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Abstract 

This paper focuses on Bayesian Vector Auto-Regressive (BVAR) models for the euro area. A 
modified hyperparameterization scheme based on the Minnesota prior that takes into account the 
economic nature of the variables in the model is used. The merits of incorporating long-run 
relationships are also discussed. Alternative methods to estimate eventual cointegrating relations 
in the variables are considered, and the problem of choice of appropriate prior distributions for 
BVAR with Error Correction Mechanism (BECM) models is addressed. Results show that using 
a flat prior on factor loadings can seriously endanger the forecasting performance of BECM 
models. Overall, the BVAR model in levels outperforms all other models across variables and 
forecasting horizons. This is in contrast with other empirical studies where some gains could be 
obtained when incorporating long-run relationships in the model. 
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1. Introduction 

Multi-country models are frequently used to produce forecasts of the main euro area 

economic variables. In this approach, forecasts of euro area aggregates are obtained by 

aggregating the forecasts obtained for each one of the constituent countries. However, 

with the introduction of the euro in 1999 and the growing economic integration among 

the countries that have adopted it, one would expect area wide models to become 

increasingly used. This is the approach followed in this paper, with the euro area 

modelled as a single country and using aggregate time series for each variable1.  

This paper also focuses on Bayesian Vector Auto-Regressive (BVAR) models. Over the 

past twenty years, the BVAR approach has gained widespread acceptance as a practical 

tool to provide reasonably accurate macroeconomic forecasts when compared to 

conventional macroeconomic models or alternative time series approaches. The Bayesian 

methodology allows imposing prior restrictions on the model parameters, thereby greatly 

reducing the dimensionality problem of VAR models, resulting in efficiency gains in the 

estimation of the parameters and, consequently, in more accurate forecasts. 

The majority of the BVAR models proposed in the literature rely on the specification of a 

prior distribution known as the Minnesota prior as presented in Doan et al. (1984). In this 

paper, a modified hyperparameterization scheme that takes into account the economic 

nature of the variables in the model is used. In particular, a distinction is made between 

real variables and price variables, and between endogenous and exogenous variables.  

Another aspect discussed in this work concerns the modelling of long-run relationships. 

In spite of the theoretical attractiveness2, results presented in some studies using BVAR 

models not always agree about the nature of the hypothetical gains from incorporating 

cointegrating relationships. For example, in LeSage (1990), with labor market data for 

Ohio industries, BVAR with Error Correction Mechanism (BECM) models perform 

                                                 
1 Bikker (1998), using standard BVAR models in levels for the European Union, provides evidence of the 
superiority of area wide models in terms of forecasting performance compared to averages of forecasts for 
individual countries.  
2 See for example Engle and Yoo (1987). 
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better at increasing forecasting horizons. On the other hand, in the context of electricity 

demand, Joutz et al. (1995) find improvements only at shorter horizons. For the US 

economy, Shoesmith (1995) finds improvements at all forecasting horizons. Amisano and 

Serati (1999) find that a BECM model with an informative prior on factor loadings 

provides the best results at all forecasting horizons for the Italian economy. This paper 

also considers the merits of incorporating long-run relationships but in the context of 

BVAR models for the euro area. Alternative methods to estimate eventual cointegration 

relations among the variables are considered, and the problem of choice of appropriate 

prior distributions in BECM models is addressed.  

The paper is structured as follows. Section 2 summarizes the BVAR framework. The 

issue of incorporating long-run relationships in a BVAR model is discussed in Section 3. 

In Section 4, Bayesian and non-Bayesian models for the euro area are compared in terms 

of forecasting performance. The last section presents some conclusions. 

2. BVAR models 

Consider a ( ) vector Y of variables to be forecasted. In a VAR model each one of 

these variables is assumed to be linearly correlated with its past values up to p lags, the 

past values of the remaining variables included in Y up to the same lag, and a vector D of 

deterministic components (such as an intercept and seasonal dummy variables), such that, 

1×n

tptpttt YAYACDY ε++++= −− L11  

where , , ... ,  denote matrices of coefficients to be estimated, and C 1A pA tε  is a vector 

of unobserved innovations. 

