Key Elasticities in Job Search Theory: International Evidence

John T. Addison,* Mário Centeno,** and Pedro Portugal***

* University of South Carolina (U.S.A.) and IZA Bonn (Germany)
** Banco de Portugal and Universidade Técnica de Lisboa (Portugal)
***Banco de Portugal and Universidade Nova de Lisboa (Portugal)

August 2004

Abstract
This paper exploits the informational value of search theory, after Lancaster and Chesher (1983), in conjunction with survey data on the unemployed to calculate key reservation wage and duration elasticities for almost all EU-15 nations.

JEL Classification: J64, J65

Keywords: reservation wages, probability of reemployment, accepted wages, unemployment benefits, Pareto wage offer distribution
I. Introduction

The present treatment calculates four key elasticities in job search theory that are of importance for policy, using data from a unique international dataset containing information on individuals’ reservation wages, unemployment benefits, and accepted wages. Specifically, we follow Lancaster and Chesher (1983) in providing estimates of the elasticity of the reservation wage with respect to the level of unemployment benefits, the elasticity of reservation wages with respect to the rate of job offers, the elasticity of unemployment duration with respect to the level of unemployment benefits, and the elasticity of unemployment duration with respect to the rate of job offers.

For the stationary optimal search model, Lancaster and Chesher show that these elasticities can be deduced by differentiating partially the optimality condition (for the reservation wage, \(\xi \)) with respect to the level of unemployment benefits, \(b \), the job offer arrival rate, \(\lambda \), and the hazard function, \(\theta \), with respect to \(\lambda \) and \(\xi \). Writing the conditional expected wage as \(x \), they obtain the following solution formulae for the elasticity of the reservation wage with respect to the level of unemployment benefits (\(\eta_{\xi,b} \)) and the elasticity of reservation wages with respect to the rate of job offers (\(\eta_{\xi,\lambda} \)), as follows:

\[
\eta_{\xi,b} = \frac{\partial \log \xi}{\partial \log b} = \frac{b}{\xi} \frac{x-\xi}{x-b},
\]

and

\[
\eta_{\xi,\lambda} = \frac{\partial \log \xi}{\partial \log \lambda} = \frac{\xi-b}{\xi} \frac{x-\xi}{x-b}.
\]

To obtain the solutions for the two remaining elasticities, however, some assumption has to be made concerning the hazard function of the offer distribution at the selected reservation wage, \(f(\xi) \). The authors assume that the portion of the wage offer distribution exceeding the benefit level follows a Pareto distribution, allowing them to write the solution formulae for the elasticity of unemployment duration with respect to the level of unemployment benefits (\(\eta_{\theta,b} \)), and the elasticity of unemployment duration with respect to the rate of job offers (\(\eta_{\theta,\lambda} \)) as:
\[\eta_{b,b} = \frac{\partial \log \theta}{\partial \log b} = -\frac{b}{\sigma \xi} x - \xi, \]
\[\eta_{\theta,\lambda} = \frac{\partial \log \theta}{\partial \log \lambda} = 1 - \frac{\xi - b x - \xi}{\sigma \xi} x - b, \]

and

where \(\sigma \) is the standard deviation of (log) wage offers. Note that if an individual moves through time with constant hazard \(\theta \), then his or her completed unemployment duration is exponentially distributed with mean unemployment duration equal to \(1/\theta \). The benefit and offer probability elasticities of mean duration are now the negative of (3) and (4), and it is these transformed values that will be reported below.

Lancaster and Chesher provide elasticities for Britain in the 1970s. We provide updated estimates for Britain in the 1990s and for most other European Union (EU) nations as well (viz. Germany, Denmark, the Netherlands, Belgium France, Ireland, Italy, Greece, Spain, Portugal and Austria).

II. Data

Our data are taken from six waves of the European Community Household Panel (ECHP), 1994-99, covering all the (then) 15 nations in the European Union (but see below). As we have seen, calculating our key elasticities requires information on three variables. Beginning with reservation wages, the ECHP asks of those individuals actively looking for work first “Assuming you could find suitable work, how many hours per week would you prefer to work in this new job?” and, second, “What is the minimal net monthly income would you accept to work \([\text{number of hours in previous question}]\) hours a week in this new job?” The reservation wage measure used here is the monthly net reservation wage construct, and along with all other variables is deflated by the relevant national consumer price index. We need add that for Germany reservation wage data is available for just the first three waves of the panel.

