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Abstract

Since 1996 the Bank of England (BoE) has been publishing estimates

of probability distributions of the future outcomes of inflation and output

growth. These density forecasts, known as “fan charts”, became very popular

with other central banks (e.g. Riksbank) as a tool to quantify uncertainties

and risks of conditional point forecasts. The BoE’s procedure is mainly a

methodology to determine the distribution of a linear combination of inde-

pendent random variables. In this article, we propose an alternative method-

ology that addresses two issues with the BoE procedure that may affect the

estimation of the densities. The first issue relates to a statistical shortcut

taken by the BoE that implicitly considers that the mode of the linear com-

bination of random variables is the (same) linear combination of the modes

of those variables. The second issue deals with the assumption of indepen-

dence, which may be restrictive. An illustration of the new methodology is

presented and its results compared with the BoE approach.
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1 Introduction

Although forecasts are inherently uncertain, quite often the associated uncer-

tainty (dispersion of the distribution) and risks (degree of asymmetry) are not

duly acknowledged and quantified by forecasters. Many institutions choose

to publish only point forecasts, while others attempt to explicitly consider

uncertainty by publishing forecasting ranges, computed either on an ad hoc

basis or by taking into account past forecasting errors. Instead of a quantified

and integrated assessment of uncertainty and risks of the forecasts, most in-

stitutions only present a qualitative assessment. Since typically institutions

do not rely on a single econometric model to produce their forecasts, and fur-

thermore these include (to a larger or a lesser extent) subjective judgments

about future economic developments, the quantification of uncertainty and

risks by institutional forecasters is not straightforward.

An important contribution towards an explicit quantification of uncer-

tainties and risks, while allowing for subjective judgmental elements, orig-

inated from the Bank of England in early 1996 and it was followed soon

after by the adoption of similar approaches by other central banks, e.g., the

Riksbank (the Swedish central bank). The Bank of England and the Riks-

bank have since published in their quarterly Inflation Reports estimates of

the probability distributions of the future outcomes of inflation and output

growth. These “density forecasts” are represented graphically as a set of

prediction intervals with different probability coverages. The resulting chart

has become known as a “fan chart”.

Although the statistical methods used by the Bank of England and the

Riksbank to produce their fan charts have some differences, the differences

are relatively minor when compared with the similarities. Descriptions of

these methods are provided in Britton, Fisher and Whitley (1998) for the

Bank of England and in Blix and Sellin (1998) for the Riksbank.1 Hereafter,

1In spite of very similar statistical procedures, the institutional frameworks in which
they operate are somewhat different. For a description of these institutional frameworks,
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for the sake of expositional simplicity, we will refer to the statistical method

as the “Bank of England (BoE) approach”.

The BoE approach can be described as a method of aggregation of prob-

ability distributions of the “input variables”, which include (i) the errors of

conditioning variables (such as external demand, oil price, exchange and in-

terest rates, fiscal developments) and (ii) the “pure” errors in the “variables to

forecast”, i.e., the forecasting errors that remain after explicitly correcting for

the errors in the conditioning variables. To this purpose, the BoE approach

assumes that the forecasting errors can be expressed as a linear combination

of these input variables. In addition, it assumes that the marginal proba-

bility distributions of the input variables are two-piece normal (tpn). The

tpn distribution, discussed in detail in John (1982),2 is defined by only three

parameters – mode µ, “left- standard deviation”, σ1, and “right-standard

deviation”, σ2. The tpn is formed by taking two appropriately scaled halves

of normal distributions with parameters (µ, σ2
1) and (µ, σ2

2), collapsing to the

normal if σ1 = σ2. In order to apply the BoE aggregation procedure, sample

and/or judgmental information has to be provided to determine the three

parameters of each input variable distribution.

In this article, we start by raising two statistical issues about the pro-

cedure underlying the BoE approach. The first issue relates to a statistical

shortcut considered by the BoE approach when aggregating the distributions

of the input variables. The BoE implicitly considers that the mode of the

linear combination of input variables can be obtained as the (same) linear

combination of the modes of these variables. We will illustrate that this is a

potentially poor approximation to the mode of the forecasting errors when

the distributions of some inputs are skewed.

The second issue relates to the fact that the BoE procedure assumes the

independence of all the input variables. In this respect, it is worth mention-

which is beyond our concern, see e.g. Bean (2001) and Blix and Sellin (1999), respectively
for the UK and Sweden.

2See also Johnson, Kotz and Balakrishnan (1994).
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ing that the construction of the BoE fan charts is derived from the historical

forecast errors of the variables concerned in a sample of previous forecast-

ing exercises. The base levels of sample variances are typically adjusted to

reflect judgments on the level of uncertainty over the forecasting horizon.

As to the correlations between the forecast errors, these are usually ignored,

although in some cases judgmental adjustments to the results of the sta-

tistical procedure are considered to proxy the effects of correlation between

errors.3 The Riksbank variant described by Blix and Sellin (1998) explicitly

considers a non-diagonal covariance matrix, allowing for linear correlations

between the conditioning variables. In their analysis, however, these cor-

relations do not affect the skewness of the distributions of the forecasted

variables. In a more recent paper, Blix and Sellin (2000) consider a bivariate

case which takes into account the effect of correlation on skewness, but this

interesting approach is not easily generalized to higher dimensions. In our

view, the assumption of independence of all the input variables, in spite of

being very convenient for simplifying the aggregation procedure, is restric-

tive. According to our experience, for a typical conditioning variable, such

as the oil price, one can expect serial correlations of the errors at different

horizons. In addition, one can expect contemporanous correlations between

the errors of different conditioning variables. Hence, in our opinion relaxing

the independence assumption, at least partially, is a step forward towards a

more realistic uncertainty and risk assessment of the forecasted variable.

Our methodology attempts at relaxing the above simplifying hypothesis

of the BoE approach, while keeping the spirit of the underlying procedure.4

3The BoE forecasting team argues that no significant sample correlations are found
between the errors of the conditioning variables in their past forecasts series and that
stochastic simulations also tend to show little impact on the results if these samples cor-
relations were considered.

4In a recent paper, Cogley, Morozov and Sargent (2003) construct BoE’s fan charts
based on the forecast densities generated from BVAR with drifting coefficients and stochas-
tic volatilities. These densities are modified in a second stage by incorporating judgmen-
tal information, using the relative entropy method of Robertson, Tallman and White-
man (2002). This method does not suffer from the aforementioned BoE approach short-
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However, the task is not straightforward. For instance, one natural alter-

native to assuming the independence of all input variables is to assume a

non-diagonal linear correlation matrix between these variables. But it is im-

portant to notice that assuming a non-diagonal correlation matrix is not a

fully specified alternative to the assumption of independence. The indepen-

dence also implies imposing restrictions on all the cross-moments of order

higher than two. Therefore, by simply specifying the marginal distributions

and the correlation matrix, in general, we have multiple joint distributions

of the input variables compatible with those assumptions.

This identification problem can only be solved by introducing further

a priori restrictions. It does not, however, seem reasonable to require the

forecaster to specify cross-moments of an order higher than two, on which

typically he/she has little knowledge. Instead, we propose to look for solu-

tions which correspond to a distribution of the forecast error belonging to

the same family as the one assumed for the marginal distributions of the

input variables. The problem with this strategy is that we lose the guarantee

of existence of a convenient solution in the asymmetric case. When such

solution does not exist, we suggest alternative routes. First, we broaden the

search by defining a larger family of distributions. If still no such solution

exists, we propose either to revise the assumptions of the exercise or to use

an “approximation of last resort”, which consists in picking the distribution

of the predefined family that is closer (in some multivariate sense) to the set

of multiple solutions.

The “tpn environment” suggested by the BoE, in spite of its interpreta-

tional convenience, does not facilitate the algebra required to deal with the

problem. For this reason, we opted to postulate that the marginal distribu-

tions of the input variables belong to another three parameters distribution

family, which we name ‘skewed generalized normal’ (sgn). As with the tpn,

comings. On the other hand, it only introduces judgments in the resulting forecasting
error distribution. Hence, it departs from the original BoE spirit, which introduces risks
in the input variables distributions.
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the sgn collapses to the normal distribution in the particular case of absence

of skewness. The sgn may viewed at the core of a larger family of distribu-

tions, including the “convoluted sgn” distributions, directly derived from the

sgn.

The article proceeds as follows. Section 2 reviews the BoE approach,

pointing out the shortcomings that motivate the development of an alter-

native methodology. This methodology, based on the skewed generalized

normal distribution, is developed in Section 3. Section 4 applies the new

method to an illustrative euro-area inflation forecasting exercise. Finally,

concluding remarks are presented.

2 The Bank of England Approach

2.1 Linear combinations

The methodology suggested by the BoE and herein further developed deals

with finding the probability distribution of a linear combination of the input

variables. We start by motivating the linear approximation in an uniequa-

tional setting. A multiequational approach is also suggested. The framework

that follows reflects our own perspective on the issue and not necessarily the

BoE’s.

