jacobian matrix are linearly dependent. An example of the first problem is the unidentifiability of the Taylor rule coefficients in a simple New Keynesian model pointed out in Cochrane (2007). An example of the second is the equivalence between the intertemporal and multisectoral investment adjustment cost parameters in Kim (2003). In these papers the problems are discovered by solving the models explicitly in terms of the deep parameters. That approach, however, is not feasible for larger models, which can only be solved numerically. As will be shown next, the Jacobian matrix in Theorem 3.1 is very easy to compute irrespectively of the size of the model.

3.2 Computing the Jacobian matrix

Even when linearized DSGE models are typically impossible to solve analytically. This means that the mapping from $\boldsymbol{\theta}$ to $\boldsymbol{\tau}$ is not available in closed form. Since $\boldsymbol{\sigma}_T$ depends on $\boldsymbol{\theta}$ through $\boldsymbol{\tau}$, computing the Jacobian matrix by direct differentiation of $\boldsymbol{\sigma}_T$ can only be done by using numerical derivatives. Because of the strong nonlinearities involved, this may result in a very poor approximation of the true Jacobian matrix.

The use of numerical approximation can be avoided if J(T) is computed using the chain rule, i.e.

$$J(T) = \frac{\partial \boldsymbol{\sigma}_T}{\underbrace{\partial \boldsymbol{\tau}'}_{J_1(T)}, \underbrace{\partial \boldsymbol{\theta}'}_{J_2}}$$
(3.2)

Below I show that the two terms on the right-hand side in (3.2) can be computed analytically. In the derivations I use matrix derivative methods (see Magnus and Neudecker (1999) for more details), and the special matrices K_{mn} , D_n , and D_n^+ , with the following properties

$$\mathbf{K}_{mn} \operatorname{vec}(\mathbf{A}) = \operatorname{vec}(\mathbf{A}'), \text{ where } \mathbf{A} \text{ is } m \times n \text{ matrix}$$
 (3.3)

$$\boldsymbol{D}_n \operatorname{vech}(\boldsymbol{A}) = \operatorname{vec}(\boldsymbol{A}), \text{ where } \boldsymbol{A} \text{ is a symmetric } n \times n \text{ matrix}$$
(3.4)

$$D_n^+ \operatorname{vec}(A) = \operatorname{vech}(A)$$
, where A is a symmetric $n \times n$ matrix (3.5)

 K_{mn} is called the commutation matrix, and D_n - the duplication matrix. D_n^+ is the Moore-Penroze inverse of D_n . More about the properties of these matrices can be found in Magnus and Neudecker (1999).

3.2.1 Derivation of $J_1(T)$

The derivation of $J_1(T)$ is straightforward since from (2.6) and (2.7) we have each element of $\boldsymbol{\sigma}_T = [\operatorname{vech}(\Sigma_x(0))', \operatorname{vec}(\Sigma(1))', \dots, \operatorname{vec}(\Sigma(T-1))']'$ in terms of $\boldsymbol{A}(\boldsymbol{\tau}), \boldsymbol{C}(\boldsymbol{\tau}),$ and $\boldsymbol{\Omega}(\boldsymbol{\tau})$. To simplify the presentation, the blocks of J_1 are derived separately as follows:

• for $\Sigma_{\boldsymbol{x}}(0)$ we have

$$\frac{\partial \operatorname{vech}(\Sigma_{\boldsymbol{x}}(0))}{\partial \boldsymbol{\tau}'} = \boldsymbol{D}_{l}^{+} \left(\left(\boldsymbol{C} \Sigma_{\boldsymbol{z}}(0) \otimes \boldsymbol{I}_{l} \right) + \left(\boldsymbol{I}_{l} \otimes \boldsymbol{C} \Sigma_{\boldsymbol{z}}(0) \right) \boldsymbol{K}_{lm} \right) \frac{\partial \operatorname{vec}(\boldsymbol{C})}{\partial \boldsymbol{\tau}'} \quad (3.6)$$
$$+ \boldsymbol{D}_{l}^{+} (\boldsymbol{C} \otimes \boldsymbol{C}) \boldsymbol{D}_{m} \frac{\partial \operatorname{vech}(\Sigma_{\boldsymbol{z}}(0))}{\partial \boldsymbol{\tau}'}$$

• for $i = 1, \ldots, T - 1$ the derivative of $\Sigma_{\boldsymbol{x}}(i)$ is

$$\frac{\partial \operatorname{vec}(\Sigma_{\boldsymbol{x}}(i))}{\partial \boldsymbol{\tau}'} = \left(\left(\boldsymbol{C} \Sigma_{\boldsymbol{z}}(0) \boldsymbol{A}^{i\prime} \otimes \boldsymbol{I}_{l} \right) + \left(\boldsymbol{I}_{l} \otimes \boldsymbol{C} \boldsymbol{A}^{i} \Sigma_{\boldsymbol{z}}(0) \right) \boldsymbol{K}_{lm} \right) \frac{\partial \operatorname{vec}(\boldsymbol{C})}{\partial \boldsymbol{\tau}'}$$

$$+ \left(\boldsymbol{C} \Sigma_{\boldsymbol{z}}(0) \otimes \boldsymbol{C} \right) \left(\sum_{s=1}^{i} (\boldsymbol{A}')^{i-s} \otimes \boldsymbol{A}^{s-1} \right) \frac{\partial \operatorname{vec}(\boldsymbol{A})}{\partial \boldsymbol{\tau}'} + (\boldsymbol{C} \otimes \boldsymbol{C} \boldsymbol{A}^{i}) \boldsymbol{D}_{m} \frac{\partial \operatorname{vech}(\Sigma_{\boldsymbol{z}}(0))}{\partial \boldsymbol{\tau}'}$$
(3.7)

• finally, the derivative of vech($\Sigma_{z}(0)$) used in (3.6) and (3.7) is

$$\frac{\partial \operatorname{vech}(\Sigma_{\boldsymbol{z}}(0))}{\partial \boldsymbol{\tau}'} = \left(\boldsymbol{I}_{\frac{m(m+1)}{2}} - \boldsymbol{D}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A})\boldsymbol{D}_{m}\right)^{-1} \left(\left(\boldsymbol{D}_{m}^{+}(\boldsymbol{A} \Sigma_{\boldsymbol{z}}(0) \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A})\boldsymbol{D}_{m}\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A})\boldsymbol{D}_{m}\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A})\boldsymbol{I}_{m}\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A})\boldsymbol{I}_{m}\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A})\boldsymbol{I}_{m}\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{I}_{m} \otimes \boldsymbol{A} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m})\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{I}_{m} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m})\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{I}_{m} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m})\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{I}_{m} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m})\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{I}_{m} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m}) - \boldsymbol{I}_{m}^{+}(\boldsymbol{I}_{m} \otimes \boldsymbol{I}_{m})\right)^{-1} \left(\boldsymbol{I}_{m}^{+}(\boldsymbol{I}_{m} \otimes \boldsymbol{I$$

Details on the derivation of (3.7)-(3.8) are provided in the Appendix. Obviously, when C contains only constants $\frac{\partial C}{\partial \tau}$ is zero, and the first term on the right-hand side of (3.6) and (3.7) disappears.

3.2.2 Derivation of J_2

The derivative J_2 can be computed using the implicit function theorem as in Iskrev (2008a). An implicit function, with $\boldsymbol{\theta}$ and $\boldsymbol{\tau}$ as arguments, is provided by the restrictions the structural model (2.1) imposes on the reduced form (2.2). In particular, from (2.2) we have $E_t \boldsymbol{z}_{t+1} = \boldsymbol{A} \boldsymbol{z}_t$, and substituting in (2.1) yields:

$$(\boldsymbol{\Gamma}_0 - \boldsymbol{\Gamma}_1 \boldsymbol{A})\boldsymbol{z}_t = \boldsymbol{\Gamma}_2 \boldsymbol{z}_{t-1} + \boldsymbol{\Gamma}_3 \boldsymbol{u}_t$$
(3.9)

Combining the last equation with equation (2.2) gives to the following two matrix equations:

$$\boldsymbol{F}_{1}(\boldsymbol{\theta},\boldsymbol{\tau}) = \left(\boldsymbol{\Gamma}_{0}(\boldsymbol{\theta}) - \boldsymbol{\Gamma}_{1}(\boldsymbol{\theta})\boldsymbol{A}(\boldsymbol{\tau})\right)\boldsymbol{A}(\boldsymbol{\tau}) - \boldsymbol{\Gamma}_{2}(\boldsymbol{\theta}) = \boldsymbol{O}$$
(3.10)

$$\boldsymbol{F}_{2}(\boldsymbol{\theta},\boldsymbol{\tau}) = \left(\boldsymbol{\Gamma}_{0}(\boldsymbol{\theta}) - \boldsymbol{\Gamma}_{1}(\boldsymbol{\theta})\boldsymbol{A}(\boldsymbol{\tau})\right)\boldsymbol{\Omega}(\boldsymbol{\tau})\left(\boldsymbol{\Gamma}_{0}(\boldsymbol{\theta}) - \boldsymbol{\Gamma}_{1}\boldsymbol{A}(\boldsymbol{\tau})\right)' - \boldsymbol{\Gamma}_{3}(\boldsymbol{\theta})\boldsymbol{\Gamma}_{3}(\boldsymbol{\theta})' = \boldsymbol{O} \quad (3.11)$$

The system (3.10) - (3.11) is an implicit function with $\boldsymbol{\theta}$ and $\boldsymbol{\tau}$ as arguments. A third equation must be added if \boldsymbol{C} in the measurement equation (2.3) is also a function of $\boldsymbol{\theta}$. When this is the case, the functional form of the mapping from $\boldsymbol{\theta}$ to the elements of \boldsymbol{C} is known, and the third equation is of the form $\boldsymbol{F}_3(\boldsymbol{\theta}, \boldsymbol{\tau}) := \boldsymbol{C}(\boldsymbol{\tau}) - \boldsymbol{C}(\boldsymbol{\theta}) = \mathbf{O}.^2$

Let
$$f(\theta, \tau) := [\operatorname{vec}(F_1)', \operatorname{vech}(F_2)', \operatorname{vec}(F_3)']'$$
. Applying the implicit function theo-

²It is usually possible to express the reduced form model so that C is a constant matrix of ones and zeros only.

rem, we have:

$$\frac{\partial \boldsymbol{\tau}}{\partial \boldsymbol{\theta}'} = -\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{\tau}'}(\boldsymbol{\theta}, \boldsymbol{\tau}(\boldsymbol{\theta}))\right)^{-1} \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{\theta}'}(\boldsymbol{\theta}, \boldsymbol{\tau}(\boldsymbol{\theta}))$$
(3.12)

Hence, to compute $\frac{\partial \boldsymbol{\tau}}{\partial \boldsymbol{\theta}'}$ we need the derivatives of the elements of \boldsymbol{f} : vec (\boldsymbol{F}_1) , vech (\boldsymbol{F}_2) and vec (\boldsymbol{F}_3) , with respect to $\boldsymbol{\tau}$ and $\boldsymbol{\theta}$. From (3.10), the derivatives of vec (\boldsymbol{F}_1) are

$$\frac{\partial \operatorname{vec}(\boldsymbol{F}_1)}{\partial \boldsymbol{\tau}'} = \left(\boldsymbol{I}_m \otimes \boldsymbol{\Gamma}_0 - \boldsymbol{A}' \otimes \boldsymbol{\Gamma}_1 - \boldsymbol{I}_m \otimes \boldsymbol{\Gamma}_1 \boldsymbol{A}\right) \frac{\partial \operatorname{vec}(\boldsymbol{A})}{\partial \boldsymbol{\tau}'}$$
(3.13)

and

$$\frac{\partial \operatorname{vec}(\boldsymbol{F}_1)}{\partial \boldsymbol{\theta}'} = \left(\boldsymbol{A}' \otimes \boldsymbol{I}_m\right) \frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_0)}{\partial \boldsymbol{\theta}'} - \left(\boldsymbol{A}'^2 \otimes \boldsymbol{I}_m\right) \frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_1)}{\partial \boldsymbol{\theta}'} - \frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_2)}{\partial \boldsymbol{\theta}'} \tag{3.14}$$