The data on unemployment benefits contained in the ECHP is with one exception a monthly measure. It is comparable to the Lancaster-Chesher measure of unemployment income but, as is the case for all our variables, is provided in continuous rather than
categorical form. Monthly benefit entitlements are not provided for Finland, which country is therefore excluded.

Unlike the dataset(s) used by Lancaster and Chesher, the ECHP does not contain information on expected wages; rather, the closest information we have is the monthly reemployment wage subsequently received. This is used to form an expected hourly wage measure for the sample, which is further reduced by two countries – Sweden and Luxembourg – where the data do not allow us to unemployed individuals through time. We do not here adjust our counterpart of the ‘expected wage’ for selection in to reemployment, although we have elsewhere reported on applying this procedure (see Addison, Centeno, and Portugal, 2004.) Note also that the reported number of hours worked per month in the reemployment job can diverge from the individual’s optimal number of hours reported in the reservation wage question.

Finally, theory requires that that no individual has a reservation wage less than his or her level of unemployment benefit entitlement. Further, reservation wages should not exceed expected wages. We investigate the effect of imposing these two sets of restrictions on the data. The effect of the former is to reduce the sample by 10 percent, while the latter results in a larger reduction in sample size of approximately 43 percent.

III. Findings

Computed elasticities are contained in Table 1. Panel (a) of the table gives results for the unrestricted sample. Note the perversely signed estimates for the benefit elasticity of reservation wages and the offer probability elasticity of reservation wages in the case of Greece. Also, in some cases the estimated median elasticities are zero, meaning that, at the median, reservation wages are equal to accepted wages. Observe that the net effect of an increase in the probability of an offer on duration is (generally) negative, meaning that its effect on the asking price outweighs the effect of more offers.

Imposing the restriction that reservation wages exceed benefit levels in panel (b) results in the loss of roughly one-tenth of the sample. Instances of perversely signed elasticities are again confined to the Greek data. The estimates obtained for the U.K. are
in absolute terms in each case below those calculated by Lancaster and Chesher ($\eta_{\xi,b} = 0.135; \eta_{\xi,\lambda} = 0.107; -\eta_{\theta,b} = 1.03$; and $-\eta_{\theta,\lambda} = -0.190$).

A much larger loss in sample size of around 43 percent is occasioned when in panel (c) we impose the restriction that accepted wages cannot lie below reservation wages. Not surprisingly, the effect of imposing this second theoretical restriction is significant: the estimated elasticities typically increase in magnitude and there are no longer any errant signs. In the case of the U.K. it is apparent that our estimates are now very much closer to those calculated by Lancaster and Chesher. Furthermore, these figures are, in general, considerably larger than those summarized in Cahuc and Zylberberg (2004, pp.157-58).

Finally, there is one obvious pattern in the data shown in panel (c) of the table that we mention without further comment. Countries with higher benefit elasticities of reservation wages have higher benefit elasticities of unemployment duration ($\hat{\eta}_{\theta,b} = 0.056 + 0.159 \eta_{\xi,b}; \ R^2 = 0.209$).

IV. Conclusion

In an important paper, Lancaster and Chesher (1983) used survey data on unemployed persons in Britain and economic theory to deduce – rather than estimate via a formal statistical model – the structural parameters of the optimal search model. We follow their methodology to derive updated elasticities for Britain and for eleven other European nations as well. Our findings are numerically consistent with the theory once two critical restrictions are imposed on the international data.
Endnotes

1. The σ parameter is obtained from $\sigma = \frac{x - \xi}{x}$.

2. For a description of this unique dataset, see for example, EUROSTAT (1999).

3. On the maintained hypothesis that countries with more flexible labor markets might well have larger elasticities, we regressed the four measures in panel (c) on OECD indicators of the country’s unemployment benefit replacement rate and the stringency of its employment protection regime. The results, which are available on request, were uniformly statistically insignificant.

