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Abstract

For an approximate factor model, in a static representation, with
a common component comprising global factors and factors specific to
groups of variables, the consistency of the principal components estima-
tor is discussed. An extension of the well known Bai and Ng criteria is
proposed for determining the number of global and group-specific factors.
The consistency of the suggested criteria is established and the small sam-
ple properties are assessed through Monte Carlo simulations. As an em-
pirical illustration, the proposed criteria is applied to estimate the number
of global and country-specific macroeconomic factors for the major euro
area countries.
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1 Introduction

Factor models are often used in macroeconomics and finance. There has been
an ample supporting evidence, based on both single country and multi-country
datasets, of the existence of generalized co-movements of macroeconomic series.
This evidence has led to the widespread use of factor models to study business
cycles and to improve the macroeconomic forecasting performance. The liter-
ature was initiated by Geweke (1977) and Sims and Sargent (1977), but until
the mid 90’s was limited to panels with a small number of variables1 . Stock
and Watson (1998, 1999, 2002a, 2002b), Forni and Reichlin (1998) and Forni
et al. (2000, 2001, 2004, 2005) made contributions that effectively removed the
restriction on the number of variables in macroeconomic factor models. In par-
ticular, the seminal work of Stock and Watson, which advocates the use of the
principal components method to estimate common factors from a large number
of series, became very popular among forecasters. A related field of research
integrates factor models into structural vector autegression analysis (inter alia
Bernanke and Boivin (2003), Bernanke et al. (2005), Favero et al. (2005) and
Giannone et al. (2006)). In finance, factor models have also been used since the
mid 70’s to study asset pricing. Main contributions include Ross (1976), Roll
and Ross (1980), Chamberlain and Rothschild (1983), Connor and Korajczyk
(1986,1988) and Geweke and Zhou (1996).
In the conventional factor model representation, each variable is assumed to

be the sum of two components, a component associated with factors common to
all series and an idiosyncratic term. However, in some factor models, the set of
variables is partitioned into several subsets and the common component is bro-
ken down into two or more levels. There are global common factors, shared by
the data generating process of all variables, and group-specific common factors,
each shared only by a group of variables. For example, this multi-level common
component feature appears often in factor models of the international business
cycle (Norrbin and Schlagenhauf (1996), Gregory et al. (1997), Gregory and
Head (1999), Kose et al. (2003) and Canova et al. (2007), among others). Typ-
ically, in these studies the number of variables is small and the number of global
and country-specific factors is imposed a priori to be one, rather than being
data determined.
Other researchers, but working with datasets with large number of variables,

have also admitted partitions of their sets of variables. For instance, Boivin and
Ng (2006) use group-specific factors for the US (namely, real, nominal and other)
and Marcellino et al. (2003) consider both euro area as a whole and country-
specific factors for individual euro area countries. Again, the number of global
and group specific-factors is fixed ad-hoc.
Hence, the determination of the number of global and group-specific factors

on data dependent method remains an open issue. The consideration of one

1Although Quah and Sargent (1993) already considered a moderate size panel with 60
variables.
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global factor and one group-specific factor for each group of variables, as as-
sumed in many empirical applications, may be too restrictive. This is a model
selection problem for which no criteria exists in the literature. In this paper,
we address the issue of determining the number of global and group-specific
common factors when the number of variables in each group is at least moder-
ately large and the partition of the set of variables into groups is exogenously
determined.
The framework herein considered is a static approximate factor model al-

lowing for limited dependence in the idiosyncratic terms, in both the time and
cross-section dimensions, as well as some contemporaneous correlation between
the factors and the idiosyncratic component. In the common component, we
distinguish two levels of common factors, global and group-specific. The global
factors are allowed to appear in the data generating process of all variables
whereas each group-specific factor is restricted a priori to the corresponding
group of variables.
Connor and Korajczyk (1986,1988) discussed the method of principal com-

ponents for the conventional static representation, with only global factors, and
studied its asymptotic properties for fixed number of time observations. Stock
and Watson (1998, 2002a), Bai and Ng (2002) and Amengual and Watson (2005,
2007) considered the asymptotic properties when both panel dimensions grow
to infinity, differing slightly on the set of assumptions regarding the data gen-
erating processes of the factors and the idiosyncratic errors. In this paper, we
begin by extending Bai and Ng (2002) consistency result to our framework, for
a given number of global and group-specific factors.
Additionally, Bai and Ng (2002) presented criteria, taking into account the

usual trade-off between fit and parsimony, to determine the number of factors in
a model with only global factors. In this paper, we also extend the Bai and Ng
criteria to the case of factor models with both global and group-specific factors.
The asymptotic properties of the proposed criteria are established and a Monte
Carlo simulation exercise is conducted to assess the small sample behavior of
the criteria.
We illustrate our approach by estimating the number of global and country-

specific factors for the major euro area countries (Germany, France, Italy and
Spain). The dataset encompasses almost three hundred series over the last two
decades. Interestingly, we find two global factors, one related to real activity
developments and the other refering to inflation evolution in the euro area.
This paper is organised as follows. In section 2, the static approximate

factor model with global and group-specific factors is presented. We discuss the
consistency of the principal components estimator for a given number of global
and group-specific factors in section 3. In section 4, criteria for determining
the number of factors are suggested and the corresponding asymptotic results
are established. In section 5, the finite sample properties of the criteria are
assessed through a Monte Carlo simulation exercise. In section 6, the empirical
illustration is presented. Finally, the last section concludes.
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2 The model

Let Xt be a N -dimensional stationary time series observed for t = 1, · · · , T . Xt

is partitioned in G sub-vectors (groups) of variables,

Xt =
£
X 0
1,t · · ·X 0

g,t · · ·X 0
G,t

¤0
where

Xg,t =
£
Xg,1t · · ·Xg,nt · · ·Xg,Ngt

¤0
is the column-vector of observations at time t of the Ngvariables belonging to
group g (g = 1, · · · , G), with

PG
g=1Ng = N . We are interested in panels with at

least moderately large T and large N . Moreover, we will focus on partitions such
that the numbers of variables in each group, Ng, are also at least moderately
large.
We suppose that Xg,nt admits a static factor representation with r0 global

common factors F 00,t and rg factors specific to the g-th group of variables F 0g,t,

Xg,nt = λ00g0,nF
0
0,t + λ00gg,nF

0
g,t + eg,nt

(t = 1, · · · , T ;n = 1, · · · , Ng; g = 1, · · · , G) (1)

The vectors of global and group-specific factors, the associated factor load-
ings λ0g0,n (r0 × 1) and λ0gg,n (rg × 1) and the idiosyncratic errors eg,nt are all
not observable (the superscript 0 denotes the true factors and loadings). In
this representation, the group-specific factors F 0g,t are restricted to the common
component of the variables belonging to group g, whilst the global factors may
appear in the equations of all variables. We will assume that the partition of
variables is given, implying that we know which variables belong to each group.
When rg = 0 for all g = 1, · · · , G (i.e. when there are no group-specific

factors), the equation above reduces to the conventional static representation of
the factor model, without any specific contribution of groups of variables to the
common component. On the other hand, when r0 = 0 (i.e. there are no global
factors), model (1) consists of G conventional static representations assembled
together, one for each group of variables.
Let Λ0g0 (Ng × r0) and Λ0gg (Ng × rg) be the matrices of true loadings of

the variables of group g (g = 1, · · · , G). Denoting by eg,t the Ng × 1 vector
of idiosyncratic errors for the variables Xg,t at time t, we have an equivalent
expression for model (1):

Xg,t = Λ
0
g0F

0
0,t + Λ

0
ggF

0
g,t + eg,t (t = 1, · · · , T ; g = 1, · · · , G) (2)

or, transposing the equation and stacking the time observations,

Xg = F 00Λ
00
g0 + F 0gΛ

00
gg + eg (g = 1, · · · , G) (3)

where
Xg = [Xg,1 · · ·Xg,t · · ·Xg,T ]

0 (T ×Ng)
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F 00 =
£
F 00,1 · · ·F 00,t · · ·F 00,T

¤0
(T × r0)

F 0g =
£
F 0g,1 · · ·F 0g,t · · ·F 0g,T

¤0
(T × rg)

eg = [eg,1 · · · eg,t · · · eg,T ]
0

(T ×Ng)

Instead, if we stack all the variables for time period t, the model may be repre-
sented by the set of equations

Xt = Λ
0
0F

0
0,t + Λ

0
SF

0
S,t + et (t = 1, · · · , T )

where
F 0S,t =

£
F 001,t · · ·F 00g,t · · ·F 00G,t

¤0
(r̈S × 1)

Λ00 =
£
Λ0010 · · ·Λ00g0 · · ·Λ00G0

¤0
(N × r0)

Λ0S = diag
¡
Λ011, · · · ,Λ0gg, · · · ,Λ0GG

¢
(N × r̈S)

and
et =

£
e01,t · · · e0g,t · · · e0G,t

¤0
(N × 1)

with r̈S =
PG

g=1 rg. When considering simultaneously all time observations and
all variables, we will adopt the following compact notation

X = F 0Λ00 + e

where
X = [X1 · · ·Xt · · ·XT ]

0 =
£
X1 · · ·Xg · · ·XG

¤
(T ×N)

F 0 =
£
F 00 F 0S

¤
(T × r̈)

F 0S =
£
F 01 · · ·F 0g · · ·F 0G

¤
(T × r̈S)

Λ0 =
£
Λ00 Λ

0
S

¤
=

⎡⎢⎢⎢⎢⎢⎢⎣
Λ010 Λ011 · · · 0 · · · 0
...

...
. . .

...
...

Λ0g0 0 · · · Λ0gg · · · 0
...

...
...

. . .
...

Λ0G0 0 · · · 0 · · · Λ0GG

⎤⎥⎥⎥⎥⎥⎥⎦ (N × r̈)

and
e = [e1 · · · et · · · eT ]0 =

£
e1 · · · eg · · · eG

¤
(T ×N)

with r̈ = r0 + r̈S =
PG

g=0 rg.
For g = 1, · · · , G, let

F0g =
£
F 00 F 0g

¤
(T × (r0 + rg) )

and
L0g =

£
Λ0g0 Λ

0
gg

¤
(Ng × (r0 + rg) )
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The t-th row of F0g and the n-th row of L0g will be denoted by F00g,t =
£
F 000,t F

00
g,t

¤
and L00g,n =

£
λ00g0,n λ00gg,n

¤
, respectively. Using this alternative notation, (2) and

(3) may be written as,

Xg,t = L0gF0g,t + eg,t (t = 1, · · · , T ; g = 1, · · · ,G)

and
Xg = F0gL00g + eg (g = 1, · · · , G) (4)

To develop asymptotic results when both T → ∞ and Ng → ∞ (g =
1, · · · , G), we need to complement the model specification with a set of as-
sumptions, in particular regarding the data generating processes of the factors
and of the idiosyncratic errors. Hereafter, the Frobenius norm of a matrix Y

will be denoted by ||Y || = [tr (Y 0Y )]
1
2 , where tr(Y ) is the trace of Y . Also let

γg(s, t) = E
¡
N−1g e0g,seg,t

¢
= E

³
N−1g

PNg

n=1 eg,nseg,nt

´
.

Assumption A (Factors): For every g = 1, · · · , G,
A.1. ||T−1F00g F0g − I||→ 0 as T →∞;
A.2. E

¡
||F0g,t||4

¢
<∞ for all t = 1, · · · , T ;

A.3. r0 + rg > 0;

Assumption B (Factor loadings): For every g = 1, · · · , G,
B.1. ||L0g,n|| ≤ c for some finite positive constant c and for all
n = 1, · · · , Ng;
B.2. ||N−1g L00g L0g − Ωg||→ 0 as Ng →∞ for some positive definite
matrix Ωg ((r0 + rg)× (r0 + rg)).

Assumption C (Idiosyncratic components): For every g = 1, · · · ,G,
there exists a positive finite constant M such that for all Ng and T ,

C.1. E
¡
e4g,nt

¢
≤M for all n = 1, · · · , Ng and t = 1, · · · , T ;

C.2. |γg (s, s) | ≤M for all s = 1, · · · , T and

T−1
PT

s=1

PT
t=1 |γg (s, t) | ≤M ;

C.3. |E (eg,nteg,mt) | ≤ τg,nm (t = 1, · · · , T ) for some finite τg,nm > 0
such

that N−1g

PNg

n=1

PNg

m=1 τg,nm ≤M ;

C.4. [min (Ng, T )]
j−1E

µ
tr

½h
(NgT )

−1 ege
0
g

ij¾¶
≤M for all j ≥ 1;

C.5. E
n
N
− 1
2

g
PNg

n=1 [eg,nteg,ns −E (eg,nteg,ms)]
o4
≤M for all

t = 1, · · · , T and s = 1, · · · , T .

Assumption D (Dependence between factors and idiosyncratic com-
ponents): For every g = 1, · · · , G, there is a positive finite constant M such
that for all Ng and T ,

E

½∙
1

Ng

XNg

n=1
||T− 1

2

XT

t=1
F0g,teg,nt||2

¸¾
≤M
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Assumption E (Relative size of the groups of variables): For every
g = 1, · · · , G, |Ng/N − πg|→ 0 for some πg > 0 as N →∞.

Assumption F (Irreducibility): The model is in its irreducible represen-
tation, i.e. there is no equivalent representation of the model with the same
idiosyncratic errors and a smaller total number of factors.

Assumptions A to D are mostly an adaptation to our model of the assump-
tions considered by Bai and Ng (2002). As of Assumption A, for the conventional
factor model without group-specific factors, besides restricting the factors to be
finite, Bai and Ng admit that the sample uncentered second moments matrix
of the true factors converge to a positive definite matrix as T → ∞. Without
any loss of generality and to simplify the algebra, for each group g of variables
we impose that the limit of the sample uncentered second moments matrix is
the identity matrix. Note that Assumption A does not constrain the correla-
tions between the group-specific factors of any two different groups of variables.
Indeed, besides ensuring that the model includes at least one factor (global or
local) in every group g and that the 4th moments of all factors are bounded,
Assumption A only imposes that, as T →∞,

|| 1
T
F 00g F 0g − Irg ||→ 0 and || 1

T
F 000 F 0g ||→ 0 (g = 1, · · · , G)

Nothing is assumed concerning the moments T−1F 00s F 0g (s, g > 0) but Assump-
tion F, which imposes a weak constraint on the group-specific factors. Assump-
tion F rules out situations where some group-specific factors are common to all
groups. Obviously, in this case, the common group-specific factors should have
been classified as global factors in order to get an irreducible representation with
fewer factors.
Assumption B imposes that the size of the true loadings is bounded and

that for every group of variables (and not only for the whole set of variables)
N−1g L00g L0g converges to a positive definite matrix as Ng → ∞. In particular,
Assumption B.2 requires that for large Ng, (i) each global factor is present (i.e.
has a non-null loading) in at least one equation of that group and (ii) each group
g specific factor appears in at least one equation of that group. Moreover, note
that, together with Assumption E, Assumption B.2 implies that

|| 1
N
Λ00Λ0 − Ω||→ 0

as N →∞ for some definite positive matrix Ω (r̈ × r̈) (see Appendix I).
For every group of variables, Assumptions C allows for some heteroskedas-

ticity and limited dependence of the idiosyncratic errors in both the time and
the cross-section dimensions. Assumption C.1 is a weaker version of the corre-
sponding assumption used by Bai and Ng. To establish the asymptotic results
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that are presented below, the assumption of zero mean of the idiosyncratic com-
ponent is not required and we only need to admit that their fourth moments
are finite, instead of the 8th moments. Assumptions C.2, C.3 and C.5 are direct
adaptations of the corresponding technical assumptions considered by Bai and
Ng. Assumption C.4 of Bai and Ng was dropped as it was redundant and re-
placed by a version of Assumption (A.6) considered by Amengual and Watson
(2005, 2007). Bai and Ng (2005) acknowledged that the assumptions admitted
in their 2002 paper were not sufficient to prove their results 2 and that some
stronger additional assumptions on the dependence of the idiosyncratic errors
had to be imposed. They admit two alternatives to complete the set of assump-
tions, one being our Assumption C.4. The other alternative would consist of
admitting that (for our model and in our notation)

eg = Σ
1/2
g ξgR

1/2
g (g = 1, · · · , G)

where ξg =
£
ξg,nt

¤
are T ×N matrices of independent variables ξg,nt with zero

mean and uniformly bounded 7th moments and where Σg (Ng ×Ng) and Rg

(T × T ) are arbitrary (possibly random) positive definite matrices with bounded
eigenvalues.
Assumption D allows for some contemporaneous correlation between the

factors and the idiosyncratic components. Since

|| 1√
T

XT

t=1
F0g,teg,nt||2 = ||

1√
T

XT

t=1
F 00,teg,nt||2 + ||

1√
T

XT

t=1
F 0g,teg,nt||2

Assumption D imposes that there exists a positive constantM <∞ that satisfies
both

E

½∙
1

Ng

XNg

n=1
|| 1√

T

XT

t=1
F 00,teg,nt||2

¸¾
≤M

and

E

½∙
1

Ng

XNg

n=1
|| 1√

T

XT

t=1
F 0g,teg,nt||2

¸¾
≤M.

Equipped with Assumptions C and D, model (1) is an "approximate factor
model", in the sense of the terminology introduced by Chamberlain and Roth-
schild (1983).
Finally, Assumption E simply rules out the possibility that the relative size

of any group of variables becomes insignificant when N , the overall number of
variables in the model, tends to infinity. In other words, all Ng are admitted
to grow to infinity at the same rate, mantaining the number of groups stable
throughout the process.

2More precisely, they were not sufficient to prove their Lemma 4, which was used to prove
their Theorem 2. On this issue, see also Amengual and Watson (2007).
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3 Model estimation for a given vector of num-
bers of factors

In this section we adapt the method of asymptotic principal components to
the static approximate model with both global and group-specific factors pre-
sented in the previous section. Connor and Korajczyk (1986,1988) discussed
the method of principal components for the conventional static representation
and studied its asymptotic properties for fixed T . Stock and Watson (1998,
2002a), Bai and Ng (2002) and Amengual and Watson (2005, 2007) considered
the asymptotic properties when both N,T → ∞, differing slightly on the set
of assumptions regarding the data generating processes of the factors and the
idiosyncratic errors.