Similarly, from (3.11), the derivatives of $vec(\mathbf{F}_2)$ are

$$\frac{\partial \operatorname{vech}(\boldsymbol{F}_{2})}{\partial \boldsymbol{\tau}'} = \boldsymbol{D}_{m}^{+} \left(\boldsymbol{\Gamma}_{0} \otimes \left(\boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}_{1} \boldsymbol{A} \right) - \boldsymbol{\Gamma}_{1} \boldsymbol{A} \otimes \left(\boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}_{1} \boldsymbol{A} \right) \right) \boldsymbol{D}_{n} \frac{\partial \operatorname{vech}(\boldsymbol{\Omega})}{\partial \boldsymbol{\tau}'} \quad (3.15)$$
$$- \boldsymbol{D}_{m}^{+} \left(\left(\boldsymbol{\Gamma}_{0} \boldsymbol{\Omega} - \boldsymbol{\Gamma}_{1} \boldsymbol{A} \boldsymbol{\Omega} \right) \otimes \boldsymbol{\Gamma}_{1} + \left(\boldsymbol{\Gamma}_{1} \otimes \boldsymbol{\Gamma}_{0} \boldsymbol{\Omega} - \boldsymbol{\Gamma}_{1} \otimes \boldsymbol{\Gamma}_{1} \boldsymbol{A} \boldsymbol{\Omega} \right) \boldsymbol{K}_{mm} \right) \frac{\partial \operatorname{vec}(\boldsymbol{A})}{\partial \boldsymbol{\tau}'}$$

and

$$\frac{\partial \operatorname{vech}(\boldsymbol{F}_{2})}{\partial \boldsymbol{\theta}'} = \boldsymbol{D}_{m}^{+} \left(\left(\boldsymbol{\Gamma}_{0} \boldsymbol{\Omega} - \boldsymbol{\Gamma}_{1} \boldsymbol{A} \boldsymbol{\Omega} \right) \otimes \boldsymbol{I}_{m} + \left(\boldsymbol{I}_{m} \otimes \boldsymbol{\Gamma}_{0} \boldsymbol{\Omega} - \boldsymbol{I}_{m} \otimes \boldsymbol{\Gamma}_{1} \boldsymbol{A} \boldsymbol{\Omega} \right) \boldsymbol{K}_{mm} \right) \frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_{0})}{\partial \boldsymbol{\theta}'} \\ - \boldsymbol{D}_{m}^{+} \left(\left(\boldsymbol{\Gamma}_{0} \boldsymbol{\Omega} \boldsymbol{A}' - \boldsymbol{\Gamma}_{1} \boldsymbol{A} \boldsymbol{\Omega} \boldsymbol{A}' \right) \otimes \boldsymbol{I}_{m} + \left(\boldsymbol{I}_{m} \otimes \boldsymbol{\Gamma}_{0} \boldsymbol{\Omega} \boldsymbol{A}' - \boldsymbol{I}_{m} \otimes \boldsymbol{\Gamma}_{1} \boldsymbol{A} \boldsymbol{\Omega} \boldsymbol{A}' \right) \boldsymbol{K}_{mm} \right) \frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_{1})}{\partial \boldsymbol{\theta}'} \\ - \boldsymbol{D}_{m}^{+} \left(\boldsymbol{\Gamma}_{3} \otimes \boldsymbol{I}_{m} + \left(\boldsymbol{I}_{m} \otimes \boldsymbol{\Gamma}_{3} \right) \boldsymbol{K}_{mn} \right) \frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_{3})}{\partial \boldsymbol{\theta}'}$$
(3.16)

Finally, if C is not constant, we also need $\frac{\partial \operatorname{vec}(F_3)}{\partial \tau'} = \frac{\partial \operatorname{vec}(C)}{\partial \tau'}$, and $\frac{\partial \operatorname{vec}(F_3)}{\partial \theta'} = \frac{\partial \operatorname{vec}(C)}{\partial \theta'}$, which are straightforward to compute. More details on the derivation of (3.13)-(3.16) are provided in the Appendix.

The formulas in (3.8)-(3.7) and (3.13)-(3.16) reveal that in order to derive the Jacobian matrix J(T) one needs seven matrix derivatives: of \mathbf{A}, \mathbf{C} and $\mathbf{\Omega}$ with respect to $\boldsymbol{\tau}$, and of $\{\mathbf{\Gamma}_i\}_{i=0}^3$ with respect to $\boldsymbol{\theta}$. These derivatives are very easy to compute since the dependence of the reduced-form matrices on $\boldsymbol{\tau}$, and of the structural coefficient matrices on $\boldsymbol{\theta}$, is known from the canonical representation of the linearized model.³ Thus, although the expressions involved in the computation of J(T) are fairly complicated and require the use of software that can handle Kronecker products, the actual differentiation is simple and can be carried out by hand, as I show in the following example.

³In fact, it is easy to see that the derivatives of the reduced-form matrices are model-independent

3.2.3 Example

I use a simple version of the New-Keynesian model to illustrate the computation of the derivatives of the structural coefficient matrices with respect to $\boldsymbol{\theta}$. The log-linearized equilibrium conditions are summarized by the following equations:

$$\pi_t = \frac{\beta}{1+\beta\omega} E_t \pi_{t+1} + \frac{\omega}{1+\beta\omega} \pi_{t-1} + \frac{(1-\psi)(1-\psi\beta)}{\psi(1+\beta\omega)} x_t + \sigma_{\varepsilon} \varepsilon_t \qquad (3.17)$$

$$x_{t} = \frac{1}{1+\lambda} E_{t} x_{t+1} + \frac{\lambda}{1+\lambda} x_{t-1} - \frac{1-\lambda}{(1+\lambda)\nu} (r_{t} - E_{t} \pi_{t+1}) + \sigma_{u} u_{t}$$
(3.18)

$$r_t = (1-\rho)\alpha_{\pi}\pi_t + (1-\rho)\alpha_x x_t + \rho r_{t-1} + \sigma_{\zeta}\zeta_t$$
(3.19)

where π_t is the inflation rate, x_t the output gap, and r_t the nominal interest rate. Equation (3.17) is a hybrid New Keynesian Phillips curve, (3.18) is an IS curve, and (3.19) is the policy rule of the central bank. The vector of deep parameters is $\boldsymbol{\theta} = [\psi, \beta, \omega, \lambda, \nu, \alpha_{\pi}, \alpha_x, \rho, \sigma_{\varepsilon}, \sigma_u, \sigma_{\zeta}]'$. Assuming that the structural shocks ε_t , u_t , and ζ_t are independent white noise processes, the canonical-form matrices are given by

$$\begin{split} \boldsymbol{\varGamma}_{0} &= \begin{bmatrix} 1 & -\frac{(1-\psi)(1-\psi\beta)}{\psi(1+\beta\omega)} & 0\\ 0 & 1 & \frac{1-\lambda}{(1+\lambda)\nu}\\ -(1-\rho)\alpha_{\pi} & -(1-\rho)\alpha_{x} & 1 \end{bmatrix}; \boldsymbol{\varGamma}_{1} = \begin{bmatrix} \frac{\beta}{1+\beta\omega} & 0 & 0\\ \frac{1-\lambda}{(1+\lambda)\nu} & \frac{1}{1+\lambda} & 0\\ 0 & 0 & 0 \end{bmatrix}; \\ \boldsymbol{\varGamma}_{2} &= \begin{bmatrix} \frac{\omega}{1+\beta\omega} & 0 & 0\\ 0 & \frac{\lambda}{1+\lambda} & 0\\ 0 & 0 & \rho \end{bmatrix}; \boldsymbol{\varGamma}_{3} = \begin{bmatrix} \sigma_{\varepsilon} & 0 & 0\\ 0 & \sigma_{u} & 0\\ 0 & 0 & \sigma_{\zeta} \end{bmatrix}; \end{split}$$

Differentiating with respect to $\boldsymbol{\theta}$ yields four 9×11 -dimensional sparse matrices with the following non-zero components (the numbers in parenthesis denote the row and column of the corresponding matrix):

and given by:

$$\begin{aligned} \frac{\partial \operatorname{vec}(\boldsymbol{A})}{\partial \boldsymbol{\tau}'} &= [\boldsymbol{I}_{m^2}, \boldsymbol{O}_{lm \times lm}, \boldsymbol{O}_{\frac{n^2(n+1)^2}{4} \times \frac{n^2(n+1)^2}{4}}] \\ \frac{\partial \operatorname{vec}(\boldsymbol{C})}{\partial \boldsymbol{\tau}'} &= [\boldsymbol{O}_{m^2 \times m^2}, \boldsymbol{I}_{lm}, \boldsymbol{O}_{\frac{n^2(n+1)^2}{4} \times \frac{n^2(n+1)^2}{4}}] \\ \frac{\partial \operatorname{vec}(\boldsymbol{\Omega})}{\partial \boldsymbol{\tau}'} &= [\boldsymbol{O}_{m^2 \times m^2}, \boldsymbol{O}_{lm \times lm}, \boldsymbol{I}_{\frac{n^2(n+1)^2}{4}}] \end{aligned}$$

• for $\frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_0)}{\partial \boldsymbol{\theta}'}$

(3, 6)	$\rho - 1$	(3,8)	$lpha_{\pi}$		
(4, 1)	$\frac{1-\beta\psi^2}{\psi^2(1+\beta\omega)}$	(4, 2)	$\frac{(1-\psi)(\psi+\omega)}{\psi(1+\beta\omega)^2}$	(4, 3)	$\frac{(\psi-1)(\psi\beta-1)}{\psi(1+\beta\omega)^2}$
(6,7)	$\rho - 1$	(6, 8)	α_x		
(8, 4)	$\frac{-2}{\nu(1+\lambda)^2}$	(8, 5)	$\frac{\lambda-1}{\nu^2(1+\lambda)}$		

• for
$$\frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_1)}{\partial \boldsymbol{\theta}'}$$

(1, 2)	$\frac{1}{(1+\beta\omega)^2}$	(1,3)	$\frac{-\beta^2}{(1+\beta\omega)^2}$
(2, 4)	$\frac{-2}{\nu(1+\lambda)^2}$	(2, 5)	$\frac{\lambda - 1}{(1 + \lambda)\nu^2}$
(5, 4)	$\frac{-1}{(1+\lambda)^2}$		

• for $\frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_2)}{\partial \boldsymbol{\theta}'}$

(1, 2)	$\frac{-\omega^2}{(1+\beta\omega)^2}$	(1, 3)	$\frac{1}{(1+\beta\omega)^2}$
(5, 4)	$\frac{1}{(1+\lambda)^2}$		
(9, 8)	1		

• for
$$\frac{\partial \operatorname{vec}(\boldsymbol{\Gamma}_3)}{\partial \boldsymbol{\theta}'}$$

(1, 9)	1
(5, 10)	1
(9, 11)	1

This example shows that the derivatives one needs in order to check the rank condition for identification are very easy to obtain from the canonical matrices of the linearized model. These matrices may be much larger in large-scale DSGE models, but they are rarely much more complicated functions of $\boldsymbol{\theta}$ than what we have in the example above.

3.3 Discussion

It should be emphasized that the conditions for (local) identification, given in Definition 3.1 and Theorem 3.1, involve the true values of the moments and reflect the understanding of identification as a population, not a finite sample issue.⁴ Thus, the question whether a model is identified or not can in principle be addressed prior to confronting the model with a particular set of data. In practice, since the number of points

 $^{^{4}}$ In the words of Koopmans and Reiersøl (1950, p.170) "the study of identifiability proceeds from a hypothetical exact knowledge of the probability distribution of observed variables rather than from a finite sample of observations."

in $\boldsymbol{\Theta}$ is infinite, one can only check the rank condition for some parts of the parameter space. A procedure for doing this, using many random draws from $\boldsymbol{\Theta}$, is described in Section 5.2.

Although the identifiability of θ does not depend on the characteristics of a particular set of observations, it does depend on how many and which of the variables in the model are observed, as well as on the number of available moments. There must be at least as many moments as there are deep parameters, in order to meet the order condition for identification. In general, using more moments may identify a model which is otherwise unidentifiable. Since the number of available moments is limited by the sample size, the latter is one aspect of the data that is relevant for identification. Furthermore, how many and which of the variables in the model are observed, are features of the data that are also relevant for identification. Again, more observed variables is generally better than fewer, although having more variables is not necessarily better than having a smaller number of different variables. For instance, having capital among the observed variables may be more useful for identification in a real business cycle model than observing several endogenous jump variables instead of capital.

One can easily check whether having more data would help with identification. A larger sample size would increase the value of T, and thus the dimension of σ_T . The effect of having additional observed variables can be investigated by changing the dimension of C, the matrix which selects the observed among all model variables (see equation 2.3). For instance, to find out the effect of observing capital on the identification of θ one has to increase the number of rows in C with a vector which has 1 in the position of capital in z_t , and zeros everywhere else.