BVAR models present a solution to the excessive number of parameters to estimate in 

VAR models by imposing some general restrictions through prior probability distribution 

functions. The posterior distribution function for each parameter is obtained by 

combining the prior distribution and the sample likelihood using Bayes rule (see for 

example Lütkepohl, 1993). 
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The prior specification is an important step in BVAR modelling. An excessively diffuse 

prior, that is, a prior with a large variance around the prior mean, can be easily modified 

by accidental sample variability (noise). An informative prior with reasonable values for 

the variances can only be influenced by systematic sample variability (signal), 

diminishing the risks of overfitting and of producing unreliable forecasts.  

In this work, we use a prior specification inspired by the well-known Minnesota prior. As 

in Doan et al. (1984), it is postulated that most macroeconomic series can be described as 

pure random walks. Accordingly, it is assumed that the prior distributions for the VAR 

parameters are independent normal distributions, with their means set equal to the 

parameters implied by a random walk. 

The variances of the prior distributions are defined according to a functional relation 

linking these to a second set of parameters, smaller than the first one, known as 

hyperparameters. The way each equation is tightened around the random walk prior mean 

is determined by a set of overall tightness hyperparameters that can differ from equation 

to equation. To control the increase of tightness around the random walk prior for lags 

farther apart in time and to avoid an excessive number of hyperparameters, it is assumed 

that tightness increases with the lag, that is, the variance for higher lags decays inversely 

with the lag. Finally, there are hyperparameters controlling cross-variable relationships 

that can differ from variable to variable and across equations.  

In particular, the variance of the prior distribution of the coefficient associated with lag l 

of variable j in the equation for variable i is set equal to 
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where iλ  is the overall tightness hyperparameter for equation i, ijθ  are the 

hyperparameters controlling cross-variable relationships, and the term ji σσ /  accounts 

for different units of measurement in the variables. Values for iσ  are set equal to the 

estimated standard error of a univariate autoregressive model for each variable.  
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The values assumed by the hyperparameters are crucial in a BVAR model because they 

determine how far BVAR coefficients are allowed to deviate from their prior means and 

how much is the model allowed to approach a non-Bayesian VAR model, that is, an 

unrestricted VAR. A BVAR model gets closer to an unrestricted VAR model as λ and θ 

go to infinity; conversely, as these hyperparameters approach zero, a BVAR model gets 

closer to the random walk prior mean. When λ goes to infinity and θ goes to zero, a 

BVAR model approaches a set of univariate autoregressive models.  

Of course, as the number of equations gets larger, the number of hyperparameters 

continues to increase. However, as shown below, using an appropriate 

hyperparameterization scheme that takes into account the economic nature of the 

variables, it is possible to further reduce the number of hyperparameters. 

For the intercept and seasonal dummy terms, variance is set to infinity, that is, a 

completely diffuse prior for the deterministic terms is considered.  

In spite of being Bayesian in its philosophy, a BVAR model is not completely Bayesian 

since hyperparameters are usually calibrated using an optimisation algorithm based on an 

objective function that depends on out-of-sample forecast errors. In the case of the 

quarterly models for the euro area, 12 quarters ahead out-of-sample forecast errors are 

used. 

3. Bayesian VECM models  

A criticism pointed to VAR and BVAR models is the fact that these do not take into 

account explicitly eventual long-run, or cointegrating, relationships among the variables. 

As argued by Engle and Yoo (1987), in the presence of cointegration, a VAR model with 

an error correction mechanism (VECM) should outperform a VAR and a BVAR over 

longer forecasting horizons. A BVAR model with an error correction mechanism (also 

known as a Bayesian VECM or BECM model) can be used to combine BVAR models’ 

advantages with the benefits of taking into account explicitly long-run relationships in 

forecasting exercises. 

 4



A VECM model can be represented in general terms as follows: 

ttptpttt YBYAYACDY εβ +′+∆++∆+=∆ −−− 111 L , 

where ∆ denotes the difference operator, β is the (n×r) matrix of cointegrating vectors, B 

denotes the (n×r) matrix of coefficients associated with the error correction terms, 

1−′ tYβ , also called factor loadings, and r denotes the dimension of the cointegration space 

(r < n). 

In this work, estimation of the BECM model is done in two steps.3 First, long run 

relationships are estimated using either Engle-Granger4 or Johansen5 methodologies. In 

the Engle-Granger approach it is possible to test for and estimate a single cointegrating 

vector, which can be interpreted as a linear combination of all the cointegrating vectors in 

the cointegration space. In the Johansen approach, after testing for the rank, or 

dimension, of the cointegration space, it is possible that more than one cointegrating 

vectors are estimated. Secondly, the resulting estimated error correction terms are then 

plugged in the VECM model to be estimated. Since in a BECM model all regressors are 

stationary, prior means for all the coefficients are set to zero. Prior variances for the 

coefficients in , , ... ,  follow the same hyperparameterization scheme used in the 

BVAR model. 