3.1 Overall and group-by-group mean squared idiosyn-
cratic error

We do not know r = [r0 r1 · · · rg · · · rG]0, the true number of factors. When
estimating the model, we will have to allow for some vector of numbers of factors
k = [k0 k1 · · · kg · · · kG]0. As usual in this litterature, it will be assumed that it is
possible to set a ceiling for each element of r, such that there is a known vector
of upper bounds to the numbers of factors kmax =

£
kmax0 kmax1 · · · kmaxg · · · kmaxG

¤0
with rg ≤ kmaxg (g = 0, 1, · · · , G). Hereafter, the superscript (k) will denote the
allowance for k factors when estimating the model.
Given k (≤ kmax), estimates of F (k)g (T × kg), Λ

(k)
g0 (Ng × k0) and Λ

(k)
gg

(Ng × kg) (g = 0, 1, · · · ,G) are obtained minimizing the overall mean squared
idiosyncratic error (MSIE) subject to a set of identifying restrictions. The overall
MSIE is a function of the factors and loadings:

υ
³
Λ(k), F (k)

´
=

1

NT

XG

g=1

XNg

n=1

XT

t=1

³
Xg,nt − λ

(k)0
g0,nF

(k)
0,t − λ(k)0gg,nF

(k)
g,t

´2
In a somewhat more compact notation (with F (k)g =

h
F
(k)
0 F

(k)
g

i
(T×(k0 + kg))

and L(k)g =
h
Λ
(k)
g0 Λ

(k)
gg

i
(Ng × (k0 + kg)) for g = 1, · · · , G) the MSIE can be

rewritten as

υ
³
Λ(k), F (k)

´
=

1

NT

XG

g=1
tr

∙³
Xg − F (k)g L(k)0g

´0 ³
Xg − F (k)g L(k)0g

´¸
(5)

or, in a fully compact notation,

υ
³
Λ(k), F (k)

´
=

1

NT
tr

∙³
X − F (k)Λ(k)0

´0 ³
X − F (k)Λ(k)0

´¸
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The overall MSIE can be expressed as a weighted average of the MSIE corre-
sponding to each group of variables:

υ(Λ(k), F (k)) =
XG

g=1

Ng

N
υg

³
F (k)g ,L(k)g

´
where υg

³
F (k)g ,L(k)g

´
refers to the MSIE of the variables of group g:

υg

³
F (k)g ,L(k)g

´
=

1

NgT
tr

∙³
Xg − F (k)g L(k)0g

´0 ³
Xg − F (k)g L(k)0g

´¸
(6)

At the group level and conditional on a given (full rank) solution for F (k)g , in
the absence of restrictions on L(k)g , the corresponding estimator for this matrix
of loadings is the ordinary least squares estimator

L(k)g = X 0
gF (k)g

³
F (k)0g F (k)g

´−1
Therefore, without incurring in any loss of information, we may simply denote

υg

³
F (k)g

´
instead of υg

³
F(k)g ,L(k)g

´
and express (6) equivalently as

υg

³
F(k)g

´
=

1

NgT
tr
h
X 0

g

³
I − P (k)g

´
Xg

i
where P (k)g = F (k)g

³
F (k)0g F (k)g

´−1
F (k)0g is the matrix of orthogonal projection

into the space generated by the columns of F (k)g . In the same vein, we will
denote the overall MSIE simply by υ

¡
F (k)

¢
instead of υ

¡
Λ(k), F (k)

¢
.

3.2 The principal components estimator

For a given vector k, with k̈ =
PG

g=0 kg, and taking into account the zero

restrictions imposed on Λ(k), a set of
³
k̈Sk0 +

PG
g=0 k

2
g

´
identifying restrictions

is required in order to obtain a single optimal solution to the minimization
problem of υ

¡
Λ(k), F (k)

¢
. As in the conventional model with only global factors,

we will consider a partial identification by explicitly imposing the following set

of
³
k̈Sk0 +

PG
g=0 kg (kg + 1) /2

´
restrictions3:

1

T
F(k)0g F (k)g = I (g = 1, · · · , G) (7)

3 In the conventional model with N variables, T time periods and k estimated factors, to
achieve exact identification a set of k2 restrictions is required. In practice, typically only
k(k + 1)/2 restrictions are explicitly considered. That means that the principal component
estimator F̃ (k) is only defined up to an orthogonal transformation of matrix Q(k). In other
words, any estimator F̊ (k) = F̃ (k)Q(k), with Q(k) orthogonal, also has the same optimal
MSIE.
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or, equivalently,
1

T
F (k)0g F (k)g = I (g = 0, 1, · · · , G) (8)

and
1

T
F
(k)0
0 F (k)g = 0 (g = 1, · · · , G) (9)

Consistently with Assumption A.1, these identification restrictions do not rule
out non-zero correlation between group-specific factors associated with different
groups of variables.
We will denote the estimators of factors and loadings obtained when using

the set of identifying restrictions (7) (or (8)-(9)) by F̃ (k)and Λ̃(k) (and F̃
(k)
0 ,

Λ̃
(k)
0 , Λ̃(k)g0 , Λ̃

(k)
gg , F̃ (k)g , L̃(k)g , etc.). It is straightforward to derive the first or-

der conditions for the problem of minimizing the overall MSIE (5) subject to
restrictions (8)-(9):

Λ̃
(k)
0 =

1

T
X 0F̃

(k)
0 and Λ̃(k)gg =

1

T
X 0

gF̃
(k)
g (g = 1, · · · , G) (10)∙

1

NT

³
X − F̃

(k)
S Λ̃

(k)0
S

´³
X − F̃

(k)
S Λ̃

(k)0
S

´0¸ 1√
T
F̃
(k)
0 =

=
1√
T
F̃
(k)
0

½
1√
T
F̃
(k)0
0

∙
1

NT

³
X − F̃

(k)
S Λ̃

(k)0
S

´³
X − F̃

(k)
S Λ̃

(k)0
S

´0¸ 1√
T
F̃
(k)
0

¾
(11)

and, for g = 1, · · · , G,∙
1

NgT

³
Xg − F̃

(k)
0 Λ̃

(k)0
g0

´³
Xg − F̃

(k)
0 Λ̃

(k)0
g0

´0¸ 1√
T
F̃ (k)g =

=
1√
T
F̃ (k)g

½
1√
T
F̃ (k)0g

∙
1

NgT

³
Xg − F̃

(k)
g0 Λ̃

(k)0
g0

´³
Xg − F̃

(k)
g0 Λ̃

(k)0
g0

´0¸ 1√
T
F̃ (k)g

¾
(12)

The equations (10)-(11)-(12), together with the identifying restrictions (8)-(9)
tell us that the columns of T−1/2F̃ (k)0 and of T−1/2F̃ (k)g (g = 1, · · · ,G) are
(orthogonal and normalized) eigenvectors, respectively of

1

NT

³
X − F̃

(k)
S Λ̃

(k)0
S

´³
X − F̃

(k)
S Λ̃

(k)0
S

´0
and

1

NgT

³
Xg − F̃

(k)
g0 Λ̃

(k)0
g0

´³
Xg − F̃

(k)
g0 Λ̃

(k)0
g0

´0
(g = 1, · · · , G)

associated with the largest eigenvalues of these two matrices. In Appendix III,
we suggest an algorithm to compute the estimates.
Because the model is only partially identified, alternative solutions F̆ (k)

associated with the same overall MSIE minimum can be generated by block
diagonal orthogonal transformations of F̃ (k):

F̆ (k) = F̃ (k)Q(k)

11



where
Q(k) = diag

³
Q
(k)
0 ,Q

(k)
1 , · · · , Q(k)g , · · · , Q(k)G

´
such that Q(k)g are orthogonal matrices (kg × kg) (g = 0, 1, · · · , G).

3.3 A convenient auxiliary estimator

In close relationship with F̃(k)g , we may define the rescaled group-by-group aux-
iliary estimators

F̂(k)g =
1

NgT
XgX

0
gF̃(k)g (g = 1, · · · , G)

Equivalently, F̂ (k)g =
h
F̂ (k)g0 F̂

(k)
g

i
(g = 1, · · · , G) with

F̂(k)g0 =
1

NgT
XgX

0
gF̃

(k)
0

and
F̂ (k)g =

1

NgT
XgX

0
gF̃

(k)
g

Let us also define the "mean auxiliary estimator" of the global factors

F̂
(k)
0 =

XG

g=1

Ng

N
F̂ (k)g0 =

1

NT
XX 0F̃

(k)
0

and the "overall auxiliary estimator"

F̂ (k) =
h
F̂
(k)0
0 F̂

(k)0
1 · · · F̂ (k)0g · · · F̂ (k)0G

i0
Note that the matrices F̂ (k)g0 , are not identical across the groups of variables

because the group-by-group rescaling transformations depend on the matrices
of observations Xg (g = 1, · · · , G). Additionally, the matrices T−1F̂ (k)0g F̂ (k)g

(g = 1, · · · , G) may not be full rank k0 + kg, although usually in practice they
are. However, to take into account the possibility of some T−1F̂ (k)0g F̂(k)g being
singular, the projection matrix associated with the auxiliary estimators has to
be defined using the Moore-Penrose pseudoinverse instead of a regular inverse

P̂ (k)g =
1

T
F̂ (k)g

µ
1

T
F̂ (k)0g F̂ (k)g

¶+
F̂ (k)0g

This matrix is symmetric and idempotent and the estimated MSIE associated
with the auxiliary estimator for group g of variables is given by

υg

³
F̂(k)g

´
=

1

NgT
tr
h
X 0

g

³
I − P̂ (k)g

´
Xg

i
12



Unlike in the case of the conventional model with only global factors, in

general υg
³
F̂ (k)g

´
6= υg

³
F̃ (k)g

´
and υ

³
F̂ (k)

´
6= υ

³
F̃ (k)

´
. In Appendix IV we

show that if T−1F̂ (k)0g F̂ (k)g is full rank k0 + kg (the most common case), than

υg

³
F̂ (k)g

´
≤ υg

³
F̃ (k)g

´
.

3.4 Consistency

Our first main asymptotical result, Theorem 1, states that the rate of conver-
gence to zero of the time average of the squared deviations between the factors
as estimated by the auxilary estimator F̂g,t and (k0 + kg) linear combinations
of the (r0 + rg) true factors F0g,t is [min (Ng, T )]

−1. Asymptotically, the linear
combinations span: (i) the space generated by the columns of F0g when kg ≥ rg
and k0 + kg ≥ r0 + rg; or (ii) a subspace of dimension min (k0; r0) + kg of that
space when kg < rg or k0 + kg < r0 + rg. Corollary 1.1 translates the result
of Theorem 1 to the overall auxiliary estimator F̂ (k)t when the model is not
underspecified in any dimension (i.e. when k0 ≥ r0 and kg ≥ rg for all groups
g). Proofs of Theorem 1 and Corollary 1.1 are presented in Appendices VI and
VII, respectively.
Theorem 1: Suppose that Assumptions A to E hold and let k = [k0 k1 · · · kg · · · kG]0

with k0 + kg > 0 for all g = 1, · · · , G. There is a finite positive constant L1
such that, for every g = 1, · · · , G,

min (Ng, T )

µ
1

T

XT

t=1
||F̂g,t −H(k)0

g F0g,t||2
¶
≤ L1

where F̂g,t and Fg,t are the transposed t-th rows of F̂g and Fg, respectively,
and

H(k)
g =

µ
1

Ng
L00g L0g

¶µ
1

T
F00g F̃ (k)g

¶
As T →∞ and Ng →∞, H(k)

g converges to a matrix of rank

min (r0 + rg; k0 + kg; r0 + kg)

Corollary 1.1: Suppose that Assumptions A to E hold. For every g =

1, · · · , G, let k0+kg > 0 and H
(k)
g be partioned into four blocks H(k)

g,00 (r0 × k0),

H
(k)
g,0g (r0 × kg), H

(k)
g,g0 (rg × k0) and H

(k)
g,gg (rg × kg):

H(k)
g =

"
H
(k)
g,00 H

(k)
g,0g

H
(k)
g,g0 H

(k)
g,gg

#
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Then there is a finite positive constant L2 such that

min (N,T )

µ
1

T

XT

t=1
||F̂ (k)t −H(k)0F 0t ||2

¶
≤ L2

where F̂
(k)
t and F 0t are the transposed t-th rows of F̂ (k) and F 0, respectively,

and H(k) is the (r̈ × k̈) matrix

H(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PG
g=1

³
Ng

N H
(k)
g,00

´
H
(k)
1,01 · · · H

(k)
g,0g · · · H

(k)
G,0G

N1

N H
(k)
1,10 H

(k)
1,11 · · · 0 · · · 0

...
...

...
...

Ng

N H
(k)
g,g0 0 · · · H

(k)
g,gg · · · 0

...
...

...
...

NG

N H
(k)
G,G0 0 · · · 0 · · · H

(k)
G,GG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
If kg ≥ rg (g = 0, 1, · · · , G), then H(k) converges to a matrix with full rank r̈
as T →∞ and Ng →∞ (g = 1, · · · , G).

In the conventional model with only global factors, the MSIE associated
with the principal components estimator F̃ (k) and the MSIE associated with the
rescaled estimator F̂ (k) are identical. As mentioned in the previous subsection,
that does not apply to our model with both global and group-specific factors,
at least in the finite sample. The following theorem complements the previous
propositions by stating that if kg ≥ rg and k0 + kg ≥ r0 + rg (i.e. if the both
the number of group-specific factors and the total number of factors for group
g of variables are not underspecified) then the principal components estimator
and the auxiliary estimator both attain the same group MSIE asymptotically
and therefore span the same factor space. The proof of Theorem 2 is presented
in Appendix VIII.

Theorem 2: Suppose that Assumptions A to E hold and let k = [k0 k1 · · · kg · · · kG]0
with k0 + kg > 0 for all g = 1, · · · , G. If kg ≥ rg and k0 + kg ≥ r0 + rg, then¯̄̄

υg

³
F̂ (k)g

´
− υg

³
F̃ (k)g

´¯̄̄
→ 0

as Ng →∞ and T →∞.

4 Estimation of the number of global and group-
specific factors

4.1 Two classes of procedures to estimate r

14



Let
GPCg(k) = υg

³
F̂ (k)g

´
+ k0ψ0 (Ng, N, T ) + kgψg (Ng, N, T )

We can consistently estimate r, the (G + 1) vector of the number of the true
global and group specific factors, by minimizing a criterion such as

GPC(k) =
XG

g=1

Ng

N
GPCg(k) =

= υ
³
F̂ (k)

´
+
XG

g=1

Ng

N

£
k0ψ0 (Ng, N, T ) + kgψg (Ng,N, T )

¤
where ψg (Ng, N, T ) (g = 0, 1, · · · , G) are positive penalty functions and where
GPC stands for "Group PC" criterion, because it is a generalization of the PC
criterion suggested by Bai and Ng (2002). Theorem 3 establishes conditions for
the penalty functions that ensure the consistency of the estimator of r.

Theorem 3: Suppose that the Assumptions A to F hold and that kmax ≥ r.
Let

k̂ = arg min
0≤k≤kmax

k0+kg>0 (g=1,··· ,G)

GPC(k)

If ψg (Ng, N, T ) are positive functions for all g, Ng, N and T and if

(i) ψg (Ng, N, T )→ 0 (g = 0, 1, · · · , G)

(ii) min (N,T )ψg (Ng, N, T )→∞ (g = 0, 1, · · · , G)

(iii) min (N,T )
£
ψg (Ng, N, T )− ψ0 (Ng, N, T )

¤
→∞ (g = 0, 1, · · · , G)

as N →∞ and T →∞, then Prob
³
k̂ = r

´
→ 1.

When there are only global factors, as in the conventional model, the crite-
rion above reduces to the PC criterion suggested by Bai and Ng (2002). In this
particular case, as mentioned above, the estimated MSIE associated with the
auxiliary estimator is always identical to the estimated MSIE associated with
the principal components estimator. Thus, if there are only global factors, it is
indifferent to use either estimator when computing the criterion. However, in
our model with more than one group of variables, the two estimated MSIE in
general are not identical and the auxiliary estimator is the only one that ensures
consistency of the criterion.
As regards the conditions on the penalty functions, conditions (i) and (ii)

are identical to those presented by Bai and Ng (2002) in their Theorem 2. The
additional condition (iii) is needed to ensure that any solution with k0 < r0,
kg > rg and k0 + kg = r0 + rg for some group or groups of variables g will
be discarded asymptotically. In particular, condition (iii) rules out the choice
of reducible representations, at least when N and T are sufficiently large. To
illustrate this issue, let k(I) and k(II) be two (G+ 1) vectors of possible number
of factors such that

k(II) − k(I) = [(−1) 1 · · · 1]0
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k(II) corresponds to a representation with one less global factor and one extra
group-specific factor than k(I) for every group of variables. To simplify, let us
also assume that the size of the panel is large in all dimensions and that the over-
all and group-by-group estimated MSIEs are the same for both representations.
Thus, we are admitting that the loss of one global factor is exactly compensated
by an additional group-specific factor in every group. By Assumption F, the
true model is in its irreducible representation and the criterion should penalize
the representation associated with k(II) more than that associated with k(I)
because the former has a larger total number of factors for the same descriptive
power. In our illustration, the more parcimonious representation k(I) will be
chosen if

GPC
¡
k(II)

¢
−GPC

¡
k(I)

¢
= −ψ0 (Ng, N, T ) +

XG

g=1

Ng

N
ψg (Ng, N, T ) =

=
XG

g=1

Ng

N

£
ψg (Ng, N, T )− ψ0 (Ng, N, T )

¤
> 0

Asymptotically, condition (iii) in Theorem 3 is sufficient to rule out any reducible
representation of the true model. In finite samples, as our illustration just
pointed out, it will be convenient that the penalty function verifies

ψg (Ng, N, T )− ψ0 (Ng, N, T ) > 0

for all Ng, N (> Ng) and T .
Corollary 3.1 extends Theorem 3 to a class of criteria which uses a logarith-

mic transformation of the MSIE, adapting the IC criterion of Bai and Ng:

GIC(k) =
XG

g=1

Ng

N
GICg(k)

where,

GICg(k) = ln
h
υg

³
F̂ (k)g

´i
+k0ψ0 (Ng, N, T )+kgψg (Ng,N, T ) (g = 1, · · · , G)

Corollary 3.1: Under the Assumptions A to F, the result in Theorem 3
remains valid when criteria GIC(k) and GICg(k) are substituted for GPC(k)
and GPCg(k), respectively.

