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Abstract

The aim of this paper is to assess inflation forecasting acurracy over

the short-term horizon using Consumer Price Index (CPI) disaggregated

data. That is, aggregating forecasts is compared with aggregate forecast-

ing. In particular, three questions are addressed: i) one should bottom-up

or not, ii) how bottom one should go and iii) how one should model at

the bottom. In contrast with the literature, different levels of data dis-

aggregation are allowed, namely a higher disaggregation level than the

one considered up to now. Moreover, both univariate and multivariate

models are considered, such as SARIMA and SARIMAX models with

dynamic common factors. An out-of-sample forecast comparison (up to

twelve months ahead) is done using Portuguese CPI dataset. Aggregat-

ing the forecasts seems to be better than aggregate forecasting up to a

five-months ahead horizon. Moreover, this improvement increases with

the disaggregation level and the multivariate modelling outperforms the

univariate one in the very short-run.
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1 Introduction

Inflation plays a central role in the economic performance of any country. It

is widely accepted that inflation should be neither too high, nor too low. High

inflation is seen as an obstacle to economic growth and low (near zero) inflation

is associated with the threat of deflation. So, in many countries, and especially

in the European Union, the primary objective of the monetary policy is price

stability.

According to the European Central Bank (ECB), price stability is defined as

“a year-on-year increase in the Harmonised Index of Consumer Prices (HICP)

for the euro area of below” but “close to 2% over the medium term” (ECB

(2003a)). Therefore, to ensure that this objective is attained, the monetary

authority needs to be constantly monitoring and forecasting the evolution of

prices. The existence of lags, caused by transmission mechanisms, and eco-

nomic shocks, which endanger price stability, explains why inflation forecasting

is regarded as a crucial tool for conducting monetary policy. Actually, Jean-

Claude Trichet (ECB (2003b)) said that inflation forecasts are “useful, even

indispensable, ingredients of monetary policy strategy”.

Thus, forecasting euro area inflation is very important for monetary policy

purposes. However, it is also relevant to forecast country level inflation. First

of all, country level inflation forecasting contributes to a better understanding

of the different transmission mechanisms in each country. Furthermore, Mar-

cellino, Stock and Watson (2003) found evidence that forecasting inflation at

the country level and then aggregating the forecasts increases accuracy against

forecasting at the aggregate level. Finally, the usefulness of inflation forecasts is

not restricted to monetary policy purposes. Assessing inflation forecasts is also

quite relevant in other areas, such as fiscal policy, wage bargaining and financial

markets.

One possible way of improving forecast accuracy is by considering more data,

in particular, disaggregated one. Some studies have focused on whether using

this kind of data increases forecasting accuracy. If it does, this would mean
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that aggregating the forecasts of disaggregated series would be better than fore-

casting the aggregate directly. For example, Lütkepohl (1984) says that, “if the

disaggregated data are generated by a known vector ARMA process, it is prefer-

able to forecast the disaggregated variables first and then aggregate the forecasts,

rather than forecast the aggregated time series directly”. However, in practice,

this is not always true, because of parameter and model uncertainty. The author

presents evidence that suggests “that the forecasts from the aggregated process

will be superior to the aggregated forecasts from the disaggregated process for

large lead times h if the orders of the processes are unknown”. So, does contem-

poraneous aggregation of disaggregated forecasts improve forecasting accuracy?

The answer to this question is not clear-cut. One advantage of the bottom-

up approach is the possibility of capturing idiosyncratic characteristics of each

variable by modelling each one individually. However, disaggregated forecast

inaccuracy might increase if models are misspecified. Also, what happens with

forecast errors is not unambiguous. Forecast errors of the disaggregated vari-

ables might cancel out or not.

The aim of this paper is threefold. First, we try to assess if forecasting

consumer price index (CPI) subcomponents individually and then aggregating

those forecasts (indirect approach) is better than forecasting the aggregate index

(direct approach). Currently, there seems to be some evidence in favour of the

bottom-up approach for short-term inflation forecasting. For example, Hubrich

(2003) and Benalal et al. (2004) conclude that, for the euro area, the bottom-up

approach is relevant in the very short-term while Fritzer, Moser and Scharler

(2002) and Reijer and Vlaar (2003) found that it is also important up to six-

months ahead (for Austria and Netherlands, respectively). However, Espasa,

Poncela and Senra (2002) found that, for the US, CPI disaggregated forecasting

only improves accuracy from the four-months ahead forecast horizon onwards

(Espasa, Senra and Albacete (2001) obtained similar results for the euro area).

Additionally, we consider different levels of CPI disaggregation for the bottom-

up approach. The above-mentioned papers use a rather low level of disaggre-

gation. In general, the aggregate index is divided in five components namely,
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unprocessed food, processed food, non-energy industrial goods, energy and ser-

vices. It is quite reasonable to believe that the results would not remain un-

changed if other levels of disaggregation are considered. This paper tries to

provide further insight into this question, by considering three different CPI

disaggregation levels: the lowest disaggregation level, given by the aggregate

price index itself; an intermediate level, in which appear the traditional five

components; and a higher disaggregation level, with 59 subcomponents.

Finally, modelling is also important for the bottom-up approach results. For

example, Hubrich (2003) found that VAR models dominate simple AR models,

while Espasa, Poncela and Senra (2002) conclude that ARIMA models outper-

form VECM and dynamic factor models. Fritzer, Moser and Scharler (2002)

also found that ARIMA models improve on VAR models for shorter horizons

(up to six-months ahead). Therefore, both univariate and multivariate models

are considered namely, random walks (RW), Seasonal Autoregressive Integrated

Moving Average (SARIMA) models, and SARIMA models including exogenous

variables (SARIMAX or transfer function models).

The RWmodel is an obvious benchmark, the SARIMAmodel tries to capture

the variable dynamics based on its past behaviour and the SARIMAX model

allows for additional input variables. In particular, the exogenous variables one

uses are the common dynamic factors, extracted from the large disaggregated

dataset, following Stock and Watson (1998). The purpose of such common

factors is to account for potentially relevant information about the variables co-

movements, since VAR approach reveals to be intractable when working with

59 variables.

The forecasting performance of the different approaches and models is eval-

uated by an out-of-sample forecast exercise. The criterion used to compare the

forecasting performance of the different methods is the root mean squared fore-

cast error (RMSFE). To test whether the differences are statistically significant

or not we use Diebold and Mariano (1995) test.