In the uniequational setting, let us denote the variable to forecast by

yt+H , where t and H stand for the last observed period and the forecasting

horizon, respectively. Let us also denote by xt+h (h = 1, . . . , H) the vectors

(K × 1) containing the paths of conditioning variables from period t + 1 to

period t+H. The central or baseline scenario for yt+H , conditional on a given

path for the conditioning variables {x0
t+1, x

0
t+2, . . . , x

0
t+H} will be represented

by ŷ(x0
t+H , . . . , x

0
t+1). Typically, this central forecast is not the direct outcome

of a single econometric model, or even a combination of forecasts produced

by a suite of econometric models.5 Nonetheless, these econometric models

5Bean (2001, p. 438) makes this point very clear in the UK case, and the thrust
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can provide the forecasters with a local linear approximation of the central

forecast response to small changes in the paths of the conditioning variables

of the type:

ỹ(x1
t+H , . . . , x1

t+1) = ŷ(x0
t+H , . . . , x

0
t+1) + γ′0(x

1
t+H − x0

t+H) +

+γ′1(x
1
t+H−1 − x0

t+H−1) + · · · + γ′H−1(x
1
t+1 − x0

t+1) (1)

where {x1
t+1, x

1
t+2, . . . , x

1
t+H} is an alternative path for the conditioning vari-

ables and γτ (τ = 0, . . . , H−1) are K×1 vectors of interim multipliers. The

latter give the estimated responses of yt+H to changes in the various elements

of xt+H−τ . After observing both yt+H and xt+h (h = 1, . . . , H), we can define

the “pure” forecast error εt+H as:

εt+H = yt+H − ỹ(xt+H , xt+H−1, . . . , xt+1) (2)

Note that εt+H is not the conventional forecasting error resulting from

the central conditional forecast ŷ(x0
t+H , . . . , x

0
t+1). Instead, εt+H is computed

using the adjusted forecast (given by (1)) that takes into consideration the

observed deviations in the conditioning variables from the assumed baseline

paths {x0
t+1, x

0
t+2, . . . , x

0
t+H}. The error εt+H reflects the shocks that affected

the economy during the forecasting horizon, the estimation errors of the

multipliers γ, the errors resulting from taking a linear approximation of a

(possibly) non-linear model, as well as any other misspecifications of the

model (e.g. omitted variables or structural breaks). From (1) and (2), we

can write the (conventional) overall forecast error as:

et+H = yt+H − ŷ(x0
t+H , ..., x

0
t+1) = γ′0(xt+H − x0

t+H) +

of his words applies to most institutions publishing forecasts: “The suite of econometric
models is an essential tool, but the quarterly [central] projections are not simply the result
of running either the MM [the main Bank of England macroeconometric model], or the
suite, mechanically. All economic models are highly imperfect reflections of the complex
reality that is the UK economy and at best they represent an aid to thinking about the
forces affecting economic activity and inflation. The MPC [Monetary Policy Committee]
is acutely aware of these limitations. Moreover, a considerable amount of judgment is
required to generate the projections. In making those judgments, the MPC draws on a
range of additional sources of information about economic developments.”
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+γ′1(xt+H−1 − x0
t+H−1) + · · ·+ γ′H−1(xt+1 − x0

t+1) + εt+H (3)

The extension to a multiequational approach is straightforward. Let yt+H

be a P × 1 vector of endogenous variables instead of a scalar variable. We

can rewrite (1) as:

ỹt+H(x1
t+H , . . . , x

1
t+1) = ŷt+H(x0

t+H , . . . , x
0
t+1) + Γ0(x

1
t+H − x0

t+H) +

+Γ1(x
1
t+H−1 − x0

t+H−1) + · · · + ΓH−1(x
1
t+1 − x0

t+1) (4)

where Γτ are P × K matrices of coefficients of the final form of the linear

model taken as a local approximation to the “forecast generating process”.

The expression for the pure forecasting error in the multiequational case is

identical to (2), with εt+H , yt+H and ỹ(xt+H , xt+H−1, . . . , xt+1) being P × 1

vectors instead of scalars. The multiequational version of the P × 1 vector

of conventional forecast errors et+H can be written as:

et+H = Γ0(xt+H − x0
t+H) + Γ1(xt+H−1 − x0

t+H−1) + · · ·
· · · + ΓH−1(xt+1 − x0

t+1) + εt+H (5)

The vector of pure forecasting errors εt+H is a vector of “reduced form”

errors, but one can envisage its decomposition in structural contributions,

each associated with an endogenous variable. Formally, we can write:

εt+H = Ψ0νt+H + Ψ1νt+H−1 + · · ·+ ΨH−1νt+1 (6)

where νt+h stands for the vector of residuals in the structural equations of the

dynamic simultaneous equations model that is implicitly taken as the local

approximation to the central forecast generating process.6 As regards the

P ×P matrices Ψτ (τ = 0, . . . , H−1), their elements are the responses, after

6Let us represent this local linear model by:

A0yt = A1yt−1 + · · · + B0xt + B1xt−1 + · · · + νt

where Aτ and Bτ (τ = 0, 1, 2, . . .) are respectively P × P and P × K matrices, with A0

constrained to be non-singular. Then Γ0 = A−1
0 B0, Ψ0 = A−1

0 , Γτ = A−1
0 Bτ +A−1

0 A1Γτ−1

and Ψτ = A−1
0 A1Ψτ−1 for any τ ≥ 1.
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τ periods, of the endogenous variables to shocks in the structural residuals

ν. For example, the (i, j)-element of Ψ0 is the contemporaneous response of

the i-th endogenous variable included in y to a shock in the residual of the

structural equation normalized in the j-th element of y.

Merging the two latter expressions, we obtain:

et+H = Γ0(xt+H − x0
t+H) +

+Γ1(xt+H−1 − x0
t+H−1) + · · ·+ ΓH−1(xt+1 − x0

t+1) + (7)

+Ψ0νt+H + Ψ1νt+H−1 + · · ·+ ΨH−1νt+1

Note that the conventional forecasting errors e and the deviations x−x0 are

observable for past forecasting exercises. Therefore, conditional on a set of

estimates of the interim multipliers Γτ and Ψτ (τ = 0, . . . , H − 1), estimates

of ν are easily computed from (7) for these past exercises.7

Equations (3) and (7), respectively for the uniequational and multiequa-

tional frameworks, present the forecasting errors et+H as linear combinations

of the relevant inputs, which are the“errors” in the conditioning variables

{(xt+1 − x0
t+1), . . . , (xt+H − x0

t+H)} and the pure forecasting errors. These

linear equations form the basis for estimating the marginal probability dis-

tributions of the forecasting errors ep,t+H (p = 1, . . . , P ), from which inter

alia confidence bands and fan charts may be constructed. For this purpose,

the joint probability distribution of the inputs is required. The BoE approach

assumes that these input variables are independent and that their marginal

probability distributions are two-piece normal.

7Indeed, we have:
νt+1 = Ψ−1

0 εt+1 = Ψ−1
0

[
et+1 − Γ0

(
xt+1 − x0

t+1

)]

νt+2 = Ψ−1
0 [εt+2 − Ψ1νt+1] = · · ·

νt+3 = Ψ−1
0 [εt+3 − Ψ1νt+2 − Ψ2νt+1] = · · ·

9



2.2 BoE aggregation of the tpn

A scalar random variable z has a two-piece normal distribution with param-

eters (µ, σ1, σ2) if it has probability density function (pdf):

f(z) =

{
A1 φ(z| µ, σ2

1), z ≤ µ
A2 φ(z| µ, σ2

2), z ≥ µ,
(8)

where Aj = 2σj/(σ1 + σ2) and φ(z| µ, σ2
j ) represents the normal pdf with

mean µ and variance σ2
j , for j = 1, 2. The mode of z is µ and John (1982)

showed that the mean, variance and third central moment are, respectively:

E(z) = µ+

√
2

π
(σ2 − σ1), (9)

V (z) = (1 − 2

π
)(σ2 − σ1)

2 + σ1σ2, (10)

T (z) =

√
2

π
(σ2 − σ1)

[
(
4

π
− 1)(σ2 − σ1)

2 + σ1σ2

]
. (11)

If σ1 = σ2, then the tpn distribution collapses to the (symmetric) normal

distribution, but otherwise the density is skewed (to the right if σ1 < σ2 and

to the left if σ1 > σ2).

To keep the notation as simple as possible, let e be the overall fore-

casting error (e.g. of inflation or output) at a given horizon and let z =

(z1, . . . , zn, . . . , zN)′ represent the vector of N associated input variables.

Based on the arguments presented in the previous subsection, we will write

e as a linear combination of z:

e = α′z (12)

where α is an N × 1 vector of coefficients.

By construction, the modes of the input variables (errors in the condition-

ing variables and pure forecasting errors) are null, i.e., µn = 0 (n = 1, . . . , N).

In order to estimate the remaining parameters characterizing the tpn of each

10



input variable zn, two adittional pieces of information are needed. For that

purpose, it is very convenient to work in terms of (i) the variance, V (zn), and

(ii) the mode quantile, P [zn ≤M(zn)], with the mode set at zero M(zn) = 0.

The choice of the mode quantile is aimed at facilitating the interpretation

and discussion of the distributional assumptions between the forecaster, on

the one hand, and the the public, on the other. With the mode quantile it

is easier to convey information on skewness than, say, with the third central

moment. For example, placing a value of 40% in the mode quantile immedi-

ately suggests (and quantifies) that the risks to the forecast are on the upside.