Proofs of Theorem 3 and Corollary 3.1 are provided in Appendices X and XI,
respectively. They are generalizations of the proofs of Theorem 2 and Corollary
1 presented by Bai and Ng (2002).
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4.2 The choice of the penalty function

For the conventional model with only global factors, Bai and Ng (2002) sug-
gested the penalty functions σ̃2ϕ(N,T ) and ϕ(N,T ) for the PC and IC criteria,
respectively, where ϕ(N,T ) is one of following three alternatives:

ϕ(1)(N,T ) =
N + T

NT
ln

µ
NT

N + T

¶
(13)

ϕ(2)(N,T ) =
N + T

NT
ln [min (N ;T )] (14)

ϕ(3)(N,T ) =
ln [min (N ;T )]

min (N ;T )
(15)

and where σ̃2 stands for a consistent estimator of the overall MSIE. In applica-
tions, Bai and Ng (2002) proposed to use the estimated overall MSIE for kmax

as the scaling factor σ̃2. However, in finite samples quite often the estimated
number of factors depend on the choice of kmax, which is difficult to rationalize.
The scaling of the penalty term in IC criteria is much less critical and that ex-
plains why the latter class has been preferred by most practicioners. As regards
the choice of the alternative specifications for ϕ(N,T ), simulations carried out
by Bai and Ng (2002) for the conventional model show that ϕ(3)(N,T ) behaves
worse than the other two when N and/or T are small.
For the model with both global and group specific factors, the choice of

the scaling factors is more critical than in the conventional model with only
global factors. The estimated group-specific MSIEs depend on all the elements
of vector k (and not only on k0 and kg). Unless G is very small, the estimated
MSIEs associated with kmax may prove to be a very poor choice of the scaling
factors due to the large number of factors typically considered in kmax. The
GIC criteria have the important advantage of being much less sensitive to the
small sample scaling problems of the penalty term and hereafter we will restrict
our analysis to this class of criteria.
Given our aim to extend Bai and Ng’s criteria to a model with both global

and group specific factors, we want to keep the penalty functions specification
as close as possible to (13), (14) and (15). The simplest specification could have
been

ψg(i)(Ng, N, T ) = ϕ(i)(Ng, T ) (i = 1, 2, 3; g = 0, 1, · · · , G)

with ϕ(i)(·) specified as in (13), (14) or (15), but then condition (iii) of Theorem
3 is not satisfied. However, condition (iii) is fulfilled if the penalty associated
with the group-specific factors is kept as suggested

ψg(i)(Ng, N, T ) = ϕ(i)(Ng, T ) (i = 1, 2, 3; g = 1, · · · , G)

and the specification for the global factors is sligthly amended by multiplying
it by (1− c) where c is a small positive constant:

ψ0(i)(Ng, N, T ) = (1− c)ϕ(i)(Ng, T ) (i = 1, 2, 3)
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The multiplicative element (1 − c) ensures that, for each group of variables,
the penalty associated with an extra group specific factor is slightly larger than
Ng/N times the penalty associated with a global factor, thus fulfilling condition
(iii) of Theorem 3.

5 Monte Carlo simulation results

To assess the finite sample performance of the criteria suggested in the previous
section, we carried out a Monte Carlo exercise. The large number of dimen-
sions encompassed in our framework makes it extremely demanding to cover all
possibilities. Hence, our strategy was to focus on a relatively contained num-
ber of cases, which nevertheless provide informative insights regarding the finite
sample performance of the criteria (as in Bai and Ng (2002)).
Owing to the difficulty in finding adequate scaling factors for GPC criteria,

as mentioned above, we confined the simulation to the GIC criteria. More-
over, we do not present results for the criteria with penalty function based on
ϕ(3)(.). Bai and Ng (2002) found that this specification performs poorly when
the number of series and/or time observations is small. This also applies to our
model.
As to the number of groups, we investigated two cases, G = 2, 5. Regarding

the true number of factors, we considered two global factors and two specific
factors for every group of variables. Although relatively parsimonious, this
seems to be sufficient to assess underestimation or overestimation of the number
of factors by the criteria.
The data generating processes of all factors are mutually independent first

order autoregressive processes with a 0.5 coefficient and unit variance Gaussian
innovation. For the idiosyncratic term, four cases were assessed: i) as the base
case, a Gaussian white noise with the same variance as the common component;
ii) a Gaussian first order autoregressive process with a 0.5 coefficient and the
same variance as the common component; iii) a Gaussian white noise with the
variance of the idiosyncratic part twice as large as the variance of the common
component; iv) a Gaussian first order autoregressive process with a 0.5 coeffi-
cient and the variance of the idiosyncratic part twice as large as the variance of
the common component.
For the panel size, we considered the various combinations of T = 60, 100,

200 and Ng = 60, 100. Finally, the sensitivity of the criteria performance to the
choice of c was assessed considering several values within a reasonable range, in
particular, c = 0.05, 0.1, 0.2. Overall, for each G, the criterion was applied to
72 different configurations.
For each configuration, one thousand simulations were performed. We report

the proportion of times that the criterion gets it right (that is, zero deviation
from the true number of factors), underestimates and overestimates by one
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the true number of factors4 . To simplify the comparison across cases with a
different number of groups, we present the results for the global factors and for
the average of the group-specific factors.
We first discuss the configurations with two groups of variables (G = 2). In

the base case (see Table 1), the results are quite impressive for both GIC(1) and
GIC(2). For T = 100 and 200, both criteria estimate correctly the true number
of global and group-specific factors in almost 100 per cent of the simulations.
For T = 60 and Ng = 100, although both criteria get it right almost always
in terms of the number of global factors, GIC(1) performs slightly better than
GIC(2), for all values of c. In the most difficult case, with T = 60 and Ng = 60,
GIC(1) clearly outperforms GIC(2), estimating correctly the true number of
global factors by near 100 per cent of the simulations and around 96 per cent in
the case of the group-specific factors5. In fact, GIC(2) seems to bias downwards,
that is, it tends to underestimate the true number of factors. Moreover, the
results for GIC(1) are robust to the choice of c. Hence, the analysis of the base
case seems to favour the use of GIC(1) instead of GIC(2). This conclusion is
reinforced by the analysis of the remaining configurations.
In Tables 2, 3 and 4 we present the results for the cases (ii), (iii) and

(iv), mentioned above, respectively. Concerning case (ii), the conclusions are
qualitatively the same for T = 100 and 200. For T = 60, GIC(2) performs
slightly better than GIC(1), although differences are small (for c = 0.05 and
0.10). The main difference against the base case refers to the role of c. While
in the base case, the results for GIC(1) remain almost unchanged for different
values of c, in this case, the performance of the criterion clearly deteriorates
when c = 0.2 with T = 60. This evidence would suggest avoiding the use of
c = 0.2 with T small. Regarding cases (iii) and (iv), there is a deterioration
in the behavior of the criteria, namely in case (iii). However, both these cases
are somehow extreme in the sense that they imply a lot of noise in the data
set. In such demanding framework, it is natural that the criteria performance
is poorer. Note that GIC(2) is much more affected than GIC(1). Regarding the
choice of c for GIC(1), from the analysis of case (iv), evidence clearly points
to discard c = 0.2, favouring somehow c = 0.1 over c = 0.05. Although the
results regarding the choice of c for GIC(1) are more mixed, in case (iii) those
for c = 0.1 are slightly better than the ones for c = 0.05.
In order to assess the robustness of the conclusions to a different number of

groups, we now discuss the results for G = 5 (Table 5). To narrow a bit the
number of possible combinations and to ease the overall reading of the results,
we discarded some of the combinations. Since the results for c = 0.05 and
c = 0.1 are relatively similar, we only report those for c = 0.1 and c = 0.2.
Moreover, since the results for T = 200 do not add much to the conclusions,
they were also discarded. The summary results for the five groups configurations

4The other situations were discarded to ease the presentation of the results
5We also considered another variant where the number of series of one of the groups was

set to 30 and the other one to 90 (so that the total number of series remains unchanged at
120). As expected, there is a significant deterioration of the performance of the criteria for
the group less represented in the data set with the remaining results almost unchanged.
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are presented in Table 5. In qualitative terms, the results do not differ much
from those obtained with only two groups. Again, in the base case, GIC(1) does
always equal or better than GIC(2), with the percentages of success similar to
the ones obtained in the two groups case. In the case of variant (ii), considering
c = 0.2 reveals once again to be a poorer choice for GIC(1) than c = 0.1, in
particular, when T = 60. Concerning cases (iii) and (iv), there is again a
tendency to underestimate the true number of factors, particularly strong in
case (iii), which is much more severe for GIC(2) than for GIC(1). Overall, the
main conclusions remain valid when one increases the number of groups from
two to five.

6 Empirical results for the euro area

In this section, we provide an empirical application for the GIC(1) criterion for
illustrative purposes6. A large set of macroeconomic series were collected for
Germany, France, Italy and Spain, which together represent around 80 per cent
of euro area GDP. Resorting to the Thomson Financial Datastream database,
the panel includes a wide range of variables, namely industrial production and
sales, labour market variables, price series, monetary aggregates, business and
consumer surveys, etc.7 . The sample covers the period from January 1991, that
is after German reunification, up to December 2006. Hence, we have 192 time
observations and a total of 295 series (77 series for Germany, 82 for France, 64
for Italy and 72 for Spain). As usual, data are seasonally adjusted and trans-
formed by taking logs and/or differences when necessary. An outlier adjustment
procedure was also performed8.
In this example, the variables for each country constitute a natural group.

Each variable is assumed to be driven by factors common to all countries (which
therefore reflect overall euro area developments), the global factors, and by
country-specific factors. Following the discussion of the previous section, we
computed GIC(1) with c = 0.1. According to this criterion (Table 6), two
global factors were found. The first seems to reflect euro area real activity
behavior. This interpretation is apparent from Figure 1 which displays the
quarterly euro area GDP growth and the quarterly average of the first global
factor. On the other hand, the second global factor captures euro area consumer
prices evolution. This can be seen in Figure 2, which displays the year-on-year
euro area inflation along with the twelve-months moving average of the second
global factor.
Regarding country-specific factors, Germany presents clearly the large num-

ber (six), followed by Italy (four), while both France and Spain have two. There-

6All Matlab codes are available from the authors upon request.
7 See the Appendix XII for the list of series.
8The outlier adjustment corresponds to replacing observations of the transfomed series

with absolute deviations larger than six times the interquartile range by the median value of
the preceding five observations (see, for example Stock and Watson (2005)).
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fore, the total number of factors that we end up with for Germany is eight (i.e.,
two global plus six specific factors), six for Italy and four for France and Spain.
Interestingly, these figures are almost the same as the number of factors that
one obtains when the IC(1) criterion of Bai and Ng (2002) is applied to each
country separately (see Table 6).

7 Conclusions

In this paper, within the framework of an approximate factor model, we focused
on the issue of determining the number of global and group-specific factors
when the number of variables in each group is at least moderately large and
the partition of variables into groups is exogenously set. The consistency of the
principal components estimator was discussed for given numbers of global and
group-specific factors. An extension of the well known Bai and Ng (2002) criteria
was proposed and a proof of the consistency was provided. Furthermore, the
corresponding finite sample behaviour was investigated through a Monte Carlo
simulation exercise. From the set of results, we found that the criterion GIC(1)
performs better in finite samples, under most possible conditions. However, the
performance of the criteria, including GIC(1), may present a significant negative
bias when the idiosyncratic component dominates the data generating process
of the variables and the number of time observations is not large.
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Appendix

I - Proof that Ω is positive definite under Assumptions B.2 and E

By Assumptions B.2 and E, as Ng, T →∞

1

N
Λ00Λ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

PG
g=1

¡
1
NΛ

00
g0Λ

0
g0

¢
1
NΛ

00
10Λ

0
11 · · · 1

NΛ
00
g0Λ

0
gg · · · 1

NΛ
00
G0Λ

0
GG

1
NΛ

00
11Λ

0
10

1
NΛ

00
11Λ

0
11 · · · 0 · · · 0

...
...

...
...

1
NΛ

00
ggΛ

0
g0 0 · · · 1

NΛ
00
ggΛ

0
gg · · · 0

...
...

...
...

1
NΛ

00
GGΛ

0
G0 0 · · · 0 · · · 1

NΛ
00
GGΛ

0
GG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

PG
g=1 (πgΩg,00) π1Ω1,01 · · · πgΩg,0g · · · πGΩG,0G
π1Ω

0
1,01 π1Ω1,11 · · · 0 · · · 0
...

...
...

...
πgΩ

0
g,0g 0 · · · πgΩg,gg · · · 0
...

...
...

...
πGΩ

0
G,0G 0 · · · 0 · · · πGΩG,GG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ω

where the matrices Ωg,00, Ωg,0g and Ωg,gg have dimensions (r0 × r0), (r0 × rg)
and (rg × rg), respectively, and are such that

Ωg =

∙
Ωg,00 Ωg,0g
Ω0g,0g Ωg,gg

¸
(g = 1, · · · ,G)

Being positive semi-definite by construction, Ω will be positive definite if and
only if it is non-singular. By Assumption E πg > 0 (g = 1, · · · , G) and, by
Assumption B.2, the matrices Ωg,00, Ωg,gg and Ωg,00 − Ωg,0gΩ−1g,ggΩ0g,0g are all
non-singular (g = 1, · · · , G).
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Let

ΩSS =

⎡⎢⎢⎢⎢⎢⎢⎣
π1Ω1,11 · · · 0 · · · 0
...

...
...

0 · · · πgΩg,gg · · · 0
...

...
...

0 · · · 0 · · · πGΩG,GG

⎤⎥⎥⎥⎥⎥⎥⎦
and

Ω0S =
£
π1Ω1,01 · · · πgΩg,0g · · · πGΩG,0G

¤
Note that ΩSS is positive definite.
We may write

Ω−1 =

∙
Ω00 Ω0S

Ω0S0 ΩSS

¸
where

Ω0S = −Ω00Ω0SΩ−1SS
ΩSS = Ω−1SS +Ω

−1
SSΩ

0
0SΩ

00Ω0SΩ
−1
SS

and

Ω00 =

∙XG

g=1
(πgΩg,00)−

XG

g=1

¡
πgΩg,0gΩ

−1
g,ggΩ

0
g,0g

¢¸−1
=

=

∙XG

g=1
πg
¡
Ωg,00 − Ωg,0gΩ−1g,ggΩ0g,0g

¢¸−1
The latter inverse exists because

PG
g=1 πg

¡
Ωg,00 − Ωg,0gΩ−1g,ggΩ0g,0g

¢
, being the

sum of positive definite matrices, is also definite positive. ¤

II - Solution of the optimization problem

max
Z

tr (Z0AZ) subject to Z0Z = I and B0Z = 0

where Z, A and B are (m× n), (m×m) and (m× q) matrices, respectively,
with n < m, A symmetric semi-definite positive and B such that B0B = I.
Let B⊥ be the (m× (m− q)) orthogonal complement of B, with B0

⊥B = 0
andB0

⊥B⊥ = I. The restrictionB0Z = 0 implies that the columns of the optimal
solution Z∗ are linear combinations of the columns of B⊥ and therefore the
solution of the above optimization problem may be expressed as Z∗ = B⊥W

∗,
where W ∗ ((m− q)× n) is the solution of

max
W

tr (W 0B0
⊥AB⊥W ) subject to W 0W = I

By Theorem 11.6 in Magnus and Neudecker (1988, p.205), the columns of W ∗

are the normalized and orthogonal eigenvectors of B0
⊥AB⊥ associated with the

n largest eigenvalues of the latter matrix. ¤
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III - An algorithm to compute the principal components estimates
(given k)9

(a) First, consider only global factors (i.e., k1 = · · · = kG = 0) and esti-
mate the conventional model by computing the eigenvalues and eigenvectors of
(NT )−1XX 0. The resulting estimated global factors and global loadings will
be denoted by F̃ (k)g0 (0) and Λ̃

(k)
g0 (0). In general, the number within brackets will

represent the iteration number.
(b) In iteration i (≥ 1), use the estimated global factors and loadings of the

previous iteration in equations (12) and (8)-(9). For each g, the latter equations,
after substituting F̃

(k)
g0 (i − 1) for F̃

(k)
g0 and Λ̃(k)g0 (i − 1) for Λ̃

(k)
g0 , correspond to

the first order conditions for the maximization of

tr

∙
F (k)0g

³
Xg − F̃

(k)
0 (i− 1)Λ̃(k)g0 (i− 1)0

´³
Xg − F̃

(k)
0 (i− 1)Λ̃(k)g0 (i− 1)0

´0
F (k)g

¸
with respect to F (k)g and subject to

1

T
F (k)0g F (k)g = I and F̃

(k)
0 (i− 1)0F (k)g = 0

Let F̃ (k)0 (i− 1)⊥ be a T × (T − k0) matrix such that

1

T
F̃
(k)
0 (i− 1)0⊥F̃

(k)
0 (i− 1) = 0

and
1

T
F̃
(k)
0 (i− 1)0⊥F̃

(k)
0 (i− 1)⊥ = I

The solution of the above maximization problem is (see Appendix II)

F̃ (k)g (i) = F̃
(k)
0 (i− 1)⊥W̃ (k)(i− 1)

where W̃ (k)(i−1) is a (T − k0)×kg matrix with columns that are the orthogonal
and normalized eigenvectors of the (T − k0)× (T − k0) matrix

F̃
(k)
0 (i− 1)0⊥XgX

0
gF̃

(k)
0 (i− 1)⊥

9A similar algorithm can be envisaged if the following alternative (partial) identification
restrictions (on the loadings, instead of on the factors) are considered:

1

N
Λ
(k)0
0 Λ

(k)
0 = I

1

Ng
Λ
(k)0
gg Λ

(k)
gg = I (g = 1, · · · , G)

1

Ng
Λ
(k)0
g0 Λ

(k)
gg = 0 (g = 1, · · · , G)
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associated with its largest kg eigenvalues. From (10), given F
(k)
g (i) the corre-

sponding estimate Λ̃(k)gg (i) is simply:

Λ̃(k)gg (i) =
1

T
X 0

gF̃
(k)
g (i)

(c) Compute
³
X − F̃

(k)
S (i)Λ̃

(k)0
S (i)

´³
X − F̃

(k)
S (i)Λ̃

(k)0
S (i)

´0
. From equation

(11), the columns of T−1/2F̃ (k)0 (i) are the k0 orthogonal and normalized eigen-
vectors of the latter matrix associated with its largest k0 eigenvalues and

Λ̃
(k)
0 (i) =

1

T
X 0F̃

(k)
0 (i)

(d) Steps (b) and (c) must be repeated until convergence is achieved.¤

IV - Proof that if T−1F̂ (k)0g F̂ (k)g is full rank, then υg
³
F̂(k)g

´
≤ υg

³
F̃ (k)g

´
If T−1F̂ (k)0g F̂ (k)g is positive definite, it is straightforward to show that

P̃ (k)g

µ
1

NgT
XgX

0
g

¶
P̂ (k)g = P̃ (k)g

µ
1

NgT
XgX

0
g

¶
Using the latter equality,

υg

³
F̃(k)g

´
− υg

³
F̂ (k)g

´
= tr

∙
1

NgT
X 0

g

³
P̂ (k)g − P̃ (k)g

´
Xg

¸
=

= tr

∙³
P̂ (k)g − P̃ (k)g

´µ 1

NgT
XgX

0
g

¶¸
=

= tr

∙³
P̂ (k)g − P̃ (k)g

´µ 1

NgT
XgX

0
g

¶³
P̂ (k)g − P̃ (k)g

´¸
≥ 0

because the trace of a semi-definite positive matrix is non-negative. ¤

V - Lemmas

In order to prove the consistency of the principal components estimator, first
it is convenient to present and prove several lemmas. Hereafter, rk (A) denotes
the rank of matrix A.