The results obtained are for the Portuguese case. We find that aggregating

the forecasts seems to be significantly better than the aggregate forecasting up
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to a five-months ahead horizon. Furthermore, the gain of aggregating forecasts

against aggregate forecasting is higher when disaggregation level increases and

the multivariate modelling outperforms the univariate one in the very short-run.

The remainder of the paper is organised as follows. In section 2, a description

of data is given. In section 3, modelling is discussed and in section 4, inflation

forecasts accuracy is evaluated. Finally, section 5 concludes.

2 Data

The dataset refers to Portuguese CPI and covers the period from January 1988

to December 2004, comprising 204 observations. During this period, Portuguese

CPI suffered several changes1. Therefore, the subcomponents used in this paper

result from a conciliation effort of the various indices available at each moment.

The series were chained with month on month growth rates.

We exclude from our analysis administered and housing prices. In the first

case, administered prices behaviour is hardly captured by an econometric model

since these prices are adjusted according to specific national regulations2. The

reasons that justify the exclusion of housing prices are of a different kind. Before

1997, housing price series were collected on an annual frequency only. Hence,

this prevents us of including these prices on our monthly dataset.

Thus, we use monthly data for aggregate Portuguese CPI, its partition in

five components and in 59 subcomponents. Each one corresponds to a dif-

ferent aggregation level. From the highest to the lowest, we begin with the

aggregate index itself. Then, we have the set comprising five product cate-

gories (unprocessed food, processed food, non-energy industrial goods, energy

and services), which corresponds to an intermediate aggregation level. Finally,

the most disaggregated dataset includes 59 subcomponents (see table 1).

Prior to modelling, data are transformed and examined to account for pos-

1 In particular, four different basis (1983, 1991, 1997 and 2002) as well as methodological

changes.
2We also exclude fuel prices because they were subject to regulation until quite recently.
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sible factors that can distort future analysis. First, all series are transformed to

logarithms. Second, following Marcellino, Stock and Watson (2003), it was not

found evidence of the presence of large outliers.

3 Model selection

3.1 Preliminary issues3

As Diebold and Kilian (2000) point out, unit root pre-testing can be very useful

for model selection purposes. They found “strong evidence that pre-testing im-

proves forecast accuracy relative to routinely differencing the data”. So, in order

to check the order of integration of the variables, unit root tests are carried out.

Before performing the tests, it is useful to analyse the graphics of the original

series (in natural logarithms) and its first difference. In general, the logarithms

of price indices reveal a smooth upward trend and its first difference shows an

erratic behaviour around a constant. Accordingly, the price indices, previously

transformed to logarithms, appear to be integrated of order one.

Additionally, we perform three different kinds of unit root tests. In first

place, Dickey and Pantula (1987) tests are carried out. These authors sug-

gested an appropriate sequence of tests to handle situations in which the or-

der of integration is higher than one. These tests indicate that price indices

are not integrated of order two (I(2)) but are integrated of order one (I(1)).

The latter evidence is also supported by Augmented Dickey-Fuller (ADF) tests.

Kwiatkowski, Phillips, Schmidt and Shin (1992) proposed an alternative test,

known as KPSS test. This test rejects the null hypothesis of stationarity for the

levels. Thus, it seems that price indices are I(1). Among others, Hubrich (2003),

Fritzer, Moser and Scharler (2002) and Meyler, Kenny and Quinn (1998) obtain

similar results.

Following Hylleberg et al. (1990), seasonal unit root tests are also carried

out. In particular, it is used the test procedure for monthly data (see Beaulieu

3The results discussed in this section are available from the authors upon request.
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and Miron (1993)). Since our interest relies on testing the presence of stochastic

integrated seasonality, we include seasonal dummies in test equations to control

for deterministic seasonality. In general, we reject the null hypothesis, which

means that we reject unit roots at most frequencies. Based on this, there seems

to be no reason for seasonal differencing.

3.2 Modelling

Forecasting results can be affected by several factors. Two of those factors are

the type of models chosen and the model selection criteria. There are two main

types of models - causal and non-causal models. Traditionally, causal informa-

tion is seen as more important than non-causal. Causal models tend to have

smaller forecast errors than the non-causal ones. However, sometimes, simple

time-series models perform better than structural models. For example, accord-

ing to Hendry (2002), simpler models deliver better results because they are

more robust to structural breaks. Hendry points out that “unless the model

coincides with the generating mechanism, one cannot even prove that causal

variables will dominate non-causal in forecasting”. Moreover, univariate mod-

els can be a reasonable, or even better, alternative to more complex models,

in particular, for short-term forecasting (see, for example, Fildes and Stekler

(1999)).

Regarding model selection, there are two main criteria - in-sample and out-

of-sample methods. Frequently, their results are mixed. Models with the best

in-sample fit are not necessarily the best forecasting models. However, selecting

a model based on its out-of-sample performance means that its selection will

strongly rely on a short sample period. According to Hendry and Clements

(2001), “forecasting success is not a good index for model selection” and “forecast

failure is equally not a ground for model rejection (...). Consequently, a focus

on ‘out-of-sample’ forecast performance to judge models (...) is unsustainable”.

Moreover, Inoue and Kilian (2003) show that, under standard conditions, the

in-sample method is more reliable than the out-of-sample one. Therefore, we

focus on in-sample analysis for model selection.
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3.2.1 Univariate modelling

We first proceed into univariate modelling. In particular, SARIMA models are

considered. Although SARIMA models are based on the series past behaviour

only, one should note that these models are able to capture rich dynamics, both

seasonal and non-seasonal.

The SARIMA modelling follows Box and Jenkins (1976) methodology. This

methodology comprises three stages: identification, estimation and diagnostic

checking. In the first stage, one begins by plotting the autocorrelation (ACF)

and partial autocorrelation (PACF) functions. The corresponding visual in-

spection gives a first idea of the order of integration of the variables. An auto-

correlation function dying out slowly suggests that the series is non-stationary.

Nowadays, this can be complemented with the above-mentioned unit root tests

for a more formal procedure. Non-stationary variables are transformed to be-

come stationary. Afterwards, one needs to infer the form of the SARIMA model.

Thus, ACF and PACF plots of the transformed series are examined. These plots

reflect patterns that suggest appropriate orders of the autoregressive and mov-

ing average polynomials. In the second stage, the model chosen in the previous

stage is estimated.

Finally, in the last stage, the estimated model is evaluated according to

several criteria. Among others, information criteria (like, for example, Akaike

Information Criterion (AIC) or Schwarz Bayesian Criterion (SBC)) are very

useful goodness-of-fit measures, especially because they account for parsimony.