References

Table 1: Median Benefit and Offer Probability Elasticities of Reservation Wages and Unemployment Duration by Country, 1993-98

<table>
<thead>
<tr>
<th>Country/Elasticity</th>
<th>Germany</th>
<th>Denmark</th>
<th>Netherlands</th>
<th>Belgium</th>
<th>France</th>
<th>U.K.</th>
<th>Ireland</th>
<th>Italy</th>
<th>Greece</th>
<th>Spain</th>
<th>Portugal</th>
<th>Austria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) No sample restrictions</td>
<td></td>
</tr>
<tr>
<td>$\eta_{\xi \beta}$</td>
<td>0.0657</td>
<td>0.2150</td>
<td>0.0433</td>
<td>0.0000</td>
<td>0.1173</td>
<td>0.1280</td>
<td>0.0343</td>
<td>0.0863</td>
<td>-0.0588</td>
<td>0.1221</td>
<td>0.2502</td>
<td>0.1953</td>
</tr>
<tr>
<td>$\eta_{\xi \lambda}$</td>
<td>0.0000</td>
<td>0.0075</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0078</td>
<td>0.0250</td>
<td>0.0254</td>
<td>0.0000</td>
<td>-0.0929</td>
<td>0.0000</td>
<td>0.0184</td>
<td>0.0889</td>
</tr>
<tr>
<td>$-\eta_{\theta \beta}$</td>
<td>1.1250</td>
<td>2.0536</td>
<td>1.3586</td>
<td>0.7284</td>
<td>0.7955</td>
<td>0.5132</td>
<td>0.9331</td>
<td>0.5697</td>
<td>0.7059</td>
<td>1.5966</td>
<td>1.2865</td>
<td>1.2727</td>
</tr>
<tr>
<td>$-\eta_{\theta \lambda}$</td>
<td>-0.0793</td>
<td>-0.2849</td>
<td>-0.1419</td>
<td>-0.0132</td>
<td>-0.1401</td>
<td>-0.1280</td>
<td>-0.0490</td>
<td>-0.1237</td>
<td>0.0879</td>
<td>-0.1767</td>
<td>-0.3420</td>
<td>-0.2368</td>
</tr>
<tr>
<td>n</td>
<td>237</td>
<td>302</td>
<td>68</td>
<td>223</td>
<td>507</td>
<td>133</td>
<td>107</td>
<td>56</td>
<td>101</td>
<td>358</td>
<td>166</td>
<td>63</td>
</tr>
<tr>
<td>(b) Restriction: reservation wage > unemployment benefits</td>
<td></td>
</tr>
<tr>
<td>$\eta_{\xi \beta}$</td>
<td>0.0465</td>
<td>0.1900</td>
<td>0.0363</td>
<td>0.0000</td>
<td>0.0564</td>
<td>0.0679</td>
<td>0.0303</td>
<td>0.0646</td>
<td>-0.0598</td>
<td>0.0843</td>
<td>0.2267</td>
<td>0.1847</td>
</tr>
<tr>
<td>$\eta_{\xi \lambda}$</td>
<td>0.0233</td>
<td>0.0181</td>
<td>0.0233</td>
<td>0.0000</td>
<td>0.0337</td>
<td>0.0879</td>
<td>0.0312</td>
<td>0.0533</td>
<td>-0.0892</td>
<td>0.0143</td>
<td>0.0313</td>
<td>0.1091</td>
</tr>
<tr>
<td>$-\eta_{\theta \beta}$</td>
<td>1.1784</td>
<td>2.0463</td>
<td>1.6459</td>
<td>0.7105</td>
<td>0.7841</td>
<td>0.4809</td>
<td>0.9097</td>
<td>0.7016</td>
<td>0.7059</td>
<td>1.5542</td>
<td>1.3268</td>
<td>1.2489</td>
</tr>
<tr>
<td>$-\eta_{\theta \lambda}$</td>
<td>-0.0543</td>
<td>-0.2535</td>
<td>-0.0382</td>
<td>-0.0022</td>
<td>-0.0679</td>
<td>-0.0679</td>
<td>-0.0343</td>
<td>-0.0908</td>
<td>0.0884</td>
<td>-0.1314</td>
<td>-0.2657</td>
<td>-0.2246</td>
</tr>
<tr>
<td>n</td>
<td>201</td>
<td>283</td>
<td>50</td>
<td>214</td>
<td>458</td>
<td>113</td>
<td>105</td>
<td>45</td>
<td>100</td>
<td>324</td>
<td>155</td>
<td>53</td>
</tr>
<tr>
<td>(c) Restriction: reservation wages < accepted wages</td>
<td></td>
</tr>
<tr>
<td>$\eta_{\xi \beta}$</td>
<td>0.2273</td>
<td>0.3269</td>
<td>0.2276</td>
<td>0.1158</td>
<td>0.2917</td>
<td>0.3138</td>
<td>0.2391</td>
<td>0.1000</td>
<td>0.1456</td>
<td>0.3118</td>
<td>0.2618</td>
<td>0.2269</td>
</tr>
<tr>
<td>$\eta_{\xi \lambda}$</td>
<td>0.1000</td>
<td>0.0628</td>
<td>0.0497</td>
<td>0.0809</td>
<td>0.1029</td>
<td>0.1757</td>
<td>0.1690</td>
<td>0.0612</td>
<td>0.2026</td>
<td>0.0615</td>
<td>0.0401</td>
<td>0.0963</td>
</tr>
<tr>
<td>$-\eta_{\theta \beta}$</td>
<td>1.2328</td>
<td>2.4894</td>
<td>1.6571</td>
<td>0.9314</td>
<td>0.9557</td>
<td>0.5394</td>
<td>0.8145</td>
<td>0.9444</td>
<td>0.7419</td>
<td>1.9465</td>
<td>2.2289</td>
<td>1.3351</td>
</tr>
<tr>
<td>$-\eta_{\theta \lambda}$</td>
<td>-0.2457</td>
<td>-0.4046</td>
<td>-0.4623</td>
<td>-0.1561</td>
<td>-0.3267</td>
<td>-0.3138</td>
<td>-0.2449</td>
<td>-0.1467</td>
<td>-0.1480</td>
<td>-0.3845</td>
<td>-0.3429</td>
<td>-0.2800</td>
</tr>
<tr>
<td>n</td>
<td>111</td>
<td>159</td>
<td>37</td>
<td>103</td>
<td>301</td>
<td>87</td>
<td>64</td>
<td>27</td>
<td>58</td>
<td>163</td>
<td>53</td>
<td>34</td>
</tr>
</tbody>
</table>