Lemma A.1: Under Assumptions A, B and C, for every g = 1, · · · , G there
exists some M1 <∞ such that for all Ng and T ,
(i) T−1

PT
s=1

PT
t=1

¡
γg (s, t)

¢2 ≤M1;

(ii) E
h
T−1

PT
t=1 ||N

−1/2
g e0g,tL0g||2

i
=
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= E
h
T−1

PT
t=1 ||N

−1/2
g

PNg

n=1 eg,ntL0g,n||2
i
≤M1;

(iii) E
∙
T−2

PT
s=1

PT
t=1

³
N−1g

PNg

n=1Xg,nsXg,nt

´2¸
≤M1.

Lemma A.2: Under Assumption C.4, for every g = 1, · · · , G and for any
idempotent matrix Pg (T × T ) of rank k0 + kg > 0 there exists some M2 < ∞
such that for all Ng and T ,

min (Ng, T )

NgT
tr
¡
e0gPgeg

¢
≤M2

Lemma A.3: Let F (k)g be any matrix (T ×m) such that T−1F (k)0g F(k)g = I
and let

ANg,T =

=

µ
1√
T
F (k)g

¶0µ
1

NgT
XgX

0
g

¶µ
1√
T
F (k)g

¶
−
µ
1

T
F00g F (k)g

¶0
Ωg

µ
1

T
F00g F(k)g

¶
Under Assumptions A to D, ||ANg,T || → 0 and

¯̄
tr
¡
ANg,T

¢¯̄
→ 0 as Ng → ∞

and T →∞.

Lemma A.4: Consider the (G+ 1)× 1 vectors of non-negative integers

k = [k0 k1 · · · kg · · · kG]0 and r = [r0 r1 · · · rg · · · rG]0

For every g = 1, · · · , G, let10

J(k)g
((r0×rg)×(k0×kg))

=

⎡⎢⎢⎣
J
(k)
00

(r0×k0)
J
(k)
g,0g

(r0×kg)

J
(k)
g,g0

(rg×k0)
J
(k)
g,gg

(rg×kg)

⎤⎥⎥⎦
and

R(k)g
((T−r0−rg)×(k0+kg))

=

∙
R
(k)
g,0

((T−r0−rg)×k0)
R
(k)
g,g

((T−r0−rg)×kg)

¸
Also let

χg

³
J(k)g

´
= tr

³
J(k)0g ΩgJ

(k)
g

´
and

χ
³
J
(k)
1 , · · · , J(k)g , · · · , J(k)G

´
=
XG

g=1
πgχg (Jg)

where Ωg are (r0 + rg)× (r0 + rg) matrices and 0 < πg ≤ 1 with
PG

g=1 πg = 1.
Denote by n

J̃
(k)
1 , · · · , J̃(k)g , · · · , J̃(k)G ; R̃

(k)
1 , · · · , R̃(k)g , · · · , R̃(k)G

o
10Note that the block J(k)00 does not depend on g.
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the optimal solution of problem

max
J
(k)
g ,R

(k)
g

g

χ
³
J
(k)
1 , · · · , J(k)g , · · · , J(k)G

´
subject to:

J(k)0g J(k)g +R(k)0g R(k)g = I (g = 1, · · · , G)
Under the assumption that Ωg is symmetric positive definite (g = 1, · · · , G),
(i) for every g, rk

³
J̃
(k)
g

´
= min (r0 + rg; k0 + kg; r0 + kg);

(ii) χg
³
J
(k)
g

´
≤ tr (Ωg) for all feasible solutions J

(k)
g and

if k0 + kg ≥ r0 + rg and kg ≥ rg, then χg

³
J̃
(k)
g

´
= tr (Ωg);

(iii) if k0 ≥ r0 and kg ≥ rg, then J̃
(k)
g,0g = 0 and J̃

(k)
g,g0 = 0.

Lemma A.5: Suppose that Assumptions A to E hold. Let k = [k0 k1 · · · kg · · · kG]0

and kB =
£
kB0 kB1 · · · kBg · · · kBG

¤0
be ((G+ 1)× 1) vectors of non-negative inte-

gers. As Ng →∞ (g = 1, · · · , G) and T →∞, for each g:
(i) There exists a ((r0 + rg)× (k0 + kg)) matrix

J̊(k)g
((r0×rg)×(k0×kg))

=

⎡⎢⎢⎣
J̊
(k)
00

(r0×k0)
J̊
(k)
g,0g

(r0×kg)

J̊
(k)
g,g0

(rg×k0)
J̊
(k)
g,gg

(rg×kg)

⎤⎥⎥⎦
with rank min (r0 + rg; k0 + kg; r0 + kg) such that

|| 1
T
F00g F̃ (k)g − J̊(k)g ||→ 0

(ii) for any F (k)g (T × (k0 + kg)) such that T−1F (k)0g F (k)g = I,

plim
h
υg

³
F (k)g

´
− υg

³
F̃ (r)g

´i
≥ 0

(iii) If k0 + kg ≥ kB0 + kBg ≥ r0 + rg and kg ≥ kBg ≥ rg, then¯̄̄
υg

³
F̃ (k)g

´
− υg

³
F̃ (r)g

´¯̄̄
→ 0

and ¯̄̄
υg

³
F̃ (k)g

´
− υg

³
F̃ (kB )g

´¯̄̄
→ 0

(iv) If k0 ≥ r0 and kg ≥ rg, then J̊
(k)
g,0g = 0 and J̊

(k)
g,g0 = 0;

Lemma A.1 is a direct adaptation of Lemma 1 in Bai and Ng (2002). Only
notation changes are required to adapt their proof. Lemma A.2 is a special case
of Result 6 in Amengual and Watson (2005)11 .
11As Pg is idempotent of rank k0+kg , there exists Fg (T × (k0 + kg)) such that T−1F 0gFg =

I and Pg = T−1FgF 0g . Thus, Lemma 2 is proved by applying Result 6 of Amengual and
Watson when their m → ∞. Note that Assumption C.4 corresponds to their Assumption
(A.6) with m→∞.
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Proof of Lemma A.3

Taking into account (4), we have

||ANg,T || = ||(a) + (b) + (c) + (c)0|| ≤ ||(a)||+ ||(b)||+ 2||(c)||

and ¯̄
tr(ANg,T )

¯̄
= |tr(a) + tr(b) + 2× tr(c)| ≤ |tr(a)|+ tr(b) + 2 |tr(c)|

where

(a) =

µ
1

T
F00g F(k)g

¶0µ
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¶µ
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¶
−
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¶0
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µ
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¶

(b) =
1

T 2Ng
F (k)0g ege

0
gF (k)g

(c) =

Ã
1

T
p
Ng

F (k)0g eg

!Ã
1p
Ng

L0g

!µ
1

T
F00g F (k)g

¶
||(a)||→ 0 follows directly from Assumption B.2. Using the fact that |tr (A) | ≤
m||A|| for any m×m matrix A,

|tr(a)| ≤ (k0 + kg) ||(a)||→ 0

For (b), we have

||(b)|| = ||
Ã

1

TN
1/2
g

F (k)0g eg

!Ã
1

TN
1/2
g

F (k)0g eg

!0
|| ≤ ||

Ã
1

TN
1/2
g

F (k)0g eg

!
||2 =

= tr(b) =
1

NgT
tr
³
e0gP

(k)
g eg

´
→ 0 (16)

by Lemma A.2, , with P
(k)
g = T−1F (k)g F (k)0g . Now for (c),

||(c)||2 ≤ ||N−1/2g L0g||2.||T−1/2F0g ||2.||T−1/2F (k)g ||.tr(b) =

= Op (1)Op (1) (k0 + kg)Op

³
[min (Ng, T )]

−1
´
→ 0

by (16), Assumptions A.1 and B.2 and because T−1F (k)0g F (k)g = I. Thus
||(c)||→ 0 and

|tr(c)| ≤ (k0 + kg) ||(c)||→ 0

Proof of Lemma A.4
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First note that any optimal solution is not unique because if
n
J̃
(k)
g , R̃

(k)
g

o
g=1,··· ,G

is optimal, then
n
J̃
∗(k)
g , R̃

∗(k)
g

o
g=1,··· ,G

is also optimal with

J̃∗(k)g = J̃(k)g

∙
Q00 0
0 Qgg

¸
(17)

and

R̃∗(k)g = R̃(k)g

∙
Q00 0
0 Qgg

¸
for any set of (orthogonal) matrices {Q00, Q11, · · · , QGG}, with Qgg (rg × rg),
such that Q0ggQgg = I (g = 1, · · · , G). In any case, J̃(k)g and J̃

∗(k)
g share the

same rank. Also note that, for any feasible solution, J(k)0g J
(k)
g and J(k)g J

(k)0
g will

have all eigenvalues in the range [0; 1]. Thus,

χg

³
J(k)g

´
= tr

³
ΩgJ

(k)
g J(k)0g

´
≤
Xmin(k0+kg;r0+rg)

i=1
μg,i ≤ tr (Ωg)

where μg,1 ≥ μg,2 ≥ · · · ≥ μg,r0+rg are the r0 + rg (positive) eigenvalues of Ωg.
We will prove the Lemma by considering in turn all the possible cases:

(1) k0 ≥ r0 and, for every g, kg ≥ rgn
J̃
(k)
g , R̃

(k)
g

o
g=1,··· ,G

with

J̃(k)g =

"
J̃
(k)
00 J̃

(k)
g,0g

J̃
(k)
g,g0 J̃

(k)
g,gg

#
=

∙£
Ir0 0r0×(k0−r0)

¤
0

0
£
Irg 0rg×(kg−rg)

¤¸ (18)

(block diagonal and full rank r0 + rg) and

R̃(k)g =
h
R̃
(k)
g,0 R̃

(k)
g,g

i
=
hh
0 W

(k)
g,0

i h
0 W

(k)
g,g

ii
(g = 1, · · · , G) is an optimal solution, for any matricesW (k)

g,0 ((T − r0 − rg)× (k0 − r0))

and W
(k)
g,g ((T − r0 − rg)× (kg − rg)) such that W

(k)0
g,0 W

(k)
g,0 = I, W (k)0

g,g W
(k)
g,g = I

and W
(k)0
g,0 W

(k)
g,g = 0. Indeed, it is an feasible solution and for every g

χg

³
J̃(k)g

´
= tr (Ωg)

(2) k0 < r0 and, for every g, k0 + kg ≥ r0 + rgn
J̃
(k)
g , R̃

(k)
g

o
g=1,··· ,G

with

J̃(k)g =

⎡⎢⎢⎣
J
(k)
00

(r0×k0)
J
(k)
g,0g

(r0×kg)

J
(k)
g,g0

(rg×k0)
J
(k)
g,gg

(rg×kg)

⎤⎥⎥⎦ =
⎡⎢⎣
∙
Ik0
0

¸ ∙
0 0 0

Ir0−k0 0 0

¸
0

£
0 Irg 0

¤
⎤⎥⎦
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(full rank r0 + rg) and

R̃(k)g =
h
0
h
0 0 W

(k)
g,g

ii
is an optimal solution, for any matrixW (k)

g,g ((T − r0 − rg)× (k0 + kg − r0 − rg))

such that W (k)0
g,g W

(k)
g,g = I. As in the previous case,

χg

³
J̃(k)g

´
= tr (Ωg)

for every g.

(3) k0 ≥ r0 and kg < rg for some g

Without any loss of generality, let us suppose that kg < rg for g = 1, · · · , Ḡ
and that kg ≥ rg for g = Ḡ + 1, · · · ,G. We will determine the rank of the
optimal solution in this case by comparing it with the optimal solution in the
relevant "benchmark case" for which

k̄ =
£
k0 r1 · · · rḠ kḠ+1 · · · kG

¤0
is substituted for k =

£
k0 k1 · · · kḠ kḠ+1 · · · kG

¤0
. For this benchmark case, the

optimal solution
n
J̃
(k̄)
g , R̃

(k̄)
g

o
g=1,··· ,G

is determined as in case (1). Thus, for

every g, J̃(k̄)g is full rank r0 + rg. Also, for every g, χg
³
J̃
(k̄)
g

´
attains its upper

bound tr (Ωg).
By construction, we have that

χg

³
J̃(k̄)g

´
− χg

³
J̃(k)g

´
≥ 0 (g = 1, · · · , G)

and
χ
³
J̃
(k̄)
1 , · · · , J̃(k̄)G

´
− χ

³
J̃
(k)
1 , · · · , J̃ (k)G

´
=

=
XḠ

g=1

Ng

N

h
χg

³
J̃(k̄)g

´
− χg

³
J̃(k)g

´i
≥ 0

An optimal solution for k corresponds to any choice
n
J̃
(k)
g , R̃

(k)
g

o
g=1,··· ,G

that

minimizes the latter difference while still complying with the problem constraints

J(k)0g J(k)g +R(k)0g R(k)g = I (g = 1, · · · , G)

Given an optimal solution for k̄, a candidate for the optimal solution for k is the
following: (i) for g > Ḡ, J̃(k)g = J̃

(k̄)
g and R̃

(k)
g = R̃

(k̄)
g , ensuring that for these

groups of variables χg
³
J̃
(k)
g

´
= χg

³
J̃
(k̄)
g

´
= tr (Ωg); (ii) for g ≤ Ḡ, delete the
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rg − kg columns of
h
J̃
(k̄)0
g,0g J̃

(k̄)0
g,gg

i0
that have the smaller effect on χg

³
J̃
(k̄)
g

´
, i.e.

make12

J̃(k)g =

"
J̃
(k̄)
00 0

0 J̃
(k̄)
g,gg

# ∙
Ik0 0

0 S
(k)
g

¸
=

"
J̃
(k̄)
00 0

0
³
J̃
(k̄)
g,ggS̄

(k)
g

´#

and, correspondingly,

R̃(k)g =
h
R̃
(k̄)
g,0 0

i ∙Ik0 0

0 S̄
(k)
g

¸
=
h
R̃
(k̄)
g,0 0

i
where S̄

(k)
g is a (rg × kg) matrix whose columns are columns of the identity

matrix of order rg with S̄
(k)0
g S̄

(k)
g = I. Note that any solution that affects J̃ (k̄)00

cannot be better than the candidate solution because it affects χs
³
J̃
(k̄)
s

´
for

all s 6= g, thereby (in general) worsening the optimal value of the objective
function without addressing the necessity to decrease the number of columns of
J̃
(k̄)
g,gg from rg to kg. The same argument rules out changing J̃

(k̄)
g or R̃(k̄)g for any

g > Ḡ. Hence, the candidate solution is optimal and

(i) for g ≤ Ḡ, rk
³
J̃(k)g

´
= rk

³
J̃
(k̄)
00

´
+ rk

³
J̃(k̄)g,ggS̄

(k)
g

´
= r0 + kg

(ii) for g > Ḡ, rk
³
J̃(k)g

´
= rk

³
J̃
(k̄)
00

´
+ rk

³
J̃ (k̄)g,gg

´
= r0 + rg

(4) k0 < r0 and k0 + kg < r0 + rg for some g

Again without any loss of generality, let us suppose that k0 + kg < r0 + rg
for g = 1, · · · , Ḡ and that k0 + kg ≥ r0 + rg for g = Ḡ+ 1, · · · , G. The relevant
"benchmark case" is now

k̊ =
£
k0 (r1 + r0 − k0) · · · (rḠ + r0 − k0) kḠ+1 · · · kG

¤0
and the associated optimal solution

n
J̃
(̊k)
g , R̃

(̊k)
g

o
g=1,··· ,G

is determined as in

case (2).