In some models identification may fail for purely model-related reasons, not because of data limitations. This happens, for instance, if there are parameters that play no role in the equilibrium of the model, or if the effect of a parameter cannot be distinguished from that of other parameters. As was indicated in Section 3, such problems are common in the DSGE literature, and are not always easy to detect by inspecting the equations of a model. The factorization of the Jacobian matrix in equation (3.2) provides a simple method for doing that. Note that the second term, $\frac{\partial \tau}{\partial \theta'}$, captures the effect of perturbations in θ on the parameters characterizing the equilibrium of the model. When this matrix is of less than full column rank some of the parameters are unidentified in the model, and therefore cannot be identified when the model is taken to the data, even if all state variables were observed. This leads to the following corollary to Theorem 1,

Corollary. Let θ_0 be a regular point of the matrix J_2 . Then θ_0 is locally identifiable only if the rank of J_2 at θ is equal to k.

This rank condition is not sufficient for local identification of θ since, unless all state variables are observed, τ is itself not identifiable.⁵ Nevertheless, it is useful to check if the condition holds as a first step in the analysis of identification. As was discussed in

⁵Notice that $\boldsymbol{\tau}^* = [\operatorname{vec}(\boldsymbol{D}\boldsymbol{A}\boldsymbol{D}^{-1})', \operatorname{vec}(\boldsymbol{C}\boldsymbol{D}^{-1})', \operatorname{vech}(\boldsymbol{D}\boldsymbol{\Omega}\boldsymbol{D}')']'$ for arbitrary non-singular matrix \boldsymbol{D} is observationally equivalent to $\boldsymbol{\tau}$.

Section 3, by inspecting the columns of the matrix and the possible linear dependencies among them, one can gain a better understanding of the roles different deep parameters play in the model, and the causes for identification failures. For example, one will find that the columns of J_2 that correspond to the coefficients of the Taylor rule in Cochrane (2007) are zero vectors. In the model of Kim (2003), the columns of J_2 corresponding to the two investment adjustment cost parameters are exactly collinear. In both cases the above rank condition fails for any $\boldsymbol{\theta}$ in the parameter space, indicating a problem in the structure of the respective model.

The discussion so far has focused on the use of the Jacobian matrix to study identification. However, there are other purposes for which the formulas presented above may be useful. For instance, we can use an analytical Jacobian of transformation to construct priors about deep parameters on the basis of beliefs about second moments of the data. This method for eliciting priors for the parameters in DSGE models was developed in Del Negro and Schorfheide (2008) using dummy observations instead of the analytical change of variables. Having analytical derivatives is also very convenient when DSGE models are estimated using gradient-based optimization methods, or when inference is based on the usual first-order approximations. From an economic modeling perspective, one may wish to know the sign and size of the effect of small changes in some deep parameters on properties of the equilibrium outcomes, such as volatility or persistence of some endogenous variables. Such questions can be answered directly by using the expressions for analytical derivatives derived here.

4 Extensions

The main result in the last section, Theorem 3.1, can be extended in two obvious ways. First, instead of the complete covariance matrix of X_T , estimation may be based on a smaller number of second moments. Without loss of generality, assume that the used moments are $\Sigma_{\boldsymbol{x}}(j)$, $j = 1, \ldots, q < T$, and define $\boldsymbol{\sigma}_q$ as before. (Local) Identification of $\boldsymbol{\theta}$ in this limited information setting requires that the mapping from $\boldsymbol{\sigma}_q$ to $\boldsymbol{\theta}$ is (locally) unique. Theorem 3.1 with J(q) instead of J(T) provides a necessary and sufficient condition for local identification in this setting. Moreover, J(q) with $q \leq T$ having full rank is a sufficient condition for identification with full information methods. Thus, finding that J(q) has full rank for some small value of q makes it unnecessary to evaluate J(T), which may be much more computationally expensive.

Second, the statistical model used to identify $\boldsymbol{\theta}$ could be extended to transformations of the second moments of \boldsymbol{X}_T , such as parameters of a finite-order VAR or impulse response coefficients. Such methods are common in the empirical DSGE literature, and it is therefore useful to know how to check for identification in that setting. Suppose that $\boldsymbol{\xi}$ is a *r*-dimensional vector, such that $\boldsymbol{\xi} = \boldsymbol{g}(\boldsymbol{\sigma}_T)$, and the functions $g_1(\boldsymbol{\sigma}_T), \ldots, g_r(\boldsymbol{\sigma}_T)$ are continuously differentiable. Then, in parallel to Theorem 3.1, a necessary and sufficient condition for local identification of $\boldsymbol{\theta}_0 \in \boldsymbol{\Theta}$ is that $\frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{\theta}'}$ has full column rank at $\boldsymbol{\xi}_0 =$ $\boldsymbol{g}(\boldsymbol{\sigma}_T(\boldsymbol{\theta}_0))$. Note that using the chain rule, we have

$$\frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{\theta}'} = \frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{\sigma}_{T'}} \frac{\partial \boldsymbol{\sigma}_{T}}{\partial \boldsymbol{\theta}'} \tag{4.1}$$

The second term in the product on the right-hand side was derived in Section 3.2. To illustrate the derivation of $\frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{\sigma}_{T'}}$, suppose that the statistical model used to estimate $\boldsymbol{\theta}$ is a VAR with p lags, i.e.

$$\boldsymbol{x}_{t} = \sum_{i=1}^{p} \boldsymbol{\varPhi}_{i}^{(p)} \boldsymbol{x}_{t-i} + \boldsymbol{\varepsilon}_{t}^{(p)}$$

$$(4.2)$$

where $\varepsilon_t^{(p)}$ is uncorrelated with $\boldsymbol{x}_{t-i}, i \geq 1$. Let $\boldsymbol{\Phi}^{(p)} := [\boldsymbol{\Phi}_1^{(p)}, \dots, \boldsymbol{\Phi}_p^{(p)}]'$ and $\boldsymbol{\Omega}^{(p)} := \mathbf{E} \boldsymbol{\varepsilon}_t^{(p)} \boldsymbol{\varepsilon}_t^{(p)}$. Then we have

$$\boldsymbol{\xi} = [\operatorname{vec}(\boldsymbol{\varPhi}^{(p)})', \operatorname{vech}(\boldsymbol{\varOmega}^{(p)})']'$$

where $\boldsymbol{\Phi}^{(p)}$ and $\boldsymbol{\Omega}^{(p)}$ are given by

$$\boldsymbol{\Phi}^{(p)} = \begin{bmatrix} \Sigma_{\boldsymbol{x}}(0) & \Sigma_{\boldsymbol{x}}(1) & \dots & \Sigma_{\boldsymbol{x}}(p-1) \\ \Sigma_{\boldsymbol{x}}(1)' & \Sigma_{\boldsymbol{x}}(0) & \dots & \Sigma_{\boldsymbol{x}}(p-2) \\ \vdots & \vdots & & \vdots \\ \Sigma_{\boldsymbol{x}}(p-1)' & \Sigma_{\boldsymbol{x}}(p-2)' & \dots & \Sigma_{\boldsymbol{x}}(0) \end{bmatrix}^{-1} \begin{bmatrix} \Sigma_{\boldsymbol{x}}(1) \\ \Sigma_{\boldsymbol{x}}(2) \\ \vdots \\ \Sigma_{\boldsymbol{x}}(p) \end{bmatrix}$$

and

$$\boldsymbol{\Omega}^{(p)} = \Sigma_{\boldsymbol{x}}(0) - \begin{bmatrix} \Sigma_{\boldsymbol{x}}(1)' \\ \Sigma_{\boldsymbol{x}}(2)' \\ \vdots \\ \Sigma_{\boldsymbol{x}}(p)' \end{bmatrix}' \begin{bmatrix} \Sigma_{\boldsymbol{x}}(0) & \Sigma_{\boldsymbol{x}}(1) & \dots & \Sigma_{\boldsymbol{x}}(p-1) \\ \Sigma_{\boldsymbol{x}}(1)' & \Sigma_{\boldsymbol{x}}(0) & \dots & \Sigma_{\boldsymbol{x}}(p-2) \\ \vdots & \vdots & & \vdots \\ \Sigma_{\boldsymbol{x}}(p-1)' & \Sigma_{\boldsymbol{x}}(p-2)' & \dots & \Sigma_{\boldsymbol{x}}(0) \end{bmatrix}^{-1} \begin{bmatrix} \Sigma_{\boldsymbol{x}}(1) \\ \Sigma_{\boldsymbol{x}}(2) \\ \vdots \\ \Sigma_{\boldsymbol{x}}(p) \end{bmatrix}$$

Differentiating $\operatorname{vec}(\boldsymbol{\Phi}^{(p)})$ and $\operatorname{vech}(\boldsymbol{\Omega}^{(p)})$ with respect to $\boldsymbol{\sigma}_T$ gives $\frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{\sigma}_{T'}}$.⁶ We can similarly compute the Jacobian matrix for other functions of the second moments, such as impulse response coefficients.

5 Application: Identification in the Smets and Wouters (2007) model

In this section I apply the rank conditions developed above to a medium-scale DSGE model estimated in Smets and Wouters (2007) (SW07 henceforth). The model, based on the work of Smets and Wouters (2003) and Christiano, Eichenbaum, and Evans (2005), is an extension of the standard RBC model featuring a number of nominal frictions and

⁶Note that here $\boldsymbol{\xi}$ is a function of only the first p second moments. Thus $\frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{\theta}'} = \frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{\sigma}_p'} \frac{\partial \boldsymbol{\sigma}_p}{\partial \boldsymbol{\theta}'}$.

real rigidities. I start with an outline of the main components of the model, and then turn to the identification of the parameters.

5.1 The model

The economy is populated by a continuum of households indexed by j, each having the following utility function

$$E_t \left[\sum_{s=0}^{\infty} \beta^s \frac{1}{1 - \sigma_C} \left((C_{t+s}(j) - \lambda C_{t+s-1}(j))^{1 - \sigma_C} \right) \exp\left(\frac{\sigma_c - 1}{1 + \sigma_l} L_{t+s}(j)^{1 + \sigma_l} \right) \right], \quad (5.1)$$

where $C_{t+s}(j)$ is consumption, $L_{t+s}(j)$ is hours worked.

Households supply homogeneous labor services to labor unions indexed by l. Labor services are differentiated by a union, and sold to labor packers. Wage setting is subject to nominal rigidities with a Calvo mechanism whereby each period a union can set the nominal wage to the optimal level with constant probability equal to $1 - \xi_w$. Unions that cannot adjust their nominal wage optimally, change it according to the following indexation rule

$$W_{t+s}(l) = \gamma W_{t-1}(l) \pi_{t-1}^{\iota_w} \pi_*^{(1-\iota_w)}, \qquad (5.2)$$

where γ is the deterministic growth rate, ι_w measures the degree of wage indexation to past inflation, and π_* is the steady state rate of inflation.

Labor packers buy differentiated labor services $L_t(l)$ from unions, package and sell composite labor L_t , defined implicitly by

$$\int_0^1 \mathcal{H}\left(\frac{L_t(l)}{L_t}; \lambda_{w,t}\right) dl = 1,$$
(5.3)

to the intermediate good sector firms. The function \mathcal{H} is increasing, concave, and satisfies $\mathcal{H}(1) = 1$; $\lambda_{w,t}$ is a stochastic exogenous process changing the elasticity of demand, and the wage markup over the marginal disutility from work.

In addition to supplying labor, households rent capital to the intermediate goods producers at rate $R_t^K(j)$. Households accumulate physical capital according to the following law of motion:

$$\bar{K}_{t}(j) = (1-\delta)\bar{K}_{t-1}(j) + \varepsilon_{t}^{i} \left[1 - \mathcal{S}\left(\frac{I_{t}(j)}{I_{t-1}(j)}\right) \right] I_{t}(j),$$
(5.4)

where δ is the rate of depreciation, I_t is gross investment, and the investment adjustment cost function \mathcal{S} satisfies $\mathcal{S}' > 0$, $\mathcal{S}'' > 0$, and in steady state $\mathcal{S} = 0$, $\mathcal{S}' = 0$. ε_t^i represents the current state of technology for producing capital, and is interpreted as investment-specific technological progress (Greenwood, Hercowitz, and Krusell (2000)).