Box and Jenkins argue that parsimonious models can be more reliable for fore-

casting than overfitted models. Moreover, it is also useful to plot the residuals

to look for outliers as well as testing for serial autocorrelation in the residuals.

This process is iterative, that is, when the model chosen is not satisfactory,

a new cycle begins and the same steps are repeated until a suitable model is

found.

In our case, we first difference all series, since unit root tests and ACF

plots indicated that price indices are I(1). Likewise, no seasonal differencing

is done. Whenever it seems appropriate, seasonal dummies are added to the
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models. After testing for stochastic integrated seasonality, stochastic stationary

seasonality is modelled through the seasonal polynomials while seasonal dummy

variables account for deterministic seasonality. The model for series y has the

following form:

φ(L)ϕ(Ls)(∆yt − α− β1D1 − ...− β11D11) = θ(L)δ(Ls)εt (1)

where α is a constant, Di is a seasonal dummy (i = 1, ..., 11), βi its corre-

sponding coefficient (i = 1, ..., 11) and εt is a white noise. The lag polynomials

(φ(L) - autoregressive polynomial; ϕ(Ls) - seasonal autoregressive polynomial;

θ(L) - moving average polynomial; δ(Ls) - seasonal moving average polynomial)

are defined as usual.

The sample used for model estimation runs from January 1988 to December

2000. The SARIMA models are estimated by non-linear least squares. These

models are selected resorting to coefficient significance tests, SBC, residual cor-

relation plots and Ljung-Box tests. Thus, 65 models (59 subcomponents plus 5

components and plus the aggregate index itself) were chosen (see table 2).

In contrast with some literature (see, for example, Stock and Watson (1999)

or Marcellino, Stock and Watson, (2003)), models are not specified as a linear

projection of the h-step ahead (h = 1,. . . ,12) interest variable onto t-dated

and lagged regressors. The latter is called ‘direct forecasting’ while here we

follow ‘iterated forecasting’. ‘Iterated forecasting’ is done by using a one-period

model iterated forward. In fact, Marcellino, Stock and Watson (2004) found

that iterated forecasts typically outperform direct forecasts and iterated forecast

accuracy increases with the forecast horizon.

3.2.2 Multivariate modelling

When one estimates SARIMA models for each series one is ignoring potentially

relevant information about the variables co-movements. Using an alternative

time-series technique, namely VAR models, can be seen as a possible solution to

this problem. As Granger and Yoon (2001) put it, “VAR models are the major

9



tools for investigating linear relationships between small groups of variables”

(our emphasized).

However, this paper considers a large set of variables, rendering VAR models

intractable. Therefore, we decided to estimate SARIMAX (or transfer function)

models. These models can be seen as hybrid models: they are not the typical

causal (structural) models, but they are certainly not univariate models. Never-

theless, they are very appealing because they allow one to extend the univariate

models by including exogenous variables that affect the dynamic behaviour of

the dependent variable.

The additional variables considered are the dynamic common factors, ex-

tracted from the large disaggregated dataset comprising the 59 subcomponents.

The key role of the common factors is to summarise large amounts of informa-

tion in a few variables, which capture the main features of the original data. In

fact, the idea behind the factor model is that variables have two components:

the common component, which can be captured by a small number of variables

— the common factors; and the idiosyncratic component, which reflects variable-

specific features. Hence, the purpose of using common factors is to reduce the

dimension of data, by pooling the most significant information from the initial

series while excluding their idiosyncratic component.

For the dynamic common factors extraction, we follow Stock and Watson

(1998). According to them, it is possible to estimate dynamic common factors

consistently in an approximate dynamic factor model, when both time series

and cross-sectional dimensions are large.

Let Xt be a N -dimensional multiple time series of variables, observed for

t = 1, . . . , T . Assume that the dynamic factor model can be represented by

Xit = λi(L)ft + eit (2)

for i = 1, . . . , N , where et is the (N × 1) idiosyncratic disturbances vector,
λi(L) are lag polynomials in nonnegative powers of L and ft is the r∗ common

dynamic factors vector. If we assume that λi(L) have finite lags (for example, m

lags), then it is possible to rewrite the dynamic factor model with time invariant
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parameters. Thus, the model can be redefined as

Xt = ΛFt + et (3)

where Ft = (f 0t , . . . , f
0
t−m)

0 is a r = r∗(m+1) vector of stacked vectors and Λ

is a (N×r) parameter matrix. The main advantage of the approximate dynamic
factor model is that it can be consistently estimated by principal components.

Due to different model representations, factors can be extracted alternatively

from the contemporaneous values of Xt only, or from a stacked set of variables,

including Xt and its lagged values (see Stock and Watson (1998)). Theoreti-

cally, adding more variables (lagged values of Xt) could lead to an improvement

in the finite sample performance of the models. However, Stock and Watson

(2002) conclude that, for US monthly price series, “forecasts based on the stacked

data perform less well than those based on the unstacked data”. Therefore, as

Angelini, Henry and Mestre (2001a, 2001b) and Marcellino, Stock and Watson

(2003), we extract the common factors from the contemporaneous values of Xt

only.

Before extracting the factors, the price series are subject to preliminary

transformations. First of all, the 59 subcomponents are transformed to loga-

rithms and first differenced. Afterwards, since we are not interested in capturing

spurious relations based on common seasonal patterns, the series are seasonally

adjusted4. In fact, what we want to capture is the underlying non-seasonal

co-movement of prices. Finally, all series are standardized.

Once obtained the common factors, the next step is to consider them in

modelling. In particular, using common factors as exogenous variables in the

SARIMAX models has some advantages. There are gains in terms of additional

information that is brought into the analysis (especially, the one about variables

co-movement) and the number of variables in the model does not increase sub-

stantially. Moreover, Stock and Watson (1998) show that the estimated factors

can efficiently replace the true factors in forecasting models.

4Resorting to X-12 ARIMA seasonal adjustment procedure.
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One should note that the transfer function models are based on the assump-

tion of input variables exogeneity. By definition, the common factors are not

exogenous variables that evolve independently from the price series, from which

they are extracted. However, the common factors are linear combinations of

all those 59 price series. In the whole, the weight associated to each original

variable is rather small. Therefore, it is assumed that the common factor is an

exogenous variable, neglecting the quantitatively small effect of contemporane-

ous correlation that possibly exists between the common factor and each price

series innovations.