C A A

                                                

1 p

The factor loadings, B, have an increased relevance in a BECM model since they 

determine the importance of long-run relationships and how fast variables converge to 

their long-run levels. As discussed in Amisano and Serati (1999) in the context of a small 

BVAR model for the Italian economy, an uninformative prior on factor loadings 

combined with an informative prior on the short-run dynamics may confer an 

exaggerated weight to the long-run relative to the short-run (since only short-run 

dynamics would be restricted by the prior), thereby greatly endangering forecasting 

performance. The empirical application presented in the next section considers a BECM 

 
3 This two-step estimation procedure was initially proposed in LeSage (1990), and was also used in 
Shoesmith (1992) and Amisano and Serati (1999). Alvarez and Ballabriga (1994) propose an alternative 
two-step approach based on FIML estimation of Π = Bβ ´. 
4 See Engle and Granger (1987). 
5 See Johansen (1988). 
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model with an uninformative prior on factor loadings and, as an alternative, a BECM 

model with an informative prior on factor loadings in order to compare the forecasting 

performances of both models. 

In summary, two alternative methods of estimating cointegrating relationships and two 

alternative priors on the coefficients associated with the error correction terms are 

considered, giving rise to the four types of BECM models considered below. 

When there are no cointegrating vectors or if the prior variance for the factor loadings is 

very small, the BECM model reduces to a BVAR model in first differences. 

4. BVAR models for the euro area 

This section presents the results obtained with several alternative models in terms of 

forecasting accuracy regarding a set of economic variables that usually play an important 

role in euro area forecasting exercises. The variables considered are: real GDP, 

unemployment rate, consumer prices, nominal wage rate, long term interest rate and 

nominal effective exchange rate. 

A set of exogenous variables has also been considered: external real GDP, external prices 

and the short term interest rate. All the variables used in the VAR, BVAR and BECM 

models for the euro area are presented in Table 1 and plotted in Appendix D.6 

The database used in the empirical application for the euro area was built by recovering 

country series from a variety of sources (BIS, AMECO, IMF, OECD and Eurostat). The 

sample covers a period from 1977:1 to 1997:4 on a quarterly basis. Euro area variables 

were obtained by aggregation of country variables using the so-called "index method" 

suggested by Fagan and Henry (1997). Appendix A presents a more detailed description 

of the aggregation method. 

 

                                                 
6 ADF tests for the presence of unit-roots confirm that all the variables in Table 1 can be considered as I(1). 
See Appendix B for details. 
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Table 1. Description of variables 

Variable Description Status Block

Y Log GDP at constant prices - measure of economic 
activity in the euro area (index) Endogenous Real 

U 
Unemployment rate - measure of labour market 
conditions in the euro area (in percentage of labour 
force) 

Endogenous Real 

P First difference of log private consumption deflator - 
measure of inflation rate in the euro area (index) Endogenous Price 

W First difference of log nominal wage rate - measure of 
labour force nominal earnings in the euro area (index) Endogenous Price 

ILT Long term interest rate - measure of capital and 
investment costs in the euro area (in percentage) Endogenous Price 

S Log effective nominal exchange rate of euro - measure 
of currency market conditions (index) Endogenous Price 

YW Log external GDP at constant prices - measure of 
activity outside the euro area (index) Exogenous Real 

PW First difference of log external GDP deflator - measure 
of external price inflation (index) Exogenous Price 

IST Short term interest rate - measure of the monetary 
authority policy instrument (in percentage) Exogenous Price 

 

4.1. Hyperparameterization scheme 

In this work, the hyperparameterization scheme used is somewhat different from the one 

in Doan et al. (1984) since a special treatment of the hyperparameters governing cross-

variable relationships is considered. In addition to the prior assumptions discussed in 

Section 2, the hyperparameterization scheme relies on a classification of the variables 

into two blocks: real variables and price variables (see Table 1). Based on this 

classification additional prior assumptions are made. The chosen specification is able to 

reduce the number of hyperparameters while keeping the flexibility of the BVAR model. 