Thus, if for each input variable the forecaster collects the mode quantile and

the variance, it can solve the following system:
{
P [zn ≤ 0] = σ1n/(σ2n − σ1n)
V (zn) = (1 − 2

π
)(σ2n − σ1n)2 + σ1nσ2n

(13)

to obtain estimates of σ1n and σ2n With this information, one may compute

the mean of each input variable:

E(zn) =

√
2

π
(σ2n − σ1n), (14)

which are then linearly aggregated to generate the mean of e. By assumption,

in the BoE approach the mode of e, M(e), is also set to zero, which means

that the modal point forecast – the baseline – is kept unchanged. Due to the

independence assumption, the variance of e is obtained by simply summing

the weighted variances of the input variables. Approximating the distribution

of e by a tpn, its parameters σ1 and σ2 are obtained by solving the following

system:
{ ∑

n αnE(zn) =
√

2
π
(σ2 − σ1)∑

n α
2
nV (zn) = (1 − 2

π
)(σ2 − σ1)

2 + σ1σ2.
(15)

The process is repeated for each relevant forecasting period and summa-

rized in a fan chart format such as Figure 1.8 This graph depicts the central

8More precisely, the distributions are obtained for the fourth quarter of each year in
the forecasting horizon and then interpolated between these periods to draw the fan chart.
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Figure 1: An illustrative fanchart

forecast with confidence bands fanning out around it, each covering an ad-

ditional 10% of the distribution. If the pdf is asymmetric, the end points of

the 90% confidence band do not correspond to the 5th and 95th quantiles.

Instead, they are such that they have the same density value and cover 90%

of the distribution.

2.3 Wallis (1999) criticisms

Wallis (1999) criticized some aspects of the BoE approach. On the one

hand, he argues that the choice of the mode as the central scenario has

implicit an “all-or-nothing” loss function, which might be too restrictive. On

the other hand, Wallis criticized the method used by the BoE to compute

the confidence intervals around the mode, showing that it may distort the

perception of the distribution’s skewness. For example, if the risks are ‘on

the upside’, the upper limit of the 90% confidence band in the BoE fan

chart falls below the 95th quantile. Both criticisms are of a presentational

nature, as they do not refer to the validity of the statistical bulk of the

procedure. Indeed, conventional confidence intervals can be adopted without

requiring any fundamental change to the BoE procedure. In terms of the

choice of the central scenario, it is very convenient for the forecasters to
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use the mode (the most likely value of the variable) and the mode quantile

(i.e. the probability of having an outcome not higher than the mode) when

communicating with the public. Again, if the forecasters choose to work with

mean central forecasts instead of mode central forecasts, for computational

and internal purposes, the adaptation of the BoE approach is straightforward.

The discussion within the forecasting institution and the presentation to the

public can still be based on mode central forecasts.

2.4 The issue of linear aggregation of the modes

A more serious statistical limitation of the BoE approach relates to the

derivation of the modes of the forecasting error distributions. From the ex-

pression of the tpn pdf, it is obvious that in general a linear combination of

variables with tpn marginal distributions is not tpn distributed, even under

independence. However, if we are only interested in the three first moments

of the distribution, one can argue that the tpn assumption is reasonable.

The problem is that the statistical procedure suggested by the BoE to deal

with the approximation is questionable. By assuming that the mode of e is

set to zero (as well as the modes of all input variables), the BoE approach

is implicitly taking that the mode of the linear combination of inputs is the

linear combination, with the same coefficients, of the modes of those inputs.

But clearly this is not the case under asymmetry, as illustrated in Figure 2.

Two identically distributed and independently generated9 tpn variables

z1 and z2 with (µ = 0, σ1 = 0.3, σ2 = 0.8) were randomly drawn (20,000

draws) and then the kernel density of e ≡ z1 + z2 was computed, resulting

in a mode estimate of 0.434, clearly not the linear combination of the input

modes.

Under the assumption of independence of the input variables, a better

approximation of the mode of the distribution could be based on the (correct)

aggregation of the three first moments of the distributions. In general, for e =

9In sample correlation: 0.0007.
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α′z, where α and z continue to be N × 1 vectors, respectively of coefficients

and independent tpn variables, we have:

E(e) =
N∑

n=1

αnE(zn) (16)

V (e) =

N∑

n=1

α2
nV (zn) (17)

T (e) =

N∑

n=1

α3
nT (zn) (18)

If we choose to approximate the distribution of e by a tpn, we can esti-

mate the three characterizing parameters by the method of moments (MM),

first computing the moments of e using (16)-(18) and then estimating the

parameters by solving the 3×3 system of equations (9)-(11). In our example

above, with e = z1 + z2, instead of a mode zero as assumed by the BoE, a

more correct mode estimate (approximating to the true distribution of e by

a tpn as suggested) yields 0.414, quite close to the value obtained from the

kernel density estimation.
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Figure 3: BoE versus MM approaches

Furthermore, if we construct confidence intervals based on the two dis-

tributions – BoE and MM – the differences become even more evident. The

70% confidence intervals10 are [−0.249, 1.286] and [−0.163, 1.490] for the BoE

and MM approaches, respectively, while the 90% confidence intervals are

[−0.396, 2.040] and [−0.501, 2.121]. The differences between the two under-

lying density functions are further illustrated in Figure 3.

2.5 The issue of independence

A second issue is the assumption of independence of the inputs used in prac-

tice to simplify the aggregation problem. In our opinion, this assumption is

a limitation in the BoE approach, in particular in the context of dynamic

10The confidence intervals are built using the minimum range method described at the
end of section 2.2, rather than the percentile method. The choice of 70% in the guassian
case would corresponds to approximately a confidence interval one standard deviation to
each side of the central forecast. In the tpn case that is naturally not the case, but the
range of the interval is still approximately two standard deviations.
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formulations as (3) and (7). Indeed, one can anticipate that the forecast-

ing errors for a conditioning variable, for example the price of oil or the

external demand, are correlated in successive horizons. In addition, one can

also anticipate significant contemporaneous correlations between the errors

of different conditioning variables.

To illustrate the impact of correlation in the degree of skewness, we follow

the suggestion by Blix and Sellin (2000) to derive one of the possible joint

distributions of two random variables with given tpn marginal distributions

and non-zero correlation.11 They use a result taken from Mardia (1970), who

showed that the joint pdf

g(z1, z2) =
g1(z1)g2(z2)√

1 − ρ2
exp{− ρ

2(1 − ρ2)
[ρ(ž2

1 + ž2
2) − 2ž1ž2]}, (19)

has as marginal pdf’s g1(z1) and g2(z2). The transformed variables necessary

to generate such result, ž1 and ž2, have correlation ρ and are defined as

ž1 ≡ Φ−1(G1(z1)), (20)

ž2 ≡ Φ−1(G2(z2)), (21)

where Φ(·) is the cumulative standard normal distribution and G1(·) and

G2(·) are the cumulative functions of g1(·) and g2(·), respectively. With

this joint distribution, we were able to generate random samples of variables

with marginal distributions tpn and correlation ρ̃.12 We took the marginal

tpn’s parametrization of the example considered in the previous subsection

(µ = 0, σ1 = 0.3, σ2 = 0.8) to illustrate the effects of correlation on skew-

ness. For each of three different values of ρ (−0.8, 0.0 and 0.8), a bivariate

random sample of size 20,000 was generated.13 Each pair was subsequently

11As we noticed in the introduction, there is more than one joint distribution associated
with given marginal distributions and correlation.

12Lancaster (1957) showed that |ρ̃| ≤ |ρ|.
13First, using the marginal pdf, a sample was generated for z1. Second, with this sample

and the conditional pdf g1|2(z2|z1) = g(z1, z2)/g1(z1), the rejection method was used to
generate the sample for (z1, z2). Due to the random nature of the exercise and Lancaster’s
inequality, the sample correlations were below (in absolute value) the corresponding values
of ρ at -0.7498 and 0.7861.
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Figure 4: Illustrative sum of tpn’s with varying correlations

added, say e = z1 + z2, and its degree of skewness computed (T (e)/V (e)3/2).

Figure 4 illustrates that the degree of skewness of e depends on the degree

of correlation present in the variables linearly combined. In the zero corre-

lation case the degree of skewness was 0.47. Intuitively, positive correlation

increased the degree of skewness (to 0.62), while negative correlation reduced

it (to 0.32).

We conclude from this illustration that the degree of skewness of a linear

combination of correlated random variables will depend in general on the

magnitude of the correlation. Hence, relaxing the independence assumption,

at least partially, is a step forward towards more realistic uncertainty and risk

assessments of the forecasted variables, due to the likely correlation between

the input variables. One natural alternative to assuming the independence

of all input variables is to assume a non-diagonal linear correlation matrix

between these variables.

Let us continue to denote the overall forecasting error and the N × 1

vector of input variables by e and by z, respectively, with e = α′z, as above.
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Instead of assuming that zn and zq are independent for any n 6= q, let us

now simply assume that linear correlations between these input variables

are available: R = [rnq], where rnq is the linear correlation between zn and

zq. These correlations may be based on the past observed history of errors,

possibly modified by judgements introduced by the forecaster.

As aforementioned, when we assume a non-diagonal correlation matrix,

we are not fully specifying an alternative to the assumption of independence.

Besides the nullity of the correlation matrix off-diagonal elements, the inde-

pendence also implies imposing restrictions on all the cross-moments of an

order higher than two. Therefore, by simply specifying the marginal distribu-

tions fn(zn) (n = 1, . . . , N) and the correlation matrix R, in general we have

multiple joint distributions of the input variables f(z) (implying multiple

distributions of the forecast error e) compatible with those assumptions.

To keep the problem of non-identification as simple as possible, we suggest

that the forecaster should first partition the set of input variables and assume

that the input variables belonging to each subset are correlated among them-

selves but are not correlated with input variables belonging to other subsets.

For instance, it may be acceptable to assume a priori the independence be-

tween two subsets of inputs, the first including the errors in the conditioning

variables {(xt+1 − x0
t+1), . . . , (xt+H − x0

t+H)} and the second including the

pure forecasting errors (either in the reduced form εt+h or in the structural

form νt+1, . . . , νt+H). In this case we can rewrite et+H in (3) and (7) as a sum

of two independent variables e1,t+H and e2,t+H , with

e1,t+H = Γ0(xt+H−x0
t+H)+Γ1(xt+H−1−x0

t+H−1)+ΓH−1(xt+1−x0
t+1)(22)

and

e2,t+H = εt+H (23)

in the uniequational framework or

e2,t+H = Ψ0νt+H + Ψ1νt+H−1 + ... + ΨH−1νt+1 (24)

18



in the multiequational framework.