Source: European Community Household Panel, 1994-99
2000

1/00 **UNEMPLOYMENT DURATION: COMPETING AND DEFECTIVE RISKS**
— John T. Addison, Pedro Portugal

2/00 **THE ESTIMATION OF RISK PREMIUM IMPLICIT IN OIL PRICES**
— Jorge Barros Luís

3/00 **EVALUATING CORE INFLATION INDICATORS**
— Carlos Robalo Marques, Pedro Duarte Neves, Luís Morais Sarmento

4/00 **LABOR MARKETS AND KALEIDOSCOPIC COMPARATIVE ADVANTAGE**
— Daniel A. Traça

5/00 **WHY SHOULD CENTRAL BANKS AVOID THE USE OF THE UNDERLYING INFLATION INDICATOR?**
— Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

6/00 **USING THE ASYMMETRIC TRIMMED MEAN AS A CORE INFLATION INDICATOR**
— Carlos Robalo Marques, João Machado Mota

2001

1/01 **THE SURVIVAL OF NEW DOMESTIC AND FOREIGN OWNED FIRMS**
— José Mata, Pedro Portugal

2/01 **GAPS AND TRIANGLES**
— Bernardino Adão, Isabel Correia, Pedro Teles

3/01 **A NEW REPRESENTATION FOR THE FOREIGN CURRENCY RISK PREMIUM**
— Bernardino Adão, Fátima Silva

4/01 **ENTRY MISTAKES WITH STRATEGIC PRICING**
— Bernardino Adão

5/01 **FINANCING IN THE EUROSYSTEM: FIXED VERSUS VARIABLE RATE TENDERS**
— Margarida Catalão-Lopes