For g > Ḡ, J̃(k)g = J̃
(̊k)
g and R̃

(k)
g = R̃

(̊k)
g and, consequently, rk

³
J̃
(k)
g

´
=

rk
³
J̃
(̊k)
g

´
= r0 + rg. As for g ≤ Ḡ, adapting the argument presented for case

(3), let S̊(k)g be a (rg + r0 − k0) × kg matrix whose columns are kg columns of
the identity matrix of order (rg + r0 − k0), with S̊

(k)0
g S̊

(k)
g = I. Chose those

columns so that the difference¯̄̄
χg

³
J̃ (̊k)g

´
− χg

³
J̃(k)g

´¯̄̄
12Remark that, by (17) and (18), J̃(k̄)g,g0 = 0 and J̃

(k̄)
g,0g = 0.
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is as small as possible, when setting

J̃(k)g = J̃ (̊k)g

∙
Ik0 0

0 S̊
(k)
g

¸
=

⎡⎢⎣
∙
Ik0
0

¸ ∙
0 0

Ir0−k0 0

¸
0

£
0 Irg

¤
⎤⎥⎦∙Ik0 0

0 S
(k)
g

¸
=

∙
Ik0 0

0 S
(k)
g

¸

Therefore, for g ≤ Ḡ:

rk
³
J̃(k)g

´
= rk (Ik0) + rk

³
S̊(k)g

´
= k0 + kg

Proof of Lemma A.5

The principal components estimator was defined as the optimal solution of
the problem of minimization of the overall MSIE (5) subject to the restrictions

(8)-(9). Let T > r0 + rg for every g. Also let F (k)g =
h
F
(k)
0 F

(k)
g

i
be a T ×

(k0 + kg) matrix with T−1F (k)0g F(k)g = I,

ηg

³
F (k)g

´
= tr

µ
1

NgT
XgX

0
g

¶
− υg

³
F (k)g

´
=

= tr

"µ
1√
T
F (k)g

¶0µ
1

NgT
XgX

0
g

¶µ
1√
T
F (k)g

¶#
and

η
³
F (k)1 , · · · ,F (k)G

´
=
XG

g=1

Ng

N
ηg

³
F (k)g

´
=
XG

g=1

Ng

N
tr

µ
1

NgT
XgX

0
g

¶
−υ

³
F (k)

´
Hence, the principal components estimator also maximizes η

³
F(k)1 , · · · ,F(k)G

´
subject to: (i) T−1F (k)0g F (k)g = I (g = 1, · · · ,G); (ii) identical blocks F (k)0 for
all g. Now define F0g⊥ (T × (T − r0 − rg)) such that T−1F00g F0g⊥ = 0 and
||T−1F00g⊥F0g⊥ − I|| → 0 as T → ∞. Given Assumption A.1, at least for suffi-
ciently large T the columns of

h
F0g F0g⊥

i
span the T -dimensional space. Hence,

F (k)g can be expressed as

F (k)g = F0gJ(k)g + F0g⊥R(k)g (19)

for some matrices J(k)g ((r0 + rg)× (k0 + kg)) andR
(k)
g ((T − r0 − rg)× (k0 + kg)).

In particular, for large T , there are two matrices J̃(k)g and R̃
(k)
g such that

F̃ (k)g = F0g J̃(k)g + F0g⊥R̃(k)g (20)
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In general for any F (k)g , from (19) we get

1

T
F (k)0g F (k)g = I ⇐⇒ J(k)0g

µ
1

T
F00g F0g

¶
J(k)g +R(k)0g

µ
1

T
F00g⊥F0g⊥

¶
R(k)g = I (21)

and
1

T
F00g F (k)g =

µ
1

T
F00g F0g

¶
J(k)g

Thus, by Assumption A.1,

|| 1
T
F00g F (k)g − J(k)g ||→ 0 (22)

||J(k)0g

µ
1

T
F00g F0g

¶
J(k)g − J(k)0g J(k)g ||→ 0 (23)

First, note that if we partition J
(k)
g into four blocks,

J(k)g
((r0×rg)×(k0×kg))

=

⎡⎢⎢⎣
J
(k)
g,00

(r0×k0)
J
(k)
g,0g

(r0×kg)

J
(k)
g,g0

(rg×k0)
J
(k)
g,gg

(rg×kg)

⎤⎥⎥⎦
by (22) and taking into account that F0g =

£
F 00 F 0g

¤
, we get

|| 1
T
F 000 F

(k)
0 − J

(k)
g,00||→ 0

As T−1F 000 F
(k)
0 does not depend on g, J(k)g,00 converges to a matrix J

(k)
00 identical

for all g. Also note that (4), Assumption E, Lemma A.2 and (22) imply that

||Ng

N
ηg

³
F (k)g

´
− πgχg

³
J(k)g

´
||→ 0

where
χg

³
J(k)g

´
= tr

³
J(k)0g ΩgJ

(k)
g

´
Moreover, for χ

³
J
(k)
1 , · · · , J(k)G

´
=
PG

g=1 πgχg (Jg), we also have

||η(F(k)1 , · · · ,F(k)G )− χ
³
J
(k)
1 , · · · , J(k)G

´
||→ 0 (24)

Now, let
n
J̃
(k)
1 , · · · , J̃(k)g , · · · , J̃(k)G ; R̃

(k)
1 , · · · , R̃(k)g , · · · , R̃(k)G

o
be an optimal so-

lution of maximizing χ
³
J
(k)
1 , · · · , J(k)G

´
subject to:

J(k)0g J(k)g +R(k)0g R(k)g = I (g = 1, · · · , G)
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with blocks J(k)00 identical for all g. The optimal solution is not unique, because
any block diagonal orthogonal transformation of J̃(k)g is feasible and attains
the same optimal value of the objective function (see first part of the proof of
Lemma A.4). Taking this into account, by (24), (21), (22) and (23), for every g
there exists a matrix Qg = diag (Q00, Qgg) with Q00 (k0 × k0) , Qgg (kg × kg) ,
Q000Q00 = I and Q0ggQgg = I such that

J̊(k)g = J̃(k)g Qg

and
|| 1
T
F00g F̃ (k)g − J̊(k)g ||→ 0 (g = 1, · · · , G)

as Ng →∞ and T →∞. By Lemma A.4(i),

rk
³
J̊(k)g

´
= min (r0 + rg; k0 + kg; r0 + kg)

Moreover, if kg ≥ rg and k0 + kg ≥ r0 + rg, by Lemma A.4(ii)

χg

³
J̊(k)g

´
= χg

³
J̊(r)g

´
= tr (Ωg) (25)

and
plim ηg

³
F (k)g

´
≤ χg

³
J̊(r)g

´
for any F (k)g such that T−1F (k)0g F (k)g = I.

From (25), we get that
¯̄̄
υg

³
F̃ (k)g

´
− υg

³
F̃ (r)g

´¯̄̄
→ 0. In addition, because

(25) is valid for any k such that k0 + kg ≥ r0 + rg, it is also verified by any kB

such that
k0 + kg ≥ kB0 + kBg ≥ r0 + rg

implying that
¯̄̄
υg

³
F̃ (k)g

´
− υg

³
F̃ (k

B )
g

´¯̄̄
→ 0.

Finally, by Lemma A.4(iii), if k0 ≥ r0 and kg ≥ rg, then J̃
(k)
g,0g = 0 and

J̃
(k)
g,g0 = 0. ¤

VI - Proof of Theorem 1

The first part of Theorem 1 can be proved following step by step the proof
of Bai and Ng’s Theorem 1 in, with the necessary adaptations of notation, and
therefore the proof will not be repeated here. As regards the asymptotic rank
of H(k)

g , let H̊(k)
g be such that

||H(k)
g − H̊(k)

g ||→ 0

as Ng → ∞ and T → ∞. From the definition of H(k)
g , Assumption B.2 and

Lemma A.5(i), H̊(k)
g = ΩgJ̊

(k)
g and

rk
³
H̊(k)
g

´
= rk

³
ΩgJ̊

(k)
g

´
= rk

³
J̊(k)g

´
= min (r0 + rg; k0 + kg; r0 + kg)
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¤

VII - Proof of Corollary 1.1

By Theorem 1,

min (Ng, T )

µ
1

T

XT

t=1
||F̂g,t −H(k)0

g F0g,t||2
¶
= Op(1) (g = 1, · · · , G) (26)

Multiplying by min (N,T ) /min (Ng, T ) and taking into account Assumption E,
we have, for every g,

min (N,T )

µ
1

T

XT

t=1
||F̂g,t −H(k)0

g F0g,t||2
¶
= Op(1)⇐⇒

⇐⇒ min (N,T )

µ
1

T

XT

t=1
||F̂g0,t −H

(k)0
g,00F

0
0,t −H

(k)0
g,g0F

0
g,t||2

¶
+

+min (N,T )

µ
1

T

XT

t=1
||F̂g,t −H

(k)0
g,0gF

0
0,t −H(k)0

g,ggF
0
g,t||2

¶
= Op(1)

Summing up the latter expressions for g = 1, · · · , G, we obtain

min (N,T )

µ
1

T

XT

t=1

XG

g=1
||F̂g0,t −H

(k)0
g,00F

0
0,t −H

(k)0
g,g0F

0
g,t||2

¶
+

+min (N,T )
XG

g=1

µ
1

T

XT

t=1
||F̂g,t −H

(k)0
g,0gF

0
0,t −H(k)0

g,ggF
0
g,t||2

¶
= Op(1)

Because Ng/N ≤ 1 (g = 1, · · · , G), the latter expression that

min (N,T )

"
1

T

XT

t=1

XG

g=1
||Ng

N
F̂g0,t −

µ
Ng

N
H
(k)
g,00

¶0
F 00,t −

µ
Ng

N
H
(k)
g,g0

¶0
F 0g,t||2

#
+

+min (N,T )
XG

g=1

µ
1

T

XT

t=1
||F̂g,t −H

(k)0
g,0gF

0
0,t −H(k)0

g,ggF
0
g,t||2

¶
= Op(1) =⇒

(because F̂ (k)0 =
PG

g=1 (Ng/N) F̂ (k)g0 )

min (N,T )

"
1

T

XT

t=1
||F̂ (k)0,t −

µXG

g=1

Ng

N
H
(k)
g,00

¶0
F 00,t −

XG

g=1

µ
Ng

N
H
(k)0
g,g0F

0
g,t

¶
||2
#
+

+min (N,T )
XG

g=1

µ
1

T

XT

t=1
||F̂g,t −H

(k)0
g,0gF

0
0,t −H(k)0

g,ggF
0
g,t||2

¶
= Op(1)⇐⇒

⇐⇒ min (N,T )

µ
1

T

XT

t=1
||F̂t −H(k)0F 0t ||2

¶
= Op(1)
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Now consider k0 ≥ r0 and kg ≥ rg for every g. Let us denote the limit of
H(k) by H̊(k). By Assumptions B.2 and E and by Lemma A.5(i,iv),

H̊(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

³PG
g=1 πgΩg,00J̊

(k)
00

´
Ω1,01J̊

(k)
1,11 · · · Ωg,0gJ̊

(k)
g,gg · · · ΩG,0GJ̊

(k)
G,GG

π1Ω
0
1,01J̊

(k)
00 Ω1,11J̊

(k)
1,11 · · · 0 · · · 0

...
...

. . .
...

. . .
...

πgΩ
0
g,0gJ̊

(k)
00 0 · · · Ωg,ggJ̊

(k)
g,gg · · · 0

...
...

. . .
...

. . .
...

πGΩ
0
G,0GJ̊

(k)
00 0 · · · 0 · · · ΩG,GGJ̊

(k)
G,GG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ΩΠ−1J̊(k)

where Ωg,00, Ωg,0g, Ωg,gg and Ω are as defined in Appendix I, J̊
(k)
00 and J̊(k)g,gg are

as defined in Lemma A.5,

Π = diag
¡
Ir0 , π1Ir1 , · · · , πgIrg , · · · , πGIrG

¢
and

J̊(k) = diag
³
J̊
(k)
00 , J̊

(k)
1,11, · · · , J̊(k)g,gg, · · · , J̊

(k)
G,GG

´
H̊(k) has full rank r̈ =

PG
g=0 rg because Π and Ω are non-singular matrices r̈× r̈

(for the latter matrix, see Appendix I) and, by Lemma A.5(i,iv), J̊(k) has full
rank r̈. ¤

VIII - Proof of Theorem 2

(A) Let ρ(k)g = rk
³
T−1F̂(k)0g F̂ (k)g

´
. The rank ρ(k)g depends on Ng and T , but

we will make this dependence implicit to simplify the notation. First we will
show that for sufficiently large Ng and T

min (r0 + rg; k0 + kg; r0 + kg) ≤ ρ(k)g ≤ k0 + kg (27)

The upper bound results directly from the number of columns of F̂ (k)g being
k0 + kg. As regards the lower bound, note that

1

T
F̃ (k)0g F̂ (k)g =

µ
1√
T
F̃ (k)g

¶0µ
1

NgT
XgX

0
g

¶µ
1√
T
F̃ (k)g

¶
For the matrix J̊(k)g defined in Lemma A.5(i),

|| 1
T
F̃(k)0g F̂ (k)g −J̊(k)0g ΩgJ̊

(k)
g || ≤ || 1

T
F̃ (k)0g F̂(k)g −

µ
1

T
F00g F̃ (k)g

¶0
Ωg

µ
1

T
F00g F̃ (k)g

¶
||+

+||
µ
1

T
F00g F̃ (k)g

¶0
Ωg

µ
1

T
F00g F̃ (k)g

¶
− J̊(k)0g ΩgJ̊

(k)
g ||
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The first term on the right hand side converges to zero by Lemma A.3. As for

the second term, note that

||
µ
1

T
F00g F̃ (k)g

¶0
Ωg

µ
1

T
F00g F̃(k)g

¶
− J̊(k)0g ΩgJ̊

(k)
g || =

= ||
µ
1

T
F00g F̃ (k)g − J̊(k)g

¶0
Ωg

µ
1

T
F00g F̃ (k)g − J̊ (k)g

¶
+

+

µ
1

T
F00g F̃ (k)g

¶0
Ωg

µ
1

T
F00g F̃ (k)g − J̊(k)g

¶
+

+

µ
1

T
F00g F̃ (k)g − J̊ (k)g

¶0
Ωg

µ
1

T
F00g F̃ (k)g

¶
|| ≤

≤ ||
µ
1

T
F00g F̃ (k)g − J̊ (k)g

¶0
Ωg

µ
1

T
F00g F̃ (k)g − J̊(k)g

¶
||+

+2||
µ
1

T
F00g F̃ (k)g

¶0
Ωg

µ
1

T
F00g F̃ (k)g − J̊(k)g

¶
|| ≤

≤ ||Ωg||.||
1

T
F00g F̃ (k)g − J̊(k)g ||2 + 2.|| 1

T
F00g F̃ (k)g ||.||Ωg||.||

1

T
F00g F̃ (k)g − J̊(k)g ||

which goes to zero by Assumption B.2 and Lemma A.5(i). Thus

|| 1
T
F̃ (k)0g F̂ (k)g − J̊(k)0g ΩgJ̊

(k)
g ||→ 0

Therefore, for sufficiently large Ng and T , the rank of T−1F̃ (k)0g F̂ (k)g is not
smaller than the rank of J̊(k)0g ΩgJ̊

(k)
g . We use the fact that for any sequence of

positive semi-definite matrices {An} such that ||An − B|| → 0, there exists n̄
such that rk (An) ≥ rk (B) for all n > n̄. But

rk
³
J̊(k)0g ΩgJ̊

(k)
g

´
= min (r0 + rg; k0 + kg; r0 + kg)

by Lemma A.5(i) and by Assumption B.2. The lower bound for ρ(k)g in (27)

follows directly from the lower bound on rk
³
T−1F̃ (k)0g F̂ (k)g

´
and the fact that,

by construction, T−1F̃ (k)0g F̃ (k)g is the identity matrix of order k0 + kg.

(B) For suficiently large Ng and T , by (27), if kg ≥ rg and k0+kg = r0+ rg,
matrix T−1F̂ (k)0g F̂ (k)g will be positive definite. From Appendix IV, we know that
in this case

υg

³
F̃ (k)g

´
− υg

³
F̂ (k)g

´
= υg

³
F̃ (k)g

´
− υg

³
F̌ (k)g

´
≥ 0
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(C) Now let kg ≥ rg and k0 + kg > r0 + rg. By (27), for sufficiently large
Ng and T , matrix T−1F̂ (k)0g F̂(k)g may be singular. Let S(k)g be a (k0 + kg)× ρ

(k)
g

matrix that selects ρ(k)g linear independent columns of F̂ (k)g . That is, the columns
of S(k)g are ρ(k)g columns of the identity matrix of order k0 + kg, implying that
S
(k)0
g S

(k)
g is the identity matrix of order ρ(k)g . Let

F̂ (k)(S)g = F̂
(k)
g S(k)g and F̃ (k)(S)g = F̃

(k)
g S(k)g

Note that

υg

³
F̃ (k)g

´
− υg

³
F̂ (k)g

´
=
h
υg

³
F̃ (k)g

´
− υg

³
F̃ (k)(S)g

´i
+

+
h
υg

³
F̃ (k)(S)g

´
− υg

³
F̂ (k)(S)g

´i
+
h
υg

³
F̂ (k)(S)g

´
− υg

³
F̂ (k)g

´i
The third term of the right hand side is zero because, by construction, υg

³
F̂ (k)(S)g

´
=

υg

³
F̂ (k)g

´
. By Lemma A.4(ii) and by Lemma A.5(iii), we also know that the

first term converges to zero when kg ≥ rg and k0 + kg ≥ r0 + rg. As regards
the second term, for sufficiently large Ng and T , it is non-negative following the
same argument as above for the case k0+kg = r0+rg, but with F̂ (k)(S)g and F̃

(k)
(S)g

instead of F̂ (k)g and F̃(k)g , respectively. All in all, in this Part 2, we conclude
that if kg ≥ rg and k0 + kg ≥ r0 + rg, then

plim
h
υg

³
F̃ (k)g

´
− υg

³
F̂ (k)g

´i
≥ 0

(D) Continue to admit that kg ≥ rg and k0 + kg > r0 + rg and let F̌ (k)g =

F̂ (k)(S)g

³
T−1F̂ (k)0(S)gF̂

(k)
(S)g

´−1/2
. Given that υg

³
F̌(k)g

´
= υg

³
F̂(k)(S)g

´
= υg

³
F̂ (k)g

´
,

to complete the proof of Theorem 2 we will now show that

plimυg

³
F̃(k)g

´
≤ plimυg

³
F̌ (k)g

´
(28)

Let
h
�Fg �W

i
be an optimal solution of the problem

max
{Fg,W}

ηg (Fg) = tr

∙
1

T
F 0g
µ

1

NgT
XgX

0
g

¶
Fg
¸

subject to ∙
F 0g
W 0

¸ £
Fg W

¤
= Ik0+kg

where Fg andWg are matrices T×(r0 + rg) and T×(k0 + kg − r0 − rg), respec-
tively. Let V (k)

g be any T×(k0 + kg − r0 − rg) matrix such that T−1V
(k)0
g F̌ (k)g =
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0 and T−1V
(k)0
g V

(k)
g = I.

h
F̌ (k)g V

(k)
g

i
is a feasible solution of the above maxi-

mization problem. Thus, for all Ng and T , ηg
³
�Fg
´
≥ ηg

³
F̌ (k)g

´
, implying that

υg

³
�Fg
´
≤ υg

³
F̌ (k)g

´
and

plimυg

³
�Fg
´
≤ plimυg

³
F̌ (k)g

´
But by Lemma A.5(ii),

plimυg

³
F̃ (r)g

´
≤ plimυg

³
�F (k0,kg)g

´
and, by Lemma A.5(iii),

plimυg

³
F̃(k)g

´
= plimυg

³
F̃ (r)g

´
Therefore,

plimυg

³
F̃(k)g

´
≤ plimυg

³
F̌ (k)g

´
¤

IX - More lemmas

In addition to the lemmas presented in Appendix V, to prove Theorem 3
and Corollary 3.1 we need the following three lemmas.