A key issue is the determination of the number of factors to include in the

model. Bai and Ng (2002) developed criteria for that purpose. These criteria

are similar to the well-known information criteria (AIC and SBC, among others)

but the penalty is also a function of the cross-sectional dimension (N). These

criteria are valid for the approximate dynamic factor model only. The criteria

are5:

IC1(r) = ln(V (r, F )) + r

µ
N + T

NT

¶
ln

µ
NT

N + T

¶

IC2(r) = ln(V (r, F )) + r

µ
N + T

NT

¶
lnC2NT

IC3(r) = ln(V (r, F )) + r

µ
lnC2NT

C2NT

¶
where V (r, F ) = (1/NT )

PN
i=1

PT
t=1(Xit−ΛiFt)2 and C2NT is the minimum

of
n√

N,
√
T
o
. The results presented by Bai and Ng suggest that IC3 is less

robust than IC1 and IC2. In practice, one must arbitrarily choose an rmax

for starting the calculations. The optimal number of factors minimizes the

information criteria.

The results suggest the relevance of one factor only (the first principal com-

ponent) (see table 3). This evidence is also supported by the rule-of-thumb

5Here, we only present three of the six criteria developed by Bai and Ng (2002). The other

three criteria have a different formulation, but deliver equivalent results.
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based on the variance of the original series explained by each factor. As it

can be seen in figure 1, there is a significant difference between the variance ex-

plained by the first principal component and by the other principal components,

which also suggests the truncation in favour of just one factor.

The SARIMAX model considered for each series y can be written as

φ(L)ϕ(Ls)(∆yt − α− β1D1 − ...− β11D11 − υ(L)xt) = θ(L)δ(Ls)εt (4)

where α is a constant, Di is a seasonal dummy (i = 1, ..., 11), βi its corre-

sponding coefficient (i = 1, ..., 11) and εt is a white noise. The lag polynomials

(φ(L) - autoregressive polynomial; ϕ(Ls) - seasonal autoregressive polynomial;

θ(L) - moving average polynomial; δ(Ls) - seasonal moving average polynomial;

υ(L) - polynomial associated with the exogenous variable xt) are defined as

usual.

The SARIMAX modelling also follows Box and Jenkins (1976). The iden-

tification comprises five stages6. The first one consists in fitting an ARMA

model to the exogenous variable, that is, the common factor. Following the

univariate modelling strategy, an AR(1) model was chosen. The corresponding

residuals are the filtered values of the exogenous variable. By applying the same

filter to the variable of interest, in the second step, we obtain the filtered values

of the price series. In the next step, both filtered series are used to build a

cross-correlogram. The pattern exhibited by the cross-correlations between the

common factor and price series helps to determine the number of lags of both

variables that should be introduced in the SARIMAX models.

The fourth step consists in estimating plausible models of the following form

φ(L)ϕ(Ls)(∆yt − α− β1D1 − ...− β11D11 − υ(L)xt) = et (5)

and selecting the model with the best fit. The residuals of the resulting

model (et) are not necessarily white noise. So, the examination of the residual

6See, for example, Enders (2004) for more details.
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autocorrelation should suggest plausible orders for the θ(L) and δ(Ls) polyno-

mials. The last step consists in estimating altogether the SARIMAX model.

Likewise the univariate case, 65 SARIMAX models are selected (see table 4).

Note that, we also introduced the common factor in the five components and

aggregate index equations. This allows us to compare both the gains stemming

from the disaggregated dataset as well as from the forecasting methods.

4 Out-of-sample forecast evaluation

Forecasting performance is evaluated through an out-of-sample forecast exer-

cise. For each series and model, a recursive estimation process is implemented.

Starting from the estimation period (January 1988 to December 2000), each

round a new observation is added to the sample. The last sample considered

runs from January 1988 to December 2003. In each round of this recursive esti-

mation process one to twelve step ahead forecasts are computed. Thus, for each

forecast horizon, 37 observations are available.

For each forecast horizon, the forecast series of all 59 subcomponents are

aggregated, using the corresponding weights of Portuguese CPI. Then, from the

index forecasts, year-on-year inflation rate forecasts are obtained. The same is

done for the intermediate disaggregation level (5 components). The forecasts

that result from aggregating forecasts are called ‘indirect’. ‘Direct’ forecasts are

obtained by forecasting the aggregate index. Likewise, year-on-year inflation

rate forecasts are computed.

The forecasting performance is evaluated by comparing RMSFE. The RMSFE

is one of several statistics, and definitely the most used, which can be calculated

to assess the performance of out-of-sample forecasts. Fritzer, Moser and Scharler

(2002) argue that the RMSFE is particularly suitable in this context because

the implicit central bank’s loss function related to inflation deviations appears

to be quadratic or some transformation of it. However, the RMSFE does not

tell us anything about the significance of the differences between forecasts of

competing models. Diebold and Mariano (1995) proposed a test to evaluate the
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significance of the difference between forecasts obtained by different methods.

Consider two models (A and B), which produce forecasts for the variable y. Let

{ŷAt}Tt=1 and {ŷBt}
T
t=1 be the corresponding sequences of forecasts. The asso-

ciated forecast error sequences are denoted by {eAt}Tt=1 and {eBt}
T
t=1. Since

larger errors mean less accurate forecasts, it is possible to build a loss function

associated with those errors, g(eit) with i = A,B. Most commonly, quadratic

loss functions are chosen. The Diebold-Mariano test is based on the difference

of the loss functions for both kinds of forecasts, that is, dt = g(eAt) − g(eBt).

Under the null hypothesis, forecasts are equally accurate, so dt = 0.

Even though the forecast evaluation framework is similar for univariate and

multivariate models, multivariate forecasting requires some additional steps.

The reason why this happens is quite obvious. Forecasting the dependent vari-

able also requires forecasting the exogenous variable.

However, forecasting the common factor is not a straightforward issue. It is

possible to obtain ‘direct’ or ‘indirect’ factor forecasts. The direct forecasts can

be obtained by fitting a model to the common factor and by using it to produce

one to twelve months ahead forecasts, for each recursive sample7. In particular,

we use the model already fitted to the common factor in the previous section.

Obviously, this brings up another drawback - the potential misspecification of

the common factor model. Then, these factor forecasts are used as inputs in

the SARIMAX models for forecasting purposes.

The ‘indirect’ approach relies on the fact that the common factor is extracted

from the price series. Therefore, implicit common factor forecasts can be ob-

tained from price series forecasts. For each sample, the observed price series are

stacked with one to twelve months ahead forecasts, resulting from the univariate

models. Afterwards, the common factor is extracted from these enlarged series

and used for SARIMAX forecasting.