After defining the partition of input variables, we propose to look for

solutions which correspond to a distribution of the forecasted variable be-

longing to the same family as the one assumed for the marginal distributions

of the input variables. The “tpn environment” of the BoE approach is not

the most convenient for this purpose, in particular because the derivatives

of order higher than one of the tpn pdf are not continuous at the mode of

the distribution, which complicates the algebra. In the next section we will

present an alternative to the tpn distribution, which we denote the “skewed

generalized normal” (sgn).

3 An Alternative Approach

3.1 The skewed generalized normal distribution

Let z be a (scalar) random variable which results from the linear combination

of two independent random variables

z = θ1 + θ2w + θ3s, θ1, θ3 ∈ R, θ2 > 0, (25)

where w ∼ N(0, 1) (standard Gaussian) and s ∼ 21/3 exp[−21/3(s+2−1/3)], for

s ≥ −2−1/3. That is, s results from an exponential distribution with defining

parameter set to 21/3 after a simple location shift (−2−1/3), in order to have

E(s) = 0. By setting the parameter at 21/3, we also have T (s) = 1, where

as previously T (·) stands for the third central moment. The distribution of

z will be denoted

z ∼ S(θ1, θ2, θ3) (26)

and S(·) will be referred to as “skewed generalized normal” (sgn). The prob-

ability density function, which can be obtained with standard change-of-
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variable statistical techniques, is given by

f(z) =






1√
2πθ2

e
− 1

2

(
z−θ1

θ2

)2

, θ3 = 0, z ∈ <

eη 21/3

|θ3| e
− 2

1/3

θ3
z
Φν,θ2

(
θ3

|θ3| z
)
, θ3 6= 0, z ∈ <

(27)

where η = −1 + 21/3θ1/θ3 + 2−1/3(θ2/θ3)
2, and ν = 2−1/3(θ3η + 2−1/3θ2

2/θ3).

The function Φµ,σ(·) represents the Gaussian cumulative distribution function

with mean µ and standard deviation σ.

Directly from the definition of z, we have S(θ1, θ2, 0) = N(θ1, θ
2
2). There-

fore, as in the case of the tpn (with σ1 = σ2), the sgn collapses to the

normal distribution for the particular case of θ3 = 0. For the general case

z ∼ S(θ1, θ2, θ3), by making use of the well-established properties of the

normal and exponential distributions:

i) E(z) = θ1, V (z) = θ2
2 + 2−2/3θ2

3 and T (z) = θ3
3;

ii) the characteristic function of z is

Cz(t) = exp{θ1it}.Cw(θ2t).Cs(θ3t) =
21/3

21/3 − θ3it
ψ(t) (28)

where ψ(t) is the characteristic function of the normal distribution

N(θ1 − 2−1/3θ3, θ
2
2).

Unlike for the tpn, there is no closed expression for the mode of the

sgn, but given the values of its three parameters, standard simple search

algorithms prove to be quite efficient in locating the maximum of the pdf.

Notice that V (z) is a function of θ3, i.e., it is a function of the third central

moment. Clearly, one cannot pick the degrees of skewness and uncertainty

(variance) arbitrarily. Indeed, as the sgn is only defined for θ2 > 0, from the

variance expression the following condition can be derived:

V (z) > 2−2/3θ2
3. (29)
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Figure 5: sgn vs. tpn given M(z) = 0, V (z) = 0.75, P [z < M(z)] = 0.40

Condition (29) can be reexpressed in terms of the absolute degree of skewness

of z:
(

θ2
3

V (z)

)3/2

< 2 ⇐⇒ |T (z)|
V (z)3/2

<2, (30)

that is, the maximum absolute skewness allowed is 2. This restriction is

similar in spirit to the condition for the tpn described in John (1982), but

it is less binding. While for the tpn the absolute skewness cannot exceed

(1/2π− 1)−3/2 − (1/2π− 1)−1/2 ' 0.99527, for the sgn the absolute bound is

(slightly more than) twice the tpn’s bound.

At this point, it is interesting to compare the sgn and the tpn distribu-

tions. In Figure 5, we carry out the following exercise. Given the mode, 0,

variance (standard deviation), 0.75 (0.87), and mode quantile, 0.40, we deter-

mine the parameters of the tpn and sgn and plot the corresponding densities

along with some summary statistics. From this exercise, we conclude that

the sgn has fatter tails (4th moment) than the tpn. This information can be
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complemented with the 5th and 95th quantiles, which are respectively -0.83

and 1.92 for the sgn and -1.05 and 1.89 for the tpn. Thus, the 90% confidence

range for the tpn would expand over 2.94 units, while the sgn only over 2.75.

In this example, the probability that the variable departs from the mode by

more than two units, P (|z| > 2), is 4.15% for the sgn and 3.13% for the tpn

case.

3.2 Linear combinations of sgn distributions

In general, the sgn family, like the tpn family, is not closed relative to linear

combinations. In particular, if z = (z1, ..., zn, ..., zN)′ is a vector of random

variables with marginal sgn distributions and correlation matrix R, the dis-

tribution of α′z is not necessarily sgn. More importantly, the sgn marginal

distributions and the correlation matrix do not uniquely identify a single joint

density of z, and several joint distributions will share the same marginal dis-

tributions and the same correlation matrix. Hereafter, z � z∗ denotes that

the two vectors of random variables z and z∗ share the same marginal distri-

butions and the same correlation matrix. Due to this identification problem,

there is no single solution for the distribution of e. However, we can show

that among those possible multiple solutions, if a certain condition is fulfilled,

one solution belongs to the sgn family and therefore some form of closedness

is achieved. The following theorem formally states this result:

Theorem 1 Let z = (z1, . . . , zn, . . . , zN)′ be any N × 1 vector of random

variables with linear correlation matrix R and marginal distributions

zn ∼ S(θ1n, θ2n, θ3n), (n = 1, ..., N)

Also, let Ω̄ = DRD − 2−2/3θ3θ
′
3, where

D = diag

(√
θ2
21 + 2−2/3θ2

31, . . . ,
√
θ2
2n + 2−2/3θ2

3n, . . . ,
√
θ2
2N + 2−2/3θ2

3N

)
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and θ3 = (θ31, ..., θ3n, ..., θ3N)′. If Ω̄ is positive semidefinite and its diagonal

elements are all positive, then there are N +1 independent random variables,

w = (w1, . . . , wn, . . . , wN)′ and s, with

wn ∼ N(µn, σnn), n = 1, . . . , N

s ∼ 21/3 exp[−21/3(s+ 2−1/3)],

such that:

z � z∗ ≡ Bw + θ3s,

where B is the orthogonal matrix of eigenvectors of Ω̄, Σ = diag(σ11, . . . , σnn,

. . . , σNN) is the corresponding diagonal matrix of (non-negative) eigenvalues,

µ = (µ1, . . . , µn, . . . , µN)′ = B′θ1, and θ1 = (θ11, . . . , θ1n, . . . , θ1N)′. The dis-

tribution of

α′z∗ = (α′B)w + (α′θ3)s

is sgn with E(α′z∗) = α′θ1, V (a′z∗) = α′DRDα and T (a′z∗) = (α′θ3)
3 (i.e.

α′z∗ ∼ S(α′θ1,
√
α′Ω̄α, α′θ3))

The condition that Ω̄ must be positive semi-definite with positive diagonal

elements (hereafter strict PSD condition) may be viewed as some type of

multivariate version of condition (29) on the degree of asymmetry. Indeed,

note that for N = 1 the strict PSD condition collapses to (29).

Unfortunately, in practice the strict PSD condition is very tight, and it

is typically violated whenever we assume marked skewness for several input

variables and/or strong correlations among those variables. This means that

in many relevant cases, there is no sgn distribution among those solutions

generated from the given marginal sgn distributions and correlation matrix.

The reason for this is quite simple. According to the previous theorem, if

the strict PSD condition is fulfilled, a single elementary source of asymmetry

(the scalar random variable s) is enough to generate the asymmetries of
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the different elements of vector z∗. Indeed, from the definition of z∗, the

distribution of a given variable z∗n is skewed if and only if the corresponding

element θ3n of the coefficient vector θ3 is non-null. As the covariance matrix

V (z∗) is given (V (z∗) = V (z) = DRD), and the elements of vector θ3 are

uniquely determined by the need to generated the required asymmetries in

the marginal distributions, the difference

Ω̄ = V (z∗) − 2−2/3θ3θ
′
3, (31)

which should correspond to the covariance matrix of Bw,may not be positive

semidefinite.

In such cases, we need to resort to weaker forms of closedness (or “al-

most closedness”) of the sgn distributions relative to linear combinations.

This implies considering marginal distributions of the input variables that

are generated by linear combinations of independent sgn variables or, equiv-

alently, by linear combinations of a normal variable and more than one shifted

exponential variable, all independent (i.e. we need to replace the scalar s in

the the theorem above by a vector of similar independent and identically

distributed random variables). Let us name “convoluted sgn distribution of

order m” the distribution of a linear combination of m independent variables

with marginal sgn distributions (obviously, these convoluted sgn distributions

collapse to the basic sgn when m = 1). Using the latter definition, we can

define the “extented sgn family or order M” as including all the convoluted

sgn distributions of order up to M .