Households control the utilization rate $Z_t(j)$ of the physical capital they own, and pay $P_t a(Z_t(j)) \overline{K}_{t-1}(j)$ in terms of consumption good when the capital intensity is $Z_t(j)$. The income from renting capital to firms is $R_t^k K_t(j)$, where $K_t(j) = Z_t(j) \bar{K}_{t-1}(j)$ is the flow of capital services provided by the existing stock of physical capital $\bar{K}_{t-1}(j)$. The utility function (5.1) is maximized with respect to consumption, hours, investment, and capital utilization, subject to the capital accumulation equation (5.4), and the following budget constraint:

$$C_{t+s}(j) + I_{t+s}(j) + \frac{B_{t+s}(j)}{\varepsilon_{t+s}^b R_{t+s} P_{t+s}} - T_{t+s} = \frac{W_{t+s}(j)}{P_{t+s}} L_{t+s}(j) + \left(\frac{R_{t+s}^k Z_{t+s}(j)}{P_{t+s}} - a(Z_{t+s}(j))\right) \bar{K}_{t+s-1}(j) + \frac{B_{t+s-1}(j)}{P_{t+s}} + \frac{\Pi_{t+s}(j)}{P_{t+s}}, \quad (5.5)$$

where B_{t+s} is a one-period nominal bond expressed on a discount basis, ε_t^b is an exogenous premium on the bond return, T_{t+s} is lump-sum taxes or subsidies, and Π_{t+s} is profit distributed by the labor union.

There is a perfectly competitive sector producing a single final good used for consumption and investment. The final good is produced from intermediate inputs $Y_t(i)$ using technology defined implicitly by

$$\int_0^1 \mathcal{G}\left(\frac{Y_t(i)}{Y_t}; \lambda_{p,t}\right) di = 1,$$
(5.6)

where \mathcal{G} is increasing, concave, and $\mathcal{G}(1) = 1$; $\lambda_{p,t}$ is an exogenous stochastic process affecting the elasticity of substitution between different intermediate goods, also corresponding to a markup over marginal cost for intermediate good firms. Firms maximize profits given by

$$P_t Y_t - \int_0^1 P_t(i) Y_t(i) di,$$
 (5.7)

where $P_t(i)$ is the price of intermediate good $Y_t(i)$.

Intermediate goods are produced in a monopolistically competitive sector. Each variety i is produced by a single firm using the following production technology:

$$Y_t(i) = \varepsilon_t^a K_t(i)^\alpha (\gamma^t L_t(i))^{1-\alpha} - \Phi \gamma^t, \qquad (5.8)$$

where Φ is a fixed cost of production, and ε_t^a is the total factor productivity. As with wages, every period only a fraction $1 - \xi_P$ of intermediate firms can set optimally the price of the good they produce. The remaining ξ_p firms index their prices to past inflation according to

$$P_t(t) = \gamma P_{t-1}(i) \pi_{t-1}^{\iota_p} \pi_*^{(1-\iota_p)}, \qquad (5.9)$$

where ι_p measures the degree of price indexation to past inflation.

The central bank sets the nominal interest rate according to the following rule

$$\frac{R_t}{R^*} = \varepsilon_t^r \left(\frac{R_{t-1}}{R^*}\right)^{\rho} \left[\left(\frac{\pi_t}{\pi^*}\right)^{r_\pi} \left(\frac{Y_t}{Y_t^*}\right)^{r_y} \right]^{1-\rho} \left(\frac{Y_t/Y_{t-1}}{Y_t^*/Y_{t-1}^*}\right)^{r_{\triangle y}}$$
(5.10)

where R^* is the steady state level of the gross nominal interest rate, r_t is a monetary policy shock, and Y^* is potential output, defined as the output in a flexible price and wage economy.

The government also collects lump-sum taxes in order to finance its consumption so as to respect the following budget constraint

$$P_t G_t + B_{t-1} = T_t + \frac{B_t}{R_t},\tag{5.11}$$

where G_t is government consumption in terms of final good.

There are seven exogenous shocks in the model. Five of them - the risk premium, TFP, investment-specific technology, government purchases, and monetary policy - follow AR(1) processes; the remaining two shocks - to wage and price markup, follow ARMA(1,1) processes.

The economy in the model is assumed to evolve along a deterministic growth path, with γ being the gross rate of growth. All growing variables - consumption, investment, capital, real wages, output and government spending, are detrended and then all equilibrium conditions are log-linearized around the deterministic steady state of the detrended variables. A detailed discussion of all log-linear equations can be found in SW07.

The linearized version of the model can be written as in (2.1) with $\boldsymbol{z}_t = \left[\boldsymbol{z}_t^{f\prime}, \boldsymbol{z}_t^{s\prime}\right]'$ being a 33-dimensional vector, and the subvectors \boldsymbol{z}_t^f and \boldsymbol{z}_t^s are given by

$$\boldsymbol{z}_{t}^{f} = \left[c_{t}^{f}, l_{t}^{f}, w_{t}^{f}, q_{t}^{f}, i_{t}^{f}, r_{t}^{kf}, r_{t}^{f}, k_{t}^{f}, \bar{k}_{t-1}^{f}, y_{t}^{f}, z_{t}^{f}\right]^{\prime}$$

and

$$\boldsymbol{z}_{t}^{s} = \left[c_{t}^{s}, l_{t}^{s}, \pi_{t}, w_{t}^{s}, q_{t}^{s}, i_{t}^{s}, r_{t}^{s}, k_{t}^{s}, k_{t}^{s}, \bar{k}_{t-1}^{s}, y_{t}^{s}, z_{t}^{s}, \operatorname{mc}_{t}, \varepsilon_{t}^{b}, \varepsilon_{t}^{a}, \varepsilon_{t}^{g}, \varepsilon_{t}^{p}, \varepsilon_{t}^{w}, \varepsilon_{t}^{r}, \eta_{t}^{p}, \eta_{t}^{w}\right]'$$

I use small letters to represent the percent deviation of the variables from their steady state levels.⁷ z^{f} is a vector collecting the variables in the flexible price and wage version of the economy, and z^{s} collects the variables from the sticky price and wage economy. The vector of structural shocks is:

$$oldsymbol{u}_t = [\eta^a_t, \eta^b_t, \eta^I_t, \eta^w_t, \eta^p_t, \eta^g_t, \eta^r_t]'$$

The coefficient matrices $\{\boldsymbol{\Gamma}_i\}_{i=0}^3$ in the canonical form (2.1) are functions of a

 $[\]overline{}^{7}q$ denotes the percent deviation of real value of capital from the steady state level of one.

39-dimensional vector of deep parameters $\boldsymbol{\theta}$, defined by⁸

$$\boldsymbol{\theta} = [\delta, \lambda_w, g_y, \varepsilon_p, \varepsilon_w, \rho_{ga}, \beta, \mu_w, \mu_p, \alpha, \psi, \varphi, \sigma_c, \lambda, \Phi, \iota_w, \xi_w, \iota_p, \xi_p, \sigma_l, r_\pi, r_{\triangle y}, r_y, \rho, \rho_a, \rho_b, \rho_g, \rho_I, \rho_r, \rho_p, \rho_w, \gamma, \sigma_a, \sigma_b, \sigma_g, \sigma_I, \sigma_r, \sigma_p, \sigma_w]'$$
(5.12)

It is assumed that the only observed variables are consumption, investment, output, wages, hours, inflation, and the nominal interest rate. Thus \boldsymbol{x}_t is given by

$$\boldsymbol{x}_{t} = [c_{t}, l_{t}, \pi_{t}, w_{t}, i_{t}, r_{t}, y_{t}]'$$
(5.13)

and the remaining 39 - 7 = 32 variables in z_t are treated as latent. Finally, matrix C in the measurement equation (2.3) is a 7×32 matrix constructed from the first seven rows of the 32×32 identity matrix.

5.2 Identification

In addition to a description of the model, to study parameter identification one needs to determine Θ - the set of admissible values of the parameters. As was pointed out in Section 3, a model is identified if all points in Θ are identifiable. One difficulty with determining Θ for DSGE models is that it is usually impossible to know, before solving the model, for which values of θ the model has either zero or many solutions. Such points are typically deemed as inadmissible, and therefore have to be excluded from Θ . A second problem arises from the fact that there are infinitely many points in Θ , and it is not feasible to check the identification condition for all of them. In view of these difficulties, one approach is to check the rank condition for identification at many randomly drawn points from Θ' , where $\Theta \subset \Theta'$, discarding values of θ that do not imply a unique solution. The following procedure outlines the steps involved in this approach:

- 1. Draw randomly a point θ^{j} from Θ' .
- 2. Check whether the model has a unique solution at θ^{j} . If not, discard θ^{j} from Θ and return to 1.
- 3. Evaluate the rank of J_2 at θ^j . If it is of less then full rank, go back to 1.
- 4. Evaluate the rank of J(T) at $\boldsymbol{\theta}^{j}$.

 $[\]frac{1}{8}\epsilon_w$ and ϵ_p are parameters measuring the curvature of the aggregation functions in the labor and final good sectors. They are defined as $\epsilon_p = \frac{\partial \ln(\kappa_p(1))}{\partial \ln(\tilde{P})}$, $\epsilon_w = \frac{\partial \ln(\kappa_w(1))}{\partial \ln(\tilde{W})}$, where $\kappa_p(x) = -\frac{\mathcal{G}'(x)}{x\mathcal{G}''(x)}$, $\kappa_w(y) = -\frac{\mathcal{H}'(y)}{y\mathcal{H}''(y)}$ are elasticities of demand for goods and labor services, and \tilde{P} and \tilde{W} are the relative price and wage. They measure the percent change in the elasticity of demand for goods and labor due to one percent change in the relative price/wage, evaluated in steady state. In the simple case, where the aggregator functions \mathcal{H} and \mathcal{G} have the Dixit-Stiglitz functional form, both parameters are equal to zero (see Eichenbaum and Fisher (2007)).

5. Repeat steps 1 through 4 N times, for some large N.

The set Θ' contains all values of θ that are theoretically plausible for the parameters in the model to take. In this application I define Θ' using the prior distribution in SW07 (see Table B.1). Alternatively, one could treat all a priori admissible parameter values as equally likely, that is, assume uniform priors. The benefit of the former approach is that, by choosing the shape and parameters of the prior distribution, one can achieve a better coverage of the parts of the space that are believed to be more plausible. Steps 1 and 2 together provide a draw from $\boldsymbol{\Theta}$ by removing points of $\boldsymbol{\Theta}'$ where the model is indetermined or does not have a solution. Conditions for existence and uniqueness can be found in Sims (2002), and are automatically checked by most computer algorithms for solving linear rational expectations models. In step 3 one checks the necessary condition for identification. Finding that matrix J_2 is rank deficient at θ^j implies that this point in $\boldsymbol{\Theta}$ is unidentifiable in the model. Finally, in step 4 one checks the necessary and sufficient condition for local identification of θ^{j} . Finding that J_{2} has full rank, but J(T)does not, means that θ^{j} cannot be unidentified given the set of observed variables and the number of observations. As was discussed earlier, it is easy to check whether more data would help identification by including more variables in \boldsymbol{x}_t , increasing T, or both.

In some applications it may be preferable to start in step 4 by computing the Jacobian matrix for some small number of second moments, instead of all available moments. A good candidate would be the smallest number of moments for which the order condition for identification holds. In the SW07 model, which has 39 deep parameters and 7 observed variables, the order condition holds for any number of second moments greater than one.⁹ As was pointed out in Section 4, identifiability with limited information is a sufficient condition for identification with full information, and the Jacobian matrix may be much easier to evaluate in the former case. A potential drawback is that, since the condition is only sufficient, one may have to repeat step 4 including additional second moments if the rank condition fails for a number smaller than T. In the analysis of the SW07 model I first check the rank of J(2), and add additional moments when it is of less than full rank.

As a preliminary step in the identification analysis, I compute the Jacobian matrix J_2 at a few points in the parameter space, namely, the prior mean and the posterior mean and median reported in SW07. A rank deficient J_2 indicates that some deep parameters are unidentifiable for reasons that are inherent in the structure of the model. For the set of all deep parameters (see (5.12)), J_2 has 39 columns, while the rank is 36 at all points where it was evaluated. This rank deficiency is caused by linear dependence among the columns of J_2 corresponding to three sets of parameters:

- (a) ϵ_p, ξ_p
- (b) ϵ_w, ξ_w

⁹Note that the dimension of σ_2 is 77, while that of σ_1 is 28.