The results obtained are quite interesting. Unsurprisingly, the RW models

are the ones that present the worst performance (see figures 2, 3 and 4). For the

7A fully recursive methodology is applied. This means that for each sample the series are

seasonally adjusted and standardized, and the corresponding common factor is extracted.
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RW, considering the intermediate disaggregation level does not improve fore-

casts accuracy against direct forecasting (see figure 5 and table 6). However,

considering the highest disaggregation level (59 subcomponents) improves fore-

casts accuracy for 3 to 5 step ahead forecast horizon but this improvement is

not statistically significant (see table 7).

Regarding SARIMAmodels, for forecasting horizons up to five months ahead,

the indirect forecast does better than the direct forecast. Up to four months

ahead, this is true for both disaggregation levels (five components and 59 sub-

components) (see figure 6). However, within these forecast horizons, the highest

disaggregation level delivers better results than the five components level. Fur-

thermore, for 2 and 3 months ahead forecast horizons, SARIMA indirect fore-

casts pooled from the 59 subcomponents are statistically better than the corre-

sponding direct forecasts8 (see table 9). From 6 to 12 months ahead, SARIMA

direct forecasts present the lowest RMSFE of all models considered (see table 5).

Thus, it seems that, for short-term forecasting, the gain in terms of additional

information stemming from disaggregated price data through a bottom-up ap-

proach is such that compensates the loss due to potential model misspecification

and parameter uncertainty.

Concerning SARIMAX models, a similar picture arises regarding direct vs.

indirect forecasting (see figures 7 and 8 and tables 10, 11, 12 and 13). More-

over, multivariate models, which consider more information through dynamic

common factors, seem to improve on SARIMA models for the very short-run

forecasting. In particular, the performance of SARIMAX models using the

AR(1) model for forecasting the common factor which consider the highest dis-

aggregation level is the best for one and two months ahead horizons.

8Considering a significance level of 5 per cent. For a 10 per cent significance level, the

difference for the four months ahead forecast horizon is also significant.
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5 Conclusion

The purpose of this paper is to assess if one can improve forecasting accuracy by

considering disaggregated price data. In particular, three issues are addressed:

i) one should bottom-up or not, ii) how bottom one should go and iii) how one

should model at the bottom.

In contrast with the literature, different levels of data disaggregation are

allowed. This paper considers three CPI disaggregation levels: the lowest dis-

aggregation level, given by the aggregate price index itself; an intermediate

level, in which appear five components; and a higher disaggregation level, with

59 subcomponents. Furthermore, both univariate and multivariate models are

considered, such as SARIMA and SARIMAX models with the dynamic common

factors of CPI disaggregated data as exogenous regressors.

The forecasting accuracy (up to twelve months ahead) of the bottom-up ap-

proach is evaluated by an out-of-sample forecast exercise using Portuguese CPI

dataset. We find that the bottom-up approach seems to improve substantially

forecasts accuracy up to a five-months ahead horizon. Moreover, the gain of ag-

gregating forecasts against aggregate forecasting is higher when disaggregation

level increases and the multivariate approach outperforms the univariate one in

the very short-run, in terms of RMSFE.
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Subcomponents Components
Series 1 Rice Pf
Series 2 Other cereal products Pf
Series 3 Pasta products Pf
Series 4 Bread and other bakery products Pf
Series 5 Potatoes and other tubers Unpf
Series 6 Dried vegetables Unpf
Series 7 Fresh and preserved vegetables Unpf
Series 8 Fruit Unpf
Series 9 Meat of sheep and goat Unpf
Series 10 Meat of swine Unpf
Series 11 Meat of bovine animals Unpf
Series 12 Other meat Unpf
Series 13 Sausages and preserved meat Unpf
Series 14 Poultry Unpf
Series 15 Fresh, chilled or frozen fish Unpf
Series 16 Fresh, chilled or frozen seafood Unpf
Series 17 Other preserved or processed fish and seafood and fish and seafood preparations Unpf
Series 18 Dried, smoked or salted fish and seafood Unpf
Series 19 Eggs Pf
Series 20 Milk Pf
Series 21 Yoghurt, cheese and other milk-based products Pf
Series 22 Edible oils Pf
Series 23 Butter, margarine and other fats Pf
Series 24 Sugar and confectionery Pf
Series 25 Cocoa and powdered chocolate Pf
Series 26 Coffee Pf
Series 27 Tea Pf
Series 28 Sauces, condiments and salt Pf
Series 29 Baking powders, preparations and soups Pf
Series 30 Catering Serv
Series 31 Alcoholic beverages Pf
Series 32 Mineral waters, soft drinks and juices Pf
Series 33 Clothing materials and garments Neig
Series 34 Dry-cleaning, repair and hire of clothing Serv
Series 35 Footwear Neig
Series 36 Repair and hire of footwear and shoe-cleaning services Neig
Series 37 Gas Enrgy
Series 38 Heating and cooking appliances, refrigerators, washing machines and similar major household appliances Neig
Series 39 Furniture, furnishings and carpets Neig
Series 40 Repair of furniture, furnishings and floor coverings Serv
Series 41 Household textiles Neig
Series 42 Glassware, tableware and household utensils and tools Neig
Series 43 Non-durable household goods Neig
Series 44 Repair of household appliances Serv
Series 45 Therapeutic appliances and equipment Neig
Series 46 Medical, paramedical and hospital services Serv
Series 47 Motor cars, motor cycles and bicycles and spare parts and accessories Neig
Series 48 Maintenance and repairs; other services in respect of personal transport equipment Serv
Series 49 Telephone and telefax equipment Neig
Series 50 Education Serv
Series 51 Equipment for the reception, recording and reproduction of sound; other major durables for recreation and culture Neig
Series 52 Repair of audio-visual, photographic and data processing equipment Serv
Series 53 Receational and cultural services Serv
Series 54 Newspapers, books and stationery Neig
Series 55 Accommodation services Serv
Series 56 Package holidays Serv
Series 57 Electrical appliances and products for personal care Neig
Series 58 Hairdressing salons and personal grooming establishments Serv
Series 59 Insurance and banking services Serv
Note: Unpf - Unprocessed food; Pf - Processed food; Neig - Non-energy industrial goods; Enrgy - Energy; Serv - Services.  