A list of the hyperparameters is presented in Table 2, and the hyperparameterization 

scheme is illustrated in Figure 1.  
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Table 2.  Description of hyperparameters 

 Description 

λ 1  Overall tightness for real variables equations 
λ 2  Overall tightness for price equations 
θ 1  Tightness of parameters of real (price) variables in real (price) variables equations 
θ 2  Tightness of parameters of price (real) variables in real (price) variables equations 

θ 3  Tightness of parameters of exogenous real (price) variables in real (price) 
variables equations 

θ 4  Tightness of parameters of exogenous price (real) variables in real (price) 
variables equations 

θ 5  Tightness of parameters of monetary instrument in real variables equations 
θ 6  Tightness of parameters of monetary instrument in price equations 

Ω  Tightness of ECM factor loadings 

 

Different overall tightness hyperparameters are considered for the endogenous variables 

in each block ( λ 1  and λ 2 ), thereby allowing restrictions in the equations for variables in 

the real block to differ from those in the prices block. 

Regarding exogenous variables, the forecasting exercises considered below are not made 

conditional on specific macroeconomic scenarios. Therefore, the prior specification was 

chosen so that exogenous variables are influenced only by their own past values and not 

by any other variables. In fact, these variables are projected into the future using 

univariate autoregressive processes. 

It is considered that cross-variable relationships involving endogenous variables in the 

same block can have a different degree of tightness around prior means (θ 1 ) relative to 

cross-relations between endogenous variables in different blocks (θ 2 ). This way, 

equations for variables in the prices block may be more influenced by variables in the 

same block than by variables in the real block, and vice-versa. 
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Figure 1. Hyperparameterization scheme 

 

In the same manner, it is considered that the coefficients of exogenous variables can have 

different degrees of tightness around their prior means if they appear in an equation for a 

variable in the same block (θ 3 ) or in the other block (θ 4 ). Therefore, an exogenous 

variable on the block of prices may have more influence on the equations for the 

variables in that block than on equations for variables in the real block, and vice-versa. 

In what concerns the monetary policy instrument, it is considered that the degree of 

tightness of the associated parameters can be different across equations for variables in 
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the real block (θ 5 ) and in the price block (θ 6 ). For instance, it is possible that the short-

term interest rate can have a larger influence in variables such as prices or long-term 

interest rates than on economic activity. 

Finally, the additional hyperparameter Ω  controls the priors on factor loadings in BECM 

models. Factor loadings have zero prior means in order to ensure consistency with the 

random walk prior mean. Prior variances are all set equal to the Ω  hyperparameter. An 

informative prior corresponds to the case 0 < Ω  < ∞. As discussed in Section 3, the use 

of a diffuse prior on factor loadings, Ω  = ∞, raises the problem of an excessive weight 

given to long-run relationships relative to short-run dynamics, thereby endangering the 

forecasting performance of the models. When Ω  = 0, the BECM model reduces to a 

BVAR model in first differences without cointegrating relationships. 

4.2. Hyperparameter calibration  

Since BVAR models are used for forecasting purposes, hyperparameter calibration 

usually proceeds by optimising an objective function based on out-of-sample forecast 

errors. In the approach followed in this work, the sample is split in two sub-samples: the 

first one, 1977:1-1991:4, is used to estimate the BVAR parameters; the second one, 

1992:1-1997:4, is used to compute out-of-sample forecast errors. The model is first 

estimated using only the first sub-sample. For each additional observation in the second 

sub-sample, the model is re-estimated and dynamic h-steps ahead forecasts are computed. 

The process continues adding-up observations up to the point where there are not enough 

observations available in the second sub-sample to compute the h-steps ahead forecast 

errors.  

The root mean squared error (RMSE) is the most common measure used to evaluate the 

quality of the forecasts for a single variable. Since n variables are included, the 

optimisation criterion combines the RMSE for all variables in the form of a weighted 

average: 

∑ ∑
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where  is the h steps-ahead forecast error for variable i in the t-th iteration, T is the 

total number of h steps-ahead forecast errors, and 

h
itε

iσ  is set equal to the estimated 

standard error of a univariate autoregressive model for each variable. In the calibration of 

the hyperparameters, a simple average of the 1 to 12 quarters-ahead RMSEh, h = 1, 2, … , 

12, was considered. The choice of three years as the horizon to calibrate the 

hyperparameters seems reasonable given the sample size available and the need of having 

enough observations to evaluate the forecasting performance of the models. Also, some 

of the models considered include long-run relationships that are more likely to operate in 

longer forecast horizons. 