(c) $\delta, \beta, \varphi, \lambda, \gamma$

In the case of (a) and (b), the lack of separate identification can be explained with the very similar roles the two curvature parameters - ϵ_p and ϵ_w , and the two Calvo parameters - ξ_p and ξ_w , play in the model. A high value of ϵ_p , for instance, implies that the elasticity of demand increases rapidly when a firm's relative price increases. This implies that it is optimal for the firm to increase its price by a smaller amount, compared to the case when ϵ_p is low. As a result, prices are adjusted less rapidly. The same outcome is observed when ξ_p - the probability that a firm is not able to adjust its price to the optimal level, is large. It should be noted, however, that, though similar, these parameters are not necessarily equivalent in the original model, as they become after linearization. The same applies to the wage parameters ϵ_w and ξ_w in (b). It is more difficult to relate the lack of identification of the parameters in (c) to their roles in the model, though one may expect some degree of similarity between, for instance, the role of patience (β) on one hand, and that of depreciation rate (δ), or investment adjustment cost (φ), on the other. In particular, the effect of higher β can be offset, at least partially, by increasing δ or φ . Unlike the parameters in (a) and (b), however, there is no exact equivalence between any two of the five parameters in (c), and any four of them would be identifiable if the fifth is known. Indeed, since the trend parameter γ can be identified using the growing observed variables, it should be treated as known when studying identification in the stationary model. Regarding the parameters in (a) and (b), I follow Smets and Wouters (2007) in assuming that the curvature parameters ϵ_w , and ϵ_p are known and are both equal to 10. Hence, in the following analysis I study the identification of a 36-dimensional vector $\boldsymbol{\theta}$, obtained by removing γ , ϵ_w , and ϵ_p from the list of parameters in (5.12).

The results can be summarized as follows. Approximately 96.8% of the 1 million draws from Θ' are admissible, amounting to 968, 318 points from Θ . All but one of these points are identified in the model, i.e. result in J_2 with full rank. Two additional points do not pass the rank condition for identification with second moments for any value of T. In short, almost all of the points from parameter space are locally identifiable with any statistical model that utilizes at least the first two second moments of the variables listed in (5.13).

It is interesting to analyze which variables fail the identification conditions and why. In all three cases the rank conditions fail due to a linear dependence between the columns of the Jacobian matrix that correspond to the wage markup parameter λ_w , and the wage stickiness parameter ξ_w . In Smets and Wouters (2007) the authors maintain that λ_w cannot be identified, and therefore do not estimate it. The evidence presented here do not support that assertion. Even at the few points where the identification conditions fail, this is sensitive to the method used for determining the rank of a matrix. Without going into great details, in Matlab, which was used in the study, the rank of a matrix is determined as the number of singular values that exceed a certain tolerance value. Using the default value of 8.9×10^{-4} results in rank deficiency.¹⁰ Using the smaller threshold value of 1.7×10^{-4} results in Jacobian matrices with full rank. For comparison, the tolerance value must be set to less than 4.7×10^{-16} in order to overturn the conclusion regarding the lack of identification of either one of the three groups of parameters discussed above. In the light of these considerations, it appears more reasonable to conclude that λ_w is locally identified, but its identification is very weak in some parts of the parameter space.

To summarize, the objective in this section was to study parameter identification in the model estimated by Smets and Wouters (2007). Out of 39 parameters in total, 34 are locally identified from the restrictions implied by the linearized stationary model, and one is globally identified from the trend in the observed growing variables. The remaining four parameters are not separately identifiable, and any estimates of, say, price or wage stickiness parameters, is conditional on the assumed or calibrated value of the respective curvature parameter - ϵ_p or ϵ_w . Perhaps surprisingly, the results suggest that the identified parameters can, in principle, be estimated with limited information methods based on as few as two of the second moments of the observed variables. An example of such statistical model is a vector autoregression with only one lag. How accurate such estimates will be is, of course, a different matter.

6 Conclusion

This paper deals with parameter identification in DSGE models estimated with full or limited information methods based on the second moments of the data. A structural economic model is identified if there is a unique mapping from the parameters of the statistical model to the underlying economic parameters. Thus identification is not a feature of a particular sample of data, but a property of the economic model and the theory from which it is derived. As such, parameter identification can and should be verified prior to estimation. Using the conditions proposed in this paper, researchers can establish whether the parameters in their models are locally identified, and, if not, whether the identification failure is due to data limitations, such as a small number of observations or lack of observations for some variables, or to reasons that are intrinsic to the structural model.

It should be remembered that local identification does not guarantee that the parameters are globally identified. Unfortunately, global identification is difficult, if not impossible, to establish for the usually large and highly non-linear models estimated in the DSGE literature. Although only necessary for global identification, the conditions presented in this paper are useful for detecting problems which are common causes of global identification failures in DSGE models.

Another important aspect of identification in DSGE models that was not dealt with

 $^{^{10}{\}rm The}$ default tolerance depends on the properties of the matrix - its dimension and largest singular value.

in this paper is the strength of identification. Finding that a model is identified only tells us that it is possible to recover the true value of the deep parameters from the true value of the population moments. In practice, the population moments have to be estimated, and it is important to know how estimation errors there propagate into the estimates of $\boldsymbol{\theta}$. Weak parameter identification leads to inaccurate estimates and unreliable inference even when the number of observations is large. Evidence suggesting that some popular DSGE models are weakly identified can be found in Canova and Sala (2009) and Iskrev (2008b). A more general treatment of the identification strength in DSGE models will appear in a separate paper.

References

- ANDERSON, G., AND G. MOORE (1985): "A linear algebraic procedure for solving linear perfect foresight models," *Economics Letters*, 17(3), 247–252, available at http://ideas.repec.org/a/eee/ecolet/v17y1985i3p247-252.html.
- BEKKER, P. A., AND D. S. G. POLLOCK (1986): "Identification of linear stochastic models with covariance restrictions," *Journal of Econometrics*, 31(2), 179–208, available at http://ideas.repec.org/a/eee/econom/v31y1986i2p179-208.html.
- BEYER, A., AND R. E. A. FARMER (2004): "On the indeterminacy of New-Keynesian economics," Working Paper Series 323, European Central Bank, available at http://ideas.repec.org/p/ecb/ecbwps/20040323.html.
- BLANCHARD, O. J., AND C. M. KAHN (1980): "The Solution of Linear Difference Models under Rational Expectations," *Econometrica*, 48(5), 1305–11, available at http://ideas.repec.org/a/ecm/emetrp/v48y1980i5p1305-11.html.
- CANOVA, F., AND L. SALA (2009): "Back to square one: identification issues in DSGE models," *Journal of Monetary Economics, forthcoming.*
- CHRISTIANO, L., M. EICHENBAUM, AND C. EVANS (2005): "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy*, 113(1), 1–45, available at http://ideas.repec.org/a/ucp/jpolec/v113y2005i1p1-45.html.
- CHRISTIANO, L. J. (2002): "Solving dynamic equilibrium models by a method of undetermined coefficients," *Computational Economics*, 20(1-2).
- COCHRANE, J. H. (2007): "Identification with Taylor Rules: A Critical Review," NBER Working Papers 13410, National Bureau of Economic Research, Inc.
- DEL NEGRO, M., AND F. SCHORFHEIDE (2008): "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," *Journal of Monetary Economics*, 55(7), 1191 1208.
- EICHENBAUM, M., AND J. FISHER (2007): "Estimating the Frequency of Reoptimisation in Calvo-style Models," *Journal of Monetary Economics, forthcoming.*
- FLORENS, J.-P., V. MARIMOUTOU, AND A. PÉGUIN-FEISSOLLE (2008): *Econometric Modelling and Inference*. Cambridge.
- GREENWOOD, J., Z. HERCOWITZ, AND P. KRUSELL (2000): "The role of investment-specific technological change in the business cycle," *European Economic Review*, 44(1), 91–115, available at http://ideas.repec.org/a/eee/eecrev/v44y2000i1p91-115.html.
- ISKREV, N. (2008a): "Evaluating the information matrix in linearized DSGE models," *Economic Letters*.

(2008b): "How much do we learn from the estimation of DSGE models - A case study of identification issues in a New Keynesian business cycle model," unpublished manuscript.

- KIM, J. (2003): "Functional equivalence between intertemporal and multisectoral investment adjustment costs," *Journal of Economic Dynamics and Control*, 27(4), 533–549.
- KLEIN, P. (2000): "Using the generalized Schur form to solve a multivariate linear rational expectations model," *Journal of Economic Dynamics and Control*, 24(10), 1405–1423, available at http://ideas.repec.org/a/eee/dyncon/v24y2000i10p1405-1423.html.
- KOOPMANS, T., AND Q. REIERSØL (1950): "The identification of Structural Charactersistics," Annals of Mathematical Statistics, 21, 165–181.
- MAGNUS, J. R., AND K. M. ABADIR (2005): Matrix Algebra. Cambridge University Press.
- MAGNUS, J. R., AND H. NEUDECKER (1999): Matrix Differential Calculus with its Applications in Statistics and Econometrics. Wiley.
- ROTHENBERG, T. J. (1971): "Identification in Parametric Models," *Econometrica*, 39(3), 577–91, available at http://ideas.repec.org/a/ecm/emetrp/v39y1971i3p577-91.html.
- SIMS, C. A. (2002): "Solving Linear Rational Expectations Models," Computational Economics, 20(1-2), 1–20, available at http://ideas.repec.org/a/kap/compec/v20y2002i1-2p1-20.html.
- SMETS, F., AND R. WOUTERS (2003): "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, 1(5), 1123–1175, available at http://ideas.repec.org/a/tpr/jeurec/v1y2003i5p1123-1175.html.
- SMETS, F., AND R. WOUTERS (2007): "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," The American Economic Review, 97(3), 586–606.

APPENDIX

A Derivation of J_1

Starting with $\Sigma_{\boldsymbol{x}}(0)$, from (2.6) we have

$$\Sigma_{\boldsymbol{x}}(0) = \boldsymbol{C}(\boldsymbol{\tau}) \Sigma_{\boldsymbol{z}}(0) \boldsymbol{C}(\boldsymbol{\tau})'$$

and therefore the differential of $\Sigma_{\boldsymbol{x}}(0)$ is

$$d\Sigma_{\boldsymbol{x}}(0) = d\boldsymbol{C}(\boldsymbol{\tau})\Sigma_{\boldsymbol{z}}(0)\boldsymbol{C}(\boldsymbol{\tau})' + \boldsymbol{C}(\boldsymbol{\tau})\,d\Sigma_{\boldsymbol{z}}(0)\boldsymbol{C}(\boldsymbol{\tau})' + \boldsymbol{C}(\boldsymbol{\tau})\Sigma_{\boldsymbol{z}}(0)\,d\boldsymbol{C}(\boldsymbol{\tau})'$$
(A.1)

Vectorizing both sides of (A.1) we obtain

$$dvec(\Sigma_{\boldsymbol{x}}(0)) = (\boldsymbol{C}\Sigma_{\boldsymbol{z}}(0) \otimes \boldsymbol{I}_l) dvec(\boldsymbol{C}) + (\boldsymbol{C} \otimes \boldsymbol{C}) dvec(\Sigma_{\boldsymbol{z}}(0))$$
(A.2)
+ $(\boldsymbol{I} \otimes \boldsymbol{C}\Sigma_{\boldsymbol{z}}(0)) dvec(\boldsymbol{C}')$

Using the duplication matrix and its inverse (see (3.4) and (3.5)) we get

$$d\operatorname{vech}(\Sigma_{\boldsymbol{x}}(0)) = \boldsymbol{D}_{l}^{+}(\boldsymbol{C}\Sigma_{\boldsymbol{z}}(0) \otimes \boldsymbol{I}_{l}) \operatorname{dvec}(\boldsymbol{C}) + \boldsymbol{D}_{l}^{+}(\boldsymbol{C} \otimes \boldsymbol{C})\boldsymbol{D}_{m} \operatorname{dvech}(\Sigma_{\boldsymbol{z}}(0))$$

$$+ \boldsymbol{D}_{l}^{+}(\boldsymbol{I}_{l} \otimes \boldsymbol{C}\Sigma_{\boldsymbol{z}}(0)) \operatorname{dvec}(\boldsymbol{C}')$$
(A.3)

Collecting terms and using the relationship between differential and derivative leads to the expression in (3.6).