6/01 **AGGREGATION, PERSISTENCE AND VOLATILITY IN A MACROMODEL**
— Karim Abadir, Gabriel Talmain

7/01 **SOME FACTS ABOUT THE CYCLICAL CONVERGENCE IN THE EURO ZONE**
— Frederico Belo

8/01 **TENURE, BUSINESS CYCLE AND THE WAGE-SETTING PROCESS**
— Leandro Arozamena, Mário Centeno

9/01 **USING THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR**
José Ferreira Machado, Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

10/01 **IDENTIFICATION WITH AVERAGED DATA AND IMPLICATIONS FOR HEDONIC REGRESSION STUDIES**
— José A.F. Machado, João M.C. Santos Silva

2002

1/02 **QUANTILE REGRESSION ANALYSIS OF TRANSITION DATA**
— José A.F. Machado, Pedro Portugal

2/02 **SHOULD WE DISTINGUISH BETWEEN STATIC AND DYNAMIC LONG RUN EQUILIBRIUM IN ERROR CORRECTION MODELS?**
— Susana Betas, Carlos Robalo Marques
MODELLING TAYLOR RULE UNCERTAINTY
— Fernando Martins, José A. F. Machado, Paulo Soares Esteves

PATTERNS OF ENTRY, POST-ENTRY GROWTH AND SURVIVAL: A COMPARISON BETWEEN DOMESTIC AND FOREIGN OWNED FIRMS
— José Mata, Pedro Portugal

— João Valle e Azevedo

AN “ART”, NOT A “SCIENCE”? CENTRAL BANK MANAGEMENT IN PORTUGAL UNDER THE GOLD STANDARD, 1854-1891
— Jaime Reis

MERGE OR CONCENTRATE? SOME INSIGHTS FOR ANTITRUST POLICY
— Margarida Catalão-Lopes

DISENTANGLING THE MINIMUM WAGE PUZZLE: ANALYSIS OF WORKER ACCESSIONS AND SEPARATIONS FROM A LONGITUDINAL MATCHED EMPLOYER-EMPLOYEE DATA SET
— Pedro Portugal, Ana Rute Cardoso

THE MATCH QUALITY GAINS FROM UNEMPLOYMENT INSURANCE
— Mário Centeno

HEDONIC PRICES INDEXES FOR NEW PASSENGER CARS IN PORTUGAL (1997-2001)
— Hugo J. Reis, J.M.C. Santos Silva

THE ANALYSIS OF SEASONAL RETURN ANOMALIES IN THE PORTUGUESE STOCK MARKET
— Miguel Balbina, Nuno C. Martins

DOES MONEY GRANGER CAUSE INFLATION IN THE EURO AREA?
— Carlos Robalo Marques, Joaquim Pina

INSTITUTIONS AND ECONOMIC DEVELOPMENT: HOW STRONG IS THE RELATION?
— Tiago V.de V. Cavalcanti, Álvaro A. Novo

FOUNDING CONDITIONS AND THE SURVIVAL OF NEW FIRMS
— P.A. Geroski, José Mata, Pedro Portugal

THE TIMING AND PROBABILITY OF FDI:
An Application to the United States Multinational Enterprises
— José Brandão de Brito, Felipa de Mello Sampayo

OPTIMAL FISCAL AND MONETARY POLICY: EQUIVALENCE RESULTS
— Isabel Correia, Juan Pablo Nicolini, Pedro Teles

FORECASTING EURO AREA AGGREGATES WITH BAYESIAN VAR AND VECM MODELS
— Ricardo Mourincho Félix, Luís C. Nunes

CONTAGIOUS CURRENCY CRISES: A SPATIAL PROBIT APPROACH
— Álvaro Novo

THE DISTRIBUTION OF LIQUIDITY IN A MONETARY UNION WITH DIFFERENT PORTFOLIO RIGIDITIES
— Nuno Alves

COINCIDENT AND LEADING INDICATORS FOR THE EURO AREA: A FREQUENCY BAND APPROACH
— António Rua, Luís C. Nunes

WHY DO FIRMS USE FIXED-TERM CONTRACTS?
— José Varejão, Pedro Portugal

NONLINEARITIES OVER THE BUSINESS CYCLE: AN APPLICATION OF THE SMOOTH TRANSITION AUTOREGRESSIVE MODEL TO CHARACTERIZE GDP DYNAMICS FOR THE EURO-AREA AND PORTUGAL
— Francisco Craveiro Dias
10/03 WAGES AND THE RISK OF DISPLACEMENT
— Anabela Carneiro, Pedro Portugal