5. Forecasting results 

Several models were compared in terms of their forecasting performance for the euro 

area. These include the random walk model, five non-Bayesian models and six Bayesian 

models. Bayesian models are compared with their non-Bayesian counterparts. Bayesian 

models with and without ECM are also compared with each other in order to evaluate the 

role played by the inclusion of long-run relationships. Both Engle-Granger and Johansen 

approaches were used to estimate the cointegrating vectors. The first methodology points 

to the existence of cointegration, while the second points to the existence of four 

cointegrating vectors.7 We considered a lag length of 4 for all models except the random 

walk. Table 3 lists all models considered. 

                                                 
7 See Appendix C for more details. 
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Table 3. Description of the models under analysis 

Model Description Status 
RW Random-walk model Non Bayesian 

AR Univariate AR model with variables in levels Non Bayesian 

VAR VAR model with variables in levels Non Bayesian 

VAR–1st dif. VAR model with variables in first differences Non Bayesian 

VECM (EG) VECM model with variables in first differences and 
ECM estimated by Engle-Granger methodology Non Bayesian 

VECM (J) VECM model with variables in first differences and 
ECM estimated by Johansen methodology Non Bayesian 

BVAR BVAR model with variables in levels Bayesian 

BVAR–1st dif. BVAR model with variables in first differences Bayesian 

BECM(EG)–FP 
BVAR model with variables in first differences, 
ECM estimated by Engle-Granger methodology 
and flat prior on factor loadings 

Bayesian 

BECM(J)–FP 
BVAR model with variables in first differences, 
ECM estimated by Johansen methodology and flat 
prior on factor loadings 

Bayesian 

BECM(EG)–IP 
BVAR model with variables in first differences, 
ECM estimated by Engle-Granger methodology 
and informative prior on factor loadings 

Bayesian 

BECM(J)–IP 
BVAR model with variables in first differences, 
ECM estimated by Johansen methodology and 
informative prior on factor loadings 

Bayesian 

 

Table 4 presents the values for the average RMSE over all endogenous variables for each 

model and its comparison with the random-walk prior mean model (c.w.p.). A value 

smaller (larger) than unity points to a better (worse) performance than that obtained with 

the random walk model. 

The clearest evidence from the comparison is that all Bayesian models, except for the 

BECM(J)-FP, perform better than the random-walk prior. Also, non-Bayesian models 

always perform worse than the random walk in terms of forecasting. 
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Table 4. Averaged 1 to 12 quarters-ahead RMSE for competing models 

 Models Avg.RMSE 1-12 c.w.p

RW 6.938 1.000
AR  7.612 1.097
VAR  14.396 2.075
VAR - 1st dif. 11.406 1.644
VECM (EG) 10.074 1.452
VECM (J) 21.508 3.100

BVAR 5.071 0.731
BVAR - 1st dif. 5.820 0.839

BECM (EG) - FP 5.948 0.857
BECM (J) - FP 8.867 1.278

BECM (EG) - IP 5.229 0.754
BECM (J) - IP 5.587 0.805

 

 

Additionally, it is also clear that all Bayesian models perform better than their non-

Bayesian counterparts, which supports the evidence that a Bayesian approach to VAR 

modelling delivers better forecast accuracy, overcoming the overfitting problems of VAR 

models. 

Regarding long-run relationships, BECM models do not perform better than BVAR 

models in levels; thus, the explicit modelling of long-run relationships does not seem to 

improve forecasts. In the literature, there are other cases where this kind of results can 

also be found, namely in Joutz et al. (1995). 
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It is interesting to note that although the BVAR-1st dif. performs worse than the BVAR in 

levels, when an ECM term is included in a BVAR-1st dif. using an informative prior, as 

in the BECM(EG)-IP model, then it performs almost as well as a BVAR in levels.   

The role played by the hyperparameter Ω  is clear when comparing the results for the 

BECM models with informative priors (IP) and with flat priors (FP) on factor loadings. 