Lemma A.6: Suppose that the Assumptions A to E hold and let k = [k0 k1 · · · kg · · · kG]0
be a (G+ 1)× 1 vector of non-negative integers. If 1 ≤ k0 + kg ≤ r0 + rg, then
there exists M4 <∞ such that for all Ng and T

min (Ng, T )
¯̄̄
υg

³
F̂ (k)g

´
− υg

³
F0gH(k)

g

´¯̄̄
≤M4

where H
(k)
g is the matrix defined in Theorem 1.

Lemma A.7: Suppose that the Assumptions A to E hold and let k = [k0 k1 · · · kg · · · kG]0
be a (G+1)× 1 vector of non-negative integers. If k0+kg < r0+ rg, then there
exists τg,k > 0 such that for all Ng and T

plim
n
inf
h
υg

³
F0gH(k)

g

´
− υg

¡
F0g
¢io

= τg,k

where H
(k)
g is the matrix defined in Theorem 1.

Lemma A.8: Suppose that the Assumptions A to E hold. Let k = [k0 k1 · · · kG]0 ≤
kmax and k5 =

h
k50 k51 · · · k

5
G

i0
≤ kmax be (G+ 1)× 1 vectors of non-negative
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integers. If kg ≥ rg, k5g ≥ rg, k0 + kg ≥ r0 + rg and k50 + k5g ≥ r0 + rg, then
there exists M5 <∞ such that for all Ng and T

min (Ng, T )
¯̄̄
υg

³
F̂ (k)g

´
− υg

³
F̂ (k5)g

´¯̄̄
≤M5

Lemmas A.6, A.7 and A8 are direct adaptations of Lemmas 2, 3 and 4 in
Bai and Ng (2002), respectively. The proofs of the latter propositions can easily
be adapted step by step to prove Lemmas A.6, A.7 and A.8, with the necessary
notation changes. However, two remarks are needed in relation to the proof of
Lemma A.8. The first remark regards the adaptation of the first expression in
Bai and Ng’s proof of their Lemma 4 (page 217):¯̄̄
υg

³
F̂ (k)g

´
− υg

³
F̂ (k5)g

´¯̄̄
≤
¯̄̄
υg

³
F̂ (k)g

´
− υg

¡
F0g
¢¯̄̄
+
¯̄̄
υg

³
F̂ (k5)g

´
− υg

¡
F0g
¢¯̄̄

≤ 2. max
k≤kmax

k0+kg≥r0+rg
kg≥rg

¯̄̄
υg

³
F̂ (k)g

´
− υg

¡
F0g
¢¯̄̄

In our model, for the group g of variables, the maximum refers to the maximum
for all k ≤ kmax such that kg ≥ rg and k0 + kg ≥ r0 + rg. This modification
does not change the remaining steps of the proof, because in that case H(k)

g has
rank r0 + rg. The second remark refers to the last part of the proof of Bai and
Ng’s Lemma 4 (bottom of page 218 and top of page 219), which is not correct.
More precisely, as acknowledged by Bai and Ng (2005), the proof that (for our
model and in our notation)

1

NgT
tr
¡
e0gPgeg

¢
= Op

µ
1

min (Ng, T )

¶
is invalid. Under our Assumption C.4, we can use Lemma A.2 (Appendix V) to
complete the proof. ¤

X - Proof of Theorem 3

We need to prove that for all k such that k 6= r, 0 ≤ k ≤ kmax and k0+kg > 0
(g = 1, · · · , G)

Prob [GPC(k)−GPC(r) ≤ 0] = Prob
½XG

g=1

Ng

N
[GPCg(k)−GPCg(r)] ≤ 0

¾
=

= Prob{
XG

g=1

Ng

N

h
υg

³
F̂(k)g

´
− υg

³
F̂ (r)g

´i
≤

≤
XG

g=1

Ng

N
[(r0 + rg − k0 − kg)ψ0 (Ng, N, T )+
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+(rg − kg)
¡
ψg (Ng, N, T )− ψ0 (Ng, N, T )

¢
]}→ 0 (29)

as N →∞ and T →∞. Given k, for every variables group g we will have one
of the following (mutually exclusive) cases:
(I) k0 = r0 and kg = rg
(II) k0 + kg < r0 + rg
(III) kg > rg and k0 + kg ≥ r0 + rg
(IV) k0 > r0 and kg = rg
(V) k0 > r0, kg < rg and k0 + kg ≥ r0 + rg
Let us first admit that for all g, the comparison between (k0, kg) falls into

one (and a single one) of the previous cases. We will consider in turn those
cases:

Case (I): If k 6= r, this case can not happen.

Case (II): The left hand side of the inequality in (29) may be rewritten as

XG

g=1

Ng

N

h
υg

³
F̂ (k)g

´
− υg

³
F0gH(k)

g

´i
+

+
XG

g=1

Ng

N

h
υg

³
F0gH(k)

g

´
− υg

³
F0gH(r)

g

´i
+

+
XG

g=1

Ng

N

h
υg

³
F0gH(r)

g

´
− υg

³
F̂ (r)g

´i
Lemma A.6 implies that the first and third terms converge to zero. As regards

the second term, note that υg
³
F0gH

(r)
g

´
= υg

¡
F0g
¢
because F0gH

(r)
g and F0g

asymptotically span the same space. Thus the second term asymptotically is
identical to XG

g=1

Ng

N

h
υg

³
F0gH(k)

g

´
− υg

¡
F0g
¢i

which has a positive limit by Lemma A.7. Hence, the left hand side of the
inequality in (29) has a positive limit and ψ0 (Ng,N, T ) → 0 (g = 0, 1, · · · , G)
are sufficient conditions to ensure that the probability converges to zero.

Case (III): Multiplying both sides of the inequality in (29) by min(N,T ) we
get

Prob{
XG

g=1

Ng

N
min(N,T )

h
υg

³
F̂ (k)g

´
− υg

³
F̂ (r)g

´i
≤

≤
XG

g=1

Ng

N
[(r0 + rg − k0 − kg)min(N,T )ψ0 (Ng, N, T )+

+ (rg − kg)min(N,T )
¡
ψg (Ng,N, T )− ψ0 (Ng,N, T )

¢
]}

By Lemma A.8, the left hand side of the inequality is bounded. The probability
goes to zero because conditions (ii) and (iii) ensure that the right hand side of
the inequality diverges to −∞. Note that condition (iii) is required whenever
k0 + kg = r0 + rg.
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Case (IV): Similar to case (III).

Case (V): The left hand side of the inequality in (29) may be rewritten as

XG

g=1

Ng

N

nh
υg

³
F̂ (k)g

´
− υg

³
F̂ (k̄)g

´i
+
h
υg

³
F̂ (k̄)g

´
− υg

³
F̂ (r)g

´io
where k̄ = [r0 k1 · · · kg−1 kg kg+1 · · · kG]0. Thus, it is sufficient for (29) to prove
that both

Prob{
XG

g=1

Ng

N

h
υg

³
F̂ (k)g

´
− υg

³
F̂ (k̄)g

´i
≤

≤
XG

g=1

Ng

N
[(r0 + rg − k0 − kg)ψ0 (Ng, N, T )+

+ (rg − kg)
¡
ψg (Ng, N, T )− ψ0 (Ng, N, T )

¢
]}→ 0 (30)

and

Prob{
XG

g=1

Ng

N

h
υg

³
F̂ (k̄)g

´
− υg

³
F̂ (r)g

´i
≤

≤
XG

g=1

Ng

N
[(r0 + rg − k0 − kg)ψ0 (Ng, N, T )+

+ (rg − kg)
¡
ψg (Ng, N, T )− ψ0 (Ng, N, T )

¢
]}→ 0 (31)

The proofs of (30) and of (31) are similar to those presented for cases (IV) and
(II), respectively.

Turning now to "mixed cases", given k, let δ(j) (≥ 0) be the number of
groups of variables g that fall into case (j) (j = I,II,III,IV,V). We have δ(I) < G
(because, by construction, k 6= r) and

P
j δ(j) = G. Without loss of gener-

ality, admit that groups with g ≤ δ(I)fall into case (I) and that groups withP
i≤j−1 δ(i) < g ≤

P
i≤j δ(i) fall into case (j).

If δ(I) = 0, to prove (29) then it is sufficient to show that for j =II,III,IV,V

Prob

½Xg=δ(I I)+···+δ(j−1)+δ(j)

g=δ(I I)+···+δ(j−1)+1

Ng

N
[GPCg(k)−GPCg(r)] ≤ 0

¾
→ 0 (32)

The proofs are similar to those for the corresponding "pure cases" presented in
Part 1.

Finally, when 0 < δ(I) < G, note that for any 1 ≤ g ≤ δ(I), by Lemma A.8
we have

υg

³
F̂ (k)g

´
− υg

³
F̂(r)g

´
= Op

µ
1

min(N,T )

¶
(33)

Consider any (II) ≤ (j) ≤ (V) for which δj > 0 (it exists because k 6= r).
Substitute

Prob{
Xg=δ(I)

g=1

h
υg

³
F̂ (k)g

´
− υg

³
F̂ (r)g

´i
+
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Xg=δ(I I)+···+δ(j−1)+δ(j)
g=δ(I I)+···+δ(j−1)+1

Ng

N
[GPCg(k)−GPCg(r)] ≤ 0}→ 0

for (32). Owing to (33), the additional terms do not substantially change the
proof and the same arguments apply. ¤

XI - Proof of Corollary 3.1

For k0 + kg < r0 + rg, Lemmas A.1(iii), A.6 and A.7 imply that13

plim
υg

³
F̂ (k)g

´
υg

³
F̂ (r)g

´ = 1 + plim
h
υg

³
F̂ (k)g

´
− υg

³
F̂(r)g

´i
plim

h
υg

³
F̂ (r)g

´i = 1+

= 1+
plim

h
υg

³
F̂ (k)g

´
− υg

³
F0gH

(k)
g

´i
plim

h
υg

³
F̂ (r)g

´i +
plim

h
υg

³
F0gH

(k)
g

´
− υg

³
F0gH

(r)
g

´i
plim

h
υg

³
F̂(r)g

´i +

+
plim

h
υg

³
F0gH

(r)
g

´
− υg

³
F̂ (r)g

´i
plim

h
υg

³
F̂ (r)g

´i = 1+
plim

h
υg

³
F0gH

(k)
g

´
− υg

¡
F0g
¢i

plim
h
υg

³
F̂ (r)g

´i > 1+εg,k

for some εg,k > 0. Thus

plim

⎧⎨⎩ln
⎡⎣υg

³
F̂ (k)g

´
υg

³
F̂ (r)g

´
⎤⎦⎫⎬⎭ > δg,k

for some δg,k > 0.

Now, when k0 + kg ≥ r0 + rg, let k5 =
h
k50 k1 · · · kg−1 k5g kg+1 · · · kG

i0
≤

kmax be any (G + 1) × 1 vector of non-negative integers. If kg ≥ k5g ≥ rg and

k0 + kg ≥ k50 + k5g ≥ r0 + rg, Lemmas A.1(iii) and A.8 imply that

υg

³
F̂ (k)g

´
υg

³
F̂ ()g
´ = 1 +

υg

³
F̂ (k)g

´
− υg

³
F̂ (k

5)
g

´
υg

³
F̂(k̄)g

´ = 1 +Op

µ
1

min (Ng, T )

¶

and thus that

ln

⎡⎣ υg

³
F̂ (k)g

´
υg

³
F̂ (k

5)
g

´
⎤⎦ = Op

µ
1

min (Ng, T )

¶
13The argument is similar to the one presented for case (II) in Part 1 of the proof of Theorem

3.
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Therefore, the proofs in Appendix X remain valid after substituting

ln

⎡⎣υg
³
F̂ (k)g

´
υg

³
F̂ (r)g

´
⎤⎦

for υg
³
F̂ (k)g

´
− υg

³
F̂ (r)g

´
. ¤
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XII - Data set

SERIES

GERMANY

PRODUCTION OF TOTAL INDUSTRY (EXCLUDING CONSTRUCTION) VOLA BDOPRI35G
PRODUCTION IN TOTAL MANUFACTURING VOLA BDOPRI38G
PRODUCTION OF TOTAL CONSTRUCTION VOLA BDOPRI30G
PRODUCTION OF TOTAL MANUFACTURED INTERMEDIATE GOODS VOLA BDOPRI61G
PRODUCTION OF TOTAL MANUFACTURED INVESTMENT GOODS VOLA BDOPRI70G
ORDERS FOR TOTAL MANUFACTURED GOODS (VOLUME) VOLA BDOODI45G
ORDERS FOR EXPORTED MANUFACTURED GOODS (VOLUME) VOLA BDOODI54G
ORDERS FOR MANUFACTURED GOODS FROM DOM. MARKET (VOLUME) VOLA BDOODI53G
ORDERS FOR MANUFACTURED INTERMEDIATE GOODS (VOLUME) VOLA BDOODI51G
ORDERS FOR MANUFACTURED INVESTMENT GOODS (VOLUME) VOLA BDOODI52G
SALES OF TOTAL MANUFACTURED GOODS (VOLUME) VOLN BDOSLI69H
SALES OF MANUFACTURED INTERMEDIATE GOODS (VOLUME) VOLN BDOSLI26H
SALES OF MANUFACTURED INVESTMENT GOODS (VOLUME) VOLN BDOSLI27H
TOTAL WHOLESALE TRADE (VOLUME) VOLN BDOSLI22H
TOTAL RETAIL TRADE (VOLUME) VOLA BDOSLI15G
TOTAL CAR REGISTRATIONS VOLA BDOSLI05O
PASSENGER CAR REGISTRATIONS SADJ BDOSLI12E
PERMITS ISSUED FOR DWELLINGS VOLA BDOODI15O
IMPORTS CIF CURA BDOXT009B
EXPORTS FOB CURA BDOXT003B
UNEMPLOYMENT: % CIVILIAN LABOUR(% DEPENDENT LABOUR TO DEC 196 BDUN%TOTQ
PERSONS IN EMPLOYMENT - MINING AND MANUFACTURINGVOLN BDUUOA01P
UNFILLED VACANCIES VOLA BDOOL015O
PPI - ALL ITEMS NADJ BDOPP019F
PPI - MANUFACTURING INDUSTRY NADJ BDOPP017F
PPI - FOOD, BEVERAGES & TOBACCO NADJ BDOPP013F
PPI - INVESTMENT GOODS NADJ BDOPP068F
PPI - INTERMEDIATE GOODS NADJ BDOPP064F
WPI NADJ BDOWP005F
CPI -HOUSING RENTAL SERVICES NADJ BDOCP053F
CPI - ENERGY (EXCL. GASOLINE BEFORE 1991) NADJ BDOCP041F
CPI - EXCLUDING FOOD & ENERGY NADJ BDOCP042F
CPI - FOOD AND ALCOHOL-FREE DRINKS (EXCL. REST)NADJ BDOCP019F
CPI NADJ BDOCP009F
EXPORT PRICE INDEX SADJ BDEXPPRCE
IMPORT PRICE INDEX SADJ BDIMPPRCE
MONEY SUPPLY-GERMAN CONTRIBUTION TO EURO M1(PAN M0690) BDM1....A
MONEY SUPPLY - M2 (CONTINUOUS SERIES) CURA BDM2C...B
MONEY SUPPLY - M3 (CONTINUOUS SERIES) CURA BDM3C...B
FIBOR - 3 MONTH (MTH.AVG.) BDINTER3
YIELD 10-YEAR GOVT.BONDS(PROXY- 9-10+ YEAR FEDERAL SECUR NADJ BDOIR080R
SHARE PRICES - CDAX NADJ BDOSP001F
GERMAN MARKS TO US$ (MTH.AVG.) BDXRUSD.
UK MARKET PRICE - UK BRENT CURN UKI76AAZA
ECONOMIC SENTIMENT INDICATOR - GERMANY SADJ BDEUSESIG
CONSTRUCTION CONFIDENCE INDICATOR - GERMANY SADJ BDEUSBCIQ
CONSTRUCTION SURVEY: ACT.COMPARED TO LAST MONTH-GERMANY SADJ BDEUSBACQ
CONSTRUCTION SURVEY: EMPLOYMENT EXPECTATIONS - GERMANY SADJ BDEUSBEMQ
CONSTRUCTION SURVEY: ORDER BOOK POSITION - GERMANY SADJ BDEUSBOBQ
CONSTRUCTION SURVEY: PRICE EXPECTATIONS - GERMANY SADJ BDEUSBPRQ
CONSUMER CONFIDENCE INDICATOR - GERMANY SADJ BDEUSCCIQ
CONSUMER SURVEY: ECONOMIC SITUATION LAST 12 MTH-GERMANY SADJ BDEUSCECQ
CONSUMER SURVEY: ECONOMIC SITUATION NEXT 12 MTH-GERMANY SADJ BDEUSCEYQ
CONSUMER SURVEY: FINANCIAL SITUATION LAST 12 MTH-GERMANY SADJ BDEUSCFNQ
CONSUMER SURVEY: FINANCIAL SITUATION NEXT 12 MTH-GERMANY SADJ BDEUSCFYQ
CONSUMER SURVEY: MAJOR PURCH.OVER NEXT 12 MONTHS-GERMANY SADJ BDEUSCPCQ
CONSUMER SURVEY: MAJOR PURCHASES AT PRESENT - GERMANY SADJ BDEUSCMPQ
CONSUMER SURVEY: PRICES LAST 12 MONTHS - GERMANYSADJ BDEUSCPRQ
CONSUMER SURVEY: PRICES NEXT 12 MONTHS - GERMANYSADJ BDEUSCPYQ
CONSUMER SURVEY: SAVINGS AT PRESENT - GERMANY SADJ BDEUSCSAQ
CONSUMER SURVEY: SAVINGS OVER NEXT 12 MONTHS - GERMANY SADJ BDEUSCSYQ
CONSUMER SURVEY: STATEMENT ON FIN.SITUATION OF HOUSEHOLD SADJ BDEUSCFHQ
CONSUMER SURVEY: UNEMPLOYMENT NEXT 12 MONTHS - GERMANY SADJ BDEUSCUNQ
INDUSTRIAL CONFIDENCE INDICATOR - GERMANY SADJ BDEUSICIQ
INDUSTRY SURVEY: EMP.EXPECTATIONS FOR MO.AHEAD -GERMANY SADJ BDEUSIEMQ
INDUSTRY SURVEY: EXPORT ORDER BOOK POSITION - GERMANY SADJ BDEUSIEBQ
INDUSTRY SURVEY: ORDER BOOK POSITION - GERMANY SADJ BDEUSIOBQ
INDUSTRY SURVEY: PROD.EXPECTATION FOR MTH.AHEAD-GERMANY SADJ BDEUSIPAQ
INDUSTRY SURVEY: PRODN. TRENDS IN RECENT MTH. - GERMANY SADJ BDEUSIPRQ
INDUSTRY SURVEY: SELLING PRC.EXPECT.MTH. AHEAD -GERMANY SADJ BDEUSISPQ
INDUSTRY SURVEY: STOCKS OF FINISHED GOODS - GERMANY SADJ BDEUSIFPQ
RETAIL CONFIDENCE INDICATOR - GERMANY SADJ BDEUSRCIQ
RETAIL SURVEY: CURRENT BUSINESS SITUATION - GERMANY SADJ BDEUSRPBQ