11/03 SIX WAYS TO LEAVE UNEMPLOYMENT
— Pedro Portugal, John T. Addison

12/03 EMPLOYMENT DYNAMICS AND THE STRUCTURE OF LABOR ADJUSTMENT COSTS
— José Varejão, Pedro Portugal

13/03 THE MONETARY TRANSMISSION MECHANISM: IS IT RELEVANT FOR POLICY?
— Bernardino Adão, Isabel Correia, Pedro Teles

14/03 THE IMPACT OF INTEREST-RATE SUBSIDIES ON LONG-TERM HOUSEHOLD DEBT:
EVIDENCE FROM A LARGE PROGRAM
— Nuno C. Martins, Ernesto Villanueva

15/03 THE CAREERS OF TOP MANAGERS AND FIRM OPENNESS: INTERNAL VERSUS EXTERNAL LABOUR MARKETS
— Francisco Lima, Mário Centeno

16/03 TRACKING GROWTH AND THE BUSINESS CYCLE: A STOCHASTIC COMMON CYCLE MODEL FOR THE EURO AREA
— João Valle e Azevedo, Siem Jan Koopman, António Rua

17/03 CORRUPTION, CREDIT MARKET IMPERFECTIONS, AND ECONOMIC DEVELOPMENT
— António R. Antunes, Tiago V. Cavalcanti

18/03 BARGAINED WAGES, WAGE DRIFT AND THE DESIGN OF THE WAGE SETTING SYSTEM
— Ana Rute Cardoso, Pedro Portugal

19/03 UNCERTAINTY AND RISK ANALYSIS OF MACROECONOMIC FORECASTS:
FAN CHARTS REVISITED
— Álvaro Novo, Maximiano Pinheiro

2004

1/04 HOW DOES THE UNEMPLOYMENT INSURANCE SYSTEM SHAPE THE TIME PROFILE OF JOBLESS DURATION?
— John T. Addison, Pedro Portugal

2/04 REAL EXCHANGE RATE AND HUMAN CAPITAL IN THE EMPIRICS OF ECONOMIC GROWTH
— Delfim Gomes Neto

3/04 ON THE USE OF THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR
— José Ramos Maria

4/04 OIL PRICES ASSUMPTIONS IN MACROECONOMIC FORECASTS: SHOULD WE FOLLOW FUTURES MARKET EXPECTATIONS?
— Carlos Coimbra, Paulo Soares Esteves

5/04 STYLED FEATURES OF PRICE SETTING BEHAVIOUR IN PORTUGAL: 1992-2001
— Mónica Dias, Daniel Dias, Pedro D. Neves

6/04 A FLEXIBLE VIEW ON PRICES
— Nuno Alves

7/04 ON THE FISHER-KONIECZNY INDEX OF PRICE CHANGES SYNCHRONIZATION
— D.A. Dias, C. Robalo Marques, P.D. Neves, J.M.C. Santos Silva

8/04 INFLATION PERSISTENCE: FACTS OR ARTEFACTS?
— Carlos Robalo Marques

9/04 WORKERS’ FLOWS AND REAL WAGE CYCLICALITY
— Anabela Carneiro, Pedro Portugal

10/04 MATCHING WORKERS TO JOBS IN THE FAST LANE: THE OPERATION OF FIXED-TERM CONTRACTS
— José Varejão, Pedro Portugal
11/04 THE LOCATIONAL DETERMINANTS OF THE U.S. MULTINATIONALS ACTIVITIES
 — José Brandão de Brito, Felipa Mello Sampayo

12/04 KEY ELASTICITIES IN JOB SEARCH THEORY: INTERNATIONAL EVIDENCE
 — John T. Addison, Mário Centeno, Pedro Portugal