When incorporating several cointegrating relations, the forecasting performance of the 

BECM(J)-FP model using a flat prior is very poor when compared with all the other 

models. By using an informative prior, as in the BECM(J)-IP model, the forecasting 

performance is greatly enhanced. There are also some gains when using an informative 

prior in the case of a single cointegrating relation (the BECM(EG)-IP model) but not so 

dramatic as in the previous case. Moreover, both models (BECM(EG)-IP and BECM(J)-

IP) incorporating one or more cointegrating relations using an informative prior on factor 

loadings perform better than the BVAR model in first differences, suggesting the 

inappropriateness of fully excluding long-run relationships. 
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Table 5. Averaged 1 to 16 quarters-ahead RMSE for each variable and model 

Models Y U P W ILT S 

RW 1.977 0.782 1.761 5.191 1.724 5.127 
AR  2.841 0.998 1.868 4.591 2.697 5.815 
VAR  5.040 2.224 4.581 4.564 3.316 14.990 
VAR - 1 st  dif. 3.521 1.165 4.945 5.137 3.217 11.521 
VECM (EG) 7.723 1.602 6.934 14.598 6.964 16.079 
VECM (J) 4.587 1.339 10.424 11.603 4.551 16.361 

BVAR 1.594 0.516 1.256 2.836 1.436 4.941 
BVAR - 1 st  dif. 1.799 1.033 1.291 3.873 1.754 6.247 

BECM (EG) - FP 1.498 0.801 1.675 4.410 1.888 6.944 
BECM (J) - FP 1.979 0.774 2.996 7.304 2.033 8.041 

BECM (EG) - IP 1.716 0.650 1.341 3.961 1.699 6.249 
BECM (J) - IP 1.711 0.621 1.311 4.157 1.700 6.720 

 

A detailed analysis of the forecasting performance variable-by-variable reveals a 

heterogeneity of results not captured by the global criterion function used above. Results 

using an average of 1 to 16 quarters-ahead RMSE for each variable are presented in 

Table 5. 

The BVAR model in levels is the best model in almost every case; the exception being 

real GDP that is best predicted by the BECM (EG)-FP model but followed closely by the 

BVAR model in levels. BECM (J)-IP is the second best model to forecast the euro area 

unemployment rate and the third best model to forecast the long-term nominal interest 

rate, real GDP and the price index. The BECM (EG)-IP model is the second best model 

to predict the long-term nominal interest rate and the third best model to forecast the euro 

area unemployment rate and the nominal wage rate. The BVAR-1st dif. is the second best 

model to predict the price index and the nominal wage rate. 

 15



As usual, nominal effective exchange rate exhibits a random-walk behaviour. This 

feature is best captured by the BVAR model, with the second best model to predict this 

variable being the random-walk model.  

To uncover eventual differences in forecasting performance not captured by the average 

RMSE used above, it is important to examine the profile of the RMSEh for each variable 

across the forecasting horizon. In the following figures only the most relevant models for 

each variable are presented. 
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Figure 2. RMSE profiles for Y 

The best performing model in terms of real GDP forecasting for the euro area is the 

BECM model with one cointegrating vector and a flat prior on factor loadings (BECM 

(EG)-FP), followed by the BVAR in levels (BVAR) model (see Figure 2). The BECM 

(EG)-FP model beats the BVAR when forecasting at more than 12-quarters ahead; in this 

case there is some evidence that including one long-run relationship improves forecasts at 

longer horizons. The BECM (J)-FP model performs worse at all forecasting horizons 

confirming that including a larger number of long-run relationships with an 

uninformative prior on factor loadings endangers forecast accuracy. 
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Both BVAR and BECM (EG)-IP models reveal a good forecasting accuracy when 

forecasting the unemployment rate (see Figure 3). The BVAR-1st dif. model performs 

badly, specially at longer horizons, suggesting that this may be caused by the omission of 

cointegrating relations in this model. Nonetheless, the model incorporating long-run 

relationships performs slightly worse than the BVAR, even at longer forecast horizons. 

The BVAR model is the one that delivers the best forecasts for the price consumption 

deflator. Both BECM (J)-FP and BECM (EG)-FP models perform worse (see Figure 4). 

Again, a larger number of long-run relationships endangers forecast accuracy leading to 

poor performances. The same analysis is valid for the nominal wage rate given that these 

variables exhibit a very similar behaviour (see Figure 5). 

 

 17



0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Forecasting horizon

R
M

SE

BVAR BECM (J) - FP BECM (EG) - FP
 

Figure 4. RMSE profiles for P 
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Figure 5. RMSE profiles for W 

 

The model delivering the best forecasts for the long-term nominal interest rate is the 

BVAR in levels (see Figure 6). If a BECM (EG)-FP model is considered then forecast 

performance becomes poorer. Again, this may be due to the uninformative prior used on 

factor loadings. 