The derivation of (3.7) is similar; from (2.6) we have

$$\Sigma_{\boldsymbol{x}}(i) = \boldsymbol{C}(\boldsymbol{\tau})\boldsymbol{A}(\tau)^{i}\Sigma_{\boldsymbol{z}}(0)\boldsymbol{C}(\boldsymbol{\tau})'$$

and therefore

$$d\Sigma_{\boldsymbol{x}}(i) = d\boldsymbol{C}\boldsymbol{A}^{i}\Sigma_{\boldsymbol{z}}(0)\boldsymbol{C}' + \boldsymbol{C}\,d(\boldsymbol{A}^{i})\Sigma_{\boldsymbol{z}}(0)\boldsymbol{C}' + \boldsymbol{C}\boldsymbol{A}^{i}\,d\Sigma_{\boldsymbol{z}}(0)\boldsymbol{C}' + \boldsymbol{C}\boldsymbol{A}^{i}\Sigma_{\boldsymbol{z}}(0)\,d\boldsymbol{C}' \qquad (A.4)$$

and

$$dvec(\Sigma_{\boldsymbol{x}}(i)) = (\boldsymbol{C}\Sigma_{\boldsymbol{z}}(0)\boldsymbol{A}^{i\prime} \otimes \boldsymbol{I}_{l}) dvec(\boldsymbol{C}) + (\boldsymbol{C}\Sigma_{\boldsymbol{z}}(0) \otimes \boldsymbol{C}) dvec(\boldsymbol{A}^{i})$$

$$+ (\boldsymbol{C} \otimes \boldsymbol{C}\boldsymbol{A}^{i})\boldsymbol{D}_{m} dvech(\Sigma_{\boldsymbol{z}}(0)) + (\boldsymbol{I}_{l} \otimes \boldsymbol{C}\boldsymbol{A}^{i}\Sigma_{\boldsymbol{z}}(0)) dvec(\boldsymbol{C}')$$
(A.5)

The expression in (3.7) is obtained by using (see exercise 13.18 (c) in Magnus and Abadir (2005))

$$\operatorname{dvec}(\boldsymbol{A}^{i}) = \left(\sum_{s=1}^{i} (\boldsymbol{A}')^{i-s} \otimes \boldsymbol{A}^{s-1}\right) \operatorname{dvec}(\boldsymbol{A})$$
(A.6)

Finally, in order to evaluate (3.6) and (3.7), we need the derivative of $\operatorname{vech}(\Sigma_{\boldsymbol{z}}(0))$. From

(2.7) we have

$$d\Sigma_{\boldsymbol{z}}(0) = d\boldsymbol{A}\Sigma_{\boldsymbol{z}}(0)\boldsymbol{A}' + \boldsymbol{A}\,d\Sigma_{\boldsymbol{z}}(0)\boldsymbol{A}' + \boldsymbol{A}\Sigma_{\boldsymbol{z}}(0)\,d\boldsymbol{A}' + d\boldsymbol{\Omega}$$
(A.7)

Vectorizing both sides, we get

$$dvec(\Sigma_{\boldsymbol{z}}(0)) = (\boldsymbol{A}\Sigma_{\boldsymbol{z}}(0) \otimes \boldsymbol{I}_m) dvec(\boldsymbol{A}) + (\boldsymbol{A} \otimes \boldsymbol{A}) dvec(\Sigma_{\boldsymbol{z}}(0))$$

$$+ (\boldsymbol{I}_m \otimes \boldsymbol{A}\Sigma_{\boldsymbol{z}}(0)) dvec(\boldsymbol{A}') + dvec(\boldsymbol{\Omega})$$
(A.8)

Using (3.5) we have

$$dvech(\Sigma_{\boldsymbol{z}}(0)) = \boldsymbol{D}_{m}^{+}(\boldsymbol{A}\Sigma_{\boldsymbol{z}}(0) \otimes \boldsymbol{I}_{m}) dvec(\boldsymbol{A}) + \boldsymbol{D}_{m}^{+}(\boldsymbol{A} \otimes \boldsymbol{A})\boldsymbol{D}_{m} dvech(\Sigma_{\boldsymbol{z}}(0))$$

$$+ \boldsymbol{D}_{m}^{+}(\boldsymbol{I}_{m} \otimes \boldsymbol{A}\Sigma_{\boldsymbol{z}}(0)) dvec(\boldsymbol{A}') + dvech(\boldsymbol{\Omega})$$
(A.9)

Collecting terms and using (3.3) we obtain (3.8).

B Derivation of J_2

From the definition of F_1 in (3.10) we have

$$dF_1 = \Gamma_0 dA - \Gamma_1 dAA - \Gamma_1 A dA$$
(B.1)

and

$$\mathrm{d}\boldsymbol{F}_1 = \mathrm{d}\boldsymbol{\Gamma}_0\boldsymbol{A} - \mathrm{d}\boldsymbol{\Gamma}_1\boldsymbol{A}^2 - \mathrm{d}\boldsymbol{\Gamma}_2 \tag{B.2}$$

Vectorizing (B.1) and (B.2) gives

$$\operatorname{dvec}(\boldsymbol{F}_1) = \boldsymbol{I}_m \otimes \boldsymbol{\Gamma}_0 \operatorname{dvec}(\boldsymbol{A}) - \boldsymbol{A}' \otimes \boldsymbol{\Gamma}_1 \operatorname{dvec}(\boldsymbol{A}) - \boldsymbol{I}_m \otimes \boldsymbol{\Gamma}_1 \boldsymbol{A} \operatorname{dvec}(\boldsymbol{A})$$

and

$$\operatorname{dvec}(\boldsymbol{F}_1) = \boldsymbol{A}' \otimes \boldsymbol{I}_m \operatorname{dvec}(\boldsymbol{\Gamma}_0) - \boldsymbol{A}'^2 \otimes \boldsymbol{I}_m \operatorname{dvec}(\boldsymbol{\Gamma}_1) - \operatorname{dvec}(\boldsymbol{\Gamma}_2)$$

which lead to (3.13) and (3.14).

Similarly, for F_2 in (3.11) we have

$$dF_{2} = \Gamma_{0} d\Omega \Gamma_{0}' - \Gamma_{1} dA\Omega \Gamma_{0}' - \Gamma_{1} A d\Omega \Gamma_{0}' - \Gamma_{0} d\Omega A' \Gamma_{1}' - \Gamma_{0} \Omega dA' \Gamma_{1}'$$

$$+ \Gamma_{1} dA\Omega A' \Gamma_{1}' + \Gamma_{1} A d\Omega A' \Gamma_{1}' + \Gamma_{1} A \Omega dA' \Gamma_{1}'$$
(B.3)

and

$$dF_{2} = d\Gamma_{0}\Omega\Gamma_{0}' + \Gamma_{0}\Omega d\Gamma_{0}' - d\Gamma_{1}A\Omega\Gamma_{0}' - \Gamma_{1}A\Omega d\Gamma_{0}' - d\Gamma_{0}\Omega A'\Gamma_{1}' -$$

$$\Gamma_{0}\Omega A' d\Gamma_{1}' + d\Gamma_{1}A\Omega A'\Gamma_{1}' + \Gamma_{1}A\Omega A' d\Gamma_{1}' - d\Gamma_{3}\Gamma_{3} - \Gamma_{3} d\Gamma_{3}'$$
(B.4)

Vectorizing (B.3) and (B.4) gives

$$dvec(\mathbf{F}_{2}) = \left(\boldsymbol{\Gamma}_{0} \otimes \boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}_{0} \otimes \boldsymbol{\Gamma}_{1}\boldsymbol{A} - \boldsymbol{\Gamma}_{1}\boldsymbol{A} \otimes \boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{1}\boldsymbol{A} \otimes \boldsymbol{\Gamma}_{1}\boldsymbol{A}\right)\boldsymbol{D}_{n} dvech(\boldsymbol{\Omega})$$
(B.5)
$$-\left(\boldsymbol{\Gamma}_{0}\boldsymbol{\Omega} \otimes \boldsymbol{\Gamma}_{1} + \left(\boldsymbol{\Gamma}_{1} \otimes \boldsymbol{\Gamma}_{0}\boldsymbol{\Omega}\right)\boldsymbol{K}_{mm} - \boldsymbol{\Gamma}_{1}\boldsymbol{A}\boldsymbol{\Omega} \otimes \boldsymbol{\Gamma}_{1} - \left(\boldsymbol{\Gamma}_{1} \otimes \boldsymbol{\Gamma}_{1}\boldsymbol{A}\boldsymbol{\Omega}\right)\boldsymbol{K}_{mm}\right) dvec(\boldsymbol{A})$$

and

$$dvec(\mathbf{F}_{2}) = \left(\mathbf{\Gamma}_{0}\boldsymbol{\Omega} \otimes \mathbf{I}_{m} + (\mathbf{I}_{m} \otimes \mathbf{\Gamma}_{0}\boldsymbol{\Omega})\mathbf{K}_{mm} - \mathbf{I}_{m} \otimes \mathbf{\Gamma}_{1}\mathbf{A}\boldsymbol{\Omega}\mathbf{K} - \mathbf{\Gamma}_{1}\mathbf{A}\boldsymbol{\Omega} \otimes \mathbf{I}_{m}\right)dvec(\mathbf{\Gamma}_{0})$$
$$- \left(\mathbf{\Gamma}_{0}\boldsymbol{\Omega}\mathbf{A}' \otimes \mathbf{I}_{m} + (\mathbf{I}_{m} \otimes \mathbf{\Gamma}_{0}\boldsymbol{\Omega}\mathbf{A}')\mathbf{K}_{mm} - (\mathbf{I}_{m} \otimes \mathbf{\Gamma}_{1}\mathbf{A}\boldsymbol{\Omega}\mathbf{A}')\mathbf{K}_{mm} - \mathbf{\Gamma}_{1}\mathbf{A}\boldsymbol{\Omega}\mathbf{A}' \otimes \mathbf{I}_{m}\right)dvec(\mathbf{\Gamma}_{1})$$
$$- \left(\mathbf{\Gamma}_{3} \otimes \mathbf{I}_{m} + (\mathbf{I}_{m} \otimes \mathbf{\Gamma}_{3})\mathbf{K}_{mm}\right)dvec(\mathbf{\Gamma}_{3})$$
(B.6)

Parameter	Distr.	Mean	Stdd.
α	\mathcal{N}	0.300	0.050
ψ	${\mathcal B}$	0.500	0.150
arphi	\mathcal{N}	4.000	1.500
σ_c	\mathcal{N}	1.500	0.375
h	${\mathcal B}$	0.700	0.100
$100(\beta^{-1}-1)$	${\mathcal G}$	0.250	0.100
Φ	\mathcal{N}	1.250	0.125
ι_w	${\mathcal B}$	0.500	0.150
ξ_w	${\mathcal B}$	0.500	0.100
ι_p	${\mathcal B}$	0.500	0.150
ξ_p	${\mathcal B}$	0.500	0.100
σ_l	\mathcal{N}	2.000	0.750
r_{π}	\mathcal{N}	1.500	0.250
$r_{ riangle y}$	\mathcal{N}	0.125	0.050
r_y	\mathcal{N}	0.125	0.050
ho	${\mathcal B}$	0.750	0.100
γ	\mathcal{N}	0.400	0.100
δ	${\mathcal B}$	0.025	0.005
λ_w	\mathcal{N}	1.500	0.250
g_y	\mathcal{N}	0.180	0.050
$ ho_{ga}$	${\mathcal B}$	0.500	0.250
$ ho_a$	${\mathcal B}$	0.500	0.200
$ ho_b$	${\mathcal B}$	0.500	0.200
$ ho_g$	${\mathcal B}$	0.500	0.200
$ ho_I$	${\mathcal B}$	0.500	0.200
$ ho_r$	${\mathcal B}$	0.500	0.200
$ ho_p$	${\mathcal B}$	0.500	0.200
$ ho_w$	${\mathcal B}$	0.500	0.200
μ_w	${\mathcal B}$	0.500	0.200
μ_p	${\mathcal B}$	0.500	0.200
σ_a	\mathcal{IG}	0.100	2.000
σ_b	\mathcal{IG}	0.100	2.000
σ_g	\mathcal{IG}	0.100	2.000
σ_I	\mathcal{IG}	0.100	2.000
σ_r	\mathcal{IG}	0.100	2.000
σ_p	\mathcal{IG}	0.100	2.000
σ_w	\mathcal{IG}	0.100	2.000

Table B.1: Prior Distribution of θ

Note: \mathcal{N} is Normal distribution, \mathcal{B} is Beta-distribution, \mathcal{G} is Gamma distribution, \mathcal{IG} is Inverse Gamma distribution.