Table 1 - Variables list



p d q P D Q
Seasonal 
dummies

Series 1 3 1 1 0 0 0 y
Series 2 3 1 1 2 0 0 y
Series 3 3 1 1 0 0 0 n
Series 4 1 1 0 0 0 1 n
Series 5 0 1 1 0 0 1 y
Series 6 0 1 3 ||2|| 0 0 y
Series 7 1 1 1 1 0 1 n
Series 8 1 1 0 0 0 1 y
Series 9 0 1 0 2 0 2 y
Series 10 0 1 0 0 0 0 y
Series 11 1 1 2 0 0 0 y
Series 12 1 1 1 0 0 0 y
Series 13 ||3|| 1 0 0 0 0 n
Series 14 0 1 2 ||2|| 0 1 y
Series 15 0 1 1 1 0 0 y
Series 16 2 1 2 0 0 0 y
Series 17 3 1 0 1 0 0 y
Series 18 3 1 0 0 0 0 y
Series 19 1 1 1 0 0 0 y
Series 20 ||4|| 1 1 0 0 0 n
Series 21 1 1 1 1 0 1 y
Series 22 2 1 0 0 0 0 n
Series 23 1 1 1 0 0 0 n
Series 24 2 1 0 1 0 0 n
Series 25 2 1 1 0 0 0 y
Series 26 ||2,3|| 1 2 0 0 0 y
Series 27 0 1 1 1 0 1 y
Series 28 0 1 2 0 0 0 y
Series 29 1 1 0 1 0 1 n
Series 30 ||1,3|| 1 1 1 0 1 n
Series 31 2 1 0 0 0 0 y
Series 32 1 1 1 0 0 0 y
Series 33 3 1 0 1 0 1 y
Series 34 1 1 1 1 0 1 y
Series 35 3 1 0 1 0 1 y
Series 36 2 1 0 1 0 0 y
Series 37 ||2|| 1 0 1 0 1 n
Series 38 1 1 1 0 0 0 n
Series 39 0 1 2 1 0 1 n
Series 40 1 1 0 2 0 1 y
Series 41 ||3|| 1 1 1 0 0 n
Series 42 2 1 0 0 0 0 n
Series 43 2 1 1 0 0 0 y
Series 44 0 1 1 2 0 1 y
Series 45 1 1 0 0 0 0 n
Series 46 3 1 1 1 0 0 y
Series 47 ||3|| 1 ||1,3,4|| 0 0 0 n
Series 48 1 1 0 1 0 1 n
Series 49 2 1 0 1 0 0 n
Series 50 0 1 0 0 0 0 y
Series 51 0 1 1 1 0 1 n
Series 52 ||2|| 1 0 1 0 1 y
Series 53 1 1 0 0 0 0 y
Series 54 1 1 0 1 0 0 n
Series 55 1 1 0 1 0 1 y
Series 56 2 1 0 ||2|| 0 0 y
Series 57 1 1 0 0 0 0 n
Series 58 0 1 1 2 0 1 y
Series 59 0 1 2 2 0 0 y
Unprocessed food 0 1 1 0 0 0 y
Processed food 2 1 0 1 0 0 n
Non-energy industrial goods ||1,2,5|| 1 1 1 0 1 y
Energy ||2|| 1 0 1 0 1 n
Services ||2,3,4|| 1 0 0 0 1 y
Total 1 1 0 1 0 1 y
Note: p - autoregressive polynomial order; d - integration order; q - moving average polynomial order; P - 
seasonal autoregressive polynomial order; D - seasonal integration order; Q - seasonal moving average 
polynomial order; ||L|| = lag of order L; y = yes; n = no.     

Table 2 - SARIMA models 



Number of factors IC1 IC2 IC3

r=1 9.005 9.013 8.987
r=2 9.026 9.041 8.988
r=3 9.049 9.071 8.993
r=4 9.072 9.102 8.998
r=5 9.102 9.140 9.009
r=6 9.133 9.178 9.021
r=7 9.162 9.215 9.032
r=8 9.190 9.250 9.041

Table 3 - Bai and Ng criteria



p d q P D Q R
Seasonal 
dummies

Series 1 ||2|| 1 ||3|| 0 0 0 0 y
Series 2 3 1 0 1 0 0 0 y
Series 3 ||2|| 1 0 0 0 0 0 n
Series 4 1 1 0 0 0 1 - n
Series 5 0 1 1 0 0 0 ||0,2|| y
Series 6 0 1 3 ||2|| 0 0 - y
Series 7 1 1 1 1 0 1 - n
Series 8 1 1 ||4|| 0 0 1 ||1|| y
Series 9 0 1 0 2 0 2 - y
Series 10 0 1 0 0 0 0 - y
Series 11 1 1 2 0 0 0 - y
Series 12 1 1 1 0 0 0 - y
Series 13 ||3|| 1 0 0 0 0 0 n
Series 14 0 1 2 ||2|| 0 1 - y
Series 15 0 1 1 1 0 0 1 y
Series 16 0 1 0 0 0 0 0 y
Series 17 ||3|| 1 0 1 0 0 0 y
Series 18 3 1 0 0 0 0 - y
Series 19 1 1 1 0 0 0 - y
Series 20 0 1 ||4|| 0 0 0 0 n
Series 21 0 1 ||4|| 1 0 0 1 y
Series 22 2 1 0 0 0 0 0 n
Series 23 0 1 0 0 0 0 0 n
Series 24 ||5|| 1 0 1 0 0 ||0,1,4|| n
Series 25 1 1 0 0 0 0 0 y
Series 26 ||2,3|| 1 0 0 0 0 ||0,4|| y
Series 27 0 1 1 1 0 1 - y
Series 28 0 1 2 0 0 0 0 y
Series 29 0 1 0 0 0 0 0 n
Series 30 2 1 0 1 0 1 ||1|| n
Series 31 1 1 0 0 0 0 ||1|| y
Series 32 1 1 ||4|| 0 0 0 ||4|| y
Series 33 3 1 0 1 0 1 - y
Series 34 2 1 0 0 0 0 1 y
Series 35 3 1 0 1 0 1 - y
Series 36 1 1 0 0 0 0 1 y
Series 37 ||2|| 1 0 1 0 1 - n
Series 38 1 1 1 0 0 0 - n
Series 39 0 1 1 0 0 0 0 n
Series 40 2 1 0 1 0 0 0 y
Series 41 ||3|| 1 1 1 0 0 0 n
Series 42 0 1 0 0 0 0 0 n
Series 43 2 1 1 0 0 0 - y
Series 44 ||2|| 1 0 2 0 1 0 y
Series 45 1 1 0 0 0 0 2 n
Series 46 ||3|| 1 ||1,4|| 1 0 0 1 y
Series 47 ||1,3|| 1 0 1 0 0 ||1,3|| n
Series 48 0 1 0 1 0 1 0 n
Series 49 2 1 0 1 0 0 - n
Series 50 0 1 0 0 0 0 - y
Series 51 0 1 0 1 0 1 0 n
Series 52 ||2|| 1 0 1 0 1 - y
Series 53 1 1 0 0 0 0 - y
Series 54 ||2|| 1 0 1 0 0 0 n
Series 55 1 1 0 1 0 1 0 y
Series 56 2 1 0 ||2|| 0 0 - y
Series 57 1 1 0 0 0 0 - n
Series 58 0 1 1 2 0 1 - y
Series 59 0 1 2 1 0 0 ||2|| y
Unprocessed food 0 1 0 0 0 0 0 y
Processed food 2 1 0 1 0 0 0 n
Non-energy industrial goods ||1,2,5|| 1 1 1 0 1 0 y
Energy ||2|| 1 0 1 0 1 - n
Services ||3|| 1 0 0 0 1 0 y
Total 1 1 0 1 0 1 0 y