If the strict PSD condition is not fulfilled, we suggest broadening the

search among the multiple possible solutions for the distribution of e by

successively looking for distributions belonging to the extended sgn family

of orders M = 2, 3, ..., N until a solution is found. Such a search can be

implemented in practice by verifying whether the generalized versions of the

PSD condition are fulfilled, as stated (for order M) in the following theorem,

which is a generalization of Theorem 1 (it collapses to the latter when M =

1):
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Theorem 2 Let z = (z1, . . . , zn, . . . , zN)′ be any N × 1 vector of random

variables with linear correlation matrix R and marginal distributions

zn ∼ S(θ1n, θ2n, θ3n), (n = 1, ..., N)

Also, let Ω̄ = DRD − 2−2/3Θ3CC
′Θ′

3, where

D = diag

(√
θ2
21 + 2−2/3θ2

31, . . . ,
√
θ2
2n + 2−2/3θ2

3n, . . . ,
√
θ2
2N + 2−2/3θ2

3N

)
,

Θ3 = diag(θ31, . . . , θ3n, . . . , θ3N) and C = [cnm] is a N ×M matrix, with M

(≤ N) being the number of non-null diagonal elements of Θ3, such that any

element cnm is either 0 or 1, with

M∑

m=1

cnm = 1 if θ3n 6= 0, 0 otherwise (n = 1, . . . , N)

N∑

n=1

cnm > 1 (m = 1, . . . ,M)

If Ω̄ is positive semidefinite and its diagonal elements are all positive, then

there are N + M independent random variables, w = (w1, . . . , wn, . . . , wN)′

and s = (s1, . . . , sm, . . . , sM), with

wn ∼ N(µn, σnn) (n = 1, . . . , N)

sm ∼ 21/3 exp[−21/3(sm + 2−1/3)], (m = 1, . . . ,M)

such that:

z � z∗∗ = Bw + Θ3Cs,

where B is the orthogonal matrix of eigenvectors of Ω̄, Σ = diag(σ11, . . . , σnn,

. . . , σNN) is the corresponding diagonal matrix of (non-negative) eigenvalues,

µ = (µ1, . . . , µn, . . . , µN)′ = B′θ1, and θ1 = (θ11, . . . , θ1n, . . . , θ1N)′. The dis-

tribution of

α′z∗∗ = (α′B)w + (α′Θ3C)s
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is convoluted sgn of order M with E(α′z∗∗) = α′θ1, V (α′z∗∗) = α′DRDα and

T (α′z∗∗) =
M∑

m=1

δ3
m, where δ ≡ α′Θ3C.

Firstly, notice that in Theorem 2 the three first moments of e do not

suffice to explicitly determine the 2+M parameters of the convoluted sgn of

order M . Although in principle it is possible to derive the explicit expressions

for the probability densities of the convoluted sgn of orders 2 and higher, the

derivation becomes increasingly cumbersome and the final expressions are

quite complicated for M > 2. Therefore, whenever we deal with convoluted

sgn, we suggest approximating those distributions by basic sgn distributions,

using for that purpose the sgn that has the same relevant moments (mean,

variance and third central moment) as the “exact” convoluted sgn.

As to the generalized PSD condition, for a given M if we can find a matrix

C as defined in Theorem 2 such that the corresponding matrix Ω̄ is positive

semidefinite with positive diagonal elements, then one of the solutions to our

problem takes the form of a convoluted sgn of order M, with known three

first moments. Intuitively, the role of matrix C is to allocate the different

independent elementary sources of asymmetry (the elements of s) to the

different variables z∗∗n for which asymmetry is assumed. The allocation is

such that at most one source sm is allocated to each z∗∗n , but more than one

z∗∗n may share the same source sm.

It is also important to remark that the number of possible different

choices of matrix C, #{C}, which need to be checked until one finds a

choice for which the corresponding generalized PSD condition is fulfilled,

depends on the number of asymmetric input variables N (6 N) and it

grows exponentially with this number. For N = 1, 2, 3, 4, 5, 6, 7, ... we have

#{C} = 1, 2, 5, 15, 42, 202, 877, ... For instance, if we have a subset with 3

input variables, 2 of which are asymmetric (the second and the third), the

26



two possible choices of matrix C are the following:




0
1
1


 ,




0 0
1 0
0 1




If instead we have a subset of 5 input variables (N = 5), 3 of which are

asymmetric (the first, the third and the fifth) (N = 3), the 5 possible choices

of matrix C are:



1
0
1
0
1



,




1 0
0 0
1 0
0 0
0 1



,




1 0
0 0
0 1
0 0
1 0



,




1 0
0 0
0 1
0 0
0 1



,




1 0 0
0 0 0
0 1 0
0 0 0
0 0 1




For N 1 4 the set of choices of C is easily identified using a tree diagram.

Figure 5 presents the tree diagram with all the 15 choices of the non-null

rows of matrix C for N = 4. In the diagram, the states A,B,C and D

denote the first, second, third and fourth rows of an identity matrix of order

4, respectively. Notice that the number of branches that depart from each

knot of the diagram is equal to one plus the number of different states that

can be found upstream in a direct line leading to that knot. From each

path in the diagram it is straightforward to build the corresponding choice

of matrix C. For instance, with a subset of 6 input variables, the second and

the fifth being symmetric, the path (A,B,C,A) translates into the matrix

(6 × 3 because the last column was null and therefore may be suppressed in

this particular example):




1 0 0
0 0 0
0 1 0
0 0 1
0 0 0
1 0 0



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It is worth mentioning that if the input variables refer to several fore-

casting horizons, the matrix C is subject to some logical restrictions that

facilitate the search by organizing it in successive steps, thereby decreasing

the number of possible choices. To illustrate the point, let us consider a fore-

casting exercise with an horizon of three periods and a subset of three input

variables (z1, z2, z3) (e.g. exchange rate, external demand, and commodity

prices). Let us also assume that z2 and z3 are asymmetric in the first and

second periods of the horizon. The forecasting error (e.g. of inflation) for the

first period, et+1, will be a function of (z1,t+1, z2,t+1, z3,t+1), while et+2 will

depend on (z1,t+1, z2,t+1, z3,t+1, z1,t+2, z2,t+2, z3,t+2) and et+3 will additionally

depend on period t+ 3 variables, (z1,t+3, z2,t+3, z3,t+3). When estimating the

density of et+1, there will be only two possible choices of C for this subset

of input variables (as indicated above). Without any further temporal re-

strictions, for the years t + 2 and t + 3 the number of possible choices of

C would be 15 (corresponding to et+1). However, the joint distribution of
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(z1,t+1, z2,t+1, z3,t+1) becomes known when estimating et+1 and it would not

be consistent to reestimate a different joint distribution of these three vari-

ables when estimating et+2 and et+3. Therefore, matrix C is restricted to the

following formats, respectively for the first, second and third periods:

[C11] ,

[
C11 0
C21 C22

]
,



C11 0 0
C21 C22 0
C31 C32 C33




where block C11 is the same in all three matrices and the blocks C21 and

C22 are the same in the second and third matrices. A slightly modified

tree diagram can also be constructed to list the possible choices for blocks[
C21 C22

]
, given the previous choice of C11. Figures 6 and 7 illustrate

the tree diagrams corresponding to two different choices of C11. As to the

third period, the three blocks, C31, C32 and C33 will be null because we are

assuming that none of the input variables is asymmetric at this horizon.

3.3 Summing up: the practical implementation of the

alternative approach

In order to clarify how the statistical methodology that we propose can be

implemented in practice, let us sum up the successive steps implied by the

results presented so far. As a convenient simplification of the notation used in

subsection 2.1, we will continue to denote by e the overall forecasting error for

a given variable of interest (e.g. inflation or output), at a given forecasting

horizon, and by z the corresponding N × 1 vector of input variables. We
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will assume that e = α′z is a reasonable local linear approximation to the

forecasting error generating process.

The first step of our approach consists of computing the parameters of the

marginal sgn distributions for all the input variables. We admit that the fore-

caster, besides estimates for α, also has available estimates for the standard

deviation and the mode quantile of each input variable zn (n = 1, ..., N).

Given the mode (set to zero), standard deviation and mode quantile, the

three parameters of each marginal sgn distribution can be easily obtained

from a simple algorithm, taking into account the expression of the sgn pdf.

The second step of the procedure will consist of partitioning the set of in-

puts in K subsets such that the input variables belonging to different subsets

are assumed to be independent. Accordingly, we may break down e and write

e = e(1) + ... + e(k) + ... + e(K), where e(k) = α′
(k)z(k) denotes the component

of e associated with the input variables belonging to the k-th subset (which

contains N(k) input variables, with N(1) + ... + N(K) = N). The partition

should be based as much as possible on economic reasoning. As suggested
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above, one of the simplest partitions that is possible to envisage separates

the set of input variables in only two subsets, the first including the errors

in the conditioning variables and the second including the pure forecasting

errors either in their reduced form or their structural form. After deciding

on the partition to be used, the forecaster needs to accordingly choose the

correlation matrix of the input variables belonging to each subset.

The third step corresponds to checking, for each subset of input variables,

all the possible PSD conditions. One should start with M = 1 and, if needed,

increase the value of M and explore all the possible choices of C (as defined

in Theorem 2) associated with each M , until the PSD condition is fulfilled.

For a given matrix C, checking the PSD condition requires computing the

eigenvalues of the corresponding Ω̄.