Thomson Financial 
Datastream code



RETAIL SURVEY: EMPLOYMENT - GERMANY SADJ BDEUSREMQ
RETAIL SURVEY: FUTURE BUSINESS SITUATION - GERMANY SADJ BDEUSREBQ
RETAIL SURVEY: ORDERS PLACED WITH SUPPLIERS - GERMANY SADJ BDEUSROSQ
RETAIL SURVEY: STOCKS - GERMANY SADJ BDEUSRSTQ

FRANCE

PRODUCTION OF TOTAL INDUSTRY (EXCLUDING CONSTRUCTION) VOLA FROPRI35G
PRODUCTION IN TOTAL MANUFACTURING VOLA FROPRI38G
PRODUCTION OF TOTAL MANUFACTURED CONSUMER GOODS VOLA FROPRI49G
PRODUCTION OF TOTAL MANUFACTURED INTERMEDIATE GOODS VOLA FROPRI61G
PRODUCTION OF TOTAL MANUFACTURED INVESTMENT GOODS VOLA FROPRI70G
PRODUCTION OF TOTAL ENERGY VOLA FROPRI44G
PRODUCTION IN TOTAL AGRICULTURE VOLA FROPRI47G
PRODUCTION OF TOTAL CONSTRUCTION VOLA FROPRI30G
PRODUCTION OF TOTAL VEHICLES VOLA FROPRI58G
PERMITS ISSUED FOR DWELLINGS VOLA FROODI15O
WORK STARTED FOR DWELLINGS VOLA FROWSI41O
TOTAL RETAIL TRADE (VOLUME) VOLA FROSLI15G
HOUSEHOLD CONSUMPTION - MANUFACTURED GOODS CONA FRHCONMGD
HOUSEHOLD CONSUMPTION - MANUFACTURED GOODS, RETAIL GOODS CONA FRHCONMCD
HOUSEHOLD CONSUMPTION - AUTOMOBILES CONA FRHCONAUD
HOUSEHOLD CONSUMPTION - DURABLE GOODS CONA FRHCONDGD
HOUSEHOLD CONSUMPTION - TEXTILES & LEATHER CONA FRHCONTLD
HOUSEHOLD CONSUMPTION - OTHER MANUFACTURED GOODSCONA FRHCONOTD
HOUSEHOLD CONSUMPTION - FURNITURE CONA FRHCONFND
HOUSEHOLD CONSUMPTION - HOUSEHOLD APPLIANCES CONA FRHCONHAD
HOUSEHOLD CONSUMPTION - ELECTRICAL GOODS CONA FRHCONELD
PASSENGER CAR REGISTRATIONS SADJ FROSLI12E
TOTAL CAR REGISTRATIONS VOLA FROSLI05O
IMPORTS FOB CURA FROXT009B
EXPORTS FOB CURA FROXT003B
UNEMPLOYMENT VOLA FROUN010O
NEW UNEMPLOYMENT CLAIMS SADJ FROUN007G
UNEMPLOYMENT RATE (% OF TOTAL LABOUR FORCE) SADJ FROUN015Q
NEW JOB VACANCIES FULL & PART-TIME REGISTERED DURING MONTH FRVACTOTO
PPI - AGRICULTURAL GOODS NADJ FROPP004F
PPI - INTERMEDIATE GOODS EXCLUDING ENERGY NADJ FROPP065F
PPI - CHEMICALS NADJ FROPP054F
PPI - METAL PRODUCTS NADJ FROPP037F
PPI - PETROLEUM PRODUCTS NADJ FROPP057F
PPI - MANUFACTURED PRODUCTS NADJ FROPP017F
CPI NADJ FROCP009F
CPI - FOOD NADJ FROCP019F
CPI - ENERGY NADJ FROCP041F
CPI - EXCLUDING FOOD & ENERGY NADJ FROCP042F
CPI - RENT NADJ FROCP054F
CPI - SERVICES EXCLUDING RENT NADJ FROCP064F
MONEY SUPPLY - M1 (NATIONAL CONTRIBUTION TO M1) CURN FRM1....A
MONEY SUPPLY - M2 (NATIONAL CONTRIBUTION TO M2) CURN FRM2....A
MONEY SUPPLY - M3 (NATIONAL CONTRIBUTION TO M3) CURN FRM3....A
PIBOR / EURIBOR - 3-MONTH (MTH.AVG.) FRINTER3
YIELD 10-YEAR GOVERNMENT BENCHMARK BONDS NADJ FROIR080R
SHARE PRICES - SBF 250 NADJ FROSP001F
FRENCH FRANC TO US $ FRXRUSD.
UK MARKET PRICE - UK BRENT CURN UKI76AAZA
ECONOMIC SENTIMENT INDICATOR - FRANCE SADJ FREUSESIG
CONSTRUCTION CONFIDENCE INDICATOR - FRANCE SADJ FREUSBCIQ
CONSTRUCTION SURVEY: ACT.COMPARED TO LAST MONTH - FRANCE SADJ FREUSBACQ
CONSTRUCTION SURVEY: EMPLOYMENT EXPECTATIONS - FRANCE SADJ FREUSBEMQ
CONSTRUCTION SURVEY: ORDER BOOK POSITION - FRANCE SADJ FREUSBOBQ
CONSTRUCTION SURVEY: PRICE EXPECTATIONS - FRANCESADJ FREUSBPRQ
CONSUMER CONFIDENCE INDICATOR - FRANCE SADJ FREUSCCIQ
CONSUMER SURVEY: ECONOMIC SITUATION LAST 12 MTH.- FRANCE SADJ FREUSCECQ
CONSUMER SURVEY: ECONOMIC SITUATION NEXT 12 MTH.- FRANCE SADJ FREUSCEYQ
CONSUMER SURVEY: FINANCIAL SITUATION LAST 12 MTH- FRANCE SADJ FREUSCFNQ
CONSUMER SURVEY: FINANCIAL SITUATION NEXT 12 MTH- FRANCE SADJ FREUSCFYQ
CONSUMER SURVEY: MAJOR PURCH.OVER NEXT 12 MONTHS- FRANCE SADJ FREUSCPCQ
CONSUMER SURVEY: MAJOR PURCHASES AT PRESENT - FRANCE SADJ FREUSCMPQ
CONSUMER SURVEY: PRICES LAST 12 MONTHS - FRANCE SADJ FREUSCPRQ
CONSUMER SURVEY: PRICES NEXT 12 MONTHS - FRANCE SADJ FREUSCPYQ
CONSUMER SURVEY: SAVINGS AT PRESENT - FRANCE SADJ FREUSCSAQ
CONSUMER SURVEY: SAVINGS OVER NEXT 12 MONTHS - FRANCE SADJ FREUSCSYQ
CONSUMER SURVEY: STATEMENT ON FIN.SITUATION OF HOUSEHOLD SADJ FREUSCFHQ
CONSUMER SURVEY: UNEMPLOYMENT NEXT 12 MONTHS - FRANCE SADJ FREUSCUNQ
INDUSTRIAL CONFIDENCE INDICATOR - FRANCE SADJ FREUSICIQ
INDUSTRY SURVEY: EMP.EXPECTATIONS FOR MO. AHEAD - FRANCE SADJ FREUSIEMQ
INDUSTRY SURVEY: EXPORT ORDER BOOK POSITION - FRANCE SADJ FREUSIEBQ
INDUSTRY SURVEY: ORDER BOOK POSITION - FRANCE SADJ FREUSIOBQ
INDUSTRY SURVEY: PROD.EXPECTATION FOR MTH.AHEAD - FRANCE SADJ FREUSIPAQ
INDUSTRY SURVEY: PRODN. TRENDS IN RECENT MTH. - FRANCE SADJ FREUSIPRQ



INDUSTRY SURVEY: SELLING PRC.EXPECT. MTH. AHEAD - FRANCE SADJ FREUSISPQ
INDUSTRY SURVEY: STOCKS OF FINISHED GOODS - FRANCE SADJ FREUSIFPQ
RETAIL CONFIDENCE INDICATOR - FRANCE SADJ FREUSRCIQ
RETAIL SURVEY: CURRENT BUSINESS SITUATION - FRANCE SADJ FREUSRPBQ
RETAIL SURVEY: EMPLOYMENT - FRANCE SADJ FREUSREMQ
RETAIL SURVEY: FUTURE BUSINESS SITUATION - FRANCE SADJ FREUSREBQ
RETAIL SURVEY: ORDERS PLACED WITH SUPPLIERS - FRANCE SADJ FREUSROSQ
RETAIL SURVEY: STOCKS - FRANCE SADJ FREUSRSTQ

ITALY

PRODUCTION OF TOTAL INDUSTRY (EXCLUDING CONSTRUCTION) VOLA ITOPRI35G
PRODUCTION OF TOTAL MANUFACTURED CONSUMER GOODS VOLA ITOPRI49G
PRODUCTION OF TOTAL MANUFACTURED INTERMEDIATE GOODS VOLA ITOPRI61G
PRODUCTION OF TOTAL MANUFACTURED INVESTMENT GOODS VOLA ITOPRI70G
SALES OF TOTAL MANUFACTURED GOODS (VALUE) NADJ ITOSLI09F
SALES OF TOTAL MANUFACTURED CONSUMER GOODS (VALUE) NADJ ITOSLI61F
SALES OF MANUFACTURED INTERMEDIATE GOODS (VALUE)NADJ ITOSLI64F
SALES OF MANUFACTURED INVESTMENT GOODS (VALUE) NADJ ITOSLI65F
ORDERS FOR TOTAL MANUFACTURED GOODS (VALUE) SADJ ITOODI32E
TOTAL RETAIL TRADE (VOLUME) VOLA ITOSLI15G
TOTAL CAR REGISTRATIONS VOLA ITOSLI05O
PASSENGER CAR REGISTRATIONS SADJ ITOSLI12E
IMPORTS CIF CURA ITOXT009B
EXPORTS FOB CURA ITOXT003B
STANDARDIZED UNEMPLOYMENT RATE SADJ ITOUN014Q
PPI NADJ ITOPP019F
CPI NADJ ITOCP009F
CPI - FOOD NADJ ITOCP019F
CPI - ENERGY NADJ ITOCP041F
CPI - EXCLUDING FOOD & ENERGY NADJ ITOCP042F
CPI - SERVICES LESS HOUSING NADJ ITOCP064F
CPI - HOUSING NADJ ITOCP057F
EXPORT UNVALUE INDEX NADJ ITEXPPRCF
IMPORT UNVALUE INDEX NADJ ITIMPPRCF
MONEY SUPPLY: M1 - ITALIAN CONTRIBUTION TO THE EURO AREA CURN ITM1....A
MONEY SUPPLY: M2 - ITALIAN CONTRIBUTION TO THE EURO AREA CURN ITM2....A
MONEY SUPPLY: M3 - ITALIAN CONTRIBUTION TO THE EURO AREA CURN ITM3....A
TREASURY BOND NET YIELD -SECONDARY MKT. (EP) ITGBOND.
SHARE PRICES - ISE MIB STORICO NADJ ITOSP001F
ITALIAN LIRE TO US $ (MTH.AVG.) ITXRUSD.
UK MARKET PRICE - UK BRENT CURN UKI76AAZA
ECONOMIC SENTIMENT INDICATOR - ITALY SADJ ITEUSESIG
CONSTRUCTION CONFIDENCE INDICATOR - ITALY SADJ ITEUSBCIQ
CONSTRUCTION SURVEY: ACT.COMPARED TO LAST MONTH - ITALY SADJ ITEUSBACQ
CONSTRUCTION SURVEY: EMPLOYMENT EXPECTATIONS - ITALY SADJ ITEUSBEMQ
CONSTRUCTION SURVEY: ORDER BOOK POSITION - ITALYSADJ ITEUSBOBQ
CONSTRUCTION SURVEY: PRICE EXPECTATIONS - ITALY SADJ ITEUSBPRQ
CONSUMER CONFIDENCE INDICATOR - ITALY SADJ ITEUSCCIQ
CONSUMER SURVEY: ECONOMIC SITUATION LAST 12 MTH.- ITALY SADJ ITEUSCECQ
CONSUMER SURVEY: ECONOMIC SITUATION NEXT 12 MTH.- ITALY SADJ ITEUSCEYQ
CONSUMER SURVEY: FINANCIAL SITUATION LAST 12 MTH.- ITALY SADJ ITEUSCFNQ
CONSUMER SURVEY: FINANCIAL SITUATION NEXT 12 MTH.- ITALY SADJ ITEUSCFYQ
CONSUMER SURVEY: MAJOR PURCH.OVER NEXT 12 MONTHS- ITALY SADJ ITEUSCPCQ
CONSUMER SURVEY: MAJOR PURCHASES AT PRESENT - ITALY SADJ ITEUSCMPQ
CONSUMER SURVEY: PRICES LAST 12 MONTHS - ITALY SADJ ITEUSCPRQ
CONSUMER SURVEY: PRICES NEXT 12 MONTHS - ITALY SADJ ITEUSCPYQ
CONSUMER SURVEY: SAVINGS AT PRESENT - ITALY SADJ ITEUSCSAQ
CONSUMER SURVEY: SAVINGS OVER NEXT 12 MONTHS - ITALY SADJ ITEUSCSYQ
CONSUMER SURVEY: STATEMENT ON FIN.SITUATION OF HOUSEHOLD SADJ ITEUSCFHQ
CONSUMER SURVEY: UNEMPLOYMENT NEXT 12 MONTHS - ITALY SADJ ITEUSCUNQ
INDUSTRIAL CONFIDENCE INDICATOR - ITALY SADJ ITEUSICIQ
INDUSTRY SURVEY: EMP. EXPECTATIONS FOR MO. AHEAD- ITALY SADJ ITEUSIEMQ
INDUSTRY SURVEY: EXPORT ORDER BOOK POSITION - ITALY SADJ ITEUSIEBQ
INDUSTRY SURVEY: ORDER BOOK POSITION - ITALY SADJ ITEUSIOBQ
INDUSTRY SURVEY: PROD.EXPECTATION FOR MTH. AHEAD- ITALY SADJ ITEUSIPAQ
INDUSTRY SURVEY: PRODN. TRENDS IN RECENT MTH. - ITALY SADJ ITEUSIPRQ
INDUSTRY SURVEY: SELLING PRC. EXPECT. MTH. AHEAD- ITALY SADJ ITEUSISPQ
INDUSTRY SURVEY: STOCKS OF FINISHED GOODS - ITALY SADJ ITEUSIFPQ
RETAIL CONFIDENCE INDICATOR - ITALY SADJ ITEUSRCIQ
RETAIL SURVEY: CURRENT BUSINESS SITUATION - ITALY SADJ ITEUSRPBQ
RETAIL SURVEY: EMPLOYMENT - ITALY SADJ ITEUSREMQ
RETAIL SURVEY: FUTURE BUSINESS SITUATION - ITALYSADJ ITEUSREBQ
RETAIL SURVEY: ORDERS PLACED WITH SUPPLIERS - ITALY SADJ ITEUSROSQ
RETAIL SURVEY: STOCKS - ITALY SADJ ITEUSRSTQ