Table 4 - SARIMAX models 

Note: p - autoregressive polynomial order; d - integration order; q - moving average polynomial order; P - seasonal 
autoregressive polynomial order; D - seasonal integration order; Q - seasonal moving average polynomial order; R - order 
of the polynomial associated with the exogenous variable; ||L|| = lag of order L; y = yes; n = no.     



Forecast horizon RW RW_5 RW_59 SARIMA SARIMA_5 SARIMA_59 SARIMAX_F_DIR SARIMAX_F_DIR_5 SARIMAX_F_DIR_59 SARIMAX_F_INDIR SARIMAX_F_INDIR_5 SARIMAX_F_INDIR_59
1 0.4367 0.4529 0.4394 0.2302 0.2091 0.2069 0.2445 0.2265 0.2010 0.2374 0.2122 0.2132
2 0.7799 0.8043 0.7928 0.3529 0.3052 0.2538 0.3469 0.2774 0.2343 0.3638 0.3063 0.2554
3 1.0124 1.0432 0.9451 0.4484 0.4028 0.3220 0.4771 0.3866 0.3351 0.4790 0.4100 0.3471
4 1.1375 1.1747 1.0768 0.4922 0.4870 0.4076 0.5443 0.4816 0.4361 0.5628 0.5058 0.4513
5 1.2406 1.2858 1.2245 0.5486 0.5877 0.5420 0.6537 0.5948 0.5766 0.6551 0.6096 0.6021
6 1.4207 1.4807 1.5551 0.5713 0.6921 0.7287 0.7209 0.6805 0.8218 0.7380 0.7101 0.8114
7 1.7026 1.7740 1.8802 0.6023 0.8018 0.8561 0.8563 0.8038 0.9459 0.8515 0.8284 0.9487
8 2.0337 2.1160 2.2245 0.6624 0.9384 0.9688 1.0192 0.9817 1.1203 0.9932 0.9728 1.1154
9 2.3292 2.4281 2.4949 0.7238 1.0795 1.1264 1.1837 1.1449 1.3320 1.1280 1.1162 1.2862
10 2.5538 2.6664 2.6993 0.7612 1.2196 1.2861 1.3156 1.2836 1.4909 1.2456 1.2539 1.4554
11 2.7513 2.8718 2.8585 0.7981 1.3652 1.4356 1.4685 1.4572 1.6453 1.3751 1.4031 1.6159
12 2.9899 3.1305 3.0962 0.8296 1.5123 1.5444 1.6261 1.6259 1.8104 1.5149 1.5601 1.7497

Table 5 - Root Mean Squared Forecast Errors

RW SARIMA SARIMAX



Forecast horizon RMSFE dir RMSFE indir ((RMSFE dir / RMSFE indir) - 1)*100 Diebold-Mariano p-value1

1 0.4367 0.4529 -3.5717 2.5334 0.9944
2 0.7799 0.8043 -3.0414 3.4220 0.9997
3 1.0124 1.0432 -2.9467 4.4947 1.0000
4 1.1375 1.1747 -3.1658 5.8221 1.0000
5 1.2406 1.2858 -3.5171 7.8421 1.0000
6 1.4207 1.4807 -4.0528 11.4843 1.0000
7 1.7026 1.7740 -4.0228 12.4105 1.0000
8 2.0337 2.1160 -3.8897 11.4008 1.0000
9 2.3292 2.4281 -4.0741 10.6110 1.0000
10 2.5538 2.6664 -4.2256 10.9568 1.0000
11 2.7513 2.8718 -4.1954 15.7616 1.0000
12 2.9899 3.1305 -4.4913 17.9874 1.0000

1 H0: Direct forecast = Indirect forecast      H1: Indirect forecast better than Direct forecast

Forecast horizon RMSFE dir RMSFE indir ((RMSFE dir / RMSFE indir) - 1)*100 Diebold-Mariano p-value1

1 0.4367 0.4394 -0.6008 0.1376 0.5547
2 0.7799 0.7928 -1.6359 0.3727 0.6453
3 1.0124 0.9451 7.1226 -1.1376 0.1276
4 1.1375 1.0768 5.6404 -0.9149 0.1801
5 1.2406 1.2245 1.3091 -0.3217 0.3739
6 1.4207 1.5551 -8.6422 3.3071 0.9995
7 1.7026 1.8802 -9.4427 3.5757 0.9998
8 2.0337 2.2245 -8.5798 4.2542 1.0000
9 2.3292 2.4949 -6.6433 4.4644 1.0000
10 2.5538 2.6993 -5.3930 4.1590 1.0000
11 2.7513 2.8585 -3.7512 5.6738 1.0000
12 2.9899 3.0962 -3.4325 8.5415 1.0000

1 H0: Direct forecast = Indirect forecast      H1: Indirect forecast better than Direct forecast

Forecast horizon RMSFE dir RMSFE indir ((RMSFE dir / RMSFE indir) - 1)*100 Diebold-Mariano p-value1

1 0.2302 0.2091 10.0821 -0.9230 0.1780
2 0.3529 0.3052 15.6485 -1.1527 0.1245
3 0.4484 0.4028 11.3145 -0.8517 0.1972
4 0.4922 0.4870 1.0759 -0.0846 0.4663
5 0.5486 0.5877 -6.6582 0.5478 0.7081
6 0.5713 0.6921 -17.4544 1.5048 0.9338
7 0.6023 0.8018 -24.8858 2.1911 0.9858
8 0.6624 0.9384 -29.4140 2.8891 0.9981
9 0.7238 1.0795 -32.9488 3.6063 0.9998
10 0.7612 1.2196 -37.5844 4.2957 1.0000
11 0.7981 1.3652 -41.5378 4.7000 1.0000
12 0.8296 1.5123 -45.1417 5.1969 1.0000