If for all subsets of input variables we were able to fulfill the PSD con-

dition, Theorems 1 or 2 provide the formula for the first three moments of

e(1), ..., e(k), ..., e(K). As these variables are independent by construction, we

can obtain the first three moments of e in a straightforward manner:

E(e) =
K∑

k=1

E(e(k)); V (et+h) =
K∑

k=1

V (e(k)); T (et+h) =
K∑

k=1

T (e(k)) (32)

Taking these moments, the final step will consist of approximating the dis-

tribution of e by the sgn distribution that has the same relevant moments.

In the benchmark case of symmetric zn distributions, by construction we

have E(zn) = M(zn) = 0 (n = 1, . . . , N) and E(e) =
∑N

n=1 αnE(zn) =

0 = M(e). However, these equalities will not stand anymore if the distri-

butions of some inputs are skewed. In the latter case, we will have E(e) =
∑N

n=1 αnE(zn) 6= 0, because E(zn) 6= 0 for those inputs with skewed dis-

tributions. M(e) becomes also non-null but, unlike the mean, it cannot be

expressed as a linear combination of the zn modes. The effect on the distri-

bution of e of considering risks to some inputs are twofold: (i) the location

measures, mode and mean, are shifted, but by different factors; (ii) the dis-

tribution will become skewed. Therefore, when evaluating the effect of input
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risks on the variable of interest, we need to take into account both the “mode

effect”, defined as the shift of the modal forecasts, and the “skewness effect”,

measured by the mode quantile of the new distribution of e. A synthetic

indicator of both effects is the “baseline quantile”, which corresponds to the

probability (under the new skewed distribution) of an outcome below zero,

i.e., the probability of having one outcome for the endogenous variable below

its baseline modal forecast.

An alternative synthetic indicator is the “mean effect” defined as the shift

of the mean of the distribution of e relative to the symmetric case. The overall

mean effect can be expressed as the linear aggregation of the mean effects of

the input variables, making it particularly appropriate if we are interested

in performing sensitivity analysis to different risk scenarios. However, the

mean effect is less convenient than the mode effect if we want to keep the

interpretation of point forecasts as modal forecasts. It should be noted that

the mean effect in our approach only differs from the one computed by the

BoE approach because we are aggregating sgn instead of tpn distributions.

In addition, the BoE’s tpn distribution of e will have zero mode, whereas

the mode of the sgn distribution generated from our approach will reflect the

aforementioned mode effect. As a result, confidence intervals (fan charts)

under the two approaches will be different, particularly if the skewness is

significant.

One may argue that in most cases the “owner” of the forecast will adjust

the baseline scenario if the risks to the inputs are judged to be too large,

ensuring that the BoE approach will not produce significantly biased risk

assessments. Otherwise, the credibility of the point modal baseline would

be at stake. In our opinion, however, there may be relevant situations when

a large skewness of the distribution of some inputs is warranted without

necessarily requiring changes in the baseline for those inputs. For instance,

that may happen if the baseline paths for some conditioning variables are set

exogenously to the owner of the forecast. In the case of the forecasts pro-

32



duced by central banks, the assumptions made on the paths of fiscal variables

constitute an example. Indeed, the fiscal paths are typically set by central

banks at the official targets announced by the government, irrespectively of

how credible they are. The team of forecasters or the institutional body

that owns the forecast may want to attach significant upside or downside

risks to those exogenously defined conditioning paths. This situation illus-

trates that it clearly pays to use a robust statistical procedure to aggregate

the risks to the input variables, and the limitations of the BoE approach

raise doubts about its appropriateness. In this respect, stochastic simulation

methods may be seen as an alternative to our procedure, but in our opinion

their practical usefulness in live/real uncertainty and risk assessement is still

limited.

3.4 An approximation of last resort

The methodology outlined in the previous subsection may not provide the

forecaster with a solution. This will happen whenever the strict PSD con-

dition as well as the generalized PSD conditions of orders up to M are all

violated for at least one subset of input variables. In such a case, there are

two possible ways to overcome the situation. A first way out, which should be

the preferred one if acceptable to the forecaster in economic terms, consists

of redefining the initial assumptions. This revision can take several forms:

downward revisions (in absolute terms) of the degrees of skewness considered

in the marginal distributions of the input variables, multiplication of sample

correlations by a shrinking factor (between 0 and 1) and/or a finer partition

of the input variables. In the latter case, by working with more subsets of

input variables, the number of independence restrictions will increase and, at

least in principle, it will become easier to fulfill the PSD condition for each

subset.

When all the forms of the PSD condition are violated for some subsets of

inputs and further revisions of assumptions appear as rather controversial on
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economic grounds, we suggest using an “approximation of last resort” which

consists of picking the distribution of the extended sgn family that in some

sense can be considered closer to the set of solutions. The basic result for

this approximation is formally stated in the following theorem:

Theorem 3 Let Ω̄ be a N×N symmetric matrix (but not necessarily positive

semidefinite); Λ = diag(λ1, . . . , λn, . . . , λN) be the matrix of eigenvalues of

Ω̄; Q be the (corresponding) orthogonal N ×N matrix of eigenvectors, such

that Ω̄ = QΛQ′; and Λ̃ = diag(λ̃1, . . . , λ̃n, . . . , λ̃N) with λ̃n = max{0, λn}
(n = 1, 2, . . . , N).Then,

Ω̃ = QΛ̃Q′

is a symmetric positive semidefinite matrix which best approximates Ω̄, in the

sense that it minimizes

tr[(Ω − Ω̄)(Ω − Ω̄)′] = tr[(Ω − Ω̄)2],

(that is, in the sense that it minimizes the sum of squares of the Ω − Ω̄

elements), where Ω represents any symmetric positive semidefinite N × N

matrix.

Let us consider a subset of inputs for which all the PSD conditions are

violated because there is no matrix C associated with a positive semidefi-

nite Ω̄.14 This means that all matrices Ω̄ defined according to both Theo-

rems 1 and 2 have at least one negative eigenvalue. To use the suggested

approximation, we should first find the matrix Ω̄ for which we have the

smallest (in absolute terms) negative eigenvalue. Let C̄ be the associated

N × M matrix as defined in Theorem 2. Notice that by construction,

14In practice, this is the relevant condition. In all empirical situations that we have
tested, when Ω̄ is tranformed into a positive semidefinite matrice Ω̃ according to Theorem
3, the diagonal elements of the latter matrix are all positive.
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V (z) = DRD = Ω̄ + 2−2/3Θ3C̄C̄
′Θ3. The approximation works by replac-

ing Ω̄ by Ω̃, or equivalently, replacing V (z) by Ṽ (z) ≡ Ω̃ + 2−2/3Θ3C̄C̄
′Θ3.

Therefore, in intuitive terms, the suggested approximation implies expanding

the variances of the input variables until the PSD condition becomes fulfilled.

And the smaller in absolute terms the negative eigenvalues, the smaller the

required expansion of variances.

A word of caution is needed. The degree of approximation must be care-

fully scrutinized. The standard deviations of the forecast errors, resulting

from such approximation, must be compared with the corresponding “ex-

act” standard deviations (computed using the linear combination α′z, the

standard deviations for the input variables and the correlation coefficients).

The quality of the approximation will depend on the magnitude of the largest

(in absolute terms) negative eigenvalue. If the ratio between the correspond-

ing exact and approximate standard deviations is close to one, we may safely

use the distribution resulting from the approximation. Otherwise, a revision

of the assumptions is unavoidable.

4 Empirical Illustration

In this section, we apply both the methodology suggested above and the

BoE’s approach to the estimation of the densities of inflation and output for

the Euro area. The purpose of this empirical illustration is simply to show

how these methodologies work in practice and not to provide the reader with

a realistic empirical framework to assess the uncertainty and risks of future

inflation and output in the Euro area.15

In particular, we will not discuss the economic reasonability of the re-

sponse coefficients or the historical standard deviations and correlations of

the input variables.

15Unlike some stochastic simulation approaches, our approach can easily handle a rela-
tively large number of conditioning and endogenous variables. We only took two endoge-
nous variables to simplify the empirical illustration.
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4.1 Data and illustrative model

Although, as argued earlier, most institutions do not rely on a single model

to assess economic developments, our illustration will be directly based on a

very simple econometric model to obtain the local linear approximation and

the “pure” forecasting errors. We modeled the Euro area real Gross Domestic

Product, ln(Yt), and the inflation rate, ∆ln(Pt), using a vector autoregressive

(VAR) system, with annual data and in first differences, conditional on three

variables: the effective exchange rate, ln(EEt), a commodity prices index

(including oil), ln(PCt), and the extra-euro-area world output, ln(WYt).
16

One single lag was chosen after checking the traditional selection criteria. In

order to illustrate the multiequational approach, some type of structural form

of the model was needed, so we considered a Cholesky identification scheme,

assuming that shocks to the inflation rate do not affect output contempora-

neously. With this assumption and given a set of sample forecasting errors,

the “pure” endogenous forecasting errors were obtained. The errors used as

input variables were obtained, but for world output, under the hypothesis of

random walk, i.e., one-, two- and three-periods ahead, forecasts are given by

the last observed values. With regards to world output, the forecast errors

were generated using a AR(2) model in first differences.17

In terms of the notation presented in section 2.1, we have (after re-

parametrizing the model): et+h = (e
ln(Y )
t+h , e

∆ln(P )
t+h )′, xt+h = (ln(EEt+h),

ln(WYt+h), ln(PCt+h))
′, and νt+h = (ν

ln(Y )
t+h , ν

∆ln(P )
t+h )′. The associated

matrices of response coefficients are:

Γ0 =

[
−.0259 .8610 .0252
.0501 −.1406 .0426

]
; Ψ0 =

[
.0089 0
.0026 .0067

]

Γ1 =

[
−.0293 .0560 .0017
−.0489 .3880 −.0010

]
; Ψ1 =

[
.0100 −.0013
.0045 .0065

]
(33)

16We used the database built by Fagan, Henry and Mestre (2001) for the estima-
tion of the European Central Bank’s (ECB) Area Wide Model (AWM), available at
http://www.ecb.int/pub/wp/ecbwp042.zip.