WORKING PAPERS

2000

1/00	UNEMPLOYMENT DURATION: COMPETING AND DEFECTIVE RISKS — John T. Addison, Pedro Portugal
2/00	THE ESTIMATION OF RISK PREMIUM IMPLICIT IN OIL PRICES — Jorge Barros Luís
3/00	EVALUATING CORE INFLATION INDICATORS — Carlos Robalo Marques, Pedro Duarte Neves, Luís Morais Sarmento
4/00	LABOR MARKETS AND KALEIDOSCOPIC COMPARATIVE ADVANTAGE — Daniel A. Traça
5/00	WHY SHOULD CENTRAL BANKS AVOID THE USE OF THE UNDERLYING INFLATION INDICATOR? — Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva
6/00	USING THE ASYMMETRIC TRIMMED MEAN AS A CORE INFLATION INDICATOR — Carlos Robalo Marques, João Machado Mota
	2001
1/01	THE SURVIVAL OF NEW DOMESTIC AND FOREIGN OWNED FIRMS — José Mata, Pedro Portugal
2/01	GAPS AND TRIANGLES — Bernardino Adão, Isabel Correia, Pedro Teles
3/01	A NEW REPRESENTATION FOR THE FOREIGN CURRENCY RISK PREMIUM — Bernardino Adão, Fátima Silva
4/01	ENTRY MISTAKES WITH STRATEGIC PRICING — Bernardino Adão
5/01	FINANCING IN THE EUROSYSTEM: FIXED VERSUS VARIABLE RATE TENDERS — Margarida Catalão-Lopes
6/01	AGGREGATION, PERSISTENCE AND VOLATILITY IN A MACROMODEL — Karim Abadir, Gabriel Talmain
7/01	SOME FACTS ABOUT THE CYCLICAL CONVERGENCE IN THE EURO ZONE — Frederico Belo
8/01	TENURE, BUSINESS CYCLE AND THE WAGE-SETTING PROCESS — Leandro Arozamena, Mário Centeno
9/01	USING THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR — José Ferreira Machado, Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva
10/01	IDENTIFICATION WITH AVERAGED DATA AND IMPLICATIONS FOR HEDONIC REGRESSION STUDIES — José A.F. Machado, João M.C. Santos Silva

	2002
1/02	QUANTILE REGRESSION ANALYSIS OF TRANSITION DATA — José A.F. Machado, Pedro Portugal
2/02	SHOULD WE DISTINGUISH BETWEEN STATIC AND DYNAMIC LONG RUN EQUILIBRIUM IN ERROR CORRECTION MODELS? — Susana Botas, Carlos Robalo Marques
3/02	MODELLING TAYLOR RULE UNCERTAINTY — Fernando Martins, José A. F. Machado, Paulo Soares Esteves
4/02	PATTERNS OF ENTRY, POST-ENTRY GROWTH AND SURVIVAL: A COMPARISON BETWEEN DOMESTIC AND FOREIGN OWNED FIRMS — José Mata, Pedro Portugal
5/02	BUSINESS CYCLES: CYCLICAL COMOVEMENT WITHIN THE EUROPEAN UNION IN THE PERIOD 1960-1999. A FREQUENCY DOMAIN APPROACH — João Valle e Azevedo
6/02	AN "ART", NOT A "SCIENCE"? CENTRAL BANK MANAGEMENT IN PORTUGAL UNDER THE GOLD STANDARD, 1854 -1891 — Jaime Reis
7/02	MERGE OR CONCENTRATE? SOME INSIGHTS FOR ANTITRUST POLICY — Margarida Catalão-Lopes
8/02	DISENTANGLING THE MINIMUM WAGE PUZZLE: ANALYSIS OF WORKER ACCESSIONS AND SEPARATIONS FROM A LONGITUDINAL MATCHED EMPLOYER-EMPLOYEE DATA SET — Pedro Portugal, Ana Rute Cardoso
9/02	THE MATCH QUALITY GAINS FROM UNEMPLOYMENT INSURANCE — Mário Centeno
10/02	HEDONIC PRICES INDEXES FOR NEW PASSENGER CARS IN PORTUGAL (1997-2001) — Hugo J. Reis, J.M.C. Santos Silva
11/02	THE ANALYSIS OF SEASONAL RETURN ANOMALIES IN THE PORTUGUESE STOCK MARKET — Miguel Balbina, Nuno C. Martins
12/02	DOES MONEY GRANGER CAUSE INFLATION IN THE EURO AREA? — Carlos Robalo Marques, Joaquim Pina
13/02	INSTITUTIONS AND ECONOMIC DEVELOPMENT: HOW STRONG IS THE RELATION? — Tiago V.de V. Cavalcanti, Álvaro A. Novo
	2003
1/03	FOUNDING CONDITIONS AND THE SURVIVAL OF NEW FIRMS — P.A. Geroski, José Mata, Pedro Portugal
2/03	THE TIMING AND PROBABILITY OF FDI: AN APPLICATION TO THE UNITED STATES MULTINATIONAL ENTERPRISES — José Brandão de Brito, Felipa de Mello Sampayo
3/03	OPTIMAL FISCAL AND MONETARY POLICY: EQUIVALENCE RESULTS — Isabel Correia, Juan Pablo Nicolini, Pedro Teles

4/03	FORECASTING EURO AREA AGGREGATES WITH BAYESIAN VAR AND VECM MODELS — Ricardo Mourinho Félix, Luís C. Nunes
5/03	CONTAGIOUS CURRENCY CRISES: A SPATIAL PROBIT APPROACH — <i>Álvaro Novo</i>
6/03	THE DISTRIBUTION OF LIQUIDITY IN A MONETARY UNION WITH DIFFERENT PORTFOLIO RIGIDITIES — Nuno Alves
7/03	COINCIDENT AND LEADING INDICATORS FOR THE EURO AREA: A FREQUENCY BAND APPROACH — António Rua, Luís C. Nunes
8/03	WHY DO FIRMS USE FIXED-TERM CONTRACTS? — José Varejão, Pedro Portugal
9/03	NONLINEARITIES OVER THE BUSINESS CYCLE: AN APPLICATION OF THE SMOOTH TRANSITION AUTOREGRESSIVE MODEL TO CHARACTERIZE GDP DYNAMICS FOR THE EURO-AREA AND PORTUGAL — Francisco Craveiro Dias
10/03	WAGES AND THE RISK OF DISPLACEMENT — Anabela Carneiro, Pedro Portugal
11/03	SIX WAYS TO LEAVE UNEMPLOYMENT — Pedro Portugal, John T. Addison
12/03	EMPLOYMENT DYNAMICS AND THE STRUCTURE OF LABOR ADJUSTMENT COSTS — José Varejão, Pedro Portugal
13/03	THE MONETARY TRANSMISSION MECHANISM: IS IT RELEVANT FOR POLICY? — Bernardino Adão, Isabel Correia, Pedro Teles
14/03	THE IMPACT OF INTEREST-RATE SUBSIDIES ON LONG-TERM HOUSEHOLD DEBT: EVIDENCE FROM A LARGE PROGRAM — Nuno C. Martins, Ernesto Villanueva
15/03	THE CAREERS OF TOP MANAGERS AND FIRM OPENNESS: INTERNAL VERSUS EXTERNAL LABOUR MARKETS — <i>Francisco Lima, Mário Centeno</i>
16/03	TRACKING GROWTH AND THE BUSINESS CYCLE: A STOCHASTIC COMMON CYCLE MODEL FOR THE EURO AREA — João Valle e Azevedo, Siem Jan Koopman, António Rua
17/03	CORRUPTION, CREDIT MARKET IMPERFECTIONS, AND ECONOMIC DEVELOPMENT — António R. Antunes, Tiago V. Cavalcanti
18/03	BARGAINED WAGES, WAGE DRIFT AND THE DESIGN OF THE WAGE SETTING SYSTEM — Ana Rute Cardoso, Pedro Portugal
19/03	UNCERTAINTY AND RISK ANALYSIS OF MACROECONOMIC FORECASTS: FAN CHARTS REVISITED — Álvaro Novo, Maximiano Pinheiro

	2004
1/04	HOW DOES THE UNEMPLOYMENT INSURANCE SYSTEM SHAPE THE TIME PROFILE OF JOBLESS DURATION? — John T. Addison, Pedro Portugal
2/04	REAL EXCHANGE RATE AND HUMAN CAPITAL IN THE EMPIRICS OF ECONOMIC GROWTH — Delfim Gomes Neto
3/04	ON THE USE OF THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR — José Ramos Maria
4/04	OIL PRICES ASSUMPTIONS IN MACROECONOMIC FORECASTS: SHOULD WE FOLLOW FUTURES MARKET EXPECTATIONS? — Carlos Coimbra, Paulo Soares Esteves
5/04	STYLISED FEATURES OF PRICE SETTING BEHAVIOUR IN PORTUGAL: 1992-2001 — Mónica Dias, Daniel Dias, Pedro D. Neves
6/04	A FLEXIBLE VIEW ON PRICES — Nuno Alves
7/04	ON THE FISHER-KONIECZNY INDEX OF PRICE CHANGES SYNCHRONIZATION — D.A. Dias, C. Robalo Marques, P.D. Neves, J.M.C. Santos Silva
8/04	INFLATION PERSISTENCE: FACTS OR ARTEFACTS? — Carlos Robalo Marques
9/04	WORKERS' FLOWS AND REAL WAGE CYCLICALITY — Anabela Carneiro, Pedro Portugal
10/04	MATCHING WORKERS TO JOBS IN THE FAST LANE: THE OPERATION OF FIXED-TERM CONTRACTS — José Varejão, Pedro Portugal
11/04	THE LOCATIONAL DETERMINANTS OF THE U.S. MULTINATIONALS ACTIVITIES — José Brandão de Brito, Felipa Mello Sampayo
12/04	KEY ELASTICITIES IN JOB SEARCH THEORY: INTERNATIONAL EVIDENCE — John T. Addison, Mário Centeno, Pedro Portugal
13/04	RESERVATION WAGES, SEARCH DURATION AND ACCEPTED WAGES IN EUROPE — John T. Addison, Mário Centeno, Pedro Portugal
14/04	THE MONETARY TRANSMISSION N THE US AND THE EURO AREA: COMMON FEATURES AND COMMON FRICTIONS — Nuno Alves
15/04	NOMINAL WAGE INERTIA IN GENERAL EQUILIBRIUM MODELS — Nuno Alves
16/04	MONETARY POLICY IN A CURRENCY UNION WITH NATIONAL PRICE ASYMMETRIES — Sandra Gomes
17/04	NEOCLASSICAL INVESTMENT WITH MORAL HAZARD — João Ejarque
18/04	MONETARY POLICY WITH STATE CONTINGENT INTEREST RATES — Bernardino Adão, Isabel Correia, Pedro Teles

19/04	MONETARY POLICY WITH SINGLE INSTRUMENT FEEDBACK RULES — Bernardino Adão, Isabel Correia, Pedro Teles
20/04	ACOUNTING FOR THE HIDDEN ECONOMY: BARRIERS TO LAGALITY AND LEGAL FAILURES — António R. Antunes, Tiago V. Cavalcanti
	2005
1/05	SEAM: A SMALL-SCALE EURO AREA MODEL WITH FORWARD-LOOKING ELEMENTS — José Brandão de Brito, Rita Duarte
2/05	FORECASTING INFLATION THROUGH A BOTTOM-UP APPROACH: THE PORTUGUESE CASE — Cláudia Duarte, António Rua
3/05	USING MEAN REVERSION AS A MEASURE OF PERSISTENCE — Daniel Dias, Carlos Robalo Marques
4/05	HOUSEHOLD WEALTH IN PORTUGAL: 1980-2004 — Fátima Cardoso, Vanda Geraldes da Cunha
5/05	ANALYSIS OF DELINQUENT FIRMS USING MULTI-STATE TRANSITIONS — António Antunes
6/05	 PRICE SETTING IN THE AREA: SOME STYLIZED FACTS FROM INDIVIDUAL CONSUMER PRICE DATA — Emmanuel Dhyne, Luis J. Álvarez, Hervé Le Bihan, Giovanni Veronese, Daniel Dias, Johannes Hoffmann, Nicole Jonker, Patrick Lünnemann, Fabio Rumler, Jouko Vilmunen
7/05	INTERMEDIATION COSTS, INVESTOR PROTECTION AND ECONOMIC DEVELOPMENT — António Antunes, Tiago Cavalcanti, Anne Villamil
8/05	TIME OR STATE DEPENDENT PRICE SETTING RULES? EVIDENCE FROM PORTUGUESE MICRO DATA — Daniel Dias, Carlos Robalo Marques, João Santos Silva
9/05	BUSINESS CYCLE AT A SECTORAL LEVEL: THE PORTUGUESE CASE — Hugo Reis
10/05	 THE PRICING BEHAVIOUR OF FIRMS IN THE EURO AREA: NEW SURVEY EVIDENCE S. Fabiani, M. Druant, I. Hernando, C. Kwapil, B. Landau, C. Loupias, F. Martins, T. Mathä, R. Sabbatini, H. Stahl, A. Stokman
11/05	CONSUMPTION TAXES AND REDISTRIBUTION — Isabel Correia
12/05	UNIQUE EQUILIBRIUM WITH SINGLE MONETARY INSTRUMENT RULES — Bernardino Adão, Isabel Correia, Pedro Teles
13/05	A MACROECONOMIC STRUCTURAL MODEL FOR THE PORTUGUESE ECONOMY — <i>Ricardo Mourinho Félix</i>
14/05	THE EFFECTS OF A GOVERNMENT EXPENDITURES SHOCK — Bernardino Adão, José Brandão de Brito
15/05	MARKET INTEGRATION IN THE GOLDEN PERIPHERY – THE LISBON/LONDON EXCHANGE, 1854-1891 — Rui Pedro Esteves, Jaime Reis, Fabiano Ferramosca
	2006
1/06	THE EFFECTS OF A TECHNOLOGY SHOCK IN THE EURO AREA — Nuno Alves , José Brandão de Brito , Sandra Gomes, João Sousa