1 H0: Direct forecast = Indirect forecast      H1: Indirect forecast better than Direct forecast

Forecast horizon RMSFE dir RMSFE indir ((RMSFE dir / RMSFE indir) - 1)*100 Diebold-Mariano p-value1

1 0.2302 0.2069 11.2704 -0.9827 0.1629
2 0.3529 0.2538 39.0804 -2.2839 0.0106
3 0.4484 0.3220 39.2664 -2.3028 0.0106
4 0.4922 0.4076 20.7567 -1.4880 0.0684
5 0.5486 0.5420 1.2205 0.0997 0.4603
6 0.5713 0.7287 -21.5954 2.3055 0.9894
7 0.6023 0.8561 -29.6480 3.3554 0.9996
8 0.6624 0.9688 -31.6278 3.7077 0.9999
9 0.7238 1.1264 -35.7420 4.7780 1.0000
10 0.7612 1.2861 -40.8135 5.4452 1.0000
11 0.7981 1.4356 -44.4058 5.2139 1.0000
12 0.8296 1.5444 -46.2822 5.4878 1.0000

1 H0: Direct forecast = Indirect forecast      H1: Indirect forecast better than Direct forecast

Table 6 - RW (5 components)

Table 7 - RW (59 subcomponents)

Table 8 - SARIMA (5 components)

Table 9 - SARIMA (59 subcomponents)



Forecast horizon RMSFE dir RMSFE indir ((RMSFE dir / RMSFE indir) - 1)*100 Diebold-Mariano p-value1

1 0.2445 0.2265 7.9376 -0.7057 0.2402
2 0.3469 0.2774 25.0442 -2.4565 0.0070
3 0.4771 0.3866 23.3919 -2.6117 0.0045
4 0.5443 0.4816 13.0266 -1.8160 0.0347
5 0.6537 0.5948 9.9044 -1.8098 0.0352
6 0.7209 0.6805 5.9381 -1.1333 0.1286
7 0.8563 0.8038 6.5300 -1.3091 0.0953
8 1.0192 0.9817 3.8188 -0.7467 0.2276
9 1.1837 1.1449 3.3879 -0.7379 0.2303
10 1.3156 1.2836 2.4936 -0.5862 0.2789
11 1.4685 1.4572 0.7740 -0.2032 0.4195
12 1.6261 1.6259 0.0114 -0.0033 0.4987

1 H0: Direct forecast = Indirect forecast      H1: Indirect forecast better than Direct forecast

Forecast horizon RMSFE dir RMSFE indir ((RMSFE dir / RMSFE indir) - 1)*100 Diebold-Mariano p-value1

1 0.2374 0.2122 11.8704 -1.5650 0.0588
2 0.3638 0.3063 18.8006 -2.2001 0.0139
3 0.4790 0.4100 16.8248 -2.2672 0.0117
4 0.5628 0.5058 11.2577 -1.9720 0.0243
5 0.6551 0.6096 7.4609 -1.5999 0.0548
6 0.7380 0.7101 3.9296 -0.9487 0.1714
7 0.8515 0.8284 2.7911 -0.6568 0.2557
8 0.9932 0.9728 2.0990 -0.4760 0.3170
9 1.1280 1.1162 1.0618 -0.2494 0.4015
10 1.2456 1.2539 -0.6687 0.1668 0.5662
11 1.3751 1.4031 -1.9964 0.5473 0.7079
12 1.5149 1.5601 -2.9018 0.9088 0.8183

1 H0: Direct forecast = Indirect forecast      H1: Indirect forecast better than Direct forecast

Forecast horizon RMSFE dir RMSFE indir ((RMSFE dir / RMSFE indir) - 1)*100 Diebold-Mariano p-value1

1 0.2445 0.2010 21.6460 -1.6919 0.0453
2 0.3469 0.2343 48.0774 -2.9056 0.0018
3 0.4771 0.3351 42.3611 -2.6911 0.0036
4 0.5443 0.4361 24.8045 -1.8813 0.0300
5 0.6537 0.5766 13.3687 -1.3701 0.0853
6 0.7209 0.8218 -12.2797 1.6312 0.9486
7 0.8563 0.9459 -9.4786 1.4511 0.9266
8 1.0192 1.1203 -9.0293 1.6796 0.9535
9 1.1837 1.3320 -11.1354 2.2988 0.9892
10 1.3156 1.4909 -11.7569 3.2169 0.9994
11 1.4685 1.6453 -10.7494 4.1454 1.0000
12 1.6261 1.8104 -10.1795 5.0819 1.0000

1 H0: Direct forecast = Indirect forecast      H1: Indirect forecast better than Direct forecast

Forecast horizon RMSFE dir RMSFE indir ((RMSFE dir / RMSFE indir) - 1)*100 Diebold-Mariano p-value1

1 0.2374 0.2132 11.3907 -0.8588 0.1952
2 0.3638 0.2554 42.4428 -2.6914 0.0036
3 0.4790 0.3471 37.9882 -2.5015 0.0062
4 0.5628 0.4513 24.7048 -1.8866 0.0296
5 0.6551 0.6021 8.8109 -1.0045 0.1576
6 0.7380 0.8114 -9.0478 1.3729 0.9151
7 0.8515 0.9487 -10.2474 1.6832 0.9538
8 0.9932 1.1154 -10.9554 2.1585 0.9846
9 1.1280 1.2862 -12.2968 2.8784 0.9980
10 1.2456 1.4554 -14.4156 4.4175 1.0000
11 1.3751 1.6159 -14.9039 6.4674 1.0000
12 1.5149 1.7497 -13.4237 7.2515 1.0000

1 H0: Direct forecast = Indirect forecast      H1: Indirect forecast better than Direct forecast

Table 13 - SARIMAX_F_INDIR (59 subcomponents)

Table 10 - SARIMAX_F_DIR (5 components)

Table 11 - SARIMAX_F_INDIR (5 components)

Table 12 - SARIMAX_F_DIR (59 subcomponents)



Figure 2 - Direct forecasting
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Figure 1 - Variance of price series explained by each principal component
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Figure 3 - Indirect forecasting (5 components)
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Figure 4 - Indirect forecasting (59 subcomponents)
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Figure 6 - SARIMA
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Figure 5 - Random walk
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Figure 7 - SARIMAX_F_DIR
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Figure 8 - SARIMAX_F_INDIR
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