Finally, for all models considered, nominal effective exchange rate forecasts are very 

poor even at short-term horizons (see Figure 7). Again, this is not an unexpected result 

given the random walk behaviour of the exchange rate series. 
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Figure 6. RMSE profiles for ILT 

 

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Forecasting horizon

R
M

SE

BVAR BECM (EG) - FP
 

Figure 7. RMSE profiles for S 

 

Overall the results confirm the superiority of the BVAR model in levels over competing 

models across variables and forecasting horizons. This is in contrast with other empirical 

studies, as mentioned in Section 1, where some improvements could be obtained using 

some form of BECM model. The negative consequences of using a flat prior on factor 

loadings in a BECM model confirms the results also obtained by Amisano and Serati 

(1999) for the Italian economy.  
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6. Conclusions 

This paper presents a comparison of alternative BVAR models in terms of forecasting 

euro area macroeconomic aggregates. The proposed modified hyperparameterization 

scheme, based on a classification of the variables in terms of real/price variables, and 

endogenous/exogenous variables, avoids having an excessive number of hyperparameters 

while keeping the flexibility of BVAR models. The merits of incorporating long-run 

relationships are also discussed. Alternative methods to estimate eventual cointegrating 

relations in the variables are considered, and the problem of choice of appropriate prior 

distributions for the factor loadings in BECM models is addressed.  

The first conclusion is that Bayesian models perform better than their non-Bayesian 

counterparts in terms of forecasting accuracy. It is worth mentioning that only Bayesian 

models perform better than the random walk.  

A second conclusion arising from the analysis of the results is that modelling long-run 

relationships with BECM models leads to a poorer forecast accuracy when compared to 

BVAR models in levels, even at longer forecast horizons. This is in contrast with other 

empirical studies where some gains could be obtained by taking into account 

cointegrating relationships. However, when BECM models are compared with BVAR 

models in first differences, a better forecast accuracy is obtained. These results are 

consistent with the existence of misspecification problems in BVAR models in first 

differences where eventual long-run relationships are not taken into account. 

Finally, the use of an uninformative or flat prior on factor loadings leads to an unbalanced 

prior treatment of short-run and long-run dynamics. The negative consequences of this 

are more serious when the model incorporates a large number of cointegrating relations 

as suggested by Johansen’s method. 

In this paper, cointegrating vectors were estimated and selected using Engle-Granger and 

Johansen methodologies, which are non-Bayesian. An issue that deserves further research 

is the use of an alternative Bayesian method to estimate the cointegrating relations in 

BECM models. A possible approach would be to use Bayesian reduced rank regression 

techniques as in Geweke (1996). 
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Appendix A. Aggregation method 

Time series for the euro area variables were obtained by aggregating data from the eleven 

original constituent countries: Austria, Belgium, Finland, France, Germany, Ireland, Italy, 

Luxembourg, Netherlands, Portugal and Spain. All series, except interest rates and the 

unemployment rate, were transformed to indices based on 1990. Nominal and price 

variables were built by taking a geometric weighted average of national variables. The 

aggregation formula used is given by: 

∏ 
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where  denotes the value taken by the variable in country i at time t, and  is the 

weight of country i in the euro area measured by GDP at PPP exchange rates in ECU's for 

1993. Taking the logarithm of the above formula, it follows that: 
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Therefore, euro area aggregates can be built as arithmetic weighted averages of the 

logarithms of country variables. The same applies for the rates of change of euro area 

variables, which can be approximated by arithmetic weighted averages of the rates of 

changes of country variables. Since fixed weights are used, real variables can also be 

obtained in this way or derived by deflating nominal variables.  

 22



Appendix B. Unit root tests 

Unit root tests were conducted to identify the order of integration of the euro area 

aggregates prior to specification and estimation of all models. The augmented Dickey-

Fuller (ADF) test for a unit-root in yt is based on the following specification:  

t

k

j
jtjtt yyty εγρβα +∆+−++=∆ ∑

=
−−

1
1)1( , 

where k is the number of lags needed to eliminate autocorrelation from the residuals. The 

results presented in Tables B.1 and B.2 suggest that all the variables considered contain at 

least one unit-root.  