2/02	THE TRANSMISSION OF MONETARY AND TECHNOLOGY SHOCKS IN THE EURO AREA — Nuno Alves, José Brandão de Brito, Sandra Gomes, João Sousa
3/06	MEASURING THE IMPORTANCE OF THE UNIFORM NONSYNCHRONIZATION HYPOTHESIS — Daniel Dias, Carlos Robalo Marques, João Santos Silva
4/06	THE PRICE SETTING BEHAVIOUR OF PORTUGUESE FIRMS EVIDENCE FROM SURVEY DATA — Fernando Martins
5/06	 STICKY PRICES IN THE EURO AREA: A SUMMARY OF NEW MICRO EVIDENCE L. J. Álvarez, E. Dhyne, M. Hoeberichts, C. Kwapil, H. Le Bihan, P. Lünnemann, F. Martins, R. Sabbatini, H. Stahl, P. Vermeulen and J. Vilmunen
6/06	NOMINAL DEBT AS A BURDEN ON MONETARY POLICY — Javier Díaz-Giménez, Giorgia Giovannetti , Ramon Marimon, Pedro Teles
7/06	A DISAGGREGATED FRAMEWORK FOR THE ANALYSIS OF STRUCTURAL DEVELOPMENTS IN PUBLIC FINANCES — Jana Kremer, Cláudia Rodrigues Braz, Teunis Brosens, Geert Langenus, Sandro Momigliano, Mikko Spolander
8/06	IDENTIFYING ASSET PRICE BOOMS AND BUSTS WITH QUANTILE REGRESSIONS — José A. F. Machado, João Sousa
9/06	EXCESS BURDEN AND THE COST OF INEFFICIENCY IN PUBLIC SERVICES PROVISION — António Afonso, Vítor Gaspar
10/06	MARKET POWER, DISMISSAL THREAT AND RENT SHARING: THE ROLE OF INSIDER AND OUTSIDER FORCES IN WAGE BARGAINING — Anabela Carneiro, Pedro Portugal
11/06	MEASURING EXPORT COMPETITIVENESS: REVISITING THE EFFECTIVE EXCHANGE RATE WEIGHTS FOR THE EURO AREA COUNTRIES — Paulo Soares Esteves, Carolina Reis
12/06	THE IMPACT OF UNEMPLOYMENT INSURANCE GENEROSITY ON MATCH QUALITY DISTRIBUTION — Mário Centeno, Alvaro A. Novo
13/06	U.S. UNEMPLOYMENT DURATION: HAS LONG BECOME LONGER OR SHORT BECOME SHORTER? — José A.F. Machado, Pedro Portugal e Juliana Guimarães
14/06	EARNINGS LOSSES OF DISPLACED WORKERS: EVIDENCE FROM A MATCHED EMPLOYER-EMPLOYEE DATA SET — Anabela Carneiro, Pedro Portugal
15/06	COMPUTING GENERAL EQUILIBRIUM MODELS WITH OCCUPATIONAL CHOICE AND FINANCIAL FRICTIONS — António Antunes, Tiago Cavalcanti, Anne Villamil
16/06	ON THE RELEVANCE OF EXCHANGE RATE REGIMES FOR STABILIZATION POLICY — Bernardino Adao, Isabel Correia, Pedro Teles
17/06	AN INPUT-OUTPUT ANALYSIS: LINKAGES VS LEAKAGES — Hugo Reis, António Rua
	2007
1/07	RELATIVE EXPORT STRUCTURES AND VERTICAL SPECIALIZATION: A SIMPLE CROSS-COUNTRY INDEX — João Amador, Sónia Cabral, José Ramos Maria

2/07	THE FORWARD PREMIUM OF EURO INTEREST RATES — Sónia Costa, Ana Beatriz Galvão
3/07	ADJUSTING TO THE EURO — Gabriel Fagan, Vítor Gaspar
4/07	SPATIAL AND TEMPORAL AGGREGATION IN THE ESTIMATION OF LABOR DEMAND FUNCTIONS — José Varejão, Pedro Portugal
5/07	PRICE SETTING IN THE EURO AREA: SOME STYLISED FACTS FROM INDIVIDUAL PRODUCER PRICE DATA — Philip Vermeulen, Daniel Dias, Maarten Dossche, Erwan Gautier, Ignacio Hernando, Roberto Sabbatini, Harald Stahl
6/07	A STOCHASTIC FRONTIER ANALYSIS OF SECONDARY EDUCATION OUTPUT IN PORTUGAL — Manuel Coutinho Pereira, Sara Moreira
7/07	CREDIT RISK DRIVERS: EVALUATING THE CONTRIBUTION OF FIRM LEVEL INFORMATION AND OF MACROECONOMIC DYNAMICS — Diana Bonfim
8/07	CHARACTERISTICS OF THE PORTUGUESE ECONOMIC GROWTH: WHAT HAS BEEN MISSING? — João Amador, Carlos Coimbra
9/07	TOTAL FACTOR PRODUCTIVITY GROWTH IN THE G7 COUNTRIES: DIFFERENT OR ALIKE? — João Amador, Carlos Coimbra
10/07	IDENTIFYING UNEMPLOYMENT INSURANCE INCOME EFFECTS WITH A QUASI-NATURAL EXPERIMENT — Mário Centeno, Alvaro A. Novo
11/07	HOW DO DIFFERENT ENTITLEMENTS TO UNEMPLOYMENT BENEFITS AFFECT THE TRANSITIONS FROM UNEMPLOYMENT INTO EMPLOYMENT — John T. Addison, Pedro Portugal
12/07	INTERPRETATION OF THE EFFECTS OF FILTERING INTEGRATED TIME SERIES — João Valle e Azevedo
13/07	EXACT LIMIT OF THE EXPECTED PERIODOGRAM IN THE UNIT-ROOT CASE — João Valle e Azevedo
14/07	INTERNATIONAL TRADE PATTERNS OVER THE LAST FOUR DECADES: HOW DOES PORTUGAL COMPARE WITH OTHER COHESION COUNTRIES? — João Amador, Sónia Cabral, José Ramos Maria
15/07	INFLATION (MIS)PERCEPTIONS IN THE EURO AREA — Francisco Dias, Cláudia Duarte, António Rua
16/07	LABOR ADJUSTMENT COSTS IN A PANEL OF ESTABLISHMENTS: A STRUCTURAL APPROACH — João Miguel Ejarque, Pedro Portugal
17/07	A MULTIVARIATE BAND-PASS FILTER — João Valle e Azevedo
18/07	AN OPEN ECONOMY MODEL OF THE EURO AREA AND THE US — Nuno Alves, Sandra Gomes, João Sousa
19/07	IS TIME RIPE FOR PRICE LEVEL PATH STABILITY? — Vitor Gaspar, Frank Smets , David Vestin

20/07	IS THE EURO AREA M3 ABANDONING US? — Nuno Alves, Carlos Robalo Marques, João Sousa
21/07	DO LABOR MARKET POLICIES AFFECT EMPLOYMENT COMPOSITION? LESSONS FROM EUROPEAN COUNTRIES — António Antunes, Mário Centeno
	2008
1/08	THE DETERMINANTS OF PORTUGUESE BANKS' CAPITAL BUFFERS — Miguel Boucinha
2/08	DO RESERVATION WAGES REALLY DECLINE? SOME INTERNATIONAL EVIDENCE ON THE DETERMINANTS OF RESERVATION WAGES — John T. Addison, Mário Centeno, Pedro Portugal
3/08	UNEMPLOYMENT BENEFITS AND RESERVATION WAGES: KEY ELASTICITIES FROM A STRIPPED-DOWN JOB SEARCH APPROACH — John T. Addison, Mário Centeno, Pedro Portugal
4/08	THE EFFECTS OF LOW-COST COUNTRIES ON PORTUGUESE MANUFACTURING IMPORT PRICES — Fátima Cardoso, Paulo Soares Esteves
5/08	WHAT IS BEHIND THE RECENT EVOLUTION OF PORTUGUESE TERMS OF TRADE? — Fátima Cardoso, Paulo Soares Esteves
6/08	EVALUATING JOB SEARCH PROGRAMS FOR OLD AND YOUNG INDIVIDUALS: HETEROGENEOUS IMPACT ON UNEMPLOYMENT DURATION — Luis Centeno, Mário Centeno, Álvaro A. Novo
7/08	FORECASTING USING TARGETED DIFFUSION INDEXES — Francisco Dias, Maximiano Pinheiro, António Rua
8/08	STATISTICAL ARBITRAGE WITH DEFAULT AND COLLATERAL — José Fajardo, Ana Lacerda
9/08	DETERMINING THE NUMBER OF FACTORS IN APPROXIMATE FACTOR MODELS WITH GLOBAL AND GROUP-SPECIFIC FACTORS — Francisco Dias, Maximiano Pinheiro, António Rua
10/08	VERTICAL SPECIALIZATION ACROSS THE WORLD: A RELATIVE MEASURE — João Amador, Sónia Cabral
11/08	INTERNATIONAL FRAGMENTATION OF PRODUCTION IN THE PORTUGUESE ECONOMY: WHAT DO DIFFERENT MEASURES TELL US? — João Amador, Sónia Cabral
12/08	IMPACT OF THE RECENT REFORM OF THE PORTUGUESE PUBLIC EMPLOYEES' PENSION SYSTEM — Maria Manuel Campos, Manuel Coutinho Pereira
13/08	EMPIRICAL EVIDENCE ON THE BEHAVIOR AND STABILIZING ROLE OF FISCAL AND MONETARY POLICIES IN THE US — Manuel Coutinho Pereira
14/08	IMPACT ON WELFARE OF COUNTRY HETEROGENEITY IN A CURRENCY UNION — Carla Soares
15/08	WAGE AND PRICE DYNAMICS IN PORTUGAL — Carlos Robalo Marques

16/08	IMPROVING COMPETITION IN THE NON-TRADABLE GOODS AND LABOUR MARKETS: THE PORTUGUESE CASE — Vanda Almeida, Gabriela Castro, Ricardo Mourinho Félix
17/08	PRODUCT AND DESTINATION MIX IN EXPORT MARKETS — João Amador, Luca David Opromolla
18/08	FORECASTING INVESTMENT: A FISHING CONTEST USING SURVEY DATA — José Ramos Maria, Sara Serra
19/08	APPROXIMATING AND FORECASTING MACROECONOMIC SIGNALS IN REAL-TIME — João Valle e Azevedo
20/08	A THEORY OF ENTRY AND EXIT INTO EXPORTS MARKETS — Alfonso A. Irarrazabal, Luca David Opromolla
21/08	ON THE UNCERTAINTY AND RISKS OF MACROECONOMIC FORECASTS: COMBINING JUDGEMENTS WITH SAMPLE AND MODEL INFORMATION — Maximiano Pinheiro, Paulo Soares Esteves
22/08	ANALYSIS OF THE PREDICTORS OF DEFAULT FOR PORTUGUESE FIRMS — Ana I. Lacerda, Russ A. Moro
23/08	INFLATION EXPECTATIONS IN THE EURO AREA: ARE CONSUMERS RATIONAL? — Francisco Dias, Cláudia Duarte, António Rua
	2009
1/09	AN ASSESSMENT OF COMPETITION IN THE PORTUGUESE BANKING SYSTEM IN THE 1991-2004 PERIOD — Miguel Boucinha, Nuno Ribeiro
2/09	FINITE SAMPLE PERFORMANCE OF FREQUENCY AND TIME DOMAIN TESTS FOR SEASONAL FRACTIONAL INTEGRATION — Paulo M. M. Rodrigues, Antonio Rubia, João Valle e Azevedo
3/09	THE MONETARY TRANSMISSION MECHANISM FOR A SMALL OPEN ECONOMY IN A MONETARY UNION — Bernardino Adão
4/09	INTERNATIONAL COMOVEMENT OF STOCK MARKET RETURNS: A WAVELET ANALYSIS — António Rua, Luís C. Nunes
5/09	THE INTEREST RATE PASS-THROUGH OF THE PORTUGUESE BANKING SYSTEM: CHARACTERIZATION AND DETERMINANTS — Paula Antão
6/09	ELUSIVE COUNTER-CYCLICALITY AND DELIBERATE OPPORTUNISM? FISCAL POLICY FROM PLANS TO FINAL OUTCOMES — Álvaro M. Pina
7/09	LOCAL IDENTIFICATION IN DSGE MODELS — <i>Nikolay Iskrev</i>