17The model was: ∆ln(WYt) = 0.01 + 0.42∆ln(WYt−1) − 0.35∆ln(WYt−2).
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Γ2 =

[
.0045 −.0679 .0005
−.0054 .0037 .0004

]
; Ψ2 =

[
.0098 −.0016
.0047 .0062

]
.

With the pure forecasting errors and the response coefficient matrices, we

can apply both our and the BoE’s method of uncertainty and risk analysis.

When applying our methodology, we will assume that there are two blocks of

independent random variables, namely the block of errors in the conditioning

variables and the block of endogenous pure forecasting errors, which in terms

of the notation above corresponds to the hypothesis that xi ⊥ νj , for any

(i, j). The BoE approach extends the above independence hypothesis to all

variables regardless of which block they belong to and which time period.

In the exercises below, we choose not to intervene these errors. However,

as with the BoE approach, it is possible to incorporate judgment on the

degree of uncertainty by adjusting the observed standard deviations and/or

the correlations.

4.2 A limited set of risks

We start by analyzing an example which considers only downward risks in the

underlying conditioning path of extra-area world output. In the first period,

t+ 1, it is assumed that there is a 60% probability that the observed world

output will fall below the modal path. This probability falls then to 55%

in the second period, t + 2. For comparison purposes, we run the exercise

for each of the four methodologies suggested – BoE’s, the tpn method of

moments of section 2.4 assuming independence of the input variables, an

sgn variant of the latter method of moments, and, finally, our alternative

sgn aggregation methodology. The differences between these methods are

reflected in the results presented in Table 1. In this table, E0 = M0 = 0

stand for the mean and mode of the baseline, respectively. They are equal

due to the symmetry – no risks – implicit in the baseline assumptions. M1

and E1 denote, respectively, the mode and the mean of the distributions after
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accounting for the risks to the inputs.

First, let us notice that the relaxation of the independence assumption,

columns ⊥ and 6⊥, has significant impacts on some of the computed standard

deviations (see, for example, second period inflation).

The set of columns labeled M1 −M0 expresses the mode effect. While

under the BoE approach the mode is kept unchanged, that is not the case

with our approach. For instance, in period t+1, the modal forecast of output

will be below the baseline forecast in 0.085%. In the same period, the modal

forecast of inflation is shifted upwards by 0.036%.

The first set of columns in the ‘Outputs’ section of the table, E1 − E0,

represents what we term mean effect. It also highlights the differences due

to the parametric hypotheses (tpn vs. sgn), because E1 is the linear aggre-

gation of the means of the underlying inputs. Typically, the sgn assumption

translates into somewhat stronger mean effects than the tpn assumption.

The M1 quantiles provide estimates of the skewness effect. Our method

yields slightly less skewness than the sgn-based method of moments, owing

to the correlations between the input variables. When comparing the BoE

and our approaches, besides the differences induced by the correlations, we

observe that the former overestimates the degrees of skewness. These biases

do not depend on the tpn assumption (see tpn-based MM), but they are due

to the assumption of unchanged modes taken by the BoE approach.
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Table 1: Uncertainty and Risks: Comparing alternative methodologies
E1 − E0 M1 − M0 St. Dev. Quantiles P [z ≤ 0]

Inputs tpn sgn tpn sgn

WYt+1 -0.237 -0.262 0 0 0.73 60.0
WYt+2 -0.233 -0.277 0 0 1.43 55.0

E1 − E0 M1 − M0 St. Dev. Quantiles P [e ≤ Mi]
BoE Our BoE Our BoE Method of Moments Our
(tpn) (sgn) (tpn) (sgn) (tpn) (tpn) (sgn) (sgn)

Outputs ⊥ 6⊥ M0 M1 M0 M1 M0 M1 M0

ln(Yt+1) -0.204 -0.225 0 -0.085 0.79 0.81 58.2 56.1 58.7 55.2 59.2 54.4 58.9
∆ln(Pt+1) 0.033 0.037 0 0.036 0.78 0.72 48.7 50.0 48.3 50.0 48.1 50.0 48.0
ln(Yt+2) -0.214 -0.253 0 -0.065 1.43 1.52 54.7 53.5 55.0 53.5 55.3 53.1 54.9
∆ln(Pt+2) -0.059 -0.063 0 -0.062 1.23 0.98 51.5 50.1 51.9 50.2 52.0 50.0 52.5
ln(Yt+3) 0.003 0.002 0 0.002 2.94 2.83 50.0 50.0 50.0 50.0 50.0 50.0 50.0
∆ln(Pt+3) -0.091 -0.108 0 -0.089 1.74 1.59 51.6 50.2 52.0 50.3 52.4 50.3 52.6
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Table 2: 70% Confidence Intervals
Minimum range method

BoE sgn
ln(Yt+1) [−0.942, 0.677] [−0.921, 0.671]

∆ln(Pt+1) [−0.787, 0.830] [−0.712, 0.784]
ln(Yt+2) [−1.623, 1.345] [−1.637, 1.399]

∆ln(Pt+2) [−1.313, 1.236] [−1.079, 0.955]
ln(Yt+3) [−3.048, 3.052] [−2.927, 2.931]

∆ln(Pt+3) [−1.866, 1.747] [−1.743, 1.552]

A synthetic indicator of the location-shift and asymmetry effects is given

by the baseline quantile. In the “Quantiles” section of Table 1, the columns

labeled ‘M0’ give us this measure. In spite of different mode and skewness

effects, we observe closer baseline quantiles for both methods, but always

more assymetric in our approach.

Another form of looking at potential differences between our approach and

the BoE’s is given in Table 2, which presents 70% minimum range confidence

intervals. That is, given the estimated forecast densities, it presents the

ranges of the 70% “most likely” outcomes for the forecasting errors under

each methodology.18

4.3 A larger set of risks

Let us now assume that, in the first and second forecasting periods, there are

downside risks to world output and to shocks to euro-area GDP, while the

price of commodities and the pure error of inflation have upward risks. The

latter can be thought as resulting from factors that cannot be captured by

usual determinants of inflation (risks of higher inflation induced, for example,

18In the sense that the range is the smallest that covers 70% of the support of the density.
Notice that the baselines of all input variables are set to zero, resulting in confidence
intervals that always include zero. These intervals can, however, be adjusted by a location
shift to reflect the underlying forecast. For instance, if period t + 1 inflation rate forecast
is 1.5%, then the 70% confidence intervals are [0.71, 2.33] and [0.79, 2.28] under the BoE
and sgn approaches, respectively.
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Table 3: Assumed uncertainty and risks of input variables
Exog. Shocks E1 − E0 M1 − M0 St. Dev. P [z ≤ 0]
ln(EEt+1) 0 0 6.23 50%
ln(WYt+1) -0.44 0 0.73 70%

ln(PCt+1) 9.63 0 16.15 30%

ln(EEt+2) 0 0 9.07 50%
ln(WYt+2) -0.51 0 1.43 60%

ln(PCt+2) 8.50 0 23.75 40%

ln(EEt+3) 0 0 10.50 50%
ln(WYt+3) 0 0 3.17 50%
ln(PCt+3) 0 0 32.52 50%
Endog. Shocks E1 − E0 M1 − M0 St. Dev. P [z ≤ 0]

ν
ln(Y )
t+1 -0.18 0 0.93 55%

ν
∆ln(P )
t+1 0.13 0 0.67 45%

ν
ln(Y )
t+2 0 0 1.43 50%

ν
∆ln(P )
t+2 0 0 1.03 50%

ν
ln(Y )
t+3 0 0 1.61 50%

ν
∆ln(P )
t+3 0 0 1.15 50%

Table 4: Uncertainty and risks of the endogenous variables
Endog. Vars. E1 − E0 M1 − M0 St. Dev. P [e ≤ M0] P [e ≤ M1]

sgn BoE sgn

ln(Yt+1) -0.13 0.01 0.81 53.93% 55.67% 54.72%
∆ln(Pt+1) 0.47 0.13 0.72 25.91% 29.18% 35.42%
ln(Yt+2) -0.19 -0.02 1.52 53.45% 54.70% 52.83%
∆ln(Pt+2) 0.25 -0.09 0.98 44.84% 44.81% 40.59%
ln(Yt+3) 0.02 0.02 2.83 49.78% 49.77% 50.00%
∆ln(Pt+3) -0.20 -0.17 1.59 54.80% 53.33% 50.54%

41



Table 5: 70% Confidence Intervals
Minimum range method Percentile method
BoE sgn BoE sgn

ln(Yt+1) [−0.904, 0.720] [−0.819, 0.765] [−0.964, 0.665] [−0.931, 0.668]
∆ln(Pt+1) [−0.455, 1.103] [−0.341, 0.840] [−0.286, 1.329] [−0.165, 1.129]

ln(Yt+2) [−1.624, 1.344] [−1.596, 1.454] [−1.713, 1.261] [−1.719, 1.341]
∆ln(Pt+2) [−1.140, 1.404] [−0.860, 0.893] [−1.061, 1.489] [−0.665, 1.162]

ln(Yt+3) [−3.036, 3.064] [−2.913, 2.945] [−3.027, 3.073] [−2.913, 2.945]
∆ln(Pt+3) [−1.925, 1.685] [−1.825, 1.465] [−2.001, 1.612] [−1.848, 1.442]

by situations such as the foot-and-mouth disease). How do these risks reflect

themselves in the risks to euro-area output and inflation forecasts? Table 3

describes how the asymmetry hypotheses are reflected in terms of the input

variables. Table 4 summarizes the implications for the distribution of the

forecasting errors of inflation and output of our hypotheses.