 

 

Table B.1.  ADF tests for a unit root: constant and trend included 

Variable ρ̂  t-statistic k 

Log GDP at constant prices 0.90766 -3.2796 2 

Unemployment rate 0.98314 -1.3447 1 

Log private consumption deflator 0.99712 -1.2142 2 

Log nominal wage rate 0.99374 -1.6141 4 

Log external GDP at constant prices 0.89869 -3.0969 3 

Log external GDP deflator 0.99679 -0.7097 5 

Notes: Critical values at 5%: -3.452, at 1%: -4.047.  

 

 

Table B.2.  ADF tests for a unit root: constant included 

Variable ρ̂  t-statistic k 

Long term interest rate 0.97049 -1.4714 1 

Log effective nominal exchange rate  0.92866 -2.4693 1 

Short term interest rate 0.94039 -2.4843 1 

Notes: Critical values at 5%: -2.889, at 1%: -3.493.  
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Table B.3.  ADF tests for a unit root in the first differences: constant included 

Variable ρ̂  t-statistic k 

First difference of log GDP at constant prices 0.44155 -4.8439* 1 

First difference of unemployment rate 0.69136 -3.0452* 4 

First difference of log private consumption deflator 0.96442 -1.0414 1 

First difference of log nominal wage rate 0.95688 -0.7415 3 

First difference of long term interest rate 0.36456 -4.9220* 3 

First difference of log effective nominal exchange rate  0.33913 -7.0186* 0 

First difference of log external GDP at constant prices 0.16043 -8.6101* 0 

First difference of log external GDP deflator 0.87813 -1.9919 4 

First difference of short term interest rate 0.31303 -5.0064* 4 

Notes: * Significant at the 5% level. 
 

 

Table B.4.  ADF tests for a unit root in the second differences: constant included 

Variable ρ̂  t-statistic k 

Second difference of log private consumption deflator -0.28910 -13.631* 0 

Second difference of log nominal wage rate -0.54257 -18.597* 0 

Second difference of log external GDP deflator -0.43322 -4.8353* 3 

Notes: * Significant at the 5% level. 
 
 

Results for unit-root tests for the first and second differences presented in Tables B.3 and 

B.4 suggest that we can consider all variables as I(1) except for the log private 

consumption deflator, the log nominal wage rate, and the log external GDP deflator 

which appear to be I(2). Based on these results we include I(2) variables in first 

differences (second-differences)  in models where I(1) variables enter in levels (first-

differences). See Table 1 above for a description of the variables and Appendix D for 

their corresponding time-series plot.  
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Appendix C. Estimating cointegrating relationships 

Following the Engle-Granger (1987) methodology, a static long-run regression was 

estimated by least squares. The estimated residuals are plotted in Figure C.1. An Engle-

Granger cointegration test based on these residuals confirms that the null hypothesis of 

no cointegration is rejected. 

Johansen (1988) approach allows for more than one cointegrating relationship. Using a 

system with a lag order equal to four, the trace test results presented in Table C.1 point to 

the existence of five or six cointegrating relationships. The corresponding first five 

estimated long-run relationships are plotted in Figures C.2 – C.6.  Since the plot of the 

fifth cointegrating relationship revealed a non-stationary behavior, we only allowed for 

four cointegrating relationships in the BECM models considered above. 
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Figure C.1. Estimated Engle-Granger error correction term 
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Table C.1.  Johansen’s trace test statistics for cointegration 

H0: cointegrating rank = r Trace 5% critical value 

r = 0 272.4** 192.9 

r = 1 200.6** 156.0 

r = 2 150.5** 124.2 

r = 3 109.9** 94.2 

r = 4 76.5** 68.5 

r = 5 48.5* 47.2 

r = 6 26.5 29.7 

r = 7 11.4 15.4 

r = 8 1.2 3.8 

Notes: ** Denotes rejection at the 1% significance level; * denotes rejection at the 5% 
significance level. 
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Figure C.2. First estimated error correction term 

 26



Cointegrating vector 2

-3.90
-3.88
-3.86
-3.84
-3.82
-3.80
-3.78
-3.76
-3.74
-3.72
-3.70

19
77

19
78

19
80

19
82

19
84

19
85

19
87

19
89

19
91

19
92

19
94

19
96

 

Figure C.3. Second estimated error correction term 
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Figure C.4. Third estimated error correction term 
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Figure C.5. Fourth estimated error correction term 
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Figure C.6. Fifth estimated error correction term 
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Appendix D. Time-series data, 1977:1 - 1997:4 
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