SPAIN

PRODUCTION OF TOTAL INDUSTRY (EXCLUDING CONSTRUCTION) VOLA ESOPRI35G
PRODUCTION IN TOTAL MANUFACTURING VOLA ESOPRI38G



PRODUCTION IN TOTAL MINING VOLN ESOPRI36H
PRODUCTION OF TOTAL MANUFACTURED CONSUMER GOODS VOLN ESOPRI49H
PRODUCTION OF TOTAL MANUFACTURED INTERMEDIATE GOODS VOLN ESOPRI61H
PRODUCTION OF TOTAL MANUFACTURED INVESTMENT GOODS VOLN ESOPRI70H
PRODUCTION OF CEMENT VOLA ESOPRI01O
PRODUCTION OF ACCOMMODATION: NIGHTS IN HOTEL VOLA ESOPRI21O
PASSENGER CAR REGISTRATIONS VOLA ESOSLI12O
CONSUMPTION: PETROL - CARS (VOLA) VOLA ESPCA313O
CONSUMPTION: DIESEL OIL (VOLA) VOLA ESOIL562O
ELECTRICITY CONSUMPTION (VOLA) VOLA ESECO312O
ELECTRICITY CONSUMPTION - INDUSTRIAL SECTOR (VOLA) VOLA ESELE629G
CONSUMPTION: VISIBLE - CEMENT (VOLA) VOLA ESCEM301O
IMPORTS CIF CURA ESOXT009B
EXPORTS FOB CURA ESOXT003B
STANDARDIZED UNEMPLOYMENT RATE SADJ ESOUN014Q
PPI NADJ ESOPP019F
PPI - AGRICULTURAL PRODUCTS NADJ ESOPP004F
PPI - MANUFACTURING ALL ITEMS NADJ ESOPP017F
PPI - INTERMEDIATE GOODS NADJ ESOPP064F
PPI - CONSUMER GOODS NADJ ESOPP062F
PPI - INVESTMENT GOODS NADJ ESOPP068F
PPI - ENERGY NADJ ESOPP022F
CPI NADJ ESOCP009F
CPI - ENERGY NADJ ESOCP041F
CPI - EXCLUDING FOOD & ENERGY NADJ ESOCP042F
CPI - SERVICEXCLUDING RENT NADJ ESOCP064F
CPI - RENT NADJ ESOCP057F
CONSTRUCTION COST INDEX NADJ ESOOP005F
EXPORT UNIT VALUE INDEX NADJ ESEXPPRCF
IMPORT UNIT VALUE INDEX NADJ ESIMPPRCF
MONEY SUPPLY: M2 - SPANISH CONTRIBUTION TO EURO M2 CURN ESM2....A
MONEY SUPPLY: M3 - SPANISH CONTRIBUTION TO EURO M3 CURN ESM3....A
INTERBANK RATE - 3 MONTH (WEIGHTED AVERAGE, EP) ESINTER3
YIELD 10-YEAR GOVERNMENT BONDS NADJ ESOIR080R
SHARE PRIC- MSE GENERAL INDEX NADJ ESOSP001F
SPANISH PESETAS TO US $ (MTH.AVG.) ESXRUSD.
UK MARKET PRICE - UK BRENT CURN UKI76AAZA
ECONOMIC SENTIMENT INDICATOR - SPAIN SADJ ESEUSESIG
CONSTRUCTION CONFIDENCE INDICATOR - SPAIN SADJ ESEUSBCIQ
CONSTRUCTION SURVEY: ACT.COMPARED TO LAST MONTH - SPAIN SADJ ESEUSBACQ
CONSTRUCTION SURVEY: EMPLOYMENT EXPECTATIONS - SPAIN SADJ ESEUSBEMQ
CONSTRUCTION SURVEY: ORDER BOOK POSITION - SPAINSADJ ESEUSBOBQ
CONSTRUCTION SURVEY: PRICE EXPECTATIONS - SPAIN SADJ ESEUSBPRQ
CONSUMER CONFIDENCE INDICATOR - SPAIN SADJ ESEUSCCIQ
CONSUMER SURVEY: ECONOMIC SITUATION LAST 12 MTH.- SPAIN SADJ ESEUSCECQ
CONSUMER SURVEY: ECONOMIC SITUATION NEXT 12 MTH.- SPAIN SADJ ESEUSCEYQ
CONSUMER SURVEY: FINANCIAL SITUATION LAST 12 MTH.- SPAIN SADJ ESEUSCFNQ
CONSUMER SURVEY: FINANCIAL SITUATION NEXT 12 MTH.- SPAIN SADJ ESEUSCFYQ
CONSUMER SURVEY: MAJOR PURCH.OVER NEXT 12 MONTHS- SPAIN SADJ ESEUSCPCQ
CONSUMER SURVEY: MAJOR PURCHASAT PRESENT - SPAIN SADJ ESEUSCMPQ
CONSUMER SURVEY: PRICLAST 12 MONTHS - SPAIN SADJ ESEUSCPRQ
CONSUMER SURVEY: PRICNEXT 12 MONTHS - SPAIN SADJ ESEUSCPYQ
CONSUMER SURVEY: SAVINGS AT PRESENT - SPAIN SADJ ESEUSCSAQ
CONSUMER SURVEY: SAVINGS OVER NEXT 12 MONTHS - SPAIN SADJ ESEUSCSYQ
CONSUMER SURVEY: STATEMENT ON FIN.SITUATION OF HOUSEHOLD SADJ ESEUSCFHQ
CONSUMER SURVEY: UNEMPLOYMENT NEXT 12 MONTHS - SPAIN SADJ ESEUSCUNQ
INDUSTRIAL CONFIDENCE INDICATOR - SPAIN SADJ ESEUSICIQ
INDUSTRY SURVEY: EMP. EXPECTATIONS FOR MO. AHEAD- SPAIN SADJ ESEUSIEMQ
INDUSTRY SURVEY: EXPORT ORDER BOOK POSITION - SPAIN SADJ ESEUSIEBQ
INDUSTRY SURVEY: ORDER BOOK POSITION - SPAIN SADJ ESEUSIOBQ
INDUSTRY SURVEY: PROD.EXPECTATION FOR MTH. AHEAD- SPAIN SADJ ESEUSIPAQ
INDUSTRY SURVEY: PRODN. TRENDS IN RECENT MTH. - SPAIN SADJ ESEUSIPRQ
INDUSTRY SURVEY: SELLING PRC. EXPECT. MTH. AHEAD- SPAIN SADJ ESEUSISPQ
INDUSTRY SURVEY: STOCKS OF FINISHED GOODS - SPAIN SADJ ESEUSIFPQ
RETAIL CONFIDENCE INDICATOR - SPAIN SADJ ESEUSRCIQ
RETAIL SURVEY: CURRENT BUSINESS SITUATION - SPAIN SADJ ESEUSRPBQ
RETAIL SURVEY: EMPLOYMENT - SPAIN SADJ ESEUSREMQ
RETAIL SURVEY: FUTURE BUSINESS SITUATION - SPAINSADJ ESEUSREBQ
RETAIL SURVEY: ORDERS PLACED WITH SUPPLIERS - SPAIN SADJ ESEUSROSQ
RETAIL SURVEY: STOCKS - SPAIN SADJ ESEUSRSTQ



Global Group Global Group Global Group Global Group Global Group Global Group

-1 0.02 0.04 0.00 0.00 0.00 0.00 0.23 0.15 0.00 0.00 0.00 0.00
c=0.05 0 0.98 0.96 1.00 1.00 1.00 1.00 0.76 0.81 1.00 1.00 1.00 1.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

-1 0.01 0.04 0.00 0.00 0.00 0.00 0.11 0.20 0.00 0.01 0.00 0.00
Ng=60 c=0.10 0 0.99 0.96 1.00 1.00 1.00 1.00 0.88 0.78 1.00 1.00 1.00 1.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.05 0.00 0.00 0.00 0.00 0.02 0.21 0.00 0.01 0.00 0.00
c=0.20 0 1.00 0.95 1.00 1.00 1.00 1.00 0.93 0.73 1.00 1.00 1.00 1.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.00
c=0.05 0 1.00 0.98 1.00 1.00 1.00 1.00 0.99 0.94 1.00 1.00 1.00 1.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.00
Ng=100 c=0.10 0 1.00 0.98 1.00 1.00 1.00 1.00 0.99 0.94 1.00 1.00 1.00 1.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00
c=0.20 0 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1 - Simulation results for GIC (1) and GIC(2): base case and G=2

T=100 T=200
Deviation from 
the true number 

of factors

GIC(1) GIC(2)

T=60 T=100 T=200 T=60



Global Group Global Group Global Group Global Group Global Group Global Group

-1 0.00 0.01 0.00 0.00 0.00 0.00 0.05 0.09 0.00 0.00 0.00 0.00
c=0.05 0 0.97 0.92 1.00 1.00 1.00 1.00 0.95 0.90 1.00 1.00 1.00 1.00

1 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

-1 0.00 0.05 0.00 0.00 0.00 0.00 0.02 0.10 0.00 0.00 0.00 0.00
Ng=60 c=0.10 0 0.87 0.91 1.00 1.00 1.00 1.00 0.97 0.90 1.00 1.00 1.00 1.00

1 0.13 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.40 0.00 0.03 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
c=0.20 0 0.25 0.44 0.95 0.97 1.00 1.00 0.92 0.86 1.00 1.00 1.00 1.00

1 0.36 0.01 0.05 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
c=0.05 0 0.99 0.97 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00

1 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
Ng=100 c=0.10 0 0.92 0.96 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00

1 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.41 0.00 0.01 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00
c=0.20 0 0.22 0.43 0.98 0.99 1.00 1.00 0.92 0.93 1.00 1.00 1.00 1.00

1 0.34 0.01 0.02 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00

Table 2 - Simulation results for GIC (1) and GIC(2): case (ii) and G=2

T=100 T=200
Deviation from 
the true number 

of factors

GIC(1) GIC(2)

T=60 T=100 T=200 T=60



Global Group Global Group Global Group Global Group Global Group Global Group

-1 0.77 0.47 0.51 0.24 0.02 0.04 0.13 0.28 0.72 0.48 0.17 0.09
c=0.05 0 0.07 0.37 0.48 0.70 0.98 0.95 0.00 0.07 0.06 0.34 0.84 0.89

1 0.00 0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01

-1 0.66 0.45 0.27 0.27 0.00 0.05 0.32 0.30 0.67 0.47 0.04 0.13
Ng=60 c=0.10 0 0.27 0.35 0.70 0.66 1.00 0.95 0.02 0.04 0.23 0.32 0.95 0.87

1 0.02 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.04 0.01 0.01 0.00

-1 0.15 0.34 0.03 0.31 0.00 0.05 0.39 0.22 0.13 0.34 0.00 0.14
c=0.20 0 0.48 0.22 0.81 0.54 1.00 0.95 0.30 0.02 0.47 0.22 0.98 0.85

1 0.29 0.00 0.12 0.00 0.00 0.00 0.15 0.00 0.31 0.00 0.02 0.00

-1 0.77 0.33 0.12 0.13 0.00 0.00 0.75 0.56 0.71 0.30 0.00 0.03
c=0.05 0 0.21 0.58 0.88 0.85 1.00 1.00 0.04 0.27 0.26 0.62 1.00 0.97

1 0.00 0.05 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.05 0.00 0.00

-1 0.50 0.36 0.03 0.18 0.00 0.00 0.72 0.50 0.42 0.33 0.00 0.03
Ng=100 c=0.10 0 0.42 0.51 0.96 0.81 1.00 1.00 0.17 0.25 0.51 0.56 1.00 0.97

1 0.07 0.01 0.01 0.00 0.00 0.00 0.04 0.01 0.06 0.01 0.00 0.00

-1 0.07 0.39 0.00 0.19 0.00 0.00 0.21 0.32 0.05 0.36 0.00 0.03
c=0.20 0 0.59 0.30 0.97 0.79 1.00 1.00 0.42 0.15 0.66 0.38 1.00 0.97

1 0.26 0.00 0.03 0.00 0.00 0.00 0.30 0.00 0.23 0.00 0.00 0.00

Table 3 - Simulation results for GIC (1) and GIC(2): case (iii) and G=2

T=100 T=200
Deviation from 
the true number 

of factors

GIC(1) GIC(2)

T=60 T=100 T=200 T=60



Global Group Global Group Global Group Global Group Global Group Global Group

-1 0.45 0.25 0.08 0.18 0.00 0.03 0.56 0.48 0.38 0.32 0.05 0.07
c=0.05 0 0.54 0.67 0.92 0.80 1.00 0.97 0.03 0.22 0.58 0.57 0.95 0.93

1 0.01 0.06 0.01 0.00 0.00 0.00 0.00 0.03 0.03 0.01 0.00 0.01

-1 0.20 0.32 0.08 0.18 0.00 0.03 0.64 0.46 0.38 0.32 0.05 0.07
Ng=60 c=0.10 0 0.72 0.61 0.92 0.80 1.00 0.97 0.19 0.21 0.58 0.57 0.95 0.93

1 0.08 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.03 0.01 0.00 0.01

-1 0.00 0.37 0.00 0.21 0.00 0.03 0.19 0.32 0.05 0.35 0.00 0.08
c=0.20 0 0.24 0.24 0.85 0.72 1.00 0.97 0.43 0.12 0.71 0.43 1.00 0.92

1 0.28 0.00 0.12 0.00 0.00 0.00 0.29 0.00 0.19 0.00 0.01 0.00

-1 0.16 0.17 0.01 0.05 0.00 0.00 0.66 0.31 0.32 0.20 0.00 0.01
c=0.05 0 0.84 0.79 0.99 0.94 1.00 1.00 0.33 0.60 0.68 0.76 1.00 0.99

1 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.03 0.00 0.00

-1 0.05 0.24 0.00 0.06 0.00 0.00 0.36 0.36 0.14 0.26 0.00 0.01
Ng=100 c=0.10 0 0.87 0.72 1.00 0.94 1.00 1.00 0.59 0.54 0.85 0.71 1.00 0.99

1 0.07 0.01 0.00 0.00 0.00 0.00 0.05 0.02 0.02 0.00 0.00 0.00

-1 0.00 0.37 0.00 0.06 0.00 0.00 0.02 0.39 0.00 0.31 0.00 0.01
c=0.20 0 0.24 0.28 0.97 0.93 1.00 1.00 0.51 0.30 0.90 0.62 1.00 0.99

1 0.25 0.00 0.03 0.00 0.00 0.00 0.31 0.00 0.09 0.00 0.00 0.00

Table 4 - Simulation results for GIC (1) and GIC(2): case (iv) and G=2

T=100 T=200
Deviation from 
the true number 

of factors

GIC(1) GIC(2)

T=60 T=100 T=200 T=60



Global Group Global Group Global Group Global Group
Base case

-1 0.00 0.04 0.00 0.00 0.04 0.22 0.00 0.01
c=0.10 0 1.00 0.96 1.00 1.00 0.96 0.77 1.00 0.99

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ng=60

-1 0.00 0.04 0.00 0.00 0.00 0.23 0.00 0.01
c=0.20 0 1.00 0.96 1.00 1.00 1.00 0.77 1.00 0.99

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
c=0.10 0 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ng=100

-1 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
c=0.20 0 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Case ii)
-1 0.00 0.01 0.00 0.00 0.01 0.10 0.00 0.01

c=0.10 0 1.00 0.92 1.00 1.00 0.99 0.90 1.00 0.99
1 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00

Ng=60
-1 0.00 0.10 0.00 0.00 0.00 0.10 0.00 0.01

c=0.20 0 0.69 0.84 1.00 1.00 1.00 0.90 1.00 0.99
1 0.26 0.05 0.00 0.00 0.00 0.00 0.00 0.00

-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c=0.10 0 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00

1 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
Ng=100

-1 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00
c=0.20 0 0.71 0.89 1.00 1.00 1.00 1.00 1.00 1.00

1 0.24 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Case iii)
-1 0.79 0.49 0.20 0.37 0.32 0.48 0.79 0.51

c=0.10 0 0.18 0.36 0.80 0.59 0.01 0.09 0.19 0.34
1 0.00 0.05 0.00 0.02 0.00 0.01 0.00 0.05

Ng=60
-1 0.14 0.56 0.00 0.42 0.62 0.43 0.11 0.59

c=0.20 0 0.85 0.27 0.99 0.56 0.26 0.04 0.86 0.25
1 0.02 0.00 0.00 0.00 0.01 0.00 0.03 0.00

-1 0.32 0.30 0.00 0.04 0.80 0.45 0.21 0.25
c=0.10 0 0.68 0.65 1.00 0.96 0.15 0.43 0.80 0.72

1 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.02
Ng=100

-1 0.05 0.36 0.00 0.04 0.24 0.52 0.01 0.28
c=0.20 0 0.95 0.60 1.00 0.96 0.75 0.33 0.99 0.71

1 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Case iv)
-1 0.13 0.31 0.02 0.21 0.81 0.49 0.35 0.40

c=0.10 0 0.87 0.62 0.98 0.78 0.07 0.26 0.65 0.53
1 0.00 0.04 0.00 0.00 0.00 0.03 0.00 0.03

Ng=60
-1 0.00 0.37 0.00 0.22 0.25 0.52 0.02 0.47

c=0.20 0 0.80 0.55 1.00 0.78 0.73 0.19 0.98 0.48
1 0.16 0.02 0.00 0.00 0.02 0.00 0.00 0.00

-1 0.03 0.11 0.00 0.01 0.23 0.28 0.00 0.01
c=0.10 0 0.97 0.87 1.00 0.99 0.77 0.68 1.00 0.99

1 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00
Ng=100

-1 0.00 0.16 0.00 0.01 0.03 0.32 0.00 0.12
c=0.20 0 0.82 0.82 1.00 0.99 0.97 0.65 1.00 0.88

1 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Table 5 - Simulation results for GIC (1) and GIC(2): G=5

T=100
Deviation from 
the true number 

of factors

GIC(1) GIC(2)

T=60 T=100 T=60



no. series no. factors
no. factors based on 
Bai-Ng IC1 criterion 

Global 295 2 -

Germany 77 6 8

France 82 2 4

Italy 64 4 6

Spain 72 2 3

G
r
o
u
p
s

Table 6 - Number of global and group specific factors based on GIC(1)



Figure 1 - The first global factor and euro area GDP growth rate

Figure 2 - The second global factor and euro area consumer inflation rate
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