In comparing our results with the BoE, it is worth highligthing that when-

ever the distribution is close to symmetric, the two methodologies produce

similar results. However, when the skewness is stronger, as in the case of

consumer price inflation, results may be quite distinct. In those cases, it is

less likely that the BoE’s zero mode effect will approximately compensate

the bias in skewness.

Table 5 reports the 70% confidence intervals19 for the two methodologies,

conforming the differences already apparent in Table 4. In particular, the

confidence interval for the errors in inflation are quite different.

Tables 4 and 5 results used the approximation of last resort alluded to

earlier. That is, neither of the possible combinations of risk sources was ca-

pable of yielding a PSD matrix necessary to apply either Theorem 1 or 2. As

reflected in terms of the standard deviations, the adjustments are, however,

not very significant, maybe with the exception of the variance expansion

19We report the confidence intervals using two methods of construction – minimum range
and percentile –, which naturally produce different ranges, to illustrate that the choice of
the method does not affect the qualitative conclusions drawn about the two aggregation
methods.
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Table 6: Uncertainty and risks after correlation adjustments
Endog. Vars. E1 − E0 M1 − M0 St. Dev. P [e ≤ M0] P [e ≤ M1]

sgn BoE sgn

ln(Yt+1) -0.13 0.01 0.81 53.93% 55.67% 54.72%
∆ln(Pt+1) 0.47 0.13 0.72 25.91% 29.18% 35.42%

ln(Yt+2) -0.23 0.03 1.46 53.65% 54.70% 54.56%
∆ln(Pt+2) 0.25 -0.03 1.10 44.52% 44.81% 43.45%

ln(Yt+3) 0.02 0.02 2.85 49.75% 49.77% 50.00%
∆ln(Pt+3) -0.20 -0.17 1.65 54.68% 53.33% 50.49%

of output in the second period, which standard deviation increased by 23%

relative to the ‘exact’ standard deviation. The full set of adjustment fac-

tors, defined as the ratio of the expanded to the ‘exact’ standard deviations,

preserving Table 4 order, is: {1, 1, 1.228, 1.028, 1.128, 1.008}.
If one wants to avoid having to use the last resort approximation, we need

to reassess the initial assumptions. To illustrate one of the possible strategies,

we chose to introduce adjustments in the correlation matrix. Given that there

were no adjustments to period t + 1 outcomes, we reduced in 50% the data

correlations for all auto- and cross-correlations, with the exception of those

involving only period one variables. This adjustment lies between the cases

of independence and a sample-based correlation matrix. The PSD condition

is still not fulfilled, but the adjustment factors are now very close to one:

{ 1, 1, 1.032, 1.028, 1.000, 1.002}, thereby, playing down the importance of

the sgn approximation. Table 6 displays the results, which despite the new

adjustment factors, show minor changes in skewness relatively to Table 4.20

Therefore, the analysis drawn in Table 4 still applies.

20Notice that the first year results are the same due to the fact that we did not introduce
judgment in the first year input variables.
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5 Conclusion

In this article we criticized two aspects of the statistical methodology used

by the Bank of England, the Riksbank and several other central banks to

produce their fan charts. The first issue relates to a statistical shortcut

taken by the BoE approach that implicitly considers that the mode of the

linear combination of random variables is the (same) linear combination of

the modes of those variables. The second issue deals with the assumption of

independence among all covariates, which may be restrictive.

We proposed an alternative methodology to estimate the density of the

conditional forecasts that addresses both issues. An illustration of our method-

ology was presented and its results were compared with those obtained using

the BoE approach.

In our approach, when we consider risks to some input variables, both the

mean and the mode of the distribution are shifted relatively to the benchmark

of full symmetry. The size of the mean shift will be larger (in absolute

terms) than the size of the mode shift, and the distribution of the forecasted

variables will also become skewed. Therefore, in our approach the effects on

the distributions of the forecasted variables, resulting from the consideration

of risks to the input variables, are twofold: a “mode effect” and a “skewness

effect”. In the BoE approach, the mean is allowed to vary, but the mode is

kept unchanged, implying that the skewness of the distribution is incorrectly

measured. In some cases, this bias does not generate a significant distortion

when computing confidence intervals, because it compensates the mode shift

of the distribution. However, in other cases, this compensation does not

materialize. Therefore, the BoE approach has the potential to distort the

risk assessment. In practice, the likelihood of obtaining significant differences

when comparing the output of both methods will depend on the degree of

skewness of the distributions. For only slightly skewed distributions, the

BoE and our approaches will generate similar outputs, but the differences

may become important when the skewness is strong.
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Appendix

Proof of Theorem 1 Let us consider N + 1 independent random variables

w ∼ N(µ,Σ) and s ∼ 21/3 exp[21/3(s+ 2−1/3)]

with µ = B′θ1, B an orthogonal matrix and Σ a positive semidefinite diagonal

matrix such that (for given Ω̄ = DRD − 2−2/3θ3θ
′
3) BΣB′ = Ω̄.

(1) Let y = Bw. We have

y ∼ N(Bµ,BΣB′) = N(θ1, Ω̄)

In particular,

yn ∼ N(θ1n, ωnn),

where ωjj is the j-th diagonal element of Ω̄. But, from the expression of Ω̄:

ωnn =
(√

θ2
2n + 2−2/3θ2

3n

)2

− 2−2/3θ2
3n = θ2

2n > 0.

Therefore,

yn ∼ N(θ1n, θ
2
2n)

(2) As yn = bn1w1 + · · · + bnNwN and s are independent and θ2 > 0, we

have

z∗n = yn + θ3s ∼ S(θ1n, θ2n, θ3n).

(3) We also need to show that the correlation matrix of z∗ is R. Since

z∗ = Bw + θ3s,

V (z∗) = BΣB′ + 2−2/3θ3θ
′
3 = Ω̄ + 2−2/3θ3θ

′
3 =

= DRD − 2−2/3θ3θ
′
3 + 2−2/3θ3θ

′
3 = DRD

As the elements of the diagonal of D are the standard deviations of the cor-

responding elements of z∗, R is the correlation matrix of z∗.
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(4) As to the distribution of α′z∗, it is straightforward to derive the first

three moments. The distribution is sgn because α′z∗ may be expressed as the

combination of two independent variables: a non-degenerate normal and a

shifted exponencial with parameter 21/3

Q.E.D.

Proof of Theorem 2 Since Theorem 2 is an extension of Theorem 1, the

proof is very similar to the proof above.

Proof of Theorem 3 If Ω is symmetric positive semi-definite, then there

is a matrix R (N ×N) such that

Ω = R′R.

Let

f(R) = tr[(R′R− Ω̄)(R′R− Ω̄)′]

= tr[(R′R)2 − 2Ω̄R′R + Ω̄2].

The minimization problem may be expressed as:

min
R
f(R).

The necessary first order conditions are

R(R′R − Ω̄) = 0 (a)

⇔ RR′R = RQΛQ′ (b)

⇔ (RR′)(RQ) = (RQ)Λ (c) (34)

⇔ (RR′)νn = νnλn, (d)

where νn the n-th column of RQ.

Since

(i) As RR′ is positive semi-definite by construction, it cannot have negative

eigenvalues, which means that νn has to be null for λn < 0;
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(ii) For λn ≥ 0, it is the case that λn is a eigenvalue of RR′ and R′R, from

where we conclude that the positive eigenvalues of Ω̄ are also eigenvalues

of RR′;

(iii) Since Q is non-singular, the ranks of RR′ and RQ are identical. As, by

(i), νn is null when λn < 0, we conclude that all non-null eigenvalues

of RR′ and R′R are identical to the positive eigenvalues of Ω̄.

Thus, we will show that if there are several solutions to the system of first

order conditions, (34), they will correspond to the same value of the objective

function, which means that any solution that satisfies the first order condition

is an optimal solution. As such, let R̂ be such a solution of (34). Then,

f(R̂) = tr[(R̂′R̂)2 − 2Ω̄R̂′R̂ + Ω̄2]

= tr[(R̂′R̂)2 − 2R̂′R̂R̂′R̂ + Ω̄2]

= tr(Ω̄2) − tr[(R̂′R̂)2] (35)

= tr(Ω̄2) − tr[(R̂R̂′)2]

=
N∑

n=1

λ2
n −

∑

λn>0

λ2
n =

∑

λn<0

λ2
n

To complete the demonstration, we will show that one solution to (34) is

given by

R̃ = GQ′, with G = diag(g1, . . . , gn, . . . , gN) (36)

where

gn =

{
0, if λn ≤ 0√
λn, if λn > 0

(37)

Indeed, this solution respects the first order condition ((34)(c)) as

[(GQ′)(GQ′)′](GQ′)Q = (GQ′)QΛ (38)
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which by (36) is equivalent to G3 = GΛ. On the other hand, given that

R̃R̃′ = G2 = Λ̃, we have

f(R̃) = tr(Ω̄2) − tr[(R̃R̃′)2]

=

N∑

n=1

λ2
n −

∑

λn>0

λ2
n =

∑

λn<0

λ2
n, (39)

which respects (35). As such

Ω̃ = R̃′R̃ = QG2Q′ = QΛ̃Q′ (40)

is a solution to the problem.

Q.E